2019年浙江省中考数学专题复习训练:专题六 探索型问题
开放性问题[整理]
探索型问题一(开放性问题)【考点透视】习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型.开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答.开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使题目结论成立. 这两种情况所需补充的条件往往不惟一.例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC ∽△BCD ,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可).(2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC ≌△FED (只需填写一个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC ;或∠A=∠DBC ;或BC ∶CD=AC ∶BC ;或BC 2=AC •CD 中的某一个)(2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可.例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =⎧⎨=⎩和2,4x y =-⎧⎨=-⎩,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题)分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系.解:2,8.y x xy =⎧⎨=⎩说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一).B A CD 图7.1AB C DEF 图7.2本题在解法上可以用代数的方法来解,也可用几何的方法来解(形数结合——一种重要的数学思想方法);可以用待定系数法,运用演绎推理的方法来解,也可用直觉思维的方法来解,所以本题既是一个条件开放题,也是一个策略开放题.例3 已知:如图7.3.1,四边形ABCD 是⊙O 的内接四边形,A 是»BD的中点,过A 点的切线与CB 的延长线交于点E.(1)求证:AB •DA=CD •BE ;(2)若点E 在CB 延长线上运动,点A 在»BD上运动,使切线EA 变为割线EFA ,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)(2000年北京海淀区中考题)分析:本题的(2)是一个条件开放题.由于本题的结论与(1)相同,所以这一条件的获得,我们可以从(1)的证明过程中受到启示.(1)证明:连结AC.∵A 是»BD 的中点,∴»»AB AD =,∠ACB=∠ACD.∵EA 切⊙O 于A ,∴∠EAB=∠ACB.又∵∠ABE=∠D ,∴△EAB ∽△ACD ,∴AB ∶CD=EB ∶AD , ∴AB •AD=CD •BE.(2)解:如图7.3.2中,若有△EAB ∽△ACD ,则原结论成立,故我们只需探求使△EAB ∽△ACD 的条件. 由于∠ABE=∠D ,所以只要∠BAE=∠DAC 即可,这只要»»BF CD =即可.所以本题只要»»BF AD =,原结论就成立.说明:探求条件的过程,是一个由果索因的过程,这是数学中的一种重要的解题方法——分析法.例4 如图7.4,AB 、AC 分别是⊙O 的直径和弦,D 为劣弧»AC 上一点,DE ⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧»AC 的什么位置时,才能使AD 2=DE ·DF ?为什么? (2002年济南市中考题)分析:(1)连OC.要使PC 与⊙O 相切,则只需∠PCO=900即可.由∠OCA=∠OAC ,∠PFC=∠AFH ,即可寻找出△PCF 所要满足的条件 (2)要使AD 2=DE ·DF ,即AD DFDE AD=,也就是要使△DAF ∽△DEA , 这样问题就较容易解决了.解:(1)当PC=PF (或∠PCF=∠PFC ,或△PCF 是等边三角形)时,PC 与⊙O 相切. 连OC.∵PC=PF ,∴∠PCF=∠PFC ,∴∠PCO=∠PCF+∠OCA=∠PFC+∠OAC=∠AFH+∠AHF=900, ∴PC 与⊙O 相切.图7.3.1图7.3.2 H BAEP O CD F 图7.4(2)当点D 是»AC 的中点时,AD 2=DE ·DF.连结AE.∵»»AD CD=,∴∠DAF=∠DEA. 又∵∠ADF=∠EDA ,∴△DAF ∽△DEA , ∴AD DFDE AD=,即AD 2=DE ·DF. 说明:本题是探索性开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件.第(2)小题也是如此.二、结论开放题结论开放题通常是结论不确定或不惟一,解题时,需作出探索来确定结论是否成立或会有那些结论. 例5 如图7.5.1,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE ⊥AC 于E ,可得结论DE 是⊙O 的切线.问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆 仍交BC 于D ,DE ⊥AC 的条件不变,那么上述结论是否还成立?请说明理由.(2)如果AB=AC=5cm, sinA=35,那么圆心O 在AB 的什么位置时,⊙O与AC 相切? (2001年黑龙江省中考题)分析:(1)连OD. ∵OB=OD ,∴∠OBD=∠ODB=∠C ,∴ OD ∥AC , 从而可得OD ⊥DE ,结论仍然成立.(2)若⊙O 与AC 相切,设切点为F ,连OF ,则由Rt △AOF 中可 求得OF=158,即OB=158. 解:(1)结论仍然成立. 如图7.5.2,连OD ,则OD=OB ,∠OBD=∠ODB. 又AB=AC ,∴∠B=∠C ,∴∠ODB=∠C , ∴OD ∥AC.∵DE ⊥AC ,∴OD ⊥DE , ∴DE 是⊙O 的切线.(2)如图7.5.3,若AC 与⊙O 切于点F ,连OF ,则OF ⊥AC ,即△AOF 是直角三角形,∴sinA=355OF OB AO OB ==-, ∴OB=158, 即当OB=158时,⊙O 与AC 相切.说明:本例的两小题都属于结论不确定性的开放性问题. 第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求结论成立的条件,这也是解决这类问题的常用方法.图7.5.1AOBECD图7.5.2ABCO F图7.5.3例6 如图7.6.1,⊙O 的直径AB ,过半径OA 的中点G 作弦CE ⊥AB ,在»CB上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M.(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ;(3)如图7.6.2,若将垂足G 改取为半径OB 上任意一 点,点D 改取在»EB上,仍作直线CD 、ED ,分别交直线 AB 于点F 、M. 试判断:此时是否仍有△FDM ∽△COM ?证明你的结论. (2003年苏州市中考题)(1)解:∵AB 是⊙O 的直径,CE ⊥AB ,∴»»AC CE,CG=EG. 在Rt △COG 中,∵OG=12OC ,∴∠OCG=30o ,∴∠COA=60o . 又∠CDE 的度数=12¼CAE 的度数=»AC 的度数=∠COA=60o ,∴∠FDM=180o -∠COA=120o .(2)证明:∵∠COM=180o -∠COA=120o ,∴∠COM=∠FDM. 在Rt △CGM 和Rt △EGM 中, GM=GM ,CG=EG ,∴Rt △CGM ≌Rt △EGM , ∴∠GMC=∠GME.又∠DMF=∠GME ,∴∠OMC=∠DMF , ∴△FDM ∽△COM.(3)解:结论仍然成立.∵∠FDM=180o -∠CDE , ∴∠CDE 的度数=12¼CAE 的度数=»AC 的度数=∠COA , ∴∠FDM=180o -∠COA=∠COM.∵AB 为直径,CE ⊥AB ,∴在Rt △CGM 和Rt △EGM 中, GM=GM ,CG=EG ,∴Rt △CGM ≌Rt △EGM , ∴∠GMC=∠GME , ∴△FDM ∽△COM.说明:本题的第(3)小题是在第(2)小题改变条件的情况下,探求结论是否还成立. 在探求时应寻着(2)的解题思路来进行.三、解题策略开放题解题策略开放题,现在更多的是以要求解题者设计解题方案来设计题目.例7 一副三角板由一个等腰直角三角形和一个含300的直角三角形组成,利用这副三角板构成一个含150角的方法很多,请你画出其中两种不同构成的示意图,并在图上作出必要的标注,不写作法.(2000年荆州市中考题)DAF C EDM OG BAF CEMO G B 图7.6.1图7.6.2分析:本题可利用这副三角板中的角做“加减运算”:600-450,或450-300,或600+450-900等来得到150的角. 解:如图所示. 图7.7.1中就包含有两中构造方法, ∠ABD 和∠ACD 都等于15o ;图7.7.2中,∠EFG=15o .请同学们试着拼出其它的图形.说明:这类拼图组合,给出了一定的条件,但解决问题的办法需要我们自己来寻找. 通常解决这类问题的方法不惟一. 用现有的工具去解决问题,这在实际生产和生活中常会遇到.例8 如图,把边长为2cm 的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图1按实际大小画在方格纸内(方格为1cm ×1cm ).(1)不是正方形的菱形(一个); (2)不是正方形的矩形(一个); (3)梯形(一个);(4)不是矩形和菱形的平行四边形(一个); (5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的其他凸四边形(画出的图互不全等,能画出几个画几个,至少画三个). (2001年徐州市中考题)解:(1) (2)3)(4)(5) (6)说明:本例是一道设计图形的开放性试题,这类题近几年在全国各地的中考试题中经常出现.设计型开放题,有利于培养学生的发散性思维能力,有利于充分发挥学生的想象力和创造力,这对培养学生的创新意识和创新精神具有着积极的作用,例9有一种“二十四点”游戏,其规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可以运算得(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10,用上述规则写出三种不同方法的算式,使其结果等于24,运算如下: (1)_____________________;(2)________________________;(3)_________________________. 另有四个有理数3,-5,7,-13,可通过运算式(4)____________________________,使其结果等于24. (2001年杭州市中考题)分析:“二十四点”游戏,小学生也可参加. 本题将数的范围扩大到整数范围,变成新的游戏,其实就是有理数的运算.本题具有开放性,答案是不唯一的.AB C D E F G图7.7.1 图7.7.1图7.8解:(1)3×[4+(-6)+10]=24;(2)4-(-6)÷3×10=24;(3)(10-4)-3×(-6)=24. (4)[(-5)×(-13)+7]÷3=24.说明:本题将有理数的运算与学生熟知的游戏结合起来,使数学学习更具趣味性.四、题目结构开放题以看作是一个条件开放题.例10 某一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.(2001年吉林省中考题)分析:这里“距离”和“速度”都有了,故我们可以考虑从时间上去把本题补完整. 解一:摩托车和运货汽车同时从甲地驶向乙地,则摩托车比运货汽车早到几分钟?设摩托车比运货汽车早到x 分钟,则4040603545x ⎛⎫-⨯= ⎪⎝⎭,x=4021.答:摩托车比运货汽车早到4021分钟. 解二:摩托车和运货汽车分别从甲地和乙地同时相向而行,则几分钟后它们相遇? 设摩托车与运货汽车出发x 分钟后相遇,则(45+35)×60x= 40,x=30. 答:摩托车与运货汽车出发30分钟后相遇.解三:运货汽车从甲地出发10分钟后,摩托车从甲地出发去追赶运货汽车,问在到达乙地前,摩托车能否追上运货汽车?运货汽车走完全程需408357=小时,摩托车走完全程需408459=小时, 摩托车比运货汽车少用88167963-=小时.∵1610906360126-=>, ∴摩托车在运货汽车到达乙地前能追上.解四:摩托车和运货汽车分别从甲、乙两地沿由甲地往乙地的方向同向而行,问经过几小时摩托车可追上运货汽车?设经过x 小时摩托车可追上运货汽车,则 45x=40+35x ,解得x=4.答:经过4小时摩托车可追上运货汽车.说明:由于行程问题是大家比较熟悉的应用问题,所以我们还可以编出很多这样的问题来,同学们不妨试试.习题七一、填空题 1.(1)写出和为6的两个无理数_________________.(2003年绍兴市中考题)(2)若关于x 的方程x 2+kx-12=0的两根均是整数,则k 的值可以是______________.(只要求写出两个) (2001年浙江省中考题) 2.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,连结AD ,请你添加一个条件,使△ABD ≌△ACD ,并说明全等的理由. 你添加的条件是_________________________.(2002年金华市中考题) 二、解答题3.做一做:用四块如图1的瓷砖聘成一个正方形,使 拼成的图案成轴对称图形.请你在图2、图3 图4中各画出一种拼法(要求三种拼法各不 相同,所画图案中的阴影部分用斜线表示).(2003年无锡市中考题)4.先根据要求编写应用题,再解答你所编写的应用题.编写要求:(1)编写一道行程问题的应用题,使得根据题意列出的方程为120120110x x -=+; (2)所编应用题完整,题意清楚,联系生活实际且解符合实际. (2001年青岛市中考题)5.同学们知道:只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3)、(4). 解:设有两边和一角对应相等的两个三角形. 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.(2000年广东省中考题)6.如图,⊙O 与⊙O 1完外切于点T ,PT 为其内公切线,AB 为其外公切线,A 、B 为切点,AB 与TP 相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(2001年杭州市中考题) 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,给出5个论断: ①CD ⊥AB ;②BE ⊥AC ;③AE=CE ;④∠ABE=30o ;⑤CD=BE. (1)如果论断①②③④都成立,那么论断⑤一定成立吗? 答:____________; (2)从论断①②③④中选取3个作为条件,将论断⑤作为结论,组成一个真命题,那么你选的3个论断是__________________ (只需填论断的序号);(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组 成一道证明题,画出图形,写出已知、求证,并加以证明.(2003年徐州市中考题) 8.如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点.(1)求证:AF ⊥CD ;(2)在你连接BE 后,还能得出什么新的结论?请写出三个(不要求证明). (2002年江西省中考题)图1 图2 图3 图4 第3题A BP TO O 第6题 A BD C E第7题 B A C D E第8题9.已知在直角坐标系中,直线y=+x轴、y轴分别交于点A、点B,以AB为一边的等腰△ABC的底角为300,请在坐标系中画出△ABC,并求出点C的坐标.(2000年北京市崇文区中考题)10.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28o.(1)求∠ACM的度数;(2)在MN上是否存在点D,使AB•CD=AC•BC?为什么?(2001年广州市中考题)参考答案:1.(1(2)1,-1(或4,-4;或11,-11)2.答案不唯一. 添加的条件可以是:①AB=AC;②∠B=∠C;③BD=DC(或D是BC中点);④∠BAD=∠CAD(或AD平分∠BAC)等.3.略.4.所编应用题符合编写要求. 正确设未知数、列方程,正确求出方程的解.5.方案(2):若这角是直角,则这两个三角形全等.方案(3):在两个钝角三角形中,有两边和一角对应相等的两个三角形.方案(4):在两个锐角三角形中,有两边和一角对应相等的两个三角形.6.AB=2PT. 证明略.7.(1)一定. (2)①、③、④. (3)已知,如图,在△ABCD、E分别在AB、AC上,CD⊥AB,AE=CE,∠ABE=30o. 求证:CD=BE. 证明:作EF∥CD交AB于F. ∵AE=CE,∴AF=FD,∴CD=2EF. ∵CD⊥AB,∴EF⊥AB. 在Rt△EFB中,∠EFB=90o,∠EBF=30o,∴BE=2EF,∴CD=BE. 图要正确.8.(1)证明:连结AC、AD,∵AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED,∴AC=AD. 又∵F为CD的中点,∴AF⊥CD.(2)①BE∥CD;②AF⊥BE;③△ACF≌△ADF;④∠BCF=∠EDF;⑤五边形ABCDE是以直线AF为对称轴的轴对称图形. (还可写出其它的结果)9.如图,C1(6,0),C2(0,-,C3(0),C4(-4,C5(2),C6(2,.10.(1)∵AB是直径,∠ACB=90o. 又∠A=28o,∴∠B=62o.又MN是切线,C为切点,∴∠ACM=62o.(2)在MN上存在符合条件的点D. 证明:过点A作AD⊥MN于D. 在Rt△ABC和Rt△ACD中,MN切半圆ACB于点C,∴∠B=∠ACD,∴△ABC∽△ACD,∴AB BCAC CD=,即AB•CD=AC•BC.A BCMN第10题ACBDEF第7题。
开放性与探索性问题
探索型问题一(开放性问题)【考点透视】习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型.开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答.开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使题目结论成立. 这两种情况所需补充的条件往往不惟一.例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC∽△BCD,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可).(2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC≌△FED(只需填写一个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC;或∠A=∠DBC;或BC∶CD=AC∶BC;或BC 2=AC•CD 中的某一个)(2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可.例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =⎧⎨=⎩和2,4x y =-⎧⎨=-⎩,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题)分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系.解:2,8.y x xy =⎧⎨=⎩说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一).B A CD 图7.1AB C DEF 图7.2本题在解法上可以用代数的方法来解,也可用几何的方法来解(形数结合——一种重要的数学思想方法);可以用待定系数法,运用演绎推理的方法来解,也可用直觉思维的方法来解,所以本题既是一个条件开放题,也是一个策略开放题.例3 已知:如图7.3.1,四边形ABCD 是⊙O 的内接四边形,A 是BD 的中点,过A 点的切线与CB 的延长线交于点E.(1)求证:AB•DA=CD•BE;(2)若点E 在CB 延长线上运动,点A 在BD 上运动,使切线EA 变为割线EFA ,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)(2000年北京海淀区中考题)分析:本题的(2)是一个条件开放题.由于本题的结论与(1)相同,所以这一条件的获得,我们可以从(1)的证明过程中受到启示.(1)证明:连结AC.∵A 是BD 的中点,∴AB AD =,∠ACB=∠ACD.∵EA 切⊙O 于A ,∴∠EAB=∠ACB.又∵∠ABE=∠D,∴△EAB∽△ACD,∴AB∶CD=EB∶AD, ∴AB•AD=CD•BE.(2)解:如图7.3.2中,若有△EAB∽△ACD,则原结论成立,故我们只需探求使△EAB∽△ACD 的条件. 由于∠ABE=∠D,所以只要∠BAE=∠DAC 即可,这只要BF CD =即可.所以本题只要BF AD =,原结论就成立.说明:探求条件的过程,是一个由果索因的过程,这是数学中的一种重要的解题方法——分析法. 例4 如图7.4,AB 、AC 分别是⊙O 的直径和弦,D 为劣弧AC 上一点,DE⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE·DF?为什么? (2002年济南市中考题)分析:(1)连OC.要使PC 与⊙O 相切,则只需∠PCO=900即可. 由∠OCA=∠OAC,∠PFC=∠AFH,即可寻找出△PCF 所要满足的条件 (2)要使AD 2=DE·DF,即AD DFDE AD=,也就是要使△DAF∽△DEA, 这样问题就较容易解决了.解:(1)当PC=PF (或∠PCF=∠PFC,或△PCF 是等边三角形)时,PC 与⊙O 相切. 连OC.∵PC=PF,∴∠PCF=∠PFC,图7.3.1图7.3.2H BAEP O CD F 图7.4∴∠PCO=∠PCF+∠OCA=∠PFC+∠OAC=∠AFH+∠AHF=900, ∴PC 与⊙O 相切.(2)当点D 是AC 的中点时,AD 2=DE·DF. 连结AE.∵AD CD =,∴∠DAF=∠DEA. 又∵∠ADF=∠EDA,∴△DAF∽△DEA, ∴AD DF DE AD=,即AD 2=DE·DF. 说明:本题是探索性开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件.第(2)小题也是如此.二、结论开放题结论开放题通常是结论不确定或不惟一,解题时,需作出探索来确定结论是否成立或会有那些结论. 例5 如图7.5.1,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE⊥AC 于E ,可得结论DE 是⊙O 的切线.问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆 仍交BC 于D ,DE⊥AC 的条件不变,那么上述结论是否还成立?请说明理由.(2)如果AB=AC=5cm, sinA=35,那么圆心O 在AB 的什么位置时,⊙O与AC 相切? (2001年黑龙江省中考题)分析:(1)连OD. ∵OB=OD,∴∠OBD=∠ODB=∠C,∴ OD∥AC, 从而可得OD⊥DE,结论仍然成立.(2)若⊙O 与AC 相切,设切点为F ,连OF ,则由Rt△AOF 中可 求得OF=158,即OB=158. 解:(1)结论仍然成立. 如图7.5.2,连OD ,则OD=OB ,∠OBD=∠ODB. 又AB=AC ,∴∠B=∠C,∴∠ODB=∠C, ∴OD∥AC.∵DE⊥AC,∴OD⊥DE, ∴DE 是⊙O 的切线.(2)如图7.5.3,若AC 与⊙O 切于点F ,连OF ,则OF⊥AC,即△AOF 是直角三角形,∴sinA=355OF OB AO OB ==-, ∴OB=158, 即当OB=158时,⊙O 与AC 相切.说明:本例的两小题都属于结论不确定性的开放性问题. 第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求结论成立的条件,这也是解决这类问题的常用图7.5.1AOBECD图7.5.2ABCO F图7.5.3方法.例6 如图7.6.1,⊙O 的直径AB ,过半径OA 的中点G 作弦CE⊥AB,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M.(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM∽△COM;(3)如图7.6.2,若将垂足G 改取为半径OB 上任意一 点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线 AB 于点F 、M. 试判断:此时是否仍有△FDM∽△COM? 证明你的结论. (2003年苏州市中考题)(1)解:∵AB 是⊙O 的直径,CE⊥AB,∴AC CE ,CG=EG.在Rt△COG 中,∵OG=12OC ,∴∠OCG=30,∴∠COA=60. 又∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA=60,∴∠FDM=180-∠COA=120.(2)证明:∵∠COM=180-∠COA=120,∴∠COM=∠FDM. 在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME.又∠DMF=∠GME,∴∠OMC=∠DMF, ∴△FDM∽△COM.(3)解:结论仍然成立.∵∠FDM=180-∠CDE, ∴∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA, ∴∠FDM=180-∠COA=∠COM.∵AB 为直径,CE⊥AB,∴在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME, ∴△FDM∽△COM.说明:本题的第(3)小题是在第(2)小题改变条件的情况下,探求结论是否还成立. 在探求时应寻着(2)的解题思路来进行.三、解题策略开放题解题策略开放题,现在更多的是以要求解题者设计解题方案来设计题目.例7 一副三角板由一个等腰直角三角形和一个含300的直角三角形组成,利用这副三角板构成一个含15DAF C EDM OG BAF CEMO G B 图7.6.1图7.6.20角的方法很多,请你画出其中两种不同构成的示意图,并在图上作出必要的标注,不写作法.(2000年荆州市中考题)分析:本题可利用这副三角板中的角做“加减运算”:600-450,或450-300,或600+450-900等来得到150的角.解:如图所示. 图7.7.1中就包含有两中构造方法,∠ABD和∠ACD都等于15;图7.7.2中,∠EFG=15.请同学们试着拼出其它的图形.说明:这类拼图组合,给出了一定的条件,但解决问题的办法需要我们自己来寻找. 通常解决这类问题的方法不惟一. 用现有的工具去解决问题,这在实际生产和生活中常会遇到.例8 如图,把边长为2cm的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图1按实际大小画在方格纸内(方格为1cm×1cm).(1)不是正方形的菱形(一个);(2)不是正方形的矩形(一个);(3)梯形(一个);(4)不是矩形和菱形的平行四边形(一个);(5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的其他凸四边形(画出的图互不全等,能画出几个画几个,至少画三个). (2001年徐州市中考题)解:(1)(2)3)(4)(5)(6)说明:本例是一道设计图形的开放性试题,这类题近几年在全国各地的中考试题中经常出现.设计型开放题,有利于培养学生的发散性思维能力,有利于充分发挥学生的想象力和创造力,这对培养学生的创新意识和创新精神具有着积极的作用,例9 有一种“二十四点”游戏,其规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可以运算得(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10,用上述规则写出三种不同方法的算式,使其结果等于24,运算如下:(1)_____________________;(2)________________________;(3)_________________________.AB CD EFG图7.7.1 图7.7.1图7.8另有四个有理数3,-5,7,-13,可通过运算式(4)____________________________,使其结果等于24. (2001年杭州市中考题)分析:“二十四点”游戏,小学生也可参加. 本题将数的范围扩大到整数范围,变成新的游戏,其实就是有理数的运算.本题具有开放性,答案是不唯一的.解:(1)3×[4+(-6)+10]=24;(2)4-(-6)÷3×10=24;(3)(10-4)-3×(-6)=24. (4)[(-5)×(-13)+7]÷3=24.说明:本题将有理数的运算与学生熟知的游戏结合起来,使数学学习更具趣味性.四、题目结构开放题以看作是一个条件开放题.例10 某一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.(2001年吉林省中考题)分析:这里“距离”和“速度”都有了,故我们可以考虑从时间上去把本题补完整. 解一:摩托车和运货汽车同时从甲地驶向乙地,则摩托车比运货汽车早到几分钟?设摩托车比运货汽车早到x 分钟,则4040603545x ⎛⎫-⨯= ⎪⎝⎭,x=4021.答:摩托车比运货汽车早到4021分钟. 解二:摩托车和运货汽车分别从甲地和乙地同时相向而行,则几分钟后它们相遇? 设摩托车与运货汽车出发x 分钟后相遇,则(45+35)×60x= 40,x=30. 答:摩托车与运货汽车出发30分钟后相遇.解三:运货汽车从甲地出发10分钟后,摩托车从甲地出发去追赶运货汽车,问在到达乙地前,摩托车能否追上运货汽车?运货汽车走完全程需408357=小时,摩托车走完全程需408459=小时, 摩托车比运货汽车少用88167963-=小时.∵1610906360126-=>, ∴摩托车在运货汽车到达乙地前能追上.解四:摩托车和运货汽车分别从甲、乙两地沿由甲地往乙地的方向同向而行,问经过几小时摩托车可追上运货汽车?设经过x 小时摩托车可追上运货汽车,则 45x=40+35x ,解得x=4.答:经过4小时摩托车可追上运货汽车.说明:由于行程问题是大家比较熟悉的应用问题,所以我们还可以编出很多这样的问题来,同学们不妨试试.习题七一、填空题 1.(1)写出和为6的两个无理数_________________.(2003年绍兴市中考题)(2)若关于x 的方程x 2+kx-12=0的两根均是整数,则k 的值可以是______________.(只要求写出两个) (2001年浙江省中考题) 2.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,连结AD ,请你添加一个条件,使△ABD≌△ACD,并说明全等的理由. 你添加的条件是_________________________.(2002年金华市中考题) 二、解答题3.做一做:用四块如图1的瓷砖聘成一个正方形,使 拼成的图案成轴对称图形.请你在图2、图3 图4中各画出一种拼法(要求三种拼法各不 相同,所画图案中的阴影部分用斜线表示).(2003年无锡市中考题)4.先根据要求编写应用题,再解答你所编写的应用题.编写要求:(1)编写一道行程问题的应用题,使得根据题意列出的方程为120120110x x -=+; (2)所编应用题完整,题意清楚,联系生活实际且解符合实际. (2001年青岛市中考题)5.同学们知道:只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3)、(4). 解:设有两边和一角对应相等的两个三角形. 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.(2000年广东省中考题)6.如图,⊙O 与⊙O 1完外切于点T ,PT 为其内公切线,AB 为其外公切线,A 、B 为切点,AB 与TP 相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(2001年杭州市中考题) 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,给出5个论断: ①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30;⑤CD=BE. (1)如果论断①②③④都成立,那么论断⑤一定成立吗? 答:____________;(2)从论断①②③④中选取3个作为条件,将论断⑤作为结论, 组成一个真命题,那么你选的3个论断是__________________ (只需填论断的序号);(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组图1 图2 图3 图4 第3题A BP TO O 第6题ABD C E第7题BAE成一道证明题,画出图形,写出已知、求证,并加以证明.(2003年徐州市中考题)8.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.(1)求证:AF⊥CD;(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明).(2002年江西省中考题)9.已知在直角坐标系中,直线y=+x轴、y轴分别交于点A、点B,以AB为一边的等腰△ABC的底角为300,请在坐标系中画出△ABC,并求出点C的坐标.(2000年北京市崇文区中考题)10.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28.(1)求∠ACM的度数;(2)在MN上是否存在点D,使AB•CD=AC•BC?为什么?(2001年广州市中考题)参考答案:1. (1(2) 1,-1(或4,-4;或11,-11)2.答案不唯一. 添加的条件可以是:①AB=AC;②∠B=∠C;③BD=DC(或D是BC中点);④∠BAD=∠CAD (或AD平分∠BAC)等.3.略.4.所编应用题符合编写要求. 正确设未知数、列方程,正确求出方程的解.5.方案(2):若这角是直角,则这两个三角形全等.方案(3):在两个钝角三角形中,有两边和一角对应相等的两个三角形.方案(4):在两个锐角三角形中,有两边和一角对应相等的两个三角形.6.AB=2PT. 证明略.7.(1)一定. (2)①、③、④. (3)已知,如图,在△ABCD、E分别在AB、AC上,CD⊥AB,AE=CE,∠ABE=30. 求证:CD=BE. 证明:作EF∥CD交AB于F. ∵AE=CE,∴AF=FD,∴CD=2EF. ∵CD⊥AB,∴EF⊥AB. 在Rt△EFB中,∠EFB=90,∠EBF=30,∴BE=2EF,∴CD=BE. 图要正确.8.(1)证明:连结AC、AD,∵AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED,∴AC=A D. 又∵F为CD的中点,∴AF⊥CD.(2)①BE∥CD;②AF⊥BE;③△ACF≌△ADF;④∠BCF=∠EDF;⑤五边形ABCDE是以直线AF为对称轴的轴对称图形. (还可写出其它的结果)9.如图,C1(6,0),C2(0,-,C3(0),C4(-4,A BCMN第10题ACBDEF第7题C5(2),C6(2,.10.(1)∵AB是直径,∠ACB=90. 又∠A=28,∴∠B=62.又MN是切线,C为切点,∴∠ACM=62.(2)在MN上存在符合条件的点D. 证明:过点A作AD⊥MN 于D. 在Rt△ABC和Rt△ACD中,MN切半圆ACB于点C,∴∠B=∠ACD,∴△ABC∽△ACD,∴AB BCAC CD,即AB•CD=AC•BC.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
