超声波测距12
超声波测距仪计算公式
超声波测距仪计算公式超声波测距仪是一种常见的测距工具,它利用超声波的特性来测量距离。
超声波是一种机械波,它的频率高于人类听觉的上限,通常在20kHz到200kHz之间。
超声波测距仪通过发射超声波并测量其返回时间来计算距离。
在本文中,我们将介绍超声波测距仪的计算公式以及其应用。
超声波测距仪的原理。
超声波测距仪通常由发射器、接收器和控制电路组成。
当发射器发射超声波时,它会在目标物体上产生回声。
接收器会接收到这些回声,并测量超声波从发射到接收的时间间隔。
根据声波在空气中的传播速度,可以通过测量时间间隔来计算目标物体与超声波测距仪的距离。
超声波测距仪的计算公式。
超声波在空气中的传播速度约为343米/秒。
根据这个速度,可以使用以下公式来计算目标物体与超声波测距仪的距离:距离 = 传播速度×时间间隔 / 2。
在这个公式中,传播速度是超声波在空气中的传播速度,时间间隔是超声波从发射到接收的时间间隔。
公式中的除以2是因为超声波在空气中往返的距离需要除以2才是目标物体与超声波测距仪的实际距离。
超声波测距仪的应用。
超声波测距仪在工业、科研和日常生活中都有着广泛的应用。
在工业领域,超声波测距仪常用于测量物体的距离和位置,用于自动化生产线和机器人系统中。
在科研领域,超声波测距仪可以用于测量地震波的传播速度,从而研究地球内部的结构。
在日常生活中,超声波测距仪可以用于测量车辆的距离和速度,用于智能停车系统和车辆防撞系统中。
超声波测距仪的优缺点。
超声波测距仪具有测距精度高、测量范围广、反应速度快等优点。
然而,它也存在一些缺点,比如受环境因素影响大、测距精度受限于超声波的传播速度等。
因此,在实际应用中,需要根据具体情况选择合适的测距工具。
总结。
超声波测距仪是一种常见的测距工具,它利用超声波的特性来测量距离。
通过测量超声波的传播时间,可以使用特定的计算公式来计算目标物体与超声波测距仪的距离。
超声波测距仪在工业、科研和日常生活中都有着广泛的应用,但也存在一些优缺点需要注意。
超声波测距的原理
超声波测距的原理超声波测距是一种智能测距技术,它利用声速的不同以及发射接收信号的时间差,来计算距离的测量技术。
1.原理超声波测距的原理是通过发射声波,测量声波传播的时间来计算距离。
根据声波在介质中的传播速度,计算出发射点至接收点的距离。
原理公式:距离=声速×时间即:Distance=Speed × Time其中,声速即声波在介质中的传播速度,其值为343m/s;时间即发射声波至接收声波的时间,单位为秒(s)。
2.测距方法(1)双抛物线法发射设备发出短促的超声波,声波以某一固定的速度传播,声波开始发射时,传播的距离为零,传播距离随着时间增长而增长,当该声波正好从目标点穿越而去时,应用接收设备接收该声波,利用计算机处理作出声波传播距离的图形,从双抛物线拟合计算出测量值。
(2)回波法发射设备发出一次超声波信号,当发射的超声波信号到达目标物时,目标物会把超声波信号接收并反射回来,接收设备接收反射的超声波信号,将发射信号及反射信号的时间差作为距离的测量参数进行计算,从而计算出距离的测量值。
回波计算距离的公式:Distance=Time×V/2其中,Time为声波发射到接收的时间差,V为声波在介质空气中的传播速度。
三、超声波测距应用超声波测距技术在智能汽车、工业控制与安全监控、建筑物安全管理等领域有着广泛的应用,其中包括以下几种:(1)智能汽车:超声波测距技术可以帮助智能汽车检测前方障碍物的距离,从而进行安全护栏的移动,同时也能帮助智能汽车检测行驶路线,以便安全驾驶。
(2)工业控制与安全监控:超声波测距技术可以帮助工业设备检测具体物体的距离,从而进行控制和安全监控,保障工业生产的安全运行。
(3)建筑物安全管理:超声波测距技术可以帮助建筑物检测具体的安全距离,从而保障建筑物的安全管理。
四、总结超声波测距是一项智能测距技术,原理是利用声波的传播速度及传播时间差,来计算出两点之间的距离。
超声波测距实验方法与精度控制
超声波测距实验方法与精度控制超声波测距是一种常见的测量距离的方法,它利用超声波在空气中传播的特性来测量目标物体与测量设备之间的距离。
在这篇文章中,我们将探讨一些常见的超声波测距实验方法以及如何控制测量的精度。
首先,让我们了解一下超声波测距的基本原理。
超声波是一种高频声波,其频率通常在20kHz至100kHz之间。
超声波在空气中传播的速度约为343米/秒,而且能够在相对较远的距离内传播。
当超声波遇到目标物体时,一部分声波会被反射回来,并被接收器接收到。
根据超声波的传播时间和传播速度,我们可以计算出目标物体与测量设备之间的距离。
一种常见的超声波测距实验方法是使用超声波传感器。
这种传感器通常由一个发射器和一个接收器组成。
发射器将超声波发送出去,然后接收器接收到反射的声波。
通过测量超声波的传播时间,我们可以计算出目标物体与传感器之间的距离。
这种方法可以广泛应用于自动测距和避障系统中。
为了保证测量的精度,我们需要注意几个因素。
首先是超声波的传播速度。
理想情况下,超声波在空气中的传播速度是恒定的,但实际上会受到温度、湿度等环境因素的影响。