中考系列复习——探索型题目集锦
中考数学探索题\新题型训练1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 … 1 2 3 4 5 …输出……那么,当输入数据是8时,输出的数据是( )A 、B 、C 、D 、4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子6、如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有 个点,第n 个图形中有 个点。
课题:四边形专题——探索型问题教案
课题:四边形专题——探索型问题一、教学设计思考在数学课程标准中指出:“数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
”所以数学专题课同样要面向全体学生,要使各层次的学生对数学基础知识、基本技能和基本思想方法的掌握程度均有所提高,还要使尽可能多的学生形成较强的综合能力、创新意识和实践能力。
二、教材分析:本节课是九年制义务教育课程标准新教材八年级第二学期第四章的内容。
四边形和三角形一样,是基本的平面图形,是空间与图形部分的重要组成部分,平行四边形、菱形、矩形、正方形之间的区别与联系对灵活的掌握及运用四边形的知识起着重要的作用。
特殊平行四边形概念、性质与判定是学好本章的关键,也是为学好整个平面几何打下一个坚实的基础,是本章的教学重点.与基本图形(矩形、菱形、正方形、三角形)的概念、性质及其相互关系随之而来的是几何证明,本节课的目的就是通过一组探索型问题的训练,掌握三角形、矩形、正方形之间的联系,能根据已知条件探索发现与之相应的结论.培养学生归纳、总结的能力,发展学生的合情推理能力,进一步学习有条理的思考与表达,理解推理与论证的基本过程,建构严谨的思维模式,树立科学、严谨、理论联系实际的良好学风。
三、学情分析:授课对象是八年级的学生,经过两年实验几何的学习、近一年论证几何的探索,学生已基本掌握了平行、垂直、相交、三角形等相关知识,并且有了一定的合情说理能力,经过学习,学生已经基本掌握了平行四边形、菱形、矩形、正方形的性质及它们的判定,但是对一些探索型问题掌握得还不是很好。
教学目标:1.使学生能根据已知条件探索发现与之相应的结论.2.学生根据已知条件进行合情推理得出结论,培养积极思维,勇于创新的精神和能力.3.通过探究过程,使学生体会数学知识间的内在联系,培养学生周密分析,严格论证的意识和能力,培养学生的合作意识和交流能力.教学重点:根据条件探索相应的结论.教学难点:寻求准确探索问题结论的方法.教学方式:学生探究与教师引导相结合.教学手段:多媒体计算机、实物投影仪.教学过程:一、创设情景、激发兴趣.上节课我们学习了“探索型问题”中的探索条件型的有关问题, (课件展示学生课间研究问题时的照片)在课间时我在四班看到有几个学生在研究以下两道习题,并问我它们还都属于“探索条件型”的问题吗?现在我们三班同学思考解答一下这两道题,并回答它们应该属于什么类型呢?活动一:自主学习,组织学生分析回答.(课件演示习题)1.如图1,已知,在△ABC和△DCB中,∠ABC=∠DCB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是___________.图1 图2 2..在△ABC 中,D 是BC 边上的中点,以AD 、BD 为边做平行四边形ADBF 。
浙江省2019年中考数学专题复习专题六探索型问题训练
∵四边形 ABCD是正方形,
∴∠ ABC=∠ BCD=90°, AB= BC= CD.
又∵ CE= BF,∴△ ECD≌△ FBC(SAS,)
∴CF= DE,∠ DEC=∠ CFB,
∴∠ DEC+∠ BCF=90°,∴ FC⊥DE.
∵EG⊥DE, EG= DE,
∴FC∥GE, GE= CF,
∴四边形 GECF是平行四边形,
图1
图2
图3
类型一
【例 1】 由题意可得点 A1 的坐标为 (1 , 2) .
1
设点
B1 的坐标为
(a , a) , 2
参考答案
a2+(
1 a)
2=
12+ 22,
2
解得 a= 2( 负值舍去 ) ,
∴点 B1 的坐标为 (2 , 1) .
同理可得点 A2 的坐标为 (2 , 4) ,点 B2 的坐标为 (4 , 2) ,
专题六 探索型问题
类型一 规律探索型问题
( 2018· 山东威海中考 ) 如图,在平面直角坐标系中,点 A1 的坐标为 (1 , 2) ,以点 O 为圆心,以 OA1
1
长为半径画弧,交直线
y
=
x 2
于点
B1. 过 B1 点作
B1A2∥y轴,交直线
y= 2x 于点 A2,以点
O 为圆心,以
OA2
1 长为半径画弧,交直线 y= x 于点 B2;过点 B2 作 B2A3∥y轴,交直线 y= 2x 于点 A3,以点 O为圆心,以 OA3
整理得 S=2a- b- 6. ∵b= a2- 2a- 3,∴ S= 2a- (a 2- 2a- 3) - 6=- a2+4a- 3.
∵a=- 1<0,∴当 a= 2 时, S最大 =- 4+ 8- 3= 1. ②存在.
中考数学专题复习探索规律问题
专题探索规律问题解读考点考点归纳归纳 1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.例1一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为归纳 2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.例2有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn= 用含字母x和n的代数式表示.归纳 3:图形规律型基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.例3如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.归纳 4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.例4如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2014为止.则AP2014= .归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.例5如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,……Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为.2年中考2015年题组1.2015绵阳将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=A.14 B.15 C.16 D.17考点:1.规律型:图形的变化类;2.综合题.2.2015十堰如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是A.222 B.280 C.286 D.2923.2015荆州把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,…,现有等式Am=i,j表示正奇数m 是第i组第j个数从左往右数,如A7=2,3,则A2015=A.31,50 B.32,47 C.33,46 D.34,424.2015包头观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为A.2531 B.3635 C.47 D.6263考点:1.规律型:数字的变化类;2.综合题.5.2015重庆市下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为A.21 B.24 C.27 D.306.2015泰安下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为A.135 B.170 C.209 D.252考点:1.规律型:数字的变化类;2.综合题.7.2015重庆市下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是A.32 B.29 C.28 D.26考点:1.规律型:图形的变化类;2.综合题.8.2015崇左下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有A.160 B.161 C.162 D.1639.2015贺州观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是A.0 B.3 C.4 D.8考点:1.尾数特征;2.规律型;3.综合题.10.2015宜宾如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为A .231π B.210π C.190π D.171π11.2015鄂州在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是A .201421)(B .201521)(C .201533)(D .201433)(答案D .考点:1.正方形的性质;2.规律型;3.综合题.12.2015庆阳在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1n 是正整数的顶点A2n+1的坐标是A .4n ﹣3.2n ﹣3.3 D .313.2015宁德如图,在平面直角坐标系中,点A1,A2,A3…都在x 轴上,点B1,B2,B3…都在直线y x 上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是A .20142,20142B .20152,20152C .20142,20152D .20152,20142考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.14.2015河南省如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是A .2014,0B .2015,﹣1C .2015,1D .2016,0考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.2015张家界任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是A .46B .45C .44D .4316.2015邵阳如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是A .2015π B.π C .3018π D.3024π17.2015威海如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为A .92432B .98132C .9812 D .88132考点:1.正多边形和圆;2.规律型;3.综合题.18.2015日照观察下列各式及其展开式:222()2a b a ab b +=++;33223()33a b a a b ab b +=+++;4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是A .36B .45C .55D .66考点:1.完全平方公式;2.规律型;3.综合题.19.2015宁波如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A2处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点D1的直线折叠,使点A 落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为A .201521B .201421C .2015211- D .2014212-考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换折叠问题;4.规律型;5.综合题.20.2015常州数学家歌德巴赫通过研究下面一系列等式,作出了一个着名的猜想. 4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是 请用文字语言表达.21.2015淮安将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a+b= .22.2015雅安若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .23.2015桂林如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.24.2015梧州如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.25.2015百色观察下列砌钢管的横截面图:则第n 个图的钢管数是 用含n 的式子表示26.2015北海如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T1,T2,T3,…,Tn ﹣1,用S1,S2,S3,…,Sn ﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn ﹣1Pn ﹣2Pn ﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= .考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.2015南宁如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An 与原点的距离不小于20,那么n 的最小值是 .28.2015常德取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m 最少经过7步运算可得到1,则所有符合条件的m 的值为 .29.2015株洲“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12b S a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上含顶点的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形如图1进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .30.2015内江填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .2猜想:1221()(...)n n n n a b a a b ab b -----++++= 其中n 为正整数,且2n ≥.3利用2猜想的结论计算:98732222...222-+-+-+. 31.2015南平定义:底与腰的比是51-的等腰三角形叫做黄金等腰三角形.如图,已知△ABC 中,AB=BC,∠C=36°,BA1平分∠ABC 交AC 于A1.AB=AA1A C;122探究:△ABC是否为黄金等腰三角形请说明理由;提示:此处不妨设AC=13应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB 交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.n为大于1的整数,直接回答,不必说明理由考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型.33.2015重庆市如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.1请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除并说明理由;2已知一个能被11整除的三位“和谐数”,设其个位上的数字x1≤x≤4,x为自然数,十位上的数字为y,求y与x的函数关系式.2014年题组1.2014年南平中考如图,将1,若规定a,b表示第a排第b列的数,则8,2与2014,2014表示的两个数的积是A.B.C. D.12.2014年株洲中考在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是A.66,34 B.67,33 C.100,33 D.99,343.2014年宜宾中考如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,……An分别是正方形的中心,则这n个正方形重叠部分的面积之和是A.n B.n-1 C.n11()4D.n1()4考点:1.正方形的性质;2.全等三角形的判定与性质.4.2014年崇左中考如图,在平面直角坐标系中,A1,1,B﹣1,1,C﹣1,﹣2,D1,﹣2.把一条长为2014个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按A﹣B﹣C﹣D﹣A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是A.﹣1,0 B.1,﹣2 C.1,1 D.﹣1,﹣15.2014年百色中考观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,……由以上规律可以得出第n个等式为.6.2014年衡阳中考 如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…….根据以上规律,请直接写出线段2014OM 的长度为 .答案2014.7.2014年抚顺中考如图,已知CO1是△ABC 的中线,过点O1作O1E1∥AC 交BC 于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC 交BC 于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC 交BC 于点E3,……,如此继续,可以依次得到点O4,O5,……,On 和点E4,E5,……,En .则OnEn= AC .用含n 的代数式表示考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.2014年资阳中考如图,以O0,0、A2,0为顶点作正△OAP1,以点P1和线段P1A 的中点B 为顶点作正△P1BP2,再以点P2和线段P2B 的中点C 为顶点作△P2CP3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是9.2014年宜宾中考在平面直角坐标系中,若点Px,y 的坐标x 、y 均为整数,则称点P 为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.1求出图中格点四边形DEFG 对应的S,N,L 的值.2已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.考点:1.规律型:图形的变化类; 2.二元一次方程组的应用.10.2014年凉山中考实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+n﹣2+n﹣1+n,可以发现.2×1+2+3+……+n﹣2+n﹣1+n=1+2+3+……+n﹣2+n﹣1+n+n+n﹣1+n﹣2+……3+2+1把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于nn+1,于是得到1+2+3+……+n﹣2+n﹣1+n=12nn+1这就是说,三角点阵中前n项的点数的和是12nn+1下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有12nn+1整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:1三角点阵中前n行的点数的和能是600吗如果能,求出n;如果不能,试用一元二次方程说明道理.2如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗这个三角点阵中前n行的点数的和能使600吗如果能,求出n;如果不能,试用一元二次方程说明道理.1年模拟1.2015届山东省济南市平阴县中考二模在平面直角坐标系xOy中,对于点Px,y,我们把点P-y+1,x+1叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1的坐标为3,1,则点A2的坐标为0,4,…;若点A1的坐标为a,b,则点A2015的坐标为A.-b+1,a+1 B.-a,-b+2 C.b-1,-a+1 D.a,b2.2015届山东省潍坊市昌乐县中考一模如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图 A2多出“树枝”A.32 B.56 C.60 D.643.2015届山西省晋中市平遥县九年级下学期4月中考模拟如图,四边形ABCD 中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.下列结论正确的是①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形AnBnCnDn面积为.A.①②③ B.②③④ C.①③④ D.①②③④4.2015届广东省深圳市龙华新区中考二模如图,已知直线y=-12x+2与x轴交于点B,与y轴交于点A.过线段AB的中点A1做A1B1⊥x轴于点B1,过线段A1B的中点A2作A2B2⊥x轴于点B2,过线段A2B的中点A3作A3B3⊥x轴于点B3…,以此类推,则△AnBnBn-1的面积为A .112n -B .12nC .114n -D .14n5.2014-2015学年山东省潍坊市诸城市实验中学中考三模如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B1,B2,B3,…都在直线y=33x 上,则A2015的坐标是 .考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.规律型.6.2015届北京市平谷区中考二模在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P1,使得点P1与点O 关于点A 成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C 成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A 成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B 成中心对称;.…照此规律重复下去.则点P3的坐标为 ;点Pn 在y 轴上,则点Pn 的坐标为 .7.2015届北京市门头沟区中考二模在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从0,3出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2次碰到矩形的边时,点P 的坐标为 ;当点P 第6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.答案7,4, 0,3 ,1,4.8.2015届安徽省安庆市中考二模一组按规律排列的式子:,,,,…则第n 个式子是 n为正整数.9.2015届山东省威海市乳山市中考一模在直角坐标系xOy中,对于点Px,y,我们把点P′y+1,-x+1叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为a,b,对于任意的正整数n,点An均在y轴的右侧,则a,b应满足的条件是.10.2015届山东省日照市中考模拟如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A1,3,A12,3,A24,3,A38,3,B2,0,B14,0,B28,0,B316,0.1观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是.2若按1题找到的规律将△OAB进行了n次变换,得到的△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推出Bn的坐标是.11.2015届广东省佛山市初中毕业班综合测试如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的两条邻边长分别为6和8,则第n个菱形的周长为.12.2015届湖北省黄石市6月中考模拟如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.13.2015届广东省佛山市初中毕业班综合测试若a是不为1的有理数,我们把11a-称为a的差倒数.如:2的差倒数是112-=-1,-1的差倒数是111(1)2=--.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.1分别求出a2,a3,a4的值;2求a1+a2+a3+…+a2160的值.。
中考数学专题函数图象选择题的几种解法
专题复习一一.专题复习 1. 探索型问题 2. 开放型问题 二. 常见的问题的类型:1. 条件探索型——结论明确,而需探索发现使结论成立的条件的题目。
2. 结论探索型——给定条件,但无明确结论或结论不惟一。
3. 存在探索型——在一定条件下,需探索发现某种数学关系是否存在。
4. 规律探索型——发现数学对象所具有的规律性与不变性的题目。
三. 常用的解题切入点:1. 利用特殊值(特殊点、特殊数量、特殊线段、特殊位置)进行归纳、概括,从而得出规律。
2. 反演推理:根据假设进行推理,看推导出矛盾的结果还是能与已知条件一致。
3. 分类讨论:当命题的题设和结论不惟一确定时,则需对可能出现的情况做到既不重复,也不遗漏,分门别类地加以讨论求解,将不同结论综合归纳得出正确结论。
以上四种常见解题方法在本周的练习提纲中均有体现,同学们在解完本练习后,可细细对照参考答案,用心体会。
一. 填空题(每空4分,共48分)1. 请你写出:(1)一个比-1大的负数:____________;(2)一个二次三项式:____________。
2. 请你写出:(1)经过点(0,2)的一条直线的解析式是________________________;(2)经过点(0,2)的一条抛物线的解析式是________________________。
3. 如果菱形的面积不变,它的两条对角线的长分别是x 和y ,那么y 是x 的____________函数。
(填写函数名称)4. 如图,△ADE 和△ABC 有公共顶点A ,∠1=∠2,请你添加一个条件:___________,使△ADE ∽△ABC 。
ABCE D215. 有一列数:1,2,3,4,5,6,……,当按顺序从第2个数数到第6个数时,共数了_______个数;当按顺序从第m 个数数到第n 个数(n m >)时,共数了_______个数。
6. 请你在“2,-3,4,-5,6”中任意挑选4个数,添加“+,-,×,÷”和括号进行运算,使其计算结果为24,这个算式是_____________________。
浙江省2019届中考数学总复习专题训练(共8个专题16份含答案)
专题一选择题的解题策略与应试技巧类型一直选法(2018·浙江宁波中考)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE,若∠ABC=60°,∠BAC=80°,则∠1的度数为( )A.54° B.40° C.30° D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.得出EO是△DBC的中位线是解题关键.【自主解答】1.(2018·浙江嘉兴中考)2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1 500 000 km.数1 500 000用科学记数法表示为( ) A.15×105B.1.5×106C.0.15×107D.1.5×1052.(2018·浙江湖州中考) 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是( )A.3rB .(1+22)r C .(1+32)r D.2r类型二 排除法(或筛选法、淘汰法)(2018·甘肃定西中考)如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x =1.对于下列说法:①ab <0;②2a+b =0;③3a+c >0;④a+b≥m(am+b)(m 为实数);⑤当-1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a +b 与0的关系;当x =-1时,y =a -b +c ;然后由图象确定当x 取何值时,y >0. 【自主解答】3.(2018·浙江舟山中考)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙D .丙与丁4.(2018·四川南充中考)如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH⊥BE 于点G ,交AB 于点H ,连结HF.下列结论正确的是( )A .CE = 5B .EF =22C .cos ∠CEP=55D .HF 2=EF·CF类型三 特殊值法(2018·湖北十堰中考)如图,直线y =-x 与反比例函数y =kx 的图象交于A ,B 两点,过点B 作BD∥x 轴,交y 轴于点D ,直线AD 交反比例函数y =k x 的图象于另一点C ,则CBCA 的值为( )A .1∶3B .1∶2 2C .2∶7D .3∶10【分析】 联立直线AB 与反比例函数表达式组成方程组,通过解方程组可求出点A ,B 的坐标,由BD∥x 轴可得出点D 的坐标,由点A ,D 的坐标利用待定系数法可求出直线AD 的表达式,联立直线AD 与反比例函数表达式组成方程组,通过解方程组可求出点C 的坐标,再结合两点间的距离公式即可求出CBCA 的值.【自主解答】5.(2018·四川内江中考)已知:1a -1b =13,则abb -a 的值是( )A.13B .-13C .3D .-36.(2018·山东聊城中考)如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A .γ=2α+βB .γ=α+2βC .γ=α+βD .γ=180°-α-β类型四 逆推代入法(2018·江苏泰州中考)如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P ,Q 同时停止运动,若点P 与点Q 的速度之比为1∶2,则下列说法正确的是( )A .线段PQ 始终经过点(2,3)B .线段PQ 始终经过点(3,2)C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点【分析】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6).设直线PQ 的表达式为y =kx +b(k≠0),利用待定系数法求出PQ 的表达式即可判断. 【自主解答】将选项中给出的答案或其特殊值代入题干,逐一验证是否满足题设条件,然后选择符合题设条件的选项.在运用验证法解题时,若能根据题意确定代入顺序,则能较大提高解题速度.7.(2018·湖北襄阳中考) 下列语句所描述的事件是随机事件的是( ) A .任意画一个四边形,其内角和为180° B .经过任意两点画一条直线 C .任意画一个菱形,是中心对称图形 D .过平面内任意三点画一个圆 类型五 图解法(2018·贵州毕节中考) 不等式组⎩⎪⎨⎪⎧2x +1≥-3,x <1 的解集在数轴上表示正确的是( )A BC D【分析】先解不等式组,再判断其解集在数轴上的正确表示.【自主解答】8.(2018·山东潍坊中考)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6 B.1或6C.1或3 D.4或6类型六动手操作法(2017·河北中考)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是( )A.1.4 B.1.1 C.0.8 D.0.5【分析】画图即可判断.【自主解答】与剪、折操作有关或者有些关于图形变换的试题是各地试题热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.9.(2018·广西南宁中考)如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则cos ∠ADF 的值为( )A.1113B.1315C.1517D.1719类型七 整体代入法(2018·浙江宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( )图1 图2A .2aB .2bC .2a -2bD .-2b【分析】 利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差. 【自主解答】整体思想也是初中数学中的重要思想之一,它是把题目分散的条件整合起来视为一个整体,从而实现整体代入使其运算得以简化.10.(2018·吉林中考改编)若a +b =4,ab =1,则a 2b +ab 2=( ) A .1B .3C .4D .511.(2018·云南中考)已知x +1x =6,则x 2+1x 的值是( )A .38B .36C .34D .32类型八 构造法(2018·山东枣庄中考)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC=30°,则CD 的长为( )A.15B .2 5C .215D .8【分析】 作OH⊥CD 于H ,连结OC ,如图,根据垂径定理由OH⊥CD 得到HC =HD ,再利用AP =2,BP =6可计算出半径OA =4,则OP =OA -AP =2,接着在Rt △OPH 中根据含30度的直角三角形的性质计算出OH =12OP =1,然后在Rt △OHC 中利用勾股定理计算出CH =15,所以CD =2CH =215. 【自主解答】综合运用各种知识,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造出与问题相关的数学模型,揭示问题的本质,从而沟通解题思路,是一种思维创造.12.(2018·山西中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 313.(2018·江苏苏州中考)如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E作EF∥CD(点F 位于点E 右侧),且EF =2CD ,连结DF.若AB =8,则DF 的长为( )A .3B .4C .2 3D .3 2类型九 转化法(2018·湖南郴州中考)如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【分析】 先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,再过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S四边形AODB=S △AOB +S △BOD =S △AOC +S梯形ABDC,得出S △AOB =S梯形ABDC,利用梯形面积公式即可得出S △AOB . 【自主解答】常言道:“兵无常势,题无常形”,面对千变万化的中考新题型,当我们在思维受阻时,运用思维转化策略,换一个角度去思考问题,常常能打破僵局,解题中不断调整,不断转化,可以使我们少一些“山穷水复疑无路”的尴尬,多一些“柳暗花明又一村”的喜悦.14. (2018·湖北宜昌中考)如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G ,I ,H ,J.则图中阴影部分的面积等于 ( )A .1B.12C.13D.14参考答案【专题类型突破】 类型一【例1】 ∵∠ABC=60°,∠BAC=80°, ∴∠BCA=180°-60°-80°=40°.∵对角线AC 与BD 相交于点O ,E 是边CD 的中点, ∴EO 是△DBC 的中位线,∴EO∥BC,∠1=∠ACB=40°.故选B. 变式训练 1.B 2.D 类型二【例2】 ①∵对称轴在y 轴右侧, ∴a,b 异号,∴ab<0,故正确; ②∵对称轴x =-b2a =1,∴2a+b =0,故正确; ③∵2a+b =0,∴b=-2a , ∵当x =-1时,y =a -b +c <0, ∴a-(-2a)+c =3a +c <0,故错误; ④根据图示知,当m =1时,有最大值; 当m≠1时,有am 2+bm +c≤a+b +c , 所以a +b≥m(am+b)(m 为实数).故正确. ⑤当-1<x <3时,y 不只是大于0.故错误. 故选A. 变式训练 3.B 4.D 类型三【例3】 联立直线AB 及反比例函数表达式组成方程组⎩⎪⎨⎪⎧y =-x ,y =k x,解得⎩⎨⎧x 1=--k ,y 1=-k ,⎩⎨⎧x 2=-k ,y 2=--k ,∴点B 的坐标为(--k ,-k),点A 的坐标为(-k ,--k). ∵BD∥x 轴,∴点D 的坐标为(0,-k). 设直线AD 的表达式为y =mx +n.将A(-k ,--k),D(0,-k)代入y =mx +n ,⎩⎨⎧-km +n =--k ,n =-k ,解得⎩⎨⎧m =-2,n =-k , ∴直线AD 的表达式为y =-2x +-k. 联立直线AD 及反比例函数表达式成方程组,⎩⎪⎨⎪⎧y =-2x +-k ,y =kx, 解得⎩⎪⎨⎪⎧x 3=--k 2,y 3=2-k ,⎩⎨⎧x 4=-k ,y 4=--k , ∴点C 的坐标为(--k2,2-k). ∴CBCA= [--k -(--k 2)]2+(-k -2-k )2[-k -(--k 2)]2+(--k -2-k )2=13.故选A. 变式训练 5.C 6.A 类型四【例4】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6). 设直线PQ 的表达式为y =kx +b(k≠0), 将P(t ,0),Q(9-2t ,6)代入y =kx +b , ⎩⎪⎨⎪⎧kt +b =0,(9-2t )k +b =6,解得⎩⎪⎨⎪⎧k =23-t ,b =2t t -3, ∴直线PQ 的表达式为y =23-t x +2tt -3.∵x=3时,y =2,∴直线PQ 始终经过(3,2).故选B. 变式训练 7.D 类型五【例5】 解不等式2x +1≥-3得x≥-2. ∵x<1,∴不等式组的解集为-2≤x<1. 将其正确表示在数轴上为选项D.故选D. 变式训练 8.B 类型六【例6】 如图,在这样连续6次旋转的过程中,点M 的运动轨迹是图中的弧线,观察图象可知点B ,M 间的距离大于等于2-2小于等于1,故选C.变式训练 9.C 类型七【例7】 S 1=(AB -a)·a+(CD -b)(AD -a)=(AB -a)·a+(AB -b)(AD -a), S 2=AB(AD -a)+(a -b)(AB -a),∴S 2-S 1=AB(AD -a)+(a -b)(AB -a)-(AB -a)·a-(AB -b)(AD -a)=(AD -a)(AB -AB +b)+(AB -a)(a -b -a)=b·AD-ab -b·AB+ab =b(AD -AB)=2b.故选B. 变式训练 10.C 11.C 类型八【例8】 如图,作OH⊥CD 于H ,连结OC.∵OH⊥CD,∴HC=HD. ∵AP=2,BP =6,∴AB=8, ∴OA=4,∴OP=OA -AP =2. 在Rt△OPH 中,∵∠OPH=30°, ∴∠POH=60°,∴OH=12OP =1.在Rt △OHC 中,∵OC=4,OH =1, ∴CH=OC 2-OH 2=15, ∴CD=2CH =215.故选C. 变式训练 12.D 13.B类型九【例9】 ∵A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A(2,2), 当x =4时,y =1,即B(4,1).如图,过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,则S △AOC =S △BOD =12×4=2.∵S 四边形AODB=S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S△AOB =S 梯形ABDC .∵S 梯形ABDC =12(BD +AC)·CD=12(1+2)×2=3,∴S △AOB =3.故选B. 变式训练 14.B专题一选择题的解题策略与应试技巧类型一直选法(2018·浙江宁波中考)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE,若∠ABC=60°,∠BAC=80°,则∠1的度数为( )A.54° B.40° C.30° D.20°【分析】直接利用三角形内角和定理得出∠BCA的度数,再利用三角形中位线定理结合平行线的性质得出答案.得出EO是△DBC的中位线是解题关键.【自主解答】1.(2018·浙江嘉兴中考)2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1 500 000 km.数1 500 000用科学记数法表示为( ) A.15×105B.1.5×106C.0.15×107D.1.5×1052.(2018·浙江湖州中考) 尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是( )A.3rB .(1+22)r C .(1+32)r D.2r类型二 排除法(或筛选法、淘汰法)(2018·甘肃定西中考)如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x =1.对于下列说法:①ab <0;②2a+b =0;③3a+c >0;④a+b≥m(am+b)(m 为实数);⑤当-1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a +b 与0的关系;当x =-1时,y =a -b +c ;然后由图象确定当x 取何值时,y >0. 【自主解答】3.(2018·浙江舟山中考)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲 B .甲与丁 C .丙D .丙与丁4.(2018·四川南充中考)如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH⊥BE 于点G ,交AB 于点H ,连结HF.下列结论正确的是( )A .CE = 5B .EF =22C .cos ∠CEP=55D .HF 2=EF·CF类型三 特殊值法(2018·湖北十堰中考)如图,直线y =-x 与反比例函数y =kx 的图象交于A ,B 两点,过点B 作BD∥x 轴,交y 轴于点D ,直线AD 交反比例函数y =k x 的图象于另一点C ,则CBCA 的值为( )A .1∶3B .1∶2 2C .2∶7D .3∶10【分析】 联立直线AB 与反比例函数表达式组成方程组,通过解方程组可求出点A ,B 的坐标,由BD∥x 轴可得出点D 的坐标,由点A ,D 的坐标利用待定系数法可求出直线AD 的表达式,联立直线AD 与反比例函数表达式组成方程组,通过解方程组可求出点C 的坐标,再结合两点间的距离公式即可求出CBCA 的值.【自主解答】5.(2018·四川内江中考)已知:1a -1b =13,则abb -a 的值是( )A.13B .-13C .3D .-36.(2018·山东聊城中考)如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A′处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A .γ=2α+βB .γ=α+2βC .γ=α+βD .γ=180°-α-β类型四 逆推代入法(2018·江苏泰州中考)如图,平面直角坐标系xOy 中,点A 的坐标为(9,6),AB⊥y 轴,垂足为B ,点P 从原点O 出发向x 轴正方向运动,同时,点Q 从点A 出发向点B 运动,当点Q 到达点B 时,点P ,Q 同时停止运动,若点P 与点Q 的速度之比为1∶2,则下列说法正确的是( )A .线段PQ 始终经过点(2,3)B .线段PQ 始终经过点(3,2)C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点【分析】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6).设直线PQ 的表达式为y =kx +b(k≠0),利用待定系数法求出PQ 的表达式即可判断. 【自主解答】将选项中给出的答案或其特殊值代入题干,逐一验证是否满足题设条件,然后选择符合题设条件的选项.在运用验证法解题时,若能根据题意确定代入顺序,则能较大提高解题速度.7.(2018·湖北襄阳中考) 下列语句所描述的事件是随机事件的是( ) A .任意画一个四边形,其内角和为180° B .经过任意两点画一条直线 C .任意画一个菱形,是中心对称图形 D .过平面内任意三点画一个圆 类型五 图解法(2018·贵州毕节中考) 不等式组⎩⎪⎨⎪⎧2x +1≥-3,x <1 的解集在数轴上表示正确的是( )A BC D【分析】先解不等式组,再判断其解集在数轴上的正确表示.【自主解答】8.(2018·山东潍坊中考)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6 B.1或6C.1或3 D.4或6类型六动手操作法(2017·河北中考)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是( )A.1.4 B.1.1 C.0.8 D.0.5【分析】画图即可判断.【自主解答】与剪、折操作有关或者有些关于图形变换的试题是各地试题热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.9.(2018·广西南宁中考)如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则cos ∠ADF 的值为( )A.1113B.1315C.1517D.1719类型七 整体代入法(2018·浙江宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( )图1 图2A .2aB .2bC .2a -2bD .-2b【分析】 利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差. 【自主解答】整体思想也是初中数学中的重要思想之一,它是把题目分散的条件整合起来视为一个整体,从而实现整体代入使其运算得以简化.10.(2018·吉林中考改编)若a +b =4,ab =1,则a 2b +ab 2=( ) A .1B .3C .4D .511.(2018·云南中考)已知x +1x =6,则x 2+1x 的值是( )A .38B .36C .34D .32类型八 构造法(2018·山东枣庄中考)如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP =2,BP =6,∠APC=30°,则CD 的长为( )A.15B .2 5C .215D .8【分析】 作OH⊥CD 于H ,连结OC ,如图,根据垂径定理由OH⊥CD 得到HC =HD ,再利用AP =2,BP =6可计算出半径OA =4,则OP =OA -AP =2,接着在Rt △OPH 中根据含30度的直角三角形的性质计算出OH =12OP =1,然后在Rt △OHC 中利用勾股定理计算出CH =15,所以CD =2CH =215. 【自主解答】综合运用各种知识,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造出与问题相关的数学模型,揭示问题的本质,从而沟通解题思路,是一种思维创造.12.(2018·山西中考)如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 313.(2018·江苏苏州中考)如图,在△ABC 中,延长BC 至D ,使得CD =12BC ,过AC 中点E作EF∥CD(点F 位于点E 右侧),且EF =2CD ,连结DF.若AB =8,则DF 的长为( )A .3B .4C .2 3D .3 2类型九 转化法(2018·湖南郴州中考)如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【分析】 先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,再过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S四边形AODB=S △AOB +S △BOD =S △AOC +S梯形ABDC,得出S △AOB =S梯形ABDC,利用梯形面积公式即可得出S △AOB . 【自主解答】常言道:“兵无常势,题无常形”,面对千变万化的中考新题型,当我们在思维受阻时,运用思维转化策略,换一个角度去思考问题,常常能打破僵局,解题中不断调整,不断转化,可以使我们少一些“山穷水复疑无路”的尴尬,多一些“柳暗花明又一村”的喜悦.14. (2018·湖北宜昌中考)如图,正方形ABCD 的边长为1,点E ,F 分别是对角线AC 上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G ,I ,H ,J.则图中阴影部分的面积等于 ( )A .1B.12C.13D.14参考答案【专题类型突破】 类型一【例1】 ∵∠ABC=60°,∠BAC=80°, ∴∠BCA=180°-60°-80°=40°.∵对角线AC 与BD 相交于点O ,E 是边CD 的中点, ∴EO 是△DBC 的中位线,∴EO∥BC,∠1=∠ACB=40°.故选B. 变式训练 1.B 2.D 类型二【例2】 ①∵对称轴在y 轴右侧, ∴a,b 异号,∴ab<0,故正确; ②∵对称轴x =-b2a =1,∴2a+b =0,故正确; ③∵2a+b =0,∴b=-2a , ∵当x =-1时,y =a -b +c <0, ∴a-(-2a)+c =3a +c <0,故错误; ④根据图示知,当m =1时,有最大值; 当m≠1时,有am 2+bm +c≤a+b +c , 所以a +b≥m(am+b)(m 为实数).故正确. ⑤当-1<x <3时,y 不只是大于0.故错误. 故选A. 变式训练 3.B 4.D 类型三【例3】 联立直线AB 及反比例函数表达式组成方程组⎩⎪⎨⎪⎧y =-x ,y =k x,解得⎩⎨⎧x 1=--k ,y 1=-k ,⎩⎨⎧x 2=-k ,y 2=--k ,∴点B 的坐标为(--k ,-k),点A 的坐标为(-k ,--k). ∵BD∥x 轴,∴点D 的坐标为(0,-k). 设直线AD 的表达式为y =mx +n.将A(-k ,--k),D(0,-k)代入y =mx +n ,⎩⎨⎧-km +n =--k ,n =-k ,解得⎩⎨⎧m =-2,n =-k , ∴直线AD 的表达式为y =-2x +-k. 联立直线AD 及反比例函数表达式成方程组,⎩⎪⎨⎪⎧y =-2x +-k ,y =kx, 解得⎩⎪⎨⎪⎧x 3=--k 2,y 3=2-k ,⎩⎨⎧x 4=-k ,y 4=--k , ∴点C 的坐标为(--k2,2-k). ∴CBCA= [--k -(--k 2)]2+(-k -2-k )2[-k -(--k 2)]2+(--k -2-k )2=13.故选A. 变式训练 5.C 6.A 类型四【例4】 当OP =t 时,点P 的坐标为(t ,0),点Q 的坐标为(9-2t ,6). 设直线PQ 的表达式为y =kx +b(k≠0), 将P(t ,0),Q(9-2t ,6)代入y =kx +b , ⎩⎪⎨⎪⎧kt +b =0,(9-2t )k +b =6,解得⎩⎪⎨⎪⎧k =23-t ,b =2t t -3, ∴直线PQ 的表达式为y =23-t x +2tt -3.∵x=3时,y =2,∴直线PQ 始终经过(3,2).故选B. 变式训练 7.D 类型五【例5】 解不等式2x +1≥-3得x≥-2. ∵x<1,∴不等式组的解集为-2≤x<1. 将其正确表示在数轴上为选项D.故选D. 变式训练 8.B 类型六【例6】 如图,在这样连续6次旋转的过程中,点M 的运动轨迹是图中的弧线,观察图象可知点B ,M 间的距离大于等于2-2小于等于1,故选C.变式训练 9.C 类型七【例7】 S 1=(AB -a)·a+(CD -b)(AD -a)=(AB -a)·a+(AB -b)(AD -a), S 2=AB(AD -a)+(a -b)(AB -a),∴S 2-S 1=AB(AD -a)+(a -b)(AB -a)-(AB -a)·a-(AB -b)(AD -a)=(AD -a)(AB -AB +b)+(AB -a)(a -b -a)=b·AD-ab -b·AB+ab =b(AD -AB)=2b.故选B. 变式训练 10.C 11.C 类型八【例8】 如图,作OH⊥CD 于H ,连结OC.∵OH⊥CD,∴HC=HD. ∵AP=2,BP =6,∴AB=8, ∴OA=4,∴OP=OA -AP =2. 在Rt△OPH 中,∵∠OPH=30°, ∴∠POH=60°,∴OH=12OP =1.在Rt △OHC 中,∵OC=4,OH =1, ∴CH=OC 2-OH 2=15, ∴CD=2CH =215.故选C. 变式训练 12.D 13.B类型九【例9】 ∵A,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A(2,2), 当x =4时,y =1,即B(4,1).如图,过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,则S △AOC =S △BOD =12×4=2.∵S 四边形AODB=S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S△AOB =S 梯形ABDC .∵S 梯形ABDC =12(BD +AC)·CD=12(1+2)×2=3,∴S △AOB =3.故选B. 变式训练 14.B专题二 填空题的解题策略与应试技巧类型一 直接推演法(2018·湖北黄石中考)在Rt △ABC 中,∠C=90°,CA =8,CB =6,则△ABC 内切圆的周长为________.【分析】先利用勾股定理计算出AB 的长,再利用直角三角形内切圆的半径的计算方法求出△ABC 的内切圆的半径,然后利用圆的周长公式求解. 【自主解答】直接推演法是解填空题的基本方法,它是直接从题设条件出发,利用定义、定理、公式等知识,通过变形、推理、运算等过程,直接得到结果,它是解填空题的最基本、最常用的方法.1.(2018·浙江舟山中考)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是____,据此判断该游戏__________(填“公平”或“不公平”).2.(2016·浙江衢州中考)如图,正方形ABCD 的顶点A ,B 在函数y =kx(x >0)的图象上,点C ,D 分别在x 轴,y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)当k =2时,正方形A′B′C′D′的边长等于____.(2)当变化的正方形ABCD 与(1)中的正方形A′B′C′D′有重叠部分时,k 的取值范围是______________.类型二 特殊元素法(2018·江苏连云港中考改编)已知A(-4,y 1),B(-1,y 2)是反比例函数y =kx (k <0)图象上的两个点,则y 1与y 2的大小关系为________.【分析】可用特殊值法,根据反比例函数的表达式可以求出y 1与y 2的大小,从而可以解答本题. 【自主解答】当填空题的结论唯一或题目条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数、特殊角、图形的特殊位置、特殊点、特殊方案、特殊模型等)进行处理,从而得到探求的结论,这样可大大地简化推理、论证的过程.3.(2018·广西玉林中考)已知ab =a +b +1,则(a -1)(b -1)=______.4.(2018·陕西中考)若一个反比例函数的图象经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为_______. 类型三 数形结合法(2018·山东枣庄中考)如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度. 【自主解答】“数缺形时少直观,形缺数时难入微.”数学中大量数的问题后面都隐藏着图形的信息,图形的特征也体现许多数量关系.我们要将抽象、复杂的数量关系,通过形的形象、直观地揭示出来,以达到“形帮数”的目的;同时我们又要运用数的规律和数值的计算来寻找处理形的方法,来达到“数促形”的目的.对于含有几何背景的填空题,若能数中思形,以形助数,则往往可以简化问题,得出准确的结果.类型四等价转化法(2018·吉林长春中考)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为________.【分析】解方程x2+mx=0得A(-m,0),再利用对称的性质得到点A的坐标为(-1,0),所以抛物线表达式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【自主解答】5.(2018·天津中考) 如图,在边长为4的等边△ABC 中,D ,E 分别为AB ,BC 的中点,EF⊥AC 于点F ,G 为EF 的中点,连结DG ,则DG 的长为___________.参考答案类型一【例1】 ∵∠C=90°,CA =8,CB =6, ∴AB=62+82=10, ∴△ABC 的内切圆的半径=6+8-102=2, ∴△ABC 内切圆的周长=2×π×2=4π. 故答案为4π. 变式训练1.14 不公平2.(1) 2 (2)29<k<18 类型二【例2】 不妨取k =-4 ,则反比例函数为y =-4x,∴当x =-4时,y 1=1;当x =-1时,y 2=4, ∴y 1<y 2.故答案为y 1<y 2. 变式训练 3.2 4.y =4x类型三【例3】 根据图象可知点P 在BC 上运动时,此时BP 不断增大, 由图象可知点P 从B 向C 运动时,BP 的最大值为5,即BC =5. 由于M 是曲线部分的最低点, ∴此时BP 最小,即BP⊥AC,BP =4, ∴由勾股定理可知PC =3.由于图象的曲线部分是轴对称图形, ∴PA=3,∴AC=6,∴S △ABC =12×4×6=12.故答案为12.类型四【例4】 当y =0时,x 2+mx =0,解得x 1=0,x 2=-m ,则A(-m ,0). ∵点A 关于点B 的对称点为A′,点A′的横坐标为1, ∴点A 的坐标为(-1,0), ∴抛物线表达式为y =x 2+x.当x =1时,y =x 2+x =2,则A′(1,2), 当y =2时,x 2+x =2,解得x 1=-2,x 2=1,则C(-2,2), ∴A′C 的长为1-(-2)=3.故答案为3. 变式训练 5.192专题二 填空题的解题策略与应试技巧类型一 直接推演法(2018·湖北黄石中考)在Rt △ABC 中,∠C=90°,CA =8,CB =6,则△ABC 内切圆的周长为________.【分析】先利用勾股定理计算出AB 的长,再利用直角三角形内切圆的半径的计算方法求出△ABC 的内切圆的半径,然后利用圆的周长公式求解. 【自主解答】直接推演法是解填空题的基本方法,它是直接从题设条件出发,利用定义、定理、公式等知识,通过变形、推理、运算等过程,直接得到结果,它是解填空题的最基本、最常用的方法.1.(2018·浙江舟山中考)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我赢.”小红赢的概率是____,据此判断该游戏__________(填“公平”或“不公平”).2.(2016·浙江衢州中考)如图,正方形ABCD 的顶点A ,B 在函数y =kx(x >0)的图象上,点C ,D 分别在x 轴,y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)当k =2时,正方形A′B′C′D′的边长等于____.(2)当变化的正方形ABCD 与(1)中的正方形A′B′C′D′有重叠部分时,k 的取值范围是______________.类型二 特殊元素法。
浙江省2019届中考数学复习微专题训练(打包10套,Word版,含答案)
微专题一 数形结合与实数的运算姓名:________ 班级:________ 用时:______分钟1.两个实数互为相反数,在数轴上的对应点分别是点A 、点B ,则下列说法正确的是( ) A .原点在点A 的左边 B .原点在线段AB 的中点处 C .原点在点B 的右边D .原点可以在点A 或点B 上2.(2018·浙江绍兴模拟)计算-(2)2+(2+π)0+(-12)-2的结果是( )A .1B .2C.114D .33.定义一种新运算☆,其规则为a☆b=1a +1b ,根据这个规则,计算2☆3的值是( )A.56B.15C .5D .64.如图,数轴上的A ,B ,C ,D 四点中,与表示数-3的点最接近的是( )A .点AB .点BC .点CD .点D5.若实数a 满足|a -12|=32,则a 对应于图中数轴上的点可以是A ,B ,C 三点中的点______.6.计算:8-|2-22|+2tan 45°=______.7.(2019·创新题)按所给程序计算:输入x =3,则输出的答案是________.输入x →立方→-x →÷2→答案8.观察下列各式: 11×2=1-12=12; 11×2+12×3=1-12+12-13=23; 11×2+12×3+13×4=1-12+12-13+13-14=34; …按以上规律,写出第n 个式子的计算结果(n 为正整数)____.(写出最简计算结果即可) 9.设S 1=1+112+122,S 2=1+122+132,S 3=1+132+142,…,S n =1+1n 2+1(n +1)2.设S =S 1+S 2+…+S n ,则S =____(用含n 的代数式表示,其中n 为正整数). 10.设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6.则a 1+a 2+a 3+…+a 2 017+a 2 018+a 2 019=______________.11.(2019·创新题)有一数值转换器,原理如图所示,若开始输入x 的值是5,可发现第1次输出的结果是8,第2次输出的结果是4…则第2 018次输出的结果是______.12.(2019·改编题)计算:2-2+(327-146)÷6-3sin 45°.13.计算:(13)-1-|-2+3tan 45°|+(2-2 018)0-(2-3)(2+3).14.如图,点A ,B 在数轴上分别表示有理数a ,b ,且A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b|.回答下列问题:(1)在数轴上表示2和5的两点之间的距离是________,在数轴上表示1和-3的两点之间的距离是________;(2)在数轴上表示x 和-5的两点之间的距离是________;(3)若x 表示一个有理数,则|x -1|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.15.我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i ”,使其满足i 2=-1(即方程x 2=-1有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i2=-1,i 3=i 2·i =(-1)·i =-i ,i 4=(i 2)2=(-1)2=1,从而对于任意正整数n ,我们可以得到i4n +1=i 4n ·i =(i 4)n ·i =i ,同理可得i4n +2=-1,i4n +3=-i ,i 4n =1.求i +i 2+i3+i 4+…+i 2 018+i 2 019的值.参考答案1.D 2.D 3.A 4.B5.B 6.4 7.12 8.nn+19.n2+2nn+110.6 666 11.412.解:原式=4+3276-14-3×22=4+922-14-322=154+3 2.13.解:原式=3-(2-3)+1-(2-3)=3-2+3+1-(-1)=3+ 3.14.解:(1)3 4(2)|x+5|(3)根据绝对值的定义知|x-1|+|x+3|可表示点x到表示1与-3的两点的距离之和.根据几何意义分析可知当x在-3与1之间时,|x-1|+|x+3|有最小值4.15.解:由题意得,i1=i,i2=-1,i3=-i,i4=1,i5=i4·i=i,i6=i5·i=-1,故可发现4个一循环,一个循环内的和为0.∵2 019÷4=504 (3)∴i+i2+i3+i4+…+i2 018+i2 019=504×0+(i-1-i)=-1.微专题二 代数式的化简与求值姓名:________ 班级:________ 用时:______分钟1.下列运算正确的是( ) A .x -2x =-x B .2x -y =-xy C .x 2+x 2=x 4D .(x -1)2=x 2-12.(2018·浙江丽水模拟)已知1a -1b =13,则2aba -b 的值是( )A.16B .-16C .6D .-63.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为( )A .7B .-7C .2a -15D .无法确定4.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( ) A .9B .±3C .3D .55.已知2a -3b =7,则8+6b -4a =________. 6.已知a<0,化简:4-(a +1a)2-4+(a -1a)2=________.7.若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a =____,b =______;计算:m =11×3+13×5+15×7+…+119×21=____.8.(2019·改编题)若m 2=n +2,n 2=m +2(m≠n),则m 3-2mn +n 3的值为________. 9. 先化简,再求值:(x +2)(x -2) +x(1-x),其中x =-1.10.化简:(a +1a -1-a a +1)÷3a +1a 2+a11.已知A =x 2+2x +1x -1-xx -1.(1)化简A.(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.12.先化简,再求值:m 2-4m +4m -1÷(3m -1-m -1),其中m =2-2.13.为鼓励学生努力学习,某校拿出了b 元资金作为奖学金,其中一部分作为奖学金发给了n 个学生.奖金分配方案如下:首先将n 个学生按学习成绩、思想道德评价(假设n 个学生的综合评分均不相同)从高到低,由1到n 排序,第1位学生得奖金bn 元,然后再将余额除以n 发给第2位学生,按此方法将奖金逐一发给了n 个学生.(1)假设第k 个学生得到的奖金为a k 元(1≤k≤n),试用k ,n 和b 表示a k .(2)比较a k 和a k +1的大小(k =1,2,…,n -1),并解释此结果就奖学金设置原则的合理性.参考答案1.A 2.D 3.A 4.C 5.-6 6.-2 7.1021 8.-29.解:原式=x 2-4+x -x 2=x -4. 当x =-1时,原式=-1-4=-5. 10.解:原式=[(a +1)2(a -1)(a +1)-a (a -1)(a -1)(a +1)]·a 2+a 3a +1 =a 2+2a +1-a 2+a (a -1)(a +1)·a (a +1)3a +1=3a +1(a -1)(a +1)·a (a +1)3a +1=aa -1. 11.解:(1)A =x 2+2x +1x 2-1-xx -1=(x +1)2(x +1)(x -1)-xx -1 =x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x≥1; 解x -3<0,得x<3,∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x<3. ∵x 为整数,∴x=1,2. 当x =1时,分式无意义. 当x =2时,A =12-1=1. 12.解:原式=(m -2)2m -1÷3-m 2+1m -1=(m -2)2m -1÷(2+m )(2-m )m -1=(m -2)2m -1×m -1(2+m )(2-m )=2-m 2+m .当m =2-2时,原式=2-2+22+2-2=4-22=22-1.13.解:(1)a k =b n (1-1n )k -1.(2)∵a k =b n (1-1n )k -1,a k +1=b n (1-1n )k,∴a k +1=(1-1n)a k <a k ,说明排名越靠前获得的奖学金越多.微专题三 列方程(组)解应用题姓名:________ 班级:________ 用时:______分钟1.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是( ) A .100元 B .90元C .810元D .819元2.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( ) A .不盈不亏 B .盈利20元 C .亏损10元D .亏损30元3.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B .3C .4D .54.夏季来临,某超市试销A ,B 两种型号的风扇,两周内共销售30台,销售收入5 300元,A 型风扇每台200元,B 型风扇每台150元,问A ,B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A.⎩⎪⎨⎪⎧x +y =5 300200x +150y =30B.⎩⎪⎨⎪⎧x +y =5 300150x +200y =30 C.⎩⎪⎨⎪⎧x +y =30200x +150y =5 300 D.⎩⎪⎨⎪⎧x +y =30150x +200y =5 300 5.滴滴快车是一种便捷的出行工具,计价规则如表:费相同,那么这两辆滴滴快车的行车时间相差( ) A .10分钟 B .13分钟 C .15分钟D .19分钟6.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为__________________________.7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为________尺,竿子长为________尺.8.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.9.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2 560元,求两种型号粽子各多少千克.10.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1∶2,且里程数之比为2∶1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a >0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a 的值.参考答案1.A 2.C 3.D 4.C 5.D 6.2x +56=589-x 7.20 15 8.解:设城中有x 户人家. 依题意得x +x3=100,解得x =75.答:城中有75户人家.9.解:设订购了A 型粽子x 千克,B 型粽子y 千克,根据题意得⎩⎪⎨⎪⎧y =2x -20,28x +24y =2 560,解得⎩⎪⎨⎪⎧x =40,y =60.答:订购了A 型粽子40千克,B 型粽子60千克.10.解:(1)设道路硬化的里程数是x 千米,则道路拓宽的里程数是(50-x)千米. 根据题意得x≥4(50-x),解得x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米,x 千米,2x +x =45,x =15,2x =30,设每千米的道路硬化和道路拓宽的经费分别为y 万元,2y 万元, 30y +15×2y=780,y =13, 2y =26,由题意得13(1+a%)·40(1+5a%)+26(1+5a%)·10(1+8a%)=780(1+10a%), 设a%=m ,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m), 10m 2-m =0,m 1=0.1,m 2=0(舍去), ∴a=10.微专题四 反比例函数、二次函数图象与性质的综合应用姓名:________ 班级:________ 用时:______分钟1.如图,若二次函数y =ax 2+bx +c(a≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A ,点B(-1,0),则 ①二次函数的最大值为a +b +c ; ②a-b +c <0; ③b 2-4ac <0;④当y >0时,-1<x <3.其中正确的个数是( ) A .1B .2C .3D .42.如图,点D 为矩形OABC 的AB 边的中点,反比例函数y =kx (x >0)的图象经过点D ,交BC边于点E.若△BDE 的面积为1,则k =______.3.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m )与飞行时间x(单位:s )之间具有函数关系y =-5x 2+20x ,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?4.参照学习函数的过程与方法,探究函数y =x -2x 的图象与性质.因为y =x -2x =1-2x ,即y =-2x +1,所以我们对比函数y =-2x 来探究.列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以y =x -2x 相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y 轴左边各点和右边各点,分别用一条光滑曲线顺次连结起来; (2)观察图象并分析表格,回答下列问题:①当x <0时,y 随x 的增大而________;(填“增大”或“减小”) ②y=x -2x 的图象是由y =-2x 的图象向______平移______个单位而得到;③图象关于点______________中心对称.(填点的坐标)(3)设A(x 1,y 1),B(x 2,y 2)是函数y =x -2x 的图象上的两点,且x 1+x 2=0,试求y 1+y 2+3的值.5.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其他费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?6.如图,四边形ABCD 的四个顶点分别在反比例函数y =m x 与y =nx (x >0,0<m <n)的图象上,对角线BD∥y 轴,且BD⊥AC 于点P.已知点B 的横坐标为4. (1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式;②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由;(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.参考答案1.B 2.43.解:(1)当y =15时,15=-5x 2+20x , 解得x 1=1,x 2=3,答:在飞行过程中,当小球的飞行高度为15 m 时,飞行时间是1 s 或3 s. (2)当y =0时,0=-5x 2+20x , 解得x 1=0,x 2=4 ∵4-0=4,∴在飞行过程中,小球从飞出到落地所用时间是4 s. (3)y =-5x 2+20x =-5(x -2)2+20, ∴当x =2时,y 取得最大值,此时,y =20,答:在飞行过程中,小球飞行高度在第2 s 时最大,最大高度是20 m. 4.解:(1)画出函数图象如图所示.(2)①增大 ②上 1 ③(0,1) (3)∵x 1+x 2=0,∴x 1=-x 2.∴A(x 1,y 1),B(x 2,y 2)关于(0,1)对称, ∴y 1+y 2=2, ∴y 1+y 2+3=5.5.解:(1)设直线AB 的表达式为y =kx +b ,代入A(4,4),B(6,2)得⎩⎪⎨⎪⎧4k +b =4,6k +b =2,解得⎩⎪⎨⎪⎧k =-1,b =8,∴直线AB 的表达式为y =-x +8.同理代入B(6,2),C(8,1)可得直线BC 的表达式为y =-12x +5.∵工资及其他费用为0.4×5+1=3(万元),∴当4≤x≤6时,w 1=(x -4)(-x +8)-3=-x 2+12x -35, 当6<x≤8时,w 2=(x -4)(-12x +5)-3=-12x 2+7x -23.(2)当4≤x≤6时,w 1=-x 2+12x -35=-(x -6)2+1, ∴当x =6时,w 1取最大值是1. 当6<x≤8时,w 2=-12x 2+7x -23=-12(x -7)2+32,当x =7时,w 2取最大值是32.∴1032=203=623, 即最快在第7个月可还清10万元的无息贷款. 6.解:(1)①∵m=4,∴反比例函数为y =4x .当x =4时,y =1,∴B(4,1). 当y =2时,2=4x ,∴x=2,∴A(2,2).设直线AB 的表达式为y =kx +b ,∴⎩⎪⎨⎪⎧2k +b =2,4k +b =1,∴⎩⎪⎨⎪⎧k =-12,b =3,∴直线AB 的表达式为y =-12x +3.②四边形ABCD 是菱形.理由如下:如图,由①知,B(4,1).∵BD∥y 轴,∴D(4,5).∵点P 是线段BD 的中点,∴P(4,3). 当y =3时,由y =4x 得x =43,由y =20x 得x =203,∴PA=4-43=83,PC =203-4=83,∴PA=PC.∵PB=PD ,∴四边形ABCD 为平行四边形. ∵BD⊥AC,∴四边形ABCD 是菱形. (2)四边形ABCD 能是正方形.理由如下:当四边形ABCD 是正方形时, PA =PB =PC =PD =t(t≠0). 当x =4时,y =m x =m4,∴B(4,m4),∴A(4-t ,m 4+t),∴(4-t)(m4+t)=m ,∴t=4-m 4,∴点D 的纵坐标为m 4+2t =m 4+2(4-m 4)=8-m4,∴D(4,8-m 4),∴4(8-m4)=n ,∴m+n =32.微专题五 以特殊三角形为背景的计算与证明姓名:________ 班级:________ 用时:______分钟1.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,E 为AB 边的中点,以BE 为边作等边△BDE,连结AD ,CD. (1)求证:△ADE≌△CDB;(2)若BC =3,在AC 边上找一点H ,使得BH +EH 最小,并求出这个最小值.2.如图,在等边△ABC 中,点D ,E ,F 分别同时从点A ,B ,C 出发,以相同的速度在AB ,BC ,CA 上运动,连结DE ,EF ,DF. (1)证明:△DEF 是等边三角形;(2)在运动过程中,当△CEF 是直角三角形时,试求S △DEFS △ABC的值.3.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB 的度数;(3)如图2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.4.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长.5.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t 的值;若不存在,请说明理由.6.问题:(1)如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连结EC,则线段BC,DC,EC之间满足的等量关系式为________;探索:(2)如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:(3)如图3,在四边形ABCD中,∠ABC=∠ACB=∠A DC=45°.若BD=9,CD=3,求AD的长.参考答案1.(1)证明:在Rt△ABC 中,∠BAC=30°,E 为AB 边的中点, ∴BC=EA ,∠ABC=60°. ∵△DEB 为等边三角形,∴DB=DE ,∠DEB=∠DBE=60°, ∴∠DEA=120°,∠DBC=120°, ∴∠DEA=∠DBC, ∴△ADE≌△CDB.(2)解:如图,作点E 关于直线AC 对称点E′,连结BE′交AC 于点H ,连结EH ,AE′, 则点H 即为符合条件的点.由作图可知,EH =HE′,AE′=AE ,∠E′AC=∠BAC=30°, ∴∠EAE′=60°,∴△EAE′为等边三角形, ∴EE′=EA =12AB ,∴∠AE′B=90°.在Rt△ABC 中,∠BAC=30°,BC =3, ∴AB=23,AE′=AE =3,∴BE′=AB 2-AE′2=(23)2-(3)2=3, ∴BH+EH 的最小值为3.2.(1)证明:∵△ABC 是等边三角形, ∴∠A=∠B=∠C=60°,AB =BC =CA. ∵AD=BE =CF ,∴BD=CE =AF. 在△ADF,△BED 和△CFE 中, ∵⎩⎪⎨⎪⎧AD =BE =CF ,∠A=∠B=∠C,AF =BD =CE ,∴△ADF≌△BED≌△CFE, ∴FD=DE =EF , ∴△DEF 是等边三角形.(2)解:∵△ABC 和△DEF 是等边三角形,∴△DEF∽△ABC.当DE⊥BC 时(EF⊥BC 时,同理),∠BDE=30°, ∴BE=12BD ,即BE =13BC ,CE =23BC.∵EF=EC·sin 60°=23BC·32=33BC ,∴S △DEF S △ABC =(EF BC )2=(33)2=13. 3.(1)证明:∵∠A=40°,∠B=60°, ∴∠ACB=80°,∴△ABC 不是等腰三角形. ∵CD 平分∠ACB,∴∠ACD=∠BCD=12∠ACB=40°,∴∠ACD=∠A=40°, ∴△ACD 为等腰三角形.∵∠DCB=∠A=40°,∠CBD=∠ABC, ∴△BCD∽△BAC,∴CD 是△ABC 的完美分割线. (2)解:①当AD =CD 时,如图,则∠ACD=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°, ∴∠ACB=∠ACD+∠BCD=96°. ②当AD =AC 时,如图,则∠ACD=∠ADC=180°-48°2=66°.∵△BDC∽△BCA,∴∠BCD=∠A=48°, ∴∠ACB=∠ACD+∠BCD=114°. ③当AC =CD 时,如图,则∠ADC =∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°. ∵∠ADC=∠BCD=48°与∠ADC>∠BCD 矛盾, ∴AC=CD 不成立.综上所述,∠ACB=96°或114°. (3)解:由已知得AD =AC =2. ∵△BCD∽△BAC,∴BC BA =BD BC =CDAC .设BD =x(x>0), 则(2)2=x(x +2), 解得x =3-1(负值舍去), ∴CD AC =BD BC =3-12, ∴CD=3-12×2=6- 2. 4.(1)证明:∵△ABC 和△ADE 是等腰直角三角形,∠BAC=∠DAE=90°, ∴AB=AC ,AD =AE ,∠DAB=∠EAC, ∴△ADB≌△AEC,∴BD=CE.(2)解:如图,①当点E 在AB 上时,BE =AB -AE =1.∵∠EAC=90°,∴CE=AE 2+AC 2= 5. 同(1)可证△ADB≌△AEC, ∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC, ∴PB AC =BE CE ,∴PB 2=15,∴PB=255. ②如图,当点E 在BA 延长线上时,BE =3.∵∠EAC=90°,∴CE=AE 2+AC 2= 5. 同(1)可证△ADB≌△AEC, ∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC, ∴PB AC =BE CE ,∴PB 2=35,∴PB=655. 综上所述,PB 的长为255或655.5.(1)证明:在Rt△ABC 中,AB =6,AC =8, ∴BC=10,sin∠B=AC BC =810=45,sin∠C=35.如图,过点Q 作QE⊥AB 于点E ,作QD⊥AC 于点D.在Rt△BQE 中,BQ =5t , ∴sin∠B=QE BQ =45,∴QE=4t.在Rt△CDQ 中,CQ =BC -BQ =10-5t , ∴QD=CQ·sin∠C=35(10-5t)=3(2-t),QE =BQ·sin∠B=5t·45=4t.由运动知AP =3t ,CR =4t ,∴BP=AB -AP =6-3t =3(2-t),AR =AC -CR =8-4t =4(2-t), ∴S △APR =12AP·AR=12×3t×4(2-t)=6t(2-t),S △BPQ =12BP·QE=12×3(2-t)×4t=6t(2-t),S △CQR =12CR·QD=12×4t×3(2-t)=6t(2-t),∴S △APR =S △BPQ =S △CQR ,∴△APR,△BPQ,△CQR 的面积相等.(2)解:由(1)知,S △APR =S △BPQ =S △CQR =6t(2-t). ∵AB=6,AC =8,∴S △PQR =S △ABC -(S △APR +S △B PQ +S △CQR ) =12×6×8-3×6t(2-t)=24-18(2t -t 2) =18(t -1)2+6.∵0≤t≤2,∴当t =1时,S △PQR 最小=6.(3)解:存在.由(1)知QE =4t ,QD =3(2-t),AP =3t ,CR =4t ,AR =4(2-t), ∴BP=AB -AP =6-3t =3(2-t), AR =AC -CR =8-4t =4(2-t). ∵∠A=90°,∴四边形AEQD 是矩形, ∴AE=DQ =3(2-t),AD =QE =4t , ∴DR=|AD -AR|=|4t -4(2-t)| =|4(2t -2)|,PE =|AP -AE|=|3t -3(2-t)| =|3(2t -2)|.∵∠DQE=90°,∠PQR=90°, ∴∠DQR=∠EQP, ∴tan∠DQR=tan∠EQP. 在Rt△DQR 中,tan∠DQR=DR DQ =4|2t -2|3(2-t ),在Rt△EQP 中,tan∠EQP=PE QE =3|2t -2|4t ,∴4|2t -2|3(2-t )=3|2t -2|4t , ∴t=1825或1.6.解:(1) BC =DC +EC (2)BD 2+CD 2=2AD 2,理由如下: 如图,连结CE.∵∠BAC=∠BAD+∠DAC=90°,∠DAE=∠CAE+∠DAC=90°, ∴∠BAD=∠CAE. 在△BAD 与△CAE 中, ∵⎩⎪⎨⎪⎧AB =AC ,∠BAD=∠CAE,AD =AE , ∴△BAD≌△CAE, ∴BD=CE ,∠ACE=∠B, ∴∠DCE=90°,∴CE 2+CD 2=ED 2. 在Rt△ADE 中,AD 2+AE 2=ED 2,AD =AE , ∴BD 2+CD 2=ED 2,ED =2AD , ∴BD 2+CD 2=2AD 2.(3)如图,作AE⊥AD,使AE =AD ,连结CE ,DE.∵∠BAC+∠CAD=∠DAE+∠CAD, 即∠BAD=∠CAE. 在△BAD 与△CAE 中, ⎩⎪⎨⎪⎧AB =AC ,∠BAD=∠CAE,AD =AE ,∴△BAD≌△CAE(SAS),∴BD=CE =9. ∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE=CE 2-CD 2=6 2. ∵∠DAE=90°,∴AD =AE =22DE =6.微专题六以特殊四边形为背景的计算与证明姓名:________ 班级:________ 用时:______分钟1.如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.2.如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连结CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.3.如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连结MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.4.如图,点E,F分别是矩形ABCD的边AD,AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.5.问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2 cm,AC=4 cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC′的形状是________;(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B,A,D三点在同一条直线上,得到如图3所示的△AC′D,连结CC′,取CC′的中点F,连结AF并延长至点G,使FG=AF,连结CG,C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论;实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H,如图4所示,连结CC′,试求tan∠C′CH的值.参考答案1.证明:(1)如图,延长AO 到E. ∵OA=OB ,∴∠ABO=∠BAO. 又∠BOE=∠ABO+∠BAO, ∴∠BOE=2∠BAO. 同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO), 即∠BOD=2∠BAD.又∠C=2∠BAD,∴∠BOD=∠C.(2)如图,连结OC.∵OB=OD ,CB =CD ,OC =OC , ∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO. ∵∠BOD=∠BOC+∠DOC, ∠BCD=∠BCO+∠DCO,∴∠BOC=12∠BOD,∠BCO=12∠BCD.又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC. 又OB =OD ,BC =CD , ∴OB=BC =CD =DO , ∴四边形OBCD 是菱形.2.证明:(1)∵E 是AD 的中点,∴AE=DE. ∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB, ∴△AEF≌△DEB (AAS). (2)如图,连结DF.∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形.∵△AEF≌△DEB,∴BE=FE.∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB.∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.3.(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°.∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON. (2)解:如图,过点O作OH⊥AD于点H.∵正方形的边长为4,∴OH=HA=2.∵E为OM的中点,∴HM=4,则OM=22+42=25,∴MN=2OM=210.4.(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC ,∴△AEF≌△DCE. ∴ED=AF.∵AE=DC =AB =2DE ,∴AB=2AF ,∴F 是AB 的中点. (2)解:由(1)得AF =FB ,且AE∥BH, ∴∠FBH=∠FAE=90°,∠AEF=∠FHB, ∴△AEF≌△BHF,∴HB=AE. ∵ED=2,且AE =2ED ,∴AE=4, ∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32, ∴AH=4 2. 5.解:(1)菱形(2)在图1中,∵四边形ABCD 是矩形, ∴AB∥CD,∴∠CAD=∠ACB,∠B=90°, ∴∠BAC+∠ACB=90°.在图3中,由旋转知,∠DAC′=∠DAC, ∴∠ACB=∠DAC′, ∴∠BAC+∠DAC′=90°. ∵点D ,A ,B 在同一条直线上, ∴∠CAC′=90°. 由旋转知,AC =AC′.∵点F 是CC′的中点,∴AG⊥CC′,CF =C′F. ∵AF=FG ,∴四边形ACGC′是平行四边形. ∵AG⊥CC′,∴四边形ACGC′是菱形. ∵∠CAC′=90°, ∴菱形ACGC′是正方形.(3)在Rt△ABC 中,AB =2,AC =4, ∴BC′=AC =4,BD =BC =23, sin ∠ACB=AB AC =12,∴∠ACB=30°.由(2)结合平移知,∠CHC′=90°.在Rt△BCH 中,∠ACB=30°, ∴BH=BC·sin 30°=3, ∴C′H=BC′-BH =4- 3. 在Rt△ABH 中,AH =12AB =1,∴CH=AC -AH =4-1=3, 在Rt△CHC′中,tan ∠C′CH=C′H CH =4-33.微专题七 与圆有关的计算与证明姓名:________ 班级:________ 用时:______分钟1.若将半径为12 cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是( ) A .2 cmB .3 cmC .4 cmD .6 cm2.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD,则AB ︵的长为( )A .πB.32πC .3πD .6π3. 如图,已知⊙O 的半径是2,点A ,B ,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分的面积为( )A.23π-2 3 B.23π- 3 C.43π-2 3D.43π- 3 4.一般地,如果在一次试验中,结果落在区域D 中每一个点都是等可能的,并用A 表示“试验结果落在区域D 中的某个小区域M 中”这个事件,那么事件A 发生的概率为P A =MD .如图,现在往等边三角形ABC 内投入一个点,则该点落在△ABC 的内切圆中的概率是______.5.如图,分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为________.6.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r 的圆内接正n 边形的周长为L ,圆的直径为d.如图所示,当n =6时,π≈l d =6r 2r =3,那么当n =12时,π≈ld =____________.(结果精确到0.01,参考数据:sin 15°=cos 75°≈0.259)7.如图,⊙O 的半径是2,直线l 与⊙O 相交于A ,B 两点,M ,N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB=45°,则四边形MANB 面积的最大值是______.8.如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30 cm ,∠B 1D 1C 1=120°. (1)图2中,弓臂两端B 1,C 1的距离为________cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为______________cm .9.如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 作DE⊥AC 分别交AC 、AB 的延长线于点E ,F.(1)求证:EF 是⊙O 的切线;(2)若AC =4,CE =2,求BD ︵的长度.(结果保留π)10.如图,已知AB 是圆O 的直径.弦CD⊥AB,垂足为H.与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连结AF 交CD 于点N.(1)求证:CA =CN ;(2)连结DF ,若cos ∠DFA=45,AN =210,求圆O 的直径的长度.11.如图,在平面直角坐标系xOy 中,直线y =3x -23与x 轴,y 轴分别交于A ,B 两点,P 是直线AB 上一动点,⊙P 的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.参考答案1.D 2.B 3.C 4.39π 5.πa 6.3.11 7.4 2 8.(1)30 3 (2)105-10 9.解:(1)证明:如图,连结OD.∵OA=OD ,∴∠OAD=∠ODA. ∵AD 平分∠EAF,∴∠DAE=∠DAO, ∴∠DAE=∠ADO,∴OD∥AE. ∵AE⊥EF,∴OD⊥EF, ∴EF 是⊙O 的切线.(2)如图,作OG⊥AE 于点G ,连结BD ,则AG =CG =12AC =2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG 是矩形,∴OA=OB =OD =CG +CE =2+2=4,∠DOG=90°. ∵∠DAE=∠BAD,∠AED=∠ADB=90°, ∴△ADE∽△ABD, ∴AE AD =AD AB ,即6AD =AD 8, ∴AD 2=48.在Rt△ABD 中,BD =AB 2-AD 2=4. 在Rt△ABD 中,∵AB=2BD , ∴∠BAD=30°, ∴∠BOD=60°,则BD ︵的长度为60·π·4180=4π3.10.(1)证明:如图,连结OF. ∵ME 与圆O 相切于点F ,∴OF⊥ME, 即∠OFN+∠MFN=90°.∵∠OFN=∠OAN,∠OAN+∠ANH=90°, ∴∠MFN=∠ANH.(等量代换) 又∵ME∥AC,∴∠MFN=∠NAC, ∴∠ANH=∠NAC.∴CA=CN.(2)解:如图,连结OC , ∵cos ∠DFA=45,∴cos C=45.在直角△AHC 中,设AC =5a ,HC =4a , 则AH =3a.由(1)知,CA =CN ,∴NH=a.在直角△ANH 中,利用勾股定理得AH 2+NH 2=AN 2, 即(3a)2+a 2=(210)2,解得a =2.如图,连结OC ,在直角△OHC 中,利用勾股定理得OH 2+HC 2=OC 2. 设圆O 的半径为R ,则(R -6)2+82=R 2,解得2R =503,∴圆O 的直径长度为2R =503.11.解:(1)原点O 在⊙P 外.理由:∵直线y =3x -23与x 轴,y 轴分别交于A ,B 两点, ∴点A(2,0),点B(0,-23). 在Rt△OAB 中,tan∠OBA=OA OB =33,∴∠OBA=30°.如图,过点O 作OH⊥AB 于点H.在Rt△OBH 中,OH =OB·sin∠OBA= 3. ∵3>1,∴原点O 在⊙P 外.(2)如图,当⊙P 过点B 时,点P 在y 轴右侧时,∵PB=PC ,∴∠PCB=∠OBA=30°,∴⊙P 被y 轴所截得的劣弧所对的圆心角为180°-30°-30°=120°, ∴弧长为120π×1180=2π3.同理,当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为2π3.∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧长为2π3.(3)如图,当⊙P 与x 轴相切时,且位于x 轴下方时,设切点为D ,连结DP ,则PD⊥x 轴,∴PD∥y 轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP·tan ∠DPA=1×tan 30°=33,∴OD=OA-AD=2-33,∴此时点D的坐标为(2-33,0).当⊙P与x轴相切时,且位于x轴上方时,根据对称性可以求得此时切点的坐标为(2+33,0).综上所述,当⊙P与x轴相切时,切点的坐标为(2-33,0)或(2+33,0).微专题八巧用图形变换进行计算与证明姓名:________ 班级:________ 用时:______分钟1.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2,则旋转的牌是( )2.如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点,则图中阴影部分的面积是( )A. 3 B.2 3 C.3 3 D.4 33.如图,已知⊙O的半径为3,∠AOB+∠COD=150°,则阴影部分的面积为_________.4.如图是一个台阶的纵切面图,∠B=90°,AB=3 m,BC=5 m,现需在台阶从点A到点C 处铺上红地毯,则该地毯的长度为______m.5.将一张矩形纸片折叠成如图所示的图形,若AB=6 cm,则AC=______cm.6.如图①,四边形CFDE是正方形,且点E,D,F分别在三角形ABC的三边上,观察图①和图②,请回答下列问题:(1)请简述由图①变成图②的形成过程:______________________________________________________.(2)若AD=3,DB=4,则△ADE和△BDF的面积之和为______.7.如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是______形,点P,E,F分别为线段AB,AD,DB的任意点,则PE+PF的最小值是_________.8.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2 019次后,点P的坐标为______________________.9.如图,在正方形ABCD中,点M,N分别是AD,CD边上的动点(含端点),且∠MBN=45°.求证:AM+CN=MN.10.问题背景:如图1,点A,B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连结AB′与直线l交于点C,则点C即为所求.(1)实践运用:如图2,已知,⊙O的直径CD为4,点A在⊙O上,∠ACD=30°,B为弧AD的中点,P为直径CD上一动点,则BP+AP的最小值为________.(2)知识拓展:如图3,在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E,F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.。
浙江省中考数学总复习 全程考点训练 专题七 探索型问题(含解析)
探索型问题一、选择题1.观察下列数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,那么第32个数对是(B )A .(4,4)B .(4,5)C .(4,6)D .(5,4)【解析】 规律:数对中的两数之和依次为2,3,3,4,4,4,5,5,5,5…,即和为n 的有(n -1)个数对,且每个相同的和中,第一个数由1递增,第二个数由n -1递减.2.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是(D)(第2题)A .2016B .2015C .2014D .2013【解析】 由题意知,被截去部分纸环的个数为5n +2+1=5n +3.3.一列数a 1,a 2,a 3,…,其中a 1=12,a n =11+a n -1(n 为不小于2的整数),则a 4=(A )A.58B.85 C.138 D.813【解析】 a 1=12,a 2=11+12=23,a 3=11+23=35,a 4=11+35=58.4.如图所示的图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为(C )(第4题)A .55B .42C .41D .29【解析】 ∵图②中平行四边形有1+2+2=2×3-1=5(个),图③中平行四边形有1+2+3+2+3=3×4-1=11(个),图中平行四边形有n (n +1)-1=(n 2+n -1)个,∴图⑥中的平行四边形的个数为6×7-1=41.5.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯之间的距离都是10 m ,如图.第一棵树左边5 m 处有一个路牌,则从此路牌起向右510~550 m 之间树与灯的排列顺序是(B )(第5题)【解析】 根据题意得:第一个灯的里程数为15 m ,第二个灯的里程数为55 m ,第三个灯的里程数为95 m ,…,第n 个灯的里程数为15+40(n -1)=(40n -25)m.故当n =14时,40n -25=535(m)处是灯,则515 m ,525 m ,545 m 处均是树,故树与灯的排列顺序应该是树,树,灯,树.(第6题)6.在平面直角坐标系中,正方形ABCD 的顶点分别为A ()1,1,B ()1,-1,C ()-1,-1,D ()-1,1,y 轴上有一点P ()0,2.作点P 关于点A 的对称点P 1,作点P 1关于点B 的对称点P 2,作点P 2关于点C 的对称点P 3,作点P 3关于点D 的对称点P 4,作点P 4关于点A 的对称点P 5,作点P 5关于点B 的对称点P 6……按如此操作下去,则点P 2015的坐标为(D )A .(0,2)B .(2,0)C .(0,-2)D .(-2,0)【解析】 由题意,得点P 1(2,0),P 2(0,-2),P 3(-2,0),P 4(0,2),P 5(2,0),…,按如此操作下去,每4次变换一循环,∵2015÷4=503……3,点P 2015的坐标与P 3的坐标相同,∴点P 2015的坐标为(-2,0).二、填空题7.观察一列单项式:a,-2a2,4a3,-8a4,…,根据你发现的规律,第n个单项式为(-2)n-1a n.8.已知一列数为2,8,26,80,…,按此规律,则第n个数是3n-1(用含n的代数式表示).【解析】观察数列,可以发现:2=3-1,8=32-1,26=33-1,80=34-1,…,则按此规律,第n个数是3n-1.9.已知12=1,112=121,1112=12321,…,则依据上述规律,11…11,\s\do4(,n个1))2的计算结果中,从左向右数第12个数字是3(其中n>12).【解析】第12个数由12个1相加,再加上后一位的进1,所以它是3.10.通过找出这组图形符号中所蕴涵的内在规律,在空白处的横线上填上恰当的图形.(第10题)【解析】观察图形,可发现规律:每个图形都是由两个英文大写字母构成的轴对称图形,且按顺序排列,其中奇数位置上下对称,偶数位置左右对称.11.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 100个.(第11题)【解析】发现第n个图中有n2个黑色正六边形,故第10个图中黑色正六边形有100个.(第12题)12.如图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C…的方式)从A开始数连续的正整数1,2,3,4…,当数到12时,对应的字母是B;当字母C第201次出现时,恰好数到的数是603;当字母C第2n+1次出现时(n为正整数),恰好数到的数是6n+3(用含n的代数式表示).【解析】通过对字母观察可知:前六个字母为一组,后边就是这组字母反复出现.当数到12时,因为12除6刚好余数为零,则表示这组字母刚好出现两次,所以最后一个字母应该是B .当字母C 第201次出现时,由于每组字母中C 出现两次,则这组字母应该出现100次后还要加一次字母C 出现,而第一组字母C 在第三个出现,所以应该是100×6+3=603.当字母C 第2n +1次出现时,则这组字母应该出现n 次后还要加一次字母C 出现,所以应该是n ·6+3=6n +3.13.设a 1,a 2,…,a 2014是从1,0,-1这三个数中取值的一列数,若a 1+a 2+…+a 2014=69,(a 1+1)2+(a 2+1)2+…+(a 2014+1)2=4001,则a 1,a 2,…,a 2014中0的个数是_165_.【解析】 ∵(a 1+1)2+(a 2+1)2+…+(a 2014+1)2=a 12+a 22+…+a 20142+2(a 1+a 2+…+a 2014)+2014 =a 12+a 22+…+a 20142+2×69+2014 =a 12+a 22+…+a 20142+2152=4001, ∴a 12+a 22+…+a 20142=4001-2152=1849. 设有x 个1,y 个-1,z 个0,则⎩⎪⎨⎪⎧x +y +z =2014,1·x +(-1)·y +0·z =69,12·x +(-1)2·y +0·z =1849, 解得⎩⎪⎨⎪⎧x =959,y =890,z =165.∴有959个1,890个-1,165个0.(第14题)14.如图,直线l 1⊥x 轴于点(1,0),直线l 2⊥x 轴于点(2,0),直线l 3⊥x 轴于点(3,0),…,直线l n ⊥x 轴于点(n ,0).函数y =x 的图象与直线l 1,l 2,l 3,…,l n 分别交于点A 1,A 2,A 3,…,A n ,函数y =2x 的图象与直线l 1,l 2,l 3,…,l n 分别交于点B 1,B 2,B 3,…,B n .如果△OA 1B 1的面积记做S 1,四边形A 1A 2B 2B 1的面积记做S 2,四边形A 2A 3B 3B 2的面积记做S 3,…,四边形A n -1A n B n B n -1的面积记做S n ,那么S 2014=2013.5.【解析】 ∵函数y =x 的图象与直线l 1,l 2,l 3,…,l n 分别交于点A 1,A 2,A 3,…,A n , ∴点A 1(1,1),A 2(2,2),A 3(3,3),…,A n (n ,n ).又∵函数y =2x 的图象与直线l 1,l 2,l 3,…,l n 分别交于点B 1,B 2,B 3,…,B n , ∴点B 1(1,2),B 2(2,4),B 3(3,6),…,B n (n ,2n ),∴S 1=12×1×(2-1),S 2=12×2×(4-2)-12×1×(2-1),S 3=12×3×(6-3)-12×2×(4-2),…,S n =12·n ·(2n -n )-12·(n -1)[2(n -1)-(n -1)]=12n 2-12(n -1)2=n -12.当n =2014,S 2014=2014-12=2013.5.三、解答题15.如图,AD 是⊙O 的直径.(1)如图①,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是_22.5°,∠B 2的度数是67.5_°.(2)如图②,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,分别求∠B 1,∠B 2,∠B 3的度数. (3)如图③,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3C 3,…,B n C n 把圆周2n 等分,请你用含n 的代数式表示∠B n 的度数(只需直接写出答案).(第15题)【解析】 (2)∵圆周被6等分, ∴B 1C 1︵=C 1C 2︵=C 2C 3︵=360°÷6=60°. ∵直径AD ⊥B 1C 1,∴AC 1︵=12B 1C 1︵=30°,∴∠B 1=12AC 1︵=15°,∠B 2=12AC 2︵=12×(30°+60°)=45°,∠B 3=12AC 3︵=12×(30°+60°+60°)=75°.(3)∠B n =12×⎣⎢⎡⎦⎥⎤12×360°2n +(n -1)×360°2n =90°-45°n.(第16题)16.合作学习:如图,矩形ABOD 的两边OB ,OD 都在坐标轴的正半轴上,OD =3,另两边与反比例函数y =k x(k ≠0)的图象分别交于点E ,F ,且DE =2,过点E 作EH ⊥x 轴于点H ,过点F 作FG ⊥EH 于点G .(1)阅读合作学习的内容,请解答下列问题: ①该反比例函数的表达式是什么?②当四边形AEGF 为正方形时,点F 的坐标是多少?(2)小亮进一步研究四边形AEGF 的特征后提出问题:“当AE >EG 时,矩形AEGF 与矩形DOHE 能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.【解析】 (1)①∵DE =2,OD =3, ∴点E 的坐标为(2,3).∵点E 在反比例函数y =k x(k ≠0)的图象上, ∴3=k2,即k =6.∴该反比例函数的表达式是y =6x(x >0).②设点F 的坐标为(m ,n ),则AE =m -2,AF =3-n .∵点F 在反比例函数y =6x(x >0)的图象上,四边形AEGF 是正方形,∴⎩⎪⎨⎪⎧n =6m ,m -2=3-n ,解得⎩⎪⎨⎪⎧m 1=3,n 1=2,⎩⎪⎨⎪⎧m 2=2,n 2=3(舍去).∴点F 的坐标为(3,2). (2)这两个矩形不能全等. 这两个矩形可以相似.理由如下:设点F 的坐标为(m ,n ),则AE =m -2,AF =3-n .∵AE >EG ,∴若矩形AEGF 与矩形DOHE 全等,则⎩⎪⎨⎪⎧AE =DO ,AF =DE ,即⎩⎪⎨⎪⎧m -2=3,3-n =2,解得⎩⎪⎨⎪⎧m =5,n =1.∴点F 的坐标为(5,1).而(5,1)不在反比例函数y =6x(x >0)的图象上,∴这两个矩形不能全等.∵AE >EG ,∴若矩形AEGF 与矩形DOHE 相似,则AE AF =DO DE ,即m -23-n =32.∵点F 在反比例函数y =6x(x >0)的图象上,∴⎩⎪⎨⎪⎧m -23-n =32,n =6m ,解得⎩⎪⎨⎪⎧m 1=92,n 1=43,⎩⎪⎨⎪⎧m 2=2,n 2=3(增解,舍去). ∴AE =92-2=52. ∴AE DO =52 3 =56,∴矩形AEGF 与矩形DOHE 的相似比为56.。
2019年浙江省中考数学《第39讲:开放与探索型问题》总复习讲解
第39讲开放与探索型问题类型一条件开放与探索型问题例1(1)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种 B.4种 C.5种 D.6种【解后感悟】判断一个四边形是平行四边形的基本依据是:平行四边形的定义及其判定定理.解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件.(2)(2019·河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有( )A.1个 B.2个 C.3个 D.3个以上【解后感悟】本题运用等边三角形的判定和性质、全等三角形的判定和性质、角平分线的性质等知识的开放性问题,解题的关键是正确添加辅助线,构造全等三角形.1.(1)请举反例说明“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x=(写出一个x的值即可).(2)(2019·无锡)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元.类型二结论开放与探索型问题例2(2019·绍兴)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由;(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.【解后感悟】此题是动态开放探究型问题,通过画图转化为所求的图形,利用全等三角形、二元一次方程组和三角形三边关系解决问题.2.(2019·丽水)如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有( )A.3种 B.6种 C.8种 D.12种3.(2019·台州)关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是(填序号).类型三条件、结论开放与探索型问题例3(2019·绍兴)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【解后感悟】本题通过条件的改变寻求新的结论,从特殊到一般来探求问题即α=0°的情况,再逆命题的探究,以及补充一个条件后能使该命题为真命题的探究.逐步画图来解决问题.4.(2019·南京)如图,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证MNQP是菱形,只要证MN=NQ,由已知条件________,MN∥EF--故只要证GM=FQ,即证△MGE≌△QFH,易证________,________,故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,________,即可得证.类型四过程开放与探索型问题例4(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG =BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解后感悟】本题是几何综合题,通过观察、比较、分析、综合及猜想,运用正方形、全等三角形、等腰直角三角形以及勾股定理等几何图形的性质,经过归纳、类比、联想等推理的手段,得出正确的结论.5.(2019·河南)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连结PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为____________________;②连结OD,当∠PBA的度数为____________________时,四边形BPDO是菱形.6.(2019·绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD =α,∠CDE=β.(1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果∠ABC =60°,∠ADE =70°,那么α=____________________°,β=____________________°;②求α,β之间的关系式;(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由【经验积累题】(2019·丽水)如图,在矩形ABCD 中,E 为CD 的中点,F 为BE 上的一点,连结CF 并延长交AB 于点M ,MN ⊥CM 交射线AD 于点N.(1)当F 为BE 中点时,求证:AM =CE ;(2)若AB BC =EF BF =2,求AN ND的值; (3)若AB BC =EF BF=n ,当n 为何值时,MN ∥BE?【方法与对策】本题是几何综合题,运用了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、同角的余角相等、三角形外角的性质等知识,本题三问的解题思路是一致的;即通过特殊到一般,利用全等三角形或相似三角形解决问题,这是中考常见的压轴题型.【考虑欠周,容易漏解】在一服装厂里有大量形状为等腰三角形的边角布料(如图).现找出其中的一种,测得∠C=90°,AC =BC =4,现要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在△ABC的边上,且扇形与△ABC 的其他边相切.请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).参考答案第39讲 开放与探索型问题【例题精析】例1 (1)①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD 为平行四边形;①③可证明△ADO≌△CBO,进而得到AD =CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;①④可证明△ADO≌△CBO,进而得到AD =CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;故选:B.(2)如图在OA 、OB 上截取OE =OF =OP ,作∠MPN=60°.∵OP 平分∠AOB,∴∠EOP =∠POF=60°,∵OP =OE =OF ,∴△OPE ,△OPF 是等边三角形,∴EP =OP ,∠EPO =∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM 和△PON 中,⎩⎪⎨⎪⎧∠PEM =∠PON,PE =PO ,∠EPM =∠OPN,∴△PEM ≌△PON.∴PM =PN ,∵∠MPN =60°,∴△PMN是等边三角形,∴只要∠MPN=60°,△PMN 就是等边三角形,故这样的三角形有无数个.故选D. 例2(1)相等. 理由:连结AC ,在△ACD 和△ACB 中,⎩⎪⎨⎪⎧AC =AC AD =AB CD =BC,∴△ACD ≌△ACB ,∴∠B =∠D.(2) 设AD =x ,BC =y ,当点C 在点D 右侧时,⎩⎪⎨⎪⎧x +2=y +5x +(y +2)+5=30,解得:⎩⎪⎨⎪⎧x =13y =10,当点C 在点D 左侧时,⎩⎪⎨⎪⎧y =x +5+2x +(y +2)+5=30,解得:⎩⎪⎨⎪⎧x =8y =15,此时AC =17,CD =5,AD =8,5+8<17,∴不合题意,∴AD =13cm ,BC =10cm.例3 (1)证明:如图1,正方形ABCD 和正方形AEFG 中,∵GF =EF ,AG =AE ,AD =AB ,∴DG =BE.又∵∠DGF=∠BEF=90°,∴△DGF ≌△BEF(SAS).∴DF=BF. (2)反例图形如图2: (3)不唯一,如点F 在正方形ABCD 内,或α<180°.例 4 (1)证明:∠ABE=∠ADG,AD =AB ,在△ABE 和△ADG 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADG,BE =DG ,∴△ABE ≌△ADG(SAS),∴∠BAE =∠DAG,AE =AG ,∴∠EAG =90°,在△FAE 和△FAG 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠FAG=45°,AF =AF ,∴△FAE ≌△FAG(SAS),∴EF =FG ;(2)如图2,过点C 作CE⊥BC,垂足为点C ,截取CE ,使CE =BM ,连结AE 、EN ,∵AB =AC ,∠BAC =90°,∴∠B =∠ACB=45°,∵CE ⊥BC ,∴∠ACE =∠B=45°,在△ABM 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠B =∠ACE,BM =CE ,∴△ABM ≌△ACE(SAS).∴AM=AE ,∠BAM =∠CAE.∵∠BAC=90°,∠MAN =45°,∴∠BAM +∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN 和△EAN 中,⎩⎪⎨⎪⎧AM =AE ,∠MAN =∠EAN,AN =AN ,∴△MAN ≌△EAN(SAS).∴MN =EN.在Rt △ENC 中,由勾股定理,得EN 2=EC 2+NC 2.∴MN 2=BM 2+NC 2.∵BM =1,CN =3,∴MN 2=12+32,∴MN =10.【变式拓展】1.(1)-2 (2)838或910 2.B 3.①③4.(1)∵EH 平分∠BEF,∴∠FEH =12∠BEF ,∵FH 平分∠DFE,∴∠EFH =12∠DFE ,∵AB ∥CD ,∴∠BEF +∠DFE=180°,∴∠FEH +∠EFH=12(∠BEF+∠DFE)=12×180°=90°,∵∠FEH +∠EFH+∠EHF=180°,∴∠EHF =180°-(∠FEH+∠EFH)=180°-90°=90°,同理可得:∠EGF=90°,∵EG 平分∠AEF,∴∠FEG =12∠AEF ,∵EH 平分∠BEF,∴∠FEH =12∠BEF ,∵点A 、E 、B 在同一条直线上,∴∠AEB =180°,即∠AEF+∠BEF=180°,∴∠FEG +∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°,∴四边形EGFH 是矩形; (2)答案不唯一:由AB∥CD,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形,要证▱MNQP 是菱形,只要证MN =NQ ,由已知条件:FG 平分∠CFE,MN ∥EF ,故只要证GM =FQ ,即证△MGE≌△QFH,易证GE =FH 、∠GME=∠FQH.故只要证∠MGE =∠QFH,易证∠MGE=∠GEF,∠QFH =∠EFH,∠GEF=∠EFH,即可得证. 5.(1)∵PC=PB ,D 是AC 的中点,∴DP ∥AB ,DP =12AB ,∴∠CPD =∠PBO,∵BO =12AB ,∴DP=BO ,在△C DP 与△POB 中,⎩⎪⎨⎪⎧DP =BO ,∠CPD =∠PBO,PC =PB ,∴△CDP ≌△POB(SAS); (2)①当四边形AOPD 的AO 边上的高等于半径时有最大面积,(4÷2)×(4÷2)=2×2=4;②如图:∵DP∥AB,DP =BO ,∴四边形BPDO 是平行四边形,∵四边形BPDO 是菱形,∴PB =BO ,∵PO =BO ,∴PB =BO =PO ,∴∠PBA 的度数为60°.6.(1)①∵AB=AC ,∠ABC =60°,∴∠BAC =60°,∵AD =AE ,∠ADE =70°,∴∠DAE =180°-2∠ADE =40°,∴α=∠BAD=60°-40°=20°,∴∠ADC =∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE =∠ADC-∠ADE=10°,故答案为:20,10;②设∠ABC =x ,∠AED =y ,∴∠ACB =x ,∠ADE =y ,在△DEC 中,y =β+x ,在△ABD 中,α+x =y +β=β+x +β,∴α=2β; (2)存在;答案不唯一,如:①当点E 在CA 的延长线上,点D 在线段BC 上,如图1,设∠ABC=x ,∠ADE =y ,∴∠ACB =x ,∠AED =y ,在△ABD 中,x +α=β-y ,在△DEC 中,x +y +β=180°,∴α=2β-180°,②当点E 在CA 的延长线上,点D 在CB 的延长线上,如图2,同①的方法可得α=180°-2β.【热点题型】【分析与解】(1)∵F 为BE 的中点,∴BF =EF.∵AB∥CD ,∴∠MBF =∠CEF ,∠BMF =∠ECF.∴△BMF≌△ECF,∴MB =CE ,AB =CD ,CE =DE ,∴MB =AM.∴AM=CE. (2)设MB =a ,∵AB ∥CD ,∴△BMF ∽△ECF.∵EF BF =2,∴CE MB =2,∴CE =2a.∴AB=CD =2CE =4a ,AM =AB -MB =3a.∵AB BC=2,∴BC=AD =2a.∵MN⊥MC,∠A =∠ABC=90°,∴△AMN ∽△BCM.∴AN MB =AM BC ,即AN a =3a 2a ,∴AN =32a ,ND =2a -32a =12a ,∴AN ND =32a 12a =3. (3)方法一:∵AB BC =EF FB =n ,设MB =a ,由(2)可得BC =2a ,CE =na ,AM =(2n -1)a.由△AMN∽△BCM,AN =12(2n -1)a ,DN =(2n -5)a 2,∵DH ∥AM ,DN AN =DH AM,DH =(2n -5)a ,∴HE =(5-n)a.∵MBEH 是平行四边形,∴(5-n)a =a ,∴n =4.方法二:∵AB BC =EF FB=n ,设MB =a ,由(2)可得BC =2a :CE =na.当MN∥BE 时,CM ⊥BE ,可证△MBC∽△BCE,∴MB BC =BC CE ,∴a 2a =2a na,∴n =4.【错误警示】2019-2020学年数学中考模拟试卷一、选择题1.下列计算正确的是( )A .a 4+a 3=a 7B .a 4•a 3=a 12C .(a 4)3=a 7D .a 4÷a 3=a2.若关于x 的一元二次方程x 2﹣2x+m =0有两个不相等的实数根,则m 的值可以是( )A .﹣1B .1C .3D .53.如图,在△ABC 中,以边BC 为直径做半圆,交AB 于点D ,交AC 于点E ,连接DE ,若=2=2,则下外说法正确的是( )A.AB =AEB.AB =2AEC.3∠A =2∠CD.5∠A =3∠C4.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .(1+x )2=1110B .(1+x )2=109C .1+2x =1110D .1+2x =1095.下列计算正确的是( )A .2﹣2=﹣4B =2C .2a 3+3a 2=5a 5D .(a 5)2=a 7 6.下列运算正确的是( )A .232a a a +=B .326(a )a -=C .222(a b)a b -=-D .326(2a )4a -=- 7.如图,在Rt △ABC 中,∠C=90°,以A 为圆心,以任意长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ,作射线AP 交BC 于点D ,若AC=4,BC=3,则CD 的长为( )A.32B.43C.34D.538.如图,平面上有两个全等的正八边形ABCDEFGH 、A′B′C′D′E′F′G′H′,若点B 与点B′重合,点H 与点H′重合,则∠ABA′的度数为( )A.15°B.30°C.45°D.60°9.下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .a 6÷a 2=a 4D .(2b 2)3=8b 510.如图,在△ABC 中,点D 在AB 边上,点E 在AC 边上DE ∥BC ,点B 、C 、F 在一条直线上,若∠ACF =140°,∠ADE =105°,则∠A 的大小为( )A .75°B .50°C .35°D .30°11.天津西站在2019年春运的首日运输旅客达42000人次.将42000用科学记数法表示应为( )A .34210⨯B .44.210⨯C .34.210⨯D .50.4210⨯12.如图,在菱形ABCD 中,60ABC ∠=︒,E 为BC 边的中点,M 为对角线BD 上的一个动点。
中考数学:探索规律型问题(图形类)含答案
中考数学:探索规律型问题(图形类)一、选择题1. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50B.64C.68D.72【答案】D。
【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。
故选D。
2. 小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010B.2012C.2014D.2016【答案】D。
【分析】观察发现,三角数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项计算进行判断即可得解:∵2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168,∴2016既是三角形数又是正方形数。
故选D。
3.边长为a的等边三角形,记为第1个等边三角形。
取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形。
取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形。
取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作。
则第6个正六边形的边长是【】A.511a32⎛⎫⨯ ⎪⎝⎭B.511a23⎛⎫⨯ ⎪⎝⎭C.611a32⎛⎫⨯ ⎪⎝⎭D.611a23⎛⎫⨯ ⎪⎝⎭【答案】A。
中考数学总复习第40课 探索型问题
- b =1,
2a
a=-1,
∴ -b2=1, 解得 b=2.
4a
即当顶点坐标为(1,1)时,a=-1.
- b =m, 2a
a=- 1 ,
当顶点坐标为 (m ,m ),m ≠0
时,
-b2=m , 4a
解得
b=2.
m
∴a 与 m 之间的关系式是:a=-m1 或 am+1=0.]
(2)∵a≠0,
∴y=ax2+bx=a
专题解读
1.探索型问题: 探索是人类认识客观世界过程中最生动,最活跃的思维活 动.探索问题主要考查学生探究、发现、总结问题的能力,主 要包括: (1)规律探索型问题; (2)结论探索型问题; (3)存在性探索型问题; (4)动态探索型问题. 2.解答探索型问题的注意事项: 由于探索型问题的题型新颖,综合性强,思维能力要求高,结 构独特,因此解题时并无固定模式,它要求解题者具有较扎实 的基本功,较强的观察力,丰富的想象力及综合分析问题的能 力.解题时要注意问题情境,注重思维的严密性,注意寻找问 题解决的切入口.有时也可采用以下方法来寻找突破口:(1)利 用特殊值(特殊点,特殊数量,特殊线段等)进行归纳,概括;(2) 反演推理法(反证法);(3)分类讨论法;(4)类比猜想法.
3,4 3
3,
-2 P2 3
3,4 3
3
;当∠PAO=90°时,P3
34 9
3,4 3
3 ;当∠POA=90°时,
-16 3,4 3
P4 9
3.
名师点拨
存在性探索问题是运用几何计算进行探索的综合型 问题,要注意相关的条件,可以先假设结论成立,然后通 过计算求相应的值,再作存在性的判断.
【预测演练 3】 如图 40-7,在△ABC 中,AB=AC=10 cm,BC=12 cm, 点 D 是 BC 边的中点.点 P 从点 B 出发,以 a(cm/s)(a>0)的速度沿 BA 匀速向点 A 运动;点 Q 同时以 1 cm/s 的速度从点 D 出发,沿 DB 匀 速向点 B 运动,其中一个动点到达端点时,另一个动点也随之停止运 动,设它们运动的时间为 t(s). (1)若 a=2,△BPQ∽△BDA (点 P 与点 D 对应),求 t 的值; (2)设点 M 在边 AC 上,四边形 PQCM 为平行四边形. ①若 a=5,求 PQ 的长; 2 ②是否存在实数 a,使得点 P 在∠ACB 的平分线上?若存在,请求 出 a 的值;若不存在,请说明理由.
浙江省各市2019年中考数学分类解析 专题6:函数的图像与性质
浙江11市2019年中考数学试题分类解析汇编专题6:函数的图象与性质一、选择题1.(2019浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】 A .2 B .3 C .4 D .5 【答案】B 。
【考点】抛物线与x 轴的交点。
【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3). 令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k 。
设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k=1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC B 1,0),∴31,k k ==③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k ==。
∴能使△ABC 为等腰三角形的抛物线的条数是3条。
故选B 。
2.(2019浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A.3 D .43. (2019浙江衢州3分)已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是【 】A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 1 【答案】A 。
专题06 函数探究型问题(解析版)-备战2022年中考数学必刷300题(全国通用)
六、函数探究型问题例题演练1.小帆根据学习函数的过程与方法,对函数y=x|ax+b|(a>0)的图象与性质进行探究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而减小(在横线上填增大或减小);③当x<4时,y=x|ax+b|的最大值是1;①直线y=k与函数y=x|ax+b|有两个交点,则k=0或1.【解答】解:(1)将点(2,1),(4,0)代入y=x|ax+b|,得到a=﹣1,b=4或a=1,b=﹣4,∵a>0,∴a=1,b=﹣4,∴y=x|x﹣4|;(2)①如图所示:②由图可知,当2≤x≤4时,y随x的增大而减小;故答案为减小;③当x<4时,由图象可知,当x=2时,y=x|x﹣4|有最大值,此时y=1,故答案为1;④直线y=k与函数y=x|x﹣4|有两个交点,由图象可知,k=0或k=1;故答案0或1.2.有这样一个问题:探究函数y=的图象与性质,小童根据学习函数的经验,对函数的图象与性质进行了研究.已知当x=2时,y=7;当x=0时,y=﹣3.下面是小童探究的过程,请补充完整:(1)该函数的解析式为y=(x≠1),m=1;n=;根据图中描出的点,画出函数图象.x…﹣4﹣3﹣20234…y…m﹣37n…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”.①该函数图象是中心对称图形,它的对称中心是原点.(×)②该函数既无最大值也无最小值.(√)③在自变量的取值范围内,y随x的增大而减小.(×)(3)请结合(1)中函数图象,直接写出关于x的不等式﹣2x﹣2≥0的解集x≤﹣1.2或1<x≤2.2.【解答】解:(1)把x=2,y=7;x=0,y=﹣3代入y=,得,解得∴函数的解析式为y=(x≠1);当x=﹣4时,y===1;当x=3时,y==,∴m=1,n=,描点、连线,画出函数图象如图:故答案为y=(x≠1),1,;(2)由图象可知:①该函数图象是中心对称图形,它的对称中心是(1,2).②该函数既无最大值也无最小值.③x>1时,y随x的增大而减小;故答案为×,√,×;(3)由图象可知,关于x的不等式﹣2x﹣2≥0的解集故答案为:x≤﹣1.2或1<x ≤2.2,故答案为x≤﹣1.2或1<x≤2.2.3.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=﹣性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象:x…﹣5﹣4﹣3﹣2﹣1012345…y=﹣…30﹣3﹣﹣…(2)观察函数图象,写出该函数的一条性质:当x<0时,y随x值的增大而增大;(3)已知函数y =﹣x +1的图象如图所示,结合你所画的函数图象,直接写出不等式的解集(保留1位小数,误差不超过0.2).【解答】解:(1)把下表补充完整如下:x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣10 1 2 34 5 … y =﹣…3﹣3﹣…函数y =﹣的图象如图所示:(2)由图可知,当x <0时,y 随x 值的增大而增大, 故答案为当x <0时,y 随x 值的增大而增大; (3)由图象可知,不等式的解集为﹣2≤x ≤1.3或x ≥2.5.4.函数图象在探索函数的性质中有非常重要的作用,现在就一类特殊的函数展开探索:y =x +,探索函数图象和性质过程如下: x … ﹣6 ﹣4 ﹣2 ﹣1 ﹣0.5 0.5 1 n 4 6 …y…﹣m﹣4﹣5﹣545…(1)上表是该函数y 与自变量x 的几组对应值,则a = 4 ,m = ﹣5 ,n = 2 ;(2)如图,在平面直角坐标系中,已经描出了表中部分点,请根据描出的点画出该函数图象;(3)由函数图象,写出该函数的一条性质: 该函数图象关于原点对称 ;(4)请在同一个平面直角坐标系中画出函数y =2x 的图象,并直接写出不等式x +≤2x 的解集: ﹣2≤x <0或x ≥2 . 【解答】解:(1)x =﹣1时,y =﹣5, ∴﹣1﹣a =﹣5, ∴a =4. ∴,令x =﹣4,得m =﹣5, 令y =4,得n =2, 故答案为:4;﹣5;2. (2)图象如图所示:(3)该函数图象关于原点对称;当x>2时,随x的增大而增大;当x<﹣2时,随x的增大而增大,(答案不唯一,写出一条即可).(4)图象如图所示;﹣2≤x<0或x≥2.解:两个函数的交点坐标为(﹣2,﹣4)和(2,4),数形结合可知不等式的解集为﹣2≤x<0或x≥2.故答案为:﹣2≤x<0或x≥2.5.在初中阶段的学习中,我们经历了列表,描点,连线画函数图象,并结合函数图象研究函数性质的过程.若函数y1=的图象过点(2,2),请根据函数学习的经验,完成下列问题:(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;(3)结合你所画的函数图象,直接写出不等式y1≥3的解集.【解答】解:(1)点(2,2)代入y1=,得:2=4+b,∴b=﹣2,∴y1=.(2)列表如下:描点、连线如下图:由图可知:①当x≤0时,y随x的增大而减小;②当0<x≤2时,y随x的增大而减小;③当x>2时,y随x的增大而增大;④当x=0时,y1取最小值﹣3.(3)由图可知,当y1=3时,x1=﹣3,x2=1,x3=4,∵当x≤0时,y随x的增大而减小;当0<x≤2时,y随x的增大而减小;当x>2时,y 随x的增大而增大;∴不等式y1≥3的解集为:x≤﹣3或0<x≤1或x>4.6.在初中阶段的函数学习中,我们经历了“确定函数解析式﹣﹣利用函数图象研究其性质﹣﹣运用函数图象解决问题”的学习过程,以下是我们研究函数y=||﹣4性质及其应用的部分过程,请按要求完成下列各小题.(1)该函数的自变量取值范围是x≠﹣1;下表中p=2,q=0,在所给的平面直角坐标系中补全该函数图象;x…﹣5﹣4﹣3﹣2﹣﹣01234…y=||﹣4…1p4﹣q﹣4﹣2﹣﹣1﹣…(2)根据函数图象写出该函数的一条性质:x<﹣1时,y随x值的增大而增大.(3)已知函数y=﹣x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式| |﹣4<﹣x﹣1的解集(保留1位小数,误差不超过0.2).【解答】解:(1)∵x+1≠0,∴x≠﹣1,∴函数y=||﹣4的自变量x的取值范围是x≠﹣1,把x=﹣3和﹣分别代入函数关系式求得p=2,q=0,画出函数图象如图:故答案为x≠﹣1,2,0.(2)观察图象可知:x<﹣1时,y随x值的增大而增大;故答案为:x<﹣1时,y随x值的增大而增大;(3)由图象可知,不等式||﹣4<﹣x﹣1的解集为x<﹣3或﹣0.4<x<﹣2.7.重庆八中的学子课外活动丰富多彩,开展了很多社团活动.最近数学社的同学在探究函数y=的图象与性质,请你根据之前学习函数的经验和方法,画出函数图象,并回答下列问题.(1)选择恰当的值补充表格,在平面直角坐标系中,描出表中各对对应值为坐标的点,根据描出的点,画出函数图象.x…﹣5﹣4﹣3﹣202345…y…034 4.65 4.6430…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”.①该函数图象是轴对称图形,它的对称轴为y轴.(√)②当x=0时,函数取得最大值5;当x=﹣5或5时,函数取得最小值0.(√)③当﹣5≤x<0时,y随x的增大而减小;当0<x≤5时,y随x的增大而增大.(×)(3)请结合(1)中函数图象,直接写出关于x的不等式>﹣x+3的解集.【解答】解:(1)列表:x…﹣5﹣4﹣3﹣202345…y…034 4.65 4.6430…描点、连线,画出函数图象如图:(2)观察图象可知,①该函数图象是轴对称图形,它的对称轴为y轴.②当x=0时,函数取得最大值5;当x=﹣5或5时,函数取得最小值0.③当﹣5≤x<0时,y随x的增大而增大;当0<x≤5时,y随x的增大而减小.故答案为√,√,×;(3)由图象可知关于x的不等式>﹣x+3的解集为﹣3<x<4.5.8.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=+,结合已有的学习经验,完成下列各小题.(1)请在表格中空白填入恰当的数据:x…﹣2﹣1﹣0.500.51.52346…y…﹣01222223…(2)根据上表中的数据,在所给的平面直角坐标系中补全函数y=+的图象;(3)根据函数图象,判断下列关于该函数的性质说法是否正确,正确的在答题卡相应的括号内打“√”,错误在答题卡上相应括号内打“×”;①该函数图象是轴对称图形,它的对称轴是直线x=1.(×)②该函数在自变量的取值范围内,既无最大值,也无最小值.(√)③当1<x<2时,y随x的增大而减小:当x>2时,y随x的增大而增大.(×)(4)结合你所画的函数图象,直接写出不等式组的解集为:≤x<1或1<x≤1.5.【解答】解:(1)补充完整下表为:x…﹣2﹣1﹣0.500.51.52346…y…﹣01222223…(2)画出函数的图象如图:(3)根据函数图象:①该函数图象是轴对称图形,它的对称轴是直线x=1.说法错误;②该函数在自变量的取值范围内,既无最大值,也无最小值.说法正确;③当1<x<2时,y随x的增大而减小:当x>2时,y随x的增大而增大,说法错误.(4)由图象可知:不等式组的解集为0≤x<1或1<x≤1.5,故答案为0≤x<1或1<x≤1.5.9.问题:探究函数y=|x|﹣2的图象与性质.小华根据学习函数的经验,对函数y=|x|﹣2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|﹣2中,自变量x可以是任意实数;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣10123…y…10﹣1﹣2﹣10m…①m=1;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=﹣10;(3)在下面的平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象:根据函数图象可得:①该函数的最小值为﹣2;②已知直线y1=x与函数y=|x|﹣2的图象交于C(﹣,﹣)、D(4,2)两点,当y1<y时x的取值范围是x<﹣或x<4.【解答】解:(2)①把x=3代入y=|x|﹣2,得m=3﹣2=1.故答案为1;②把y=8代入y=|x|﹣2,得8=|x|﹣2,解得x=﹣10或10,∵A(n,8),B(10,8)为该函数图象上不同的两点,∴n=﹣10.故答案为﹣10;(3)该函数的图象如图,①该函数的最小值为﹣2;故答案为﹣2;②在同一平面直角坐标系中画出直线y1=x,由图象可知,y1<y时x的取值范围是x<﹣或x>4.故答案为x<﹣或x>4.10.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣102345…y…346﹣4﹣20﹣1﹣﹣…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣的图象;(3)根据函数图象,写出该函数的一条性质:当x<1时,y随x的增大而增大;(4)结合所画函数图象,直接写出不等式﹣<﹣x+5的解集为:x<0.3或1<x<3.7.(保留1位小数,误差不超过0.2)【解答】解:(1)补充完整下表为: x … ﹣3 ﹣2 ﹣1 02 3 4 5 …y …3 4 6 ﹣4 ﹣20 ﹣1﹣ ﹣…(2)画出函数的图象如图:(3)观察函数图象:当x <1时,y 随x 的增大而增大,故答案为当x<1时,y随x的增大而增大.(4)由图象可知:不等式﹣<﹣x+5的解集为x<0.3或1<x<3.7,故答案为x<0.3或1<x<3.7.11.某兴趣小组根据学习函数的经验,对函数y=+3图象和性质进行了探究,请完成下列探究过程.x…﹣4﹣3﹣2﹣10123…﹣y 0﹣3a b…﹣(1)表格中a=0,b=;(2)请你根据表中的数据在如图所示的平面直角坐标系中通过描点、连线的方法,画出该函数图象,并写出该函数的一条性质;(3)已知函数y=x的图象如图所示,结合你所画的函数图象请直接写出+3>x的解集x<﹣1.6或0<x≤2.6,.(1)把x=0代入y=+3得,y=+3=0;把x=2代入y=【解答】解:+3得,y=+3=,∴a=0,b=,故答案为0,;(2)画出函数的图象如图:根据函数图象:当x>﹣1时,y随x的增大而增大:当x<﹣1时,y随x的增大而减小.(3)由图象可知:+3>x的解集为x<﹣1.6或0<x≤2.6,故答案为x<﹣1.6或0<x≤2.6.12.某数学学习小组根据以往学习函数的经验,研究函数y=的图象和性质.列表如下:x…﹣5﹣4﹣3﹣2﹣10123…y…1m43n1…(1)直接写出m、n的值:m=3.n=;(2)请在给出的平面直角坐标系中画出该函数图象,并写出该函数的一条性质:图象关于直线x=﹣1对称.(3)已知函数y=|x+1|的图象如图所示,请结合图象,直接写出方程|x+1|=的解(精确到0.1,误差不超过0.2)x=0.85或x=﹣2.85.【解答】解:(1)将x=﹣2代入y=,解得y=3,∴m=3,将x=1代入y=,解得y=,∴n=,故答案为:3,.(2)如图,曲线y =关于直线x =﹣1对称.(3)由图象可得x =0.85或x =﹣2.85满足题意. 故答案为:x =0.85或x =﹣2.85.13.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y =+,结合已有的学习经验,完成下列各小题.(1)请在表格中空白填入恰当的数据: x … ﹣3 ﹣2 ﹣1 02 345 6… y… ﹣1 ﹣233…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y =+的图象;(3)根据函数图象,写出该函数的一条性质: 函数在自变量的取值范围内,既无最大值,也无最小值 ;(4)结合你所画的函数图象,直接写出不等式组+≤x +3的解集为: ﹣3≤x ≤0.4或x ≤ .【解答】解:(1)补充完整下表为:x…﹣3﹣2﹣1023456…y…﹣1﹣233…(2)画出函数的图象如图:(3)由函数图象可知,函数在自变量的取值范围内,既无最大值,也无最小值,故答案为函数在自变量的取值范围内,既无最大值,也无最小值;(4)由图象可知:不等式+≤x+3的解集为﹣3≤x≤0.4或x≤,故答案为﹣3≤x≤0.4或x≤.14.小明根据学习函数的经验,对函数y=的图象与性质进行探究.下面是小明的探究过程,请补充完整:(1)函数y=的自变量的取值范围是x≠2;(2)如表是函数y与自变量x的几组对应值,则m=,n=3;x…﹣3﹣2﹣10134567…y…0.6m1 1.53n 1.510.750.6…(3)在平面直角坐标系xOy中,补全此函数的图象,并写出这个函数的一条性质:图象是轴对称图形,对称轴x=2;(4)根据函数图象,直接写出=x﹣1的近似解x≈3.3.(精确到0.1)【解答】解:(1)函数y=的自变量x的取值范围是x≠2,故答案为:x≠2;(2)由题意x=﹣2时,y==,当x=3时,y==3,∴m=,n=3,故答案为,3.(3)函数图象如图所示:观察图象可知图象是轴对称图形,对称轴x=2;故答案为图象是轴对称图形,对称轴x=2.(4)由图像可知,=x﹣1的近似解为x≈3.3,故答案为x≈3.3.15.参照学习函数的过程与方法,探究函数y=﹣(x≠0)的图象和性质,请按要求完成下列各小题.(1)请把下表补充完整,并在图中画出该函数图象;x…﹣5﹣4﹣3﹣2﹣112345…y=﹣…346﹣20﹣﹣1﹣…(2)观察函数图象,下列关于函数性质的描述正确的是④;①函数y=﹣的图象关于原点中心对称;②当x>0时,y随x的增大而减小;③当x=2时,函数y=﹣取得最小值0;④当x>2时,y随x的增大而减小;(3)请结合(1)问中画出的函数图象,直接写出关于x的不等式﹣+2x+2≤0的解集(误差不超过0.2).【解答】解:(1)列表:x…﹣5﹣4﹣3﹣2﹣112345…y=﹣…346﹣20﹣﹣1﹣…;(2)观察函数图象,①函数y=﹣的图象关于原点不对称,故错误;②当x>0时,y随x的增大先增大后减小,故错误③函数y=﹣没有最大值和最小值,故错误④当x>2时,y随x的增大而减小,故正确;故答案为④;(3)在同一坐标系中画出直线y=﹣2x﹣2,由图象可知,关于x的不等式﹣+2x+2≤0的解集为x≤﹣2.6或0<x≤0.8.。
中考专题复习——探索性问题归类
中考备考——探索性问题归类一、找规律问题 1.(07年11.)在五环图案内,分别填写五个数a ,b ,c ,d ,e ,如图: ,其中a ,b ,c 是三个连续偶数(a < b ),d ,e 是两个连续奇数(d < e ),且满足a b c d e ++=+,例如: .请你在0到20之间选择另一组符合条件的数填入右图:2. (08年12.)一组按规律排列的式子:a b 2-,25a b ,38a b -,411ab ,…(ab ≠0).其中第7个式子是________,第n 个式子是________(n 为正整数).3.(09年12.)如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点, 将纸片的一角沿过点B 的直线折叠,使点A 落在MN 上,落点记为A ′,折痕交AD 于点E .若 M 、N 分别是AD 、BC 边的中点,则A ′N =________;若M 、N 分别是AD 、BC 边上距DC 最近的n 等分点(n ≥2,且n 为整数),则A ′N =________(用含有n 的式子表示).4.(09.东城一模12).按一定规律排列的一列数依次为:1111112310152635,,,,,……,按此规律排列下去,这列数中的第9个数是 .A.861B.865 C.867 D.8696.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,…,若299a ab b+=⨯(a b ,为正整数),则ab =.7.观察下列顺序排列的等式:1234111111113243546a a a a =-=-=-=-,,,,….试猜想第n个等式(n 为正整数):n a = .8.观察图给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为 .9.用火柴棒按下图中的方式搭图形,按照第1个 1s =第2个 5s = 第3个 9s = 第4个13s = ……这种方式搭下去,搭第n 个图形需____________根火柴棒.10.(2009年泸州)如图1,已知Rt △ABC 中,AC=3,BC= 4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= ,=5554C A A C 图211(08昌平一模)如图2,在Rt ABC △中,90C = ∠,12BC AC ==,,把边长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中:第一个正方形CM 1P 1N 1的顶点分别放在Rt ABC △的各边上;第二个正方形M 1M 2P 2N 2的顶点分别放在11Rt APM △的各边上,……,其他正方形依次放入。
浙江省2019年中考数学总复习阶段检测12开放探索问题试题(含答案)44
阶段检测12 开放探索问题一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.甲、乙两支同样的温度计如图所示放置,如果向左平移甲温度计,使其度数20正对着乙温度计的度数-10,那么此时甲温度计的度数-5正对着乙温度计的度数是( )A .5B .15C .25D .30第1题图 第2题图 第3题图2.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为( )A .15°或30°B .30°或45°C .45°或60°D .30°或60°3.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD =CD ,AB =CB ,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD ;②AO =CO =12AC ;③△ABD≌△CBD ,其中正确的结论有( )A .0个B .1个C .2个D .3个4.对于反比例函数y =k x,如果当-2≤x≤-1时有最大值y =4,则当x≥8时,有( ) A .最小值y =-12 B .最小值y =-1 C .最大值y =-12D .最大值y =-1 5.如图,以矩形ABCD 的A 为圆心,AD 长为半径画弧,交AB 于F 点;再以C 为圆心,CD 长为半径画弧,交AB 于E 点.若AD =5,CD =173,则EF 的长度为何?( ) A .2 B .3 C.23 D.73第5题图 第6题图 第7题图 第8题图6.如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 的中点,则PM 的最小值为( )A .1.2B .1.3C .1.4D .2.47.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154. 其中正确的结论有( )A .1个B .2个C .3个D .4个8.如图,△ABC 与△A′B′C′都是等腰三角形,且AB =AC =5,A ′B ′=A′C′=3,若∠B +∠B′=90°,则△ABC 与△A′B′C′的面积比为( )A .25∶9B .5∶3C .5∶ 3D .55∶339.我区A ,B ,C ,D ,E 五校学生足球队参加区级足球邀请赛,五位同学对比赛结果进行了预测,每人预测两个名次如下:甲预测:B 校第2名,A 校第3名; 乙预测:D 校第2名,E 校第4名;丙预测:E 校第1名,C 校第5名; 丁预测:D 校第3名,C 校第4名;戊预测:A 校第2名,B 校第5名.结果表明每人都恰好猜对了一个名次,并且每一个名次都有一人猜对.则实际比赛各校足球队的名次为( )A.B.C.D.10.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG⊥CA ,交CA 的延长线于点G ,连结FB ,交DE 于点Q ,给出以下结论:第10题图①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ·AC ,其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(本大题有6小题,每小题5分,共30分)11.如图1,折线段AOB 将面积为S 的⊙O 分成两个扇形,大扇形、小扇形的面积分别为S 1、S 2,若S 1S =S 2S 1=0.618,则称分成的小扇形为“黄金扇形”,生活中的折扇(如图2),大致是“黄金扇形”,则“黄金扇形”的圆心角约为 °.(精确到0.1)第11题图 第12题图 第13题图12.在平面直角坐标系中,▱OABC 的边OC 落在x 轴的正半轴上,且点C (4,0),B (6,2),直线y =2x +1以每秒1个单位的速度向下平移,经过 秒该直线可将▱OABC 的面积平分.13.如图,在Rt △ABC 中,∠ABC =90°,点D 是斜边上的中点,点P 在AB 上,PE ⊥BD 于E ,PF ⊥AC 于F ,若AB =6,BC =3,则PE +PF = .14.在平面直角坐标系中,有三条直线l 1,l 2,l 3,它们的函数解析式分别是y =x ,y =x +1,y =x +2.在这三条直线上各有一个动点,依次为A ,B ,C ,它们的横坐标分别为a ,b ,c ,则当a ,b ,c 满足条件 时,这三点不能构成△ABC.15.如图1是一个封闭的勾股水箱,其中Ⅰ,Ⅱ,Ⅲ部分是可盛水的正方形,且相互连通,已知∠ACB =90°,AC =3,BC =4.开始时Ⅲ刚好盛满水,而Ⅰ,Ⅱ无水.(1)如图2摆放时,Ⅰ刚好盛满水,而Ⅱ无水,则Ⅲ中有水部分的面积为 ;(2)如图3摆放时,水面刚好经过Ⅲ的中心O ,则Ⅱ中有水部分的面积为.第15题图16.如图,在Rt△AOB中,∠AOB=90°,AO=3,BO=1,AB的垂直平分线交AB于点E,交射线BO于点F.点P从点A出发沿射线AO以每秒23个单位的速度运动,同时点Q 从点O出发沿OB方向以每秒1个单位的速度运动,当点Q到达点B时,点P、Q同时停止运动.设运动的时间为t秒.第16题图(1)当t=时,PQ∥EF;(2)若P、Q关于点O的对称点分别为P′、Q′,当线段P′Q′与线段EF有公共点时,t的取值范围是.三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.小航在正方形网格的格点上,用9粒围棋子摆成如图1所示图形.现请你去掉4颗棋子,使剩下的5颗棋子具有如下性质(去掉的棋子用“⊗”表示,即在棋子上加一个×).(1)是轴对称图形但不是中心对称图形(在图2上作答);(2)是中心对称图形但不是轴对称图形(在图3上作答).第17题图18.如图,以△ABC 的一边AB 为直径的半圆与其他两边AC ,BC 的交点分别为D ,E ,且DE ︵=BE ︵.(1)试判断△ABC 的形状,并说明理由;(2)已知半圆的半径为5,BC =12,求cos ∠BAD 的值.第18题图19.数学老师布置了这样一个问题:如果α,β都为锐角,且tan α=13,tan β=12,求α+β的度数. 甲,乙两位同学想利用正方形网格构图来解决问题,他们分别设计了图1和图2.(1)请你分别利用图1,图2,求出α+β的度数,并说明理由;第19题图(2)请参考以上思考问题的方法,选择一种方法解决下面问题: 如果α,β都为锐角,当tan α=5,tan β=23时,在图3的正方形网格中,利用已作出的锐角α,画出∠MON ,使得∠MON =α-β,求出α-β的度数,并说明理由.20.如图,矩形ABCD 中,AB =6cm ,BC =8cm ,动点P 从点A 出发,在AC 上以每秒5cm 的速度向点C 匀速运动,同时动点Q 从点D 出发,在DA 边上以每秒4cm 的速度向点A 匀速运动,运动时间为t 秒(0<t<2),连结PQ.第20题图(1)若△APQ 与△ADC 相似,求t 的值;(2)连结CQ ,DP ,若CQ⊥DP ,求t 的值;(3)连结BQ ,PD ,请问BQ 能和PD 平行吗?若能,求出t 的值;若不能,说明理由.21.如图1是一架菱形风筝,它的骨架由如图2的4条竹棒AC ,BD ,EF ,GH 组成,其中E ,F ,G ,H 分别是菱形ABCD 四边的中点,现有一根长为80cm 的竹棒,正好锯成风筝的四条骨架,设BD =xcm ,菱形ABCD 的面积为ycm 2.第21题图(1)写出y 关于x 的函数关系式及自变量x 的取值范围;(2)如图3,在所给的直角坐标系中画出(1)中的函数图象;(3)为了使风筝在空中有较好的稳定性,骨架AC 长度必须大于骨架BD 长度且小于BD 长度的两倍,现已知菱形ABCD 的面积为375cm 2,则骨架BD 和AC 的长为多少?22.我们定义:有两边长度满足二倍关系的三角形叫做“倍长三角形”.第22题图(1)概念理解请你根据上述定义画一个倍长三角形,并注明相关数据;(2)问题探究如图1,等腰△ABC 是倍长三角形,点D 为AC 边上一动点,当DC =13AD 时,求证:△ABD 是倍长三角形;(3)应用拓展如图2,△ABC 为倍长三角形,∠ACB =120°,AC >BC ,BC =2,过点B 作CB 的垂线交∠ACB 的平分线于点D ,连结AD ,求AD 2的值.23.如图1,△ABC 和△AED 都是等腰直角三角形,∠BAC =∠EAD =90°,点B 在线段AE 上,点C 在线段AD 上.(1)请直接写出线段BE 与线段CD 的关系: ;(2)如图2,将图1中的△ABC 绕点A 顺时针旋转角α(0°<α<360°),①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;②当AC =12ED 时,探究在△ABC 旋转的过程中,是否存在这样的角α,使以A 、B 、C 、D 四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.第23题图24.如图,点O 为坐标原点,直线l :y =kx +2(k <0)与x 轴、y 轴分别交于点G (m ,0),点C (0,2),B 是直线l 上的一点,且点A (2,0).第24题图(1)若∠GCA =15°,m >2,求直线l 的解析式;(2)若AB⊥BC ,AB =1,求m 的值;(3)若点B 在第一象限,且AB =AO ,△OBC 是等腰三角形.直接写出点B 的坐标.参考答案阶段检测12 开放探索问题一、1—5.BDDAA 6—10.ABACD二、11.137.5 12.6 13.65514.a +c =2b 15.(1)16 (2)72 16.(1)35 (2)23≤t ≤1 三、17.(1)略; (2)略.18.(1)连结AE ,∵DE ︵=BE ︵,∴∠DAE =∠BAE.∵AB 为直径,∴∠AEB =90°.即∠AEB=∠AEC=90°.∴∠ABC =∠C,∴△ABC 为等腰三角形. (2)由(1)知AE⊥BC.E 为BC 中点,∴BE =12BC =12×12=6.∵AB=10.∴AE=102-62=8.∵BC·AE=AC·BD.∴BD=BC ·AE AC.∵∠ABC =∠C,∴AC =AB =10.∴BD=12×810=485.∴AD =102-⎝ ⎛⎭⎪⎫4852=145.∴cos ∠BAD =AD AB =14510=725. 19.(1)如图1,α+β=45°.理由如下:连结BC ,则BC =AC = 5.∵△AGC ≌△CFB.∴∠ACG=∠CBF.∵∠CBF+∠BCF=90°.∴∠ACG +∠BCF=90°.∴∠ACB =90°,∴△ACB 为等腰直角三角形,∴∠BAC =α+β=45°.如图2,α+β=45°.理由如下.如图2,连结AF ,BE ,则AF =2,FB =2,AB =10,CE =1,BE =2,BC = 5.∴CE AF =BE FB =BC AB.∴△CEB ∽△AFB ,∴∠FAB =∠BCD=β,∵∠FAC =45°,∴α+β=45°. (2)如图3,∠MOC =α,∠NOC =β,∴∠MON =α-β.连结MN ,则MN =22+32=13.NO =22+32=13.∴MN =ON.∵△MDN≌△NCO,∴∠DMN =∠ONC.∵∠MND+∠NMD=90°,∴∠MND+∠ONC=90°,即∠MNO=90°,∴△MNO为等腰直角三角形,∴∠MON =45°,即α-β=45°.第19题图20.(1)①△APQ∽△ADC 时,有AP AD =AQ AC.∵AB =6cm ,BC =8cm ,∴AC =10cm .由题意得:AP =5t cm ,AD =8cm ,AQ =(8-4t)cm ,∴5t 8=8-4t 10,∴t =3241;②△APQ∽△ACD 时,有AP AC =AQ AD,则5t 10=8-4t 8,∴t =1.∴若△APQ 与△ADC 相似,则t =1或t =3241.(2)如图,过P 作PE⊥AD.∵△APE∽△ACD.∴AP=5t ,AE =4t ,PE =3t ,则ED =8-4t.∵CQ⊥PD,∠ADC =90°.∴∠EDP +∠PDC=90°,∠PDC +∠DCQ=90°,∴∠EDP =∠DCQ.∵∠PED=∠ADC=90°,∴△PED ∽△QDC ,∴PE QD =ED DC .∴3t 4t =8-4t 6,∴t =78.∴若CQ⊥PD,则t =78. (3)如图,若BQ∥PD,则可证△AGB≌△CPD,∵PC =10-5t ,∴AG =10-5t ,∵QB ∥PD ,∴△AGQ ∽△APD ,∴AG AP =AQ AD ,即10-5t 5t =8-4t 8,得(t -2)2=0,t =2.这与0<t<2矛盾.∴BQ 不能和PD 平行.第20题图 21.(1)∵E,F 为AB ,AD 中点,∴EF =12BD =12x ,同理GH =12BD =12x.∵四边形ABCD 是菱形,∴y =12x(80-2x)=-x 2+40x ,∴自变量x 的取值范围是:0<x<40. (2)如图所示. (3)y =-(x -20)2+400=375,∴(x -20)2=25,解得x =25或x =15.∵AC 长度必须大于BD 长度且小于BD 长度的两倍,∴x =25,即BD =25cm ,AC =30cm .第21题图22.(1)答案不唯一,只要满足二倍关系即可. (2)∵等腰△ABC 是倍长三角形,∴AB=AC =2BC ,∵DC =13AD ,∴DC BC =BC AC =12,∠C =∠C,∴△DCB ∽△BCA ,∴BD AB =12,∴△ABD 是倍长三角形. (3)∵∠ACB=120°,∴AB >AC >BC ,需讨论①AC=2BC ;②AB=2BC ;③AB =2AC.①AC=2BC =4,如图1,作DE⊥AC 于点E ,易证△ECD≌△BCD,∴CE =CB =2,∠ECD =∠BCD=60°,∴易得△ADC 为等边三角形,即AD =4,AD 2=16.②AB=2BC =4,如图2,作DE⊥AC 于点E ,BF ⊥AC 于点F ,易证△ECD≌△BCD,∴CE =CB =2,∠ECD =∠BCD=60°,∴DE =23,在直角△BCF 中,CF =1,BF =3,在直角△ABF 中,AB 2=BF 2+AF 2,解得AF =13.∴AE =13-3,在直角△AED 中,AD 2=AE 2+DE 2=(13-3)2+(23)2=34-613.③AB =2AC.∵AB>AC >BC ,∴AC +BC <2AC ,即AC +BC <AB ,∴不符合题意,舍去,∴AD 2=16或34-613.第22题图23.(1)BE =CD (2)①成立,理由如下:∵△ABC 和△AED 都是等腰直角三角形,∠BAC =∠EAD=90°,∴AB =AC ,AE =AD ,由旋转的性质可得∠BAE=∠CAD,在△BAE 与△CAD 中,∵AB =AC ,∠BAE =∠CAD,AE =AD ,∴△BAE ≌△CAD(SAS),∴BE =CD ; ②存在,α=45°或225°.∵以A 、B 、C 、D 四点为顶点的四边形是平行四边形,∴∠ABC =∠ADC=45°,∵AC =12ED ,∴∠CAD =45°,或360°-90°-45°=225°,∴角α的度数是45°或225°.第23题图24.(1)∵∠GCA=15°,m >2,∴∠GCO =60°,Rt △GOC 中,CO =2,∴OG =23,∴G(23,0),∴k =-33,∴y =-33x +2. (2)①m>2时,如图1,Rt △GOC ∽Rt △GBA ,∵AB =1,OC =2,AG =m -2,∴4+m 2=(2m -4)2,∴3m 2-16m +12=0,∴3(m -83)2=283,∴m =8±273,∴m =8+273(m >2);②0<m<2时,如图2,同理m =8-273.∴m =8+273或m =8-273. (3)B 1(1,3),B 2(2-3,1),B 3(2+3,1)第24题图。
中考数学练习试题 探索型问题
义务教育基础课程初中教学资料课后强化训练37探索型问题一、选择题1.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是(B)(第1题)A.y=2n+1 B.y=2n+nC.y=2n+1+n D.y=2n+n+1【解析】观察可知,左上方三角形的数据规律为:1,2,…,n,右上方三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.2.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M 为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长为(B)A.2π B.πC.2 2 D.2(第2题)(第2题解)【解析】∵AC=BC=22,∠ACB=90°,∴AB=4.取AB的中点E,连结CE,取CE的中点F,连结PE,MF,如解图,则FM=12PE=14AB=1,故点M的运动轨迹为以点F为圆心,1为半径的半圆弧,即路径长为12×2π×1=π.3.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上.已知OA1=1,则OA2017的长为(A)A. 22016B. 4032C. 22017D. 4034(第3题)【解析】 ∵△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…,△A n B n A n +1都是等腰直角三角形, ∴A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…,A n B n =A n A n +1;∠B 1A 1A 2,∠B 2A 2A 3,∠B 3A 3A 4,…,∠B n A n A n +1都是直角.∵点A 1,A 2,…,A n 在x 轴上,点B 1,B 2,…,B n 在直线y =x 上,∴OA 1=A 1B 1,OA 2=A 2B 2, OA 3=A 3B 3,…,OA n =A n B n .∴OA 1=A 1A 2,OA 2=A 2A 3,OA 3=A 3A 4,…,OA n =A n A n +1. ∵OA 1=1,∴OA 2=OA 1+A 1A 2=1+1=2. ∴OA 3=OA 2+A 2A 3=2+2=4=22. ∴OA 4=OA 3+A 3A 4=4+4=8=23……∴OA n =2n -1. ∴OA 2017=22016. 二、填空题4.如图①~④,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图⑩中有10个直角三角形的内切圆,它们的面积分别记为S 1,S 2,S 3,…,S 10,则S 1+S 2+S 3+…+S 10=__π__.(第4题)【解析】 ①如解图①,过点O 作OE ⊥AC ,OF ⊥BC ,垂足分别为E ,F ,则∠OEC =∠OFC =90°.∵∠C =90°,∴四边形OECF 为矩形. 又∵OE =OF ,∴矩形OECF 为正方形.设⊙O 的半径为r ,则CE =CF =OE =OF =r , ∴AD =AE =3-r ,BD =BF =4-r ,∴3-r +4-r =5,∴r =3+4-52=1,∴S 1=π×12=π.②如解图②,∵S △ABC =12×3×4=12×5×CD ,∴CD =125.由勾股定理,得AD =32-⎝⎛⎭⎫1252=95,∴BD =5-95=165.同①可得⊙O 的半径=95+125-32=35,⊙E 的半径=125+165-42=45,∴S 1+S 2=π×⎝⎛⎭⎫352+π×⎝⎛⎭⎫452=π. ③如解图③,∵S △CDB =12×125×165=12×4×MD ,∴MD =4825.由勾股定理,得CM =⎝⎛⎭⎫1252-⎝⎛⎭⎫48252=3625,∴MB =4-3625=6425.同①可得⊙O 的半径=35,⊙E 的半径=4825+3625-1252=1225,⊙F 的半径=4825+6425-1652=1625,∴S 1+S 2+S 3=π×⎝⎛⎭⎫352+π×⎝⎛⎭⎫12252+π×⎝⎛⎭⎫16252=π. ……由上述规律可知,图⑩中,S 1+S 2+S 3+…+S 10=π.(第4题解)5.如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…,A n .将抛物线y =x 2沿直线l :y =x 向上平移,得到一系列抛物线,且满足下列条件:(第5题)①抛物线的顶点M 1,M 2,M 3,…,M n 都在直线l :y =x 上;②抛物线依次经过点A 1,A 2,A 3,…,A n .则顶点M 2016的坐标为(4031,4031).【解析】 设M 1(a 1,a 1)是抛物线y 1=(x -a 1)2+a 1的顶点.由抛物线y =x 2与y 1=(x -a 1)2+a 1交于点A 1,得x 2=(x -a 1)2+a 1,∴2a 1x =a 21+a 1,解得x =12(a 1+1),即点A 1的横坐标为12(a 1+1). 易知点A 1(1,1),∴a 1=1,∴点M 1(1,1).同理,a 2=3,点M 2(3,3);a 3=5,点M 3(5,5)…… ∴a 2016=2016×2-1=4031,∴点M 2016(4031,4031). 三、解答题(第6题)6.如图,在锐角三角形纸片ABC 中,AC >BC ,点D ,E ,F 分别在边AB ,BC ,CA 上.(1)已知:DE ∥AC ,DF ∥BC .①四边形DECF 一定是什么四边形?②当AC =24cm ,BC =20cm ,∠ACB =45°时,请你探索:如何裁剪四边形DECF ,能使它的面积最大,并证明你的结论.(2)请你只用两次折叠,确定四边形的顶点D ,E ,C ,F ,使它恰好为菱形,并说明你的折法和理由.【解析】 (1)①∵DE ∥AC ,DF ∥BC , ∴四边形DECF 是平行四边形.②当F 为AC 的中点时,剪得的四边形DECF 的面积最大.证明如下: 如解图①,过点A 作AG ⊥BC 于点G ,交DF 于点H . ∵∠ACB =45°,AC =24,∴AG =12 2.设DF =EC =x ,▱DECF 的高为h ,则AH =122-h .∵DF ∥BC, ∴DF BC =122-h 122,即x 20=122-h122,(第6题解①)∴x =20-526h .∴S =xh =-526h 2+20h .∵-b 2a =-202×⎝⎛⎭⎫-526=62,∴当h =62时,S 有最大值,此时H 为AG 的中点. 又∵DF ∥BC ,∴此时F 为AC 的中点.(第6题解②)∴当F 为AC 的中点时,剪得的四边形DECF 的面积最大.(2)如解图②.折法:第一步,沿∠ACB 的对角线对折,使点B 落在AC 上,折痕交AB 于点D ;第二步,将CD 对折,使点C 与点D 重合,折痕分别交BC ,AC 于点E ,F .理由:对角线互相垂直平分的四边形是菱形.7.在平面直角坐标系中,设x 轴为直线l ,函数y =-3x ,y =3x 的图象分别是直线l 1,l 2,⊙P (以点P 为圆心,1为半径)与直线l ,l 1,l 2中的两条相切,例如(3,1)就是其中一个⊙P 的圆心坐标.(1)写出其余满足条件的⊙P 的圆心坐标.(2)在图中标出所有圆心,并用线段依次连结各圆心,求所得几何图形的周长.(第7题)【解析】 (1)①若⊙P 与直线l 和l 2都相切,如解图①.当点P 在第四象限时,过点P 作PH ⊥x 轴,垂足为H ,连结OP . 设y =3x 的图象与x 轴的夹角为α.当x =1时,y =3,∴tan α=3,∴α=60°.由切线长定理,得∠POH =12(180°-60°)=60°.∵PH =1,∴tan ∠POH =PH OH =1OH=3,∴OH =33.∴点P 的坐标为⎝⎛⎭⎫33,-1;同理,当点P 在第二象限时,点P 的坐标为⎝⎛⎭⎫-33,1;当点P 在第三象限时,点P 的坐标为(-3,-1). ②若⊙P 与直线l 和l 1都相切,如解图②.同理于①,当点P 在第一象限时,点P 的坐标为⎝⎛⎭⎫33,1;当点P 在第二象限时,点P 的坐标为(-3,1);当点P 在第三象限时,点P 的坐标为⎝⎛⎭⎫-33,-1;当点P 在第四象限时,点P 的坐标为(3,-1). ③若⊙P 与直线l 1和l 2都相切,如解图③.同理于①,当点P 在x 轴的正半轴上时,点P 的坐标为⎝⎛⎭⎫233,0;当点P 在x 轴的负半轴上时,点P 的坐标为⎝⎛⎭⎫-233,0;当点P 在y 轴的正半轴上时,点P 的坐标为(0,2); 当点P 在y 轴的负半轴上时,点P 的坐标为(0,-2). 综上所述,其余满足条件的⊙P 的圆心坐标为⎝⎛⎭⎫33,-1,⎝⎛⎭⎫-33,1,(-3,-1),⎝⎛⎭⎫33,1, (-3,1),⎝⎛⎭⎫-33,-1,(3,-1),⎝⎛⎭⎫233,0,⎝⎛⎭⎫-233,0,(0,2),(0,-2).(第7题解)(2)用线段依次连结各圆心,所得几何图形如解图④所示.由图可知:该几何图形既是轴对称图形,又是中心对称图形,∴该几何图形所有的边都相等.∴该几何图形的周长=12×⎝⎛⎭⎫3-33=8 3.8.在平面直角坐标系中,点O 为原点,平行于x 轴的直线与抛物线l :y =ax 2相交于A ,B 两点(点B 在第一象限),点D 在AB 的延长线上.(1)已知a =1,点B 的纵坐标为2.①如图①,向右平移抛物线l ,使该抛物线经过点B ,与AB 的延长线交于点C ,求AC 的长.②如图②,若BD =12AB ,过点B ,D 的抛物线l 2的顶点M 在x 轴上,求该抛物线的函数表达式.(2)如图③,若BD =AB ,过O ,B ,D 三点的抛物线l 3的顶点为P ,对应函数的二次项系数为a 3,过点P 作PE ∥x 轴交抛物线l 于E ,F 两点,求a 3a 的值,并直接写出ABEF的值.(第8题)【解析】 (1)①对于二次函数y =x 2,当y =2时,2=x 2,解得x 1=2,x 2=-2, ∴AB =2 2.∵平移得到的抛物线l 1经过点B , ∴BC =AB =2 2. ∴AC =4 2.②记抛物线l 2的对称轴与AD 相交于点N .根据抛物线的轴对称性,得BN =12DB =14AB =22,∴OM =322.设抛物线l 2的函数表达式为y =a 2⎝⎛⎭⎫x -3222. 由①得,点B 的坐标为(2,2),∴2=a 2⎝⎛⎭⎫2-3222,解得a 2=4, ∴抛物线l 2的函数表达式为y =4⎝⎛⎭⎫x -3222, 即y =4x 2-122x +18.(2)如解图,设抛物线l 3与x 轴异于原点的交点为G ,其对称轴与x 轴交于点Q ,过点B作BK ⊥x 轴于点K ,(第8题解)设OK =t ,则BD =AB =2t ,点B 的坐标为(t ,at 2). 根据抛物线的轴对称性,得OQ =2t ,OG =2OQ =4t . 设抛物线l 3的函数表达式为y =a 3x (x -4t ). ∵该抛物线过点B (t ,at 2), ∴at 2=a 3t (t -4t ).又∵t ≠0,∴a 3a =-13.AB EF =32. 9.如图,在矩形ABCD 中,AB =6 cm ,AD =8 cm ,点P 从点B 出发,沿对角线BD 向点D 匀速运动,速度为4 cm/s ,过点P 作PQ ⊥BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3 m/s ,以O 为圆心,0.8 cm 为半径作⊙O .点P 与点O 同时出发,设它们的运动时间为t (单位:s)⎝⎛⎭⎫0<t <85. (1)如图①,连结DQ ,当DQ 平分∠BDC 时,t 的值为__1__.(2)如图②,连结CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值. (3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧.②如图③,在运动过程中,当QM 与⊙O 相切时,求t 的值,并判断此时PM 与⊙O 是否也相切?说明理由.(第9题)【解析】 (1)∵四边形ABCD 是矩形, ∴∠A =∠C =∠ADC =∠ABC =90°,CD =AB =6,BC =AD =8, ∴BD =AD 2+AB 2=62+82=10. ∵PQ ⊥BD ,∴∠BPQ =90°=∠C .∵∠PBQ =∠CBD ,∴△PBQ ∽△CBD , ∴PB CB =PQ CD =BQ BD , ∴4t 8=PQ 6=BQ10,∴PQ =3t ,BQ =5t . ∵DQ 平分∠BDC ,QP ⊥DB ,QC ⊥DC , ∴QP =QC ,∴3t =8-5t ,∴t =1.(2)如解图①,过点M 作MT ⊥BC 于点T . ∵MC =MQ ,MT ⊥CQ ,∴TC =TQ .由(1)可知TQ =12(8-5t ),QM =3t .∵MQ ∥BD ,∴∠MQT =∠DBC . 又∵∠MTQ =∠BCD =90°, ∴△QTM ∽△BCD , ∴QM BD =QT BC, ∴3t 10=12(8-5t )8, ∴t =4049.∴当t =4049时,△CMQ 是以CQ 为底的等腰三角形.(3)①如解图①,设QM 所在直线交CD 于点E . ∵EQ ∥BD , ∴EC CD =CQ CB, ∴EC =34(8-5t ),∴ED =DC -EC =6-34(8-5t )=154t .∵OD =3t ,∴OD <ED ,∴点O 始终在QM 所在直线的左侧.(第9题解①) (第9题解②)②如解图②,设MQ 与⊙O 相切时,切点为H ,连结OH .∵EC =34(8-5t ),OD =3t ,∴OE =6-3t -34(8-5t )=34t .∵OH ⊥MQ ,∴∠OHE =90°. ∵∠HEO =∠CEQ ,∴∠HOE =∠CQE =∠CBD , ∴△OHE ∽△BCD ,∴OH BC =OE BD ,∴0.88=34t10,∴t =43. ∴当t =43时,⊙O 与直线QM 相切.如解图②,连结PM ,假设PM 与⊙O 相切,则∠OMH =12PMQ =22.5°,在MH 上取一点F ,使得MF =FO ,则∠FMO =∠FOM =22.5°, ∴∠FOH =∠OFH =45°,∴OH =FH =0.8,FO =FM =452,∴MH =45(2+1).由OH BC =HE CD ,得HE =35, 由EC DC =EQ DB ,得EQ =53, ∴MH =MQ -HE -EQ =4-35-53=2615.∵45(2+1)≠2615,矛盾, ∴假设不成立.∴直线PM 与⊙O 不相切.。
浙教版2019年数学中考模拟试卷及答案解析6
浙教版2019年数学中考模拟试卷6一、选择题(共10小题)(共10题;共20分)1.7的算术平方根是()A. 49B. √7C. ﹣√7D. ± √72.2017年5月12日,利用微软Windows漏洞爆发的wannaCry勒索病毒,目前已席卷全球150多个国家,至少30万台电脑中招,预计造成的经济损失将达到80亿美元,世人再次领教了黑客的厉害,将数据80亿用科学记数法表示为()A. 8×108B. 8×109C. 0.8×109D. 0.8×10103.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A. ∠A=∠DB. ∠ACB=∠DBCC. AC=DBD. AB=DC4.从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是()A. B. C. D.5.二次函数y=(x﹣2)2+7的顶点坐标是()A. (﹣2,7)B. (2,7)C. (﹣2,﹣7)D. (2,﹣7)6.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=( )A. 30°B. 40°C. 50°D. 60°7.从下列不等式中选择一个与x+1≥2组成不等式组,使该不等式组的解集为x≥1,那么这个不等式可以是()A. x >﹣1B. x >2C. x <﹣1D. x <28.如图,有一矩形纸片ABCD ,AB =6,AD =8,将纸片折叠使AB 落在AD 边上,折痕为AE ,再将△ABE 以BE 为折痕向右折叠,AE 与CD 交于点F ,则 CF CD 的值是( )A. 1B. 12C. 13D. 149.已知点E (2,1)在二次函数y =x 2﹣8x+m (m 为常数)的图象上,则点E 关于图象对称轴的对称点坐标是( )A. (4,1)B. (5,1)C. (6,1)D. (7,1)10.如图,在Rt △ABC 中,∠C =90°,AC =BC =6cm ,点P 从点A 出发,沿AB 方向以每秒 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P′.设点Q 运动的时间为t 秒,若四边形QPCP′为菱形,则t 的值为( )A. √2B. 2C. 2 √2D. 3二、填空题(共8小题)(共8题;共8分)11.分解因式:b 2﹣ab+a ﹣b =________.12.分式方程 12x =2x−3 的解是________.13.若单项式﹣x m ﹣2y 3与 23 x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =________.14.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为________.15.某学习小组为了探究函数y =x 2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =________.16.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =﹣ 3x 的图象上有一些整点,请写出其中一个整点的坐标________.17.如图,抛物线y =ax 2+bx+c (a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x<3;⑤当x<0时,y随x增大而增大;其中结论正确有________.18.如图,△ABC的三个顶点分别为A(1,2),B(1,3),C(3,1),若反比例函数y=kx在第一象限内的图象与△ABC有公共点,则k的取值范围是________.三、解答题(共7小题)(共7题;共65分)19.先化简(4x ﹣x)÷(1+x﹣x2+6x−42x),再选一个你喜欢的整数值,代入求值.20.滴滴打车为市民的出行带来了很大的方便,小亮调查了若干市民一周内使用滴滴打车的时间t(单位:分),将获得的数据分成四组,绘制了如下统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示C组的扇形圆心角的度数,并补全条形统计图;(3)若全市的总人数为666万,试求全市一周内使用滴滴打车超过20分钟的人数大约有多少?21.如图,在昆明市轨道交通的修建中,规划在A、B两地修建一段地铁,点B在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现测得古树C在点A的北偏东45°方向上,在点B的北偏西60°方向上,BC=400m,请你求出这段地铁AB的长度.(结果精确到1m,参考数据:√2≈1.414,√3≈1.732)22.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前多20%,则该款空调补贴前的售价为每台多少元?23.某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?24.如图,AB是⊙O的直径,∠ACB的平分线交AB于点D,交⊙O于点E,过点C作⊙O的切线CP交BA 的延长线于点P,连接AE.(1)求证:PC=PD;(2)若AC=5cm,BC=12cm,求线段AE,CE的长.25.如图,在平面直角坐标系xOy中,A、B、C三点分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由.(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|为最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.答案解析部分一、选择题(共10小题)1.【答案】B【考点】算术平方根2.【答案】B【考点】科学记数法—表示绝对值较大的数3.【答案】C【考点】三角形全等的判定4.【答案】B【考点】简单几何体的三视图5.【答案】B【考点】二次函数y=a(x-h)^2+k的性质6.【答案】C【考点】圆周角定理7.【答案】A【考点】解一元一次不等式组8.【答案】C【考点】矩形的性质,翻折变换(折叠问题),相似三角形的判定与性质9.【答案】C【考点】二次函数y=ax^2+bx+c的性质10.【答案】B【考点】菱形的性质,平行线分线段成比例,几何图形的动态问题二、填空题(共8小题)11.【答案】(b﹣a)(b﹣1)【考点】分组分解法因式分解12.【答案】x=﹣1【考点】分式方程的解13.【答案】13【考点】负整数指数幂的运算性质,同类项14.【答案】23【考点】列表法与树状图法15.【答案】0.75【考点】二次函数y=ax^2+bx+c的性质16.【答案】(1,﹣3)【考点】反比例函数图象上点的坐标特征17.【答案】①②⑤【考点】二次函数图象与系数的关系,二次函数y=ax^2+bx+c的性质18.【答案】2≤k≤4【考点】反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征三、解答题(共7小题)19.【答案】解:原式= ÷ = •= ,∵分母不等于0,∴x≠0,2,∴当x=1时,原式=6(答案不唯一).【考点】利用分式运算化简求值20.【答案】(1)解:19÷38%=50(人),答:这次被调查的总人数是50人;(2)C组的人数是50﹣15﹣19﹣4=12(人),=24%,所占的百分比为1250对应扇形的圆心角为360°×24%=86.4°,;(3)全市一周内使用滴滴车超过20分钟的人数大约为(24%+8%)×6660000=2131200(人). 【考点】用样本估计总体,扇形统计图,条形统计图21.【答案】解:过点C作CD⊥AB于D,由题意知:∠CAB=45°,∠CBA=30°,∴CD=12BC=200(m),BD=CB•cos(90°﹣60°)=400× √32=200 √3(m),AD=CD=200(m),∴AB=AD+BD=200+200 √3≈546(m),答:这段地铁AB的长度为546m.【考点】解直角三角形的应用﹣方向角问题22.【答案】解:设该款空调补贴前的售价为每台x元,由题意,得:110000x ×(1+20%)=110000x−500,解得:x=3000.经检验得:x=3000是原方程的根.答:该款空调补贴前的售价为每台3000元.【考点】分式方程的实际应用23.【答案】(1)解:根据题意得y=(70−x−50)(300+20x)=−20x2+100x+6000,∵70−x−50>0,且x≥0,∴0≤x<20;(2)解:∵y=−20x2+100x+6000=−20(x−52)2+6125,∴当x=52时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.【考点】二次函数的实际应用-销售问题24.【答案】(1)证明:如图1中,连接OC、OE.∵AB 直径,∴∠ACB=90°,∴CE平分∠ACB,∴∠ECA=∠ECB=45°,∴AÊ=BÊ,∴OE⊥AB,∴∠DOE=90°,∵PC是切线,∴OC⊥PC,∴∠PCO=90°,∵OC=OE,∴∠OCE=∠OEC,∵∠PCD+∠OCE=90°,∠ODE+∠OEC=90°,∠PDC=∠ODE,∴∠PCD=∠PDC,∴PC=PD.(2)如图2中.作EH⊥BC于H,EF⊥CA于F.∵CE平分∠ACB,EH⊥BC于H,EF⊥CA于F,∴EH=EF,∠EFA=∠EHB=90°,∵AÊ=BÊ,∴AE=BE,∴Rt△AEF≌Rt△BEH,∴AF=BH,设AF=BH=x,∵∠F=∠FCH=∠CHE=90°,∴四边形CFEH是矩形,∵EH=EF,∴四边形CFEH是正方形,∴CF=CH,∴5+x=12﹣x,∴x=7,2∴CF=FE=17,2∴EC = √2 CF = 17√22, AE = √EF 2+AF 2 = √(172)2+(72)2 = 13√22 .【考点】全等三角形的判定与性质,正方形的判定与性质,圆周角定理,切线的性质 25.【答案】 (1)解:∵OA =1,OB =3,OC =4.∴A (1,0),B (0,3),C (﹣4,0),设抛物线的解析式为:y =a (x ﹣1)(x+4),把(0,3)代入得:3=﹣4a ,a =﹣ 34 ,∴y =﹣ 34 (x ﹣1)(x+4),∴抛物线的解析式为:y =﹣ 34x 2−94 x+3;(2)解:在平面直角坐标系xOy 中存在一点P ,使得A 、B 、C 、P 为顶点的四边形为菱形, 理由:∵OB =3,OC =4,OA =1,∴BC =AC =5,当BP =AC 且BP ∥AC 时,四边形ACBP 为菱形,∴BP =AC =5,且点P 到x 轴距离等于OB ,∴点P 的坐标为(5,3),如图2,当点P 在第二、三象限时,以A 、B 、C 、P 为顶点的四边形只能是平行四边形,不是菱形, ∴当点P 的坐标为(5,3)时,以A 、B 、C 、P 为顶点的四边形是菱形;(3)解:设直线PA 的解析式为y =kx+b (k≠0),∴点A 的坐标为(1,0)点P 的坐标为(5,3),则 {k +b =05k +b =3, 解得: {k =34b =−34, ∴直线PA 的解析式为:y = 34x −34 ,当M与P、A两点不在同一直线上时,根据三角形三边关系的得|PM﹣AM|<PA.当点M与P、A两点在同一直线上时,得|PM﹣AM|=PA,∴如图3,当点M与P、A两点在同一直线上时.|PM﹣AM|的值最大,此时点M为直线PA与抛物线的交点,联立{y=34x−34y=−34x2−94+3解得{x1=1y1=0,{x2=−5y2=−92,∴当点M的坐标为(1,0)或(﹣5,﹣92)时,|PM﹣AM|的值最大,最大值是5. 【考点】二次函数与一次函数的综合应用,二次函数的实际应用-动态几何问题11 / 11。
(word完整版)中考数学规律探索专题复习
中考数学规律探索专题复习一、典例精析类型之一 数字规律型例1. (2011丽江)下面是按一定规律排列的一列数:23,45-,87,169-,…那么第n 个数是 . 【简析】根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n 个数为12(1)21nn n +-•+。
【答案】解:∵n=1时,分子:2=(-1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(—1)3•22,分母:5=2×2+1; n=3时,分子:8=(—1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(-1)5•24,分母:9=2×4+1;…,∴第n 个数为:12(1)21n n n +-•+ 故答案为:12(1)21n n n +-•+. 例2:(2010深圳) 观察下列算式,用你所发现的规律得出22010的末位数字是( )。
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8【简析】有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解.通过观察可以发现,本题中的数字从第1个到第4个为一个循环节,以此规律总结下来,第2010个图形应该就是一个循环节中的第2个数字,故选B.【答案】B对应练习1。
有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .2.(2011湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 类型之二 图形规律型例3:(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这……样的图形中共有 个等腰梯形.【简析】本题考查了图形的变化,解题的关键是按照一定的顺序依次找到符合条件的等腰梯形,做到不重复不遗漏.由于图②4个=2+1+1,图③8个3+2+2+1+1,图④16=4+3+3+2+2+1+1,由此即可得到第10个图形中等腰梯形的个数为:10+9+9+8+8+7+7+6+6+5+5+4+4+3+3+2+2+1+1=100. 【答案】100.例4: (2011兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题六 探索型问题类型一 规律探索型问题(2018·山东威海中考)如图,在平面直角坐标系中,点A 1的坐标为(1,2),以点O 为圆心,以OA 1长为半径画弧,交直线y =12x 于点B 1.过B 1点作B 1A 2∥y 轴,交直线y =2x 于点A 2,以点O 为圆心,以OA 2长为半径画弧,交直线y =12x 于点B 2;过点B 2作B 2A 3∥y 轴,交直线y =2x于点A 3,以点O 为圆心,以OA 3长为半径画弧,交直线y =12x 于点B 3;过B 3点作B 3A 4∥y 轴,交直线y =2x 于点A 4,以点O 为圆心,以OA 4长为半径画弧,交直线y =12x 于点B 4,…,按照如此规律进行下去,点B 2 018的坐标为________.【分析】根据题意可以求得点B 1的坐标,点A 2的坐标,点B 2的坐标,然后即可发现坐标变化的规律,从而可以求得点B 2 018的坐标. 【自主解答】规律探索题主要有数式规律和图形规律两种.对于数式规律,猜想归纳是解决这类问题的有效方法,通过对已给出的材料和信息对研究的对象进行观察、实验、比较、归纳和分析综合,作出符合一定规律与事实的推测性想象,从而发现一般规律,它是发现和认识规律的重要手段.对于图形规律,一种是数图形,将图形规律转化成数字规律,再用数字规律解决问题;一种是通过图形的直观性,通过拆分图形,观察图形的构造寻找规律.1.(2018·山东枣庄中考)将从1开始的连续自然数按如下规律排列:则2 018在第________行.2.(2018·江苏淮安中考)如图,在平面直角坐标系中,直线l为正比例函数y =x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n 的面积是______________.类型二存在探索型问题(2018·浙江湖州中考)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=23,△ADC与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D 1的反比例函数y =kx (k≠0)的图象与BA 的延长线交于点P.问:在平移过程中,是否存在这样的k ,使得以点P ,A 1,D 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k 的值;若不存在,请说明理由.【分析】(1)作DE⊥x 轴于E ,解直角三角形求出DE ,CE 即可解决问题; (2)设OB =a ,则点A 的坐标(a ,23),由题意CE =1,DE =3,可得D(3+a ,3),点A ,D 在同一反比例函数图象上,可得23a =3(3+a),求出a 即可; (3)分两种情形:①如图2中,当点A 1在线段CD 的延长线上,且PA 1∥AD 时,∠PA 1D =90°.②当∠PDA 1=90°时.分别构建方程解决问题即可. 【自主解答】3.(2018·四川攀枝花中考)如图,对称轴为直线x=1的抛物线y=x2-bx+c与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,与y轴交于C点,且1x1+1x2=-23.(1)求抛物线的表达式;(2)抛物线顶点为D,直线BD交y轴于E点;①设点P为线段BD上一点(点P不与B,D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF面积的最大值;②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.类型三结论探索型问题如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE.连结FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________.(2)如图2,若点E,F分别是CB,BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并予以证明.(3)如图3,若点E,F分别是BC,AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【分析】根据正方形的性质、全等三角形的判定与性质、平行四边形的判定及性质即可判断.【自主解答】4.(2018·四川自贡中考)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA,OB相交于点D,E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给予证明;若不成立,线段OD,OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.图1 图2 图3参考答案类型一【例1】 由题意可得点A 1的坐标为(1,2). 设点B 1的坐标为(a ,12a),a 2+(12a )2=12+22,解得a =2(负值舍去), ∴点B 1的坐标为(2,1).同理可得点A 2的坐标为(2,4),点B 2的坐标为(4,2), 点A 3的坐标为(4,8),点B 3的坐标为(8,4), …∴点B 2 018的坐标为(22 018,22 017). 故答案为(22 018,22 017). 变式训练 1.45 2.(92)n -1类型二【例2】 (1)如图,过点D 作DE⊥x 轴于E.∵∠ABC=90°,∴tan∠ACB=ABBC =3,∴∠ACB=60°.根据对称性可知DC =BC =2,∠ACD=∠ACB=60°, ∴∠DCE=60°,∴∠CDE=90°-60°=30°, ∴CE=1,DE =3, ∴OE=OB +BC +CE =5,(2)设OB =a ,则点A 的坐标(a ,23), 由题意CE =1,DE =3,可得D(3+a ,3). ∵点A ,D 在同一反比例函数图象上, ∴23a =3(3+a),∴a=3,∴OB=3. (3)存在,k 的值为103或12 3.理由如下:①如图,当点A 1在线段CD 的延长线上,且PA 1∥AD 时,∠PA 1D =90°.在Rt△ADA 1中,∵∠DAA 1=30°,AD =23, ∴AA 1=ADcos 30°=4.在Rt△APA 1中,∵∠APA 1=60°, ∴PA=433,∴PB=1033.设P(m ,1033),则D 1(m +7,3).∵P,D 1在同一反比例函数图象上, ∴1033m =3(m +7),解得m =3,②如图,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴AKKD=PKKA1,∴PKAK=KA1DK.∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=30°,∠ADK=∠KA1P=30°,∴∠APD=∠ADP=30°,∴AP=AD=23,AA1=6.设P(m,43),则D1(m+9,3).∵P,D1在同一反比例函数图象上,∴43m=3(m+9),解得m=3,∴P(3,43),∴k=12 3.变式训练3.解:(1)∵抛物线对称轴为直线x=1,∴--b2=1,∴b=2.由一元二次方程根与系数的关系得x 1+x 2=b ,x 1x 2=c , ∴1x 1+1x 2=x 1+x 2x 1x 2=b c =-23,则c =-3, ∴抛物线表达式为y =x 2-2x -3. (2)由(1)得点D 坐标为(1,-4). 当y =0时,x 2-2x -3=0, 解得x 1=-1,x 2=3, ∴点B 坐标为(3,0). ①设点F 坐标为(a ,b),∴△BDF 的面积S =12×(4-b)(a -1)+12(-b)(3-a)-12×2×4,整理得S =2a -b -6.∵b=a 2-2a -3,∴S=2a -(a 2-2a -3)-6=-a 2+4a -3. ∵a=-1<0,∴当a =2时,S 最大=-4+8-3=1. ②存在.由已知点D 坐标为(1,-4),点B 坐标为(3,0), ∴直线BD 表达式为y =2x -6.则点E 坐标为(0,-6). 连结BC ,CD ,则由勾股定理得CB 2=(3-0)2+(-3-0)2=18, CD 2=12+(-4+3)2=2,BD 2=(-4)2+(3-1)2=20, ∴CB 2+CD 2=BD 2,∴∠BCD=90°, ∴tan∠BDC=3.当点Q 使得∠BDC=∠QCE 时,连QC 并延长交x 轴于点N ,过Q 作QM⊥x 轴于点M.∵∠OCN=∠QCE,CO =3, ∴在Rt△NOC 中,NO =3OC =9. 由已知,MQ∥OE,OE =6,OB =3, ∴BM MQ =OB OE =12. 设BM =a ,则MQ =2a ,则MN =12-a. ∵∠MQN=∠QCE, ∴Rt△MNQ 中,3MQ =MN , ∴12-a =3×2a,∴a=127,则OM =3-127=97,MQ =247,则点Q 坐标为(97,-247).类型三【例3】 (1)相等 平行 ∵四边形ABCD 是正方形,∴∠ABC=∠BCD=90°,AB =BC =CD. 又∵CE=BF ,∴△ECD≌△FBC(SAS), ∴CF=DE ,∠DEC=∠CFB,∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG =DE , ∴FC∥GE,GE =CF ,∴四边形GECF 是平行四边形, ∴FG∥CE,GF =CE.(2)仍然成立.证明:∵四边形ABCD 是正方形, ∴∠ABC=∠BCD=90°,AB =BC =CD. 又∵CE=BF ,∴△ECD≌△FBC(SAS), ∴CF=DE ,∠DEC=∠CFB, ∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG =DE , ∴FC∥GE,GE =CF ,∴四边形GECF 是平行四边形, ∴FG∥CE ,FG =CE. (3)仍然成立. 变式训练4.解:(1)OD +OE =3OC.理由如下: OM 是∠AOB 的角平分线, ∴∠AOC=∠BOC=12∠AOB=30°.∵CD⊥OA,∴∠ODC=90°, ∴∠OCD=60°,∴∠OCE=∠DCE-∠OCD=60°.在Rt△OCD 中,OD =OC·cos 30°=32OC.同理OE =32OC ,∴OD+OE =3OC.(2)(1)中结论仍然成立,理由如下:如图,过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°.∵∠AOB=60°,∴∠FCG=120°.同(1)的方法得OF=32OC,OG=32OC,∴OF+OG=3OC.∵CF⊥OA,CG⊥OB,且点C是∠AO B的平分线OM上一点,∴CF=CG.∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE-EG,∴OF+OG=OD+EG+OE-EG=OD+OE,∴OD+OE=3OC.(3)(1)中结论不成立,结论为:OE-OD=3OC,理由:如图,过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°.∵∠AOB=60°,∴∠FCG=120°.同(1)的方法得OF=32OC,OG=32OC,∴OF+OG=3OC.∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG.∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF-OD=EG-OD,OG=OE-EG,∴OF+OG=EG-OD+OE-EG=OE-OD,∴OE-OD=3OC.。