在实验中,我们可以通过校准传感器来调整超声波的传播速度,以提高测量的准确性。
另一个影响测量精度的因素是信号的干扰。
超声波测距设备通常会受到外部噪声的影响,如其他电子设备的干扰或者周围环境的声波干扰。
为了减小信号干扰,我们可以使用滤波器来滤除高频或低频噪声,使得接收到的信号更加清晰。
此外,超声波测距还受到目标物体的形状和材质的影响。
不同形状和材质的物体对超声波的反射和吸收情况有所不同,这会影响测量的精度。
在实验中,我们可以通过测量不同形状和材质的物体来研究这种影响,并进行相应的修正。
在进行超声波测距实验时,我们还需要注意测量的范围。
超声波的传播距离是有限的,而且会随着距离的增加而衰减。
因此,在选择超声波测距设备时,我们需要根据实际需求确定测量范围,并选择适合的设备。
此外,为了提高测量精度,我们还可以使用多个传感器进行测量,并取其平均值来进行校正。
超声波测距器
/℃ 声速/(m.s 313 319 325 323 338 344 349 386 一1)
4.2
主程序 主程序首先要对系统环境初始化,设置定时器TO工作模式 为16位定时/计数器模式,置位总中断允许位EA并对显示端口 PO和P2清0;然后调用超声波发生子程序送出一个超声波脉 冲。为了避免超声波从发射器直接传送到接收器引起的直射波
6
6.1
控制源程序清单
单片机汇编源程序清单
;******************************************** ;* 超声波测距器 * ;* AT89C52 12MHZ晶振 共阳LED显示器 * ;******************************************** ;测距范围7CM-11M,堆栈在4FH以上,20H用于标志 ;显示缓冲单元在40H-43H,使用内存44H、45H、46H用于计算距离 ; VOUT EQU P1.0 ; 红外脉冲输出端口 ; ;******************************************** ;* 中断入口程序 * ;******************************************** ; ORG 0000H LJMP START ORG 0003H LJMP PINT0
;开启测距定时器 ;收到反射信号时标志位
;重新开启测距定时器 ;测量间隔控制(约
; ;**************************************************** ;* 中断程序* * ;**************************************************** ;T0中断,65毫秒中断一次 INTT0: CLR EA CLR TR0 MOV TH0,#00H MOV TL0,#00H SETB ET1 SETB EA SETB TR0 ;启动计数器T0,用以计算超声 来回时间 SETB TR1 ;开启发超声波用定时器T1 OUT: RETI ;T1中断,发超声波用
超声波 测距 原理
超声波测距原理
超声波测距是一种利用超声波的特性来测量距离的技术。
其原理基于超声波在空气中传播的速度固定,并且当超声波遇到物体表面时会发生反射。
利用超声波发射器发出的超声波经过发射器和物体之间距离的时间差可以计算出物体与发射器之间的距离。
超声波测距装置主要由超声波传感器、脉冲发生器、计时器和显示器等组成。
首先,脉冲发生器会生成一个短脉冲信号,这个信号会被超声波传感器转化为超声波信号并发射出去。
当超声波遇到物体时,一部分被物体吸收,一部分被物体反射回来,被超声波传感器接收到。
超声波传感器会将接收到的超声波信号转化为电信号,并传送给计时器。
计时器记录下发射超声波和接收到反射超声波之间的时间差,然后根据超声波在空气中的传播速度来计算出物体与传感器之间的距离。
最后,测量结果会通过显示器显示出来。
超声波测距技术广泛应用于工业领域中,如测量物体的距离、液位、宽度等。
其优点包括测距精度高、测量范围广、无需直接接触被测物体等。
然而,超声波测距也存在一些局限性,比如受到物体表面形状和材料的影响,对于某些特殊材料的测量可能不太准确。
因此,在具体应用中需要根据实际情况选择合适的测距技术。
超声波测距实验报告
超声波测距实验报告电子综合实验课程报告课题名称:超声测距仪专业:生物医学工程班级:,,级生物医学,,班姓名:敖一鹭刘晓莎尹曼邹燕一引言随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。
但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。
声波测距作为一种典型的非接触测量方法,在很多场合,诸如工业自动控制,建筑工程测量和机器人视觉识别等方面得到广泛的应用。
和其他方法相比,如激光测距、微波测距等,由于声波在空气中传播速度远远小于光线和无线电波的传播速度,对于时间测量精度的要求远小于激光测距、微波测距等系统,因而超声波测距系统电路易实现、结构简单和造价低,且超声波在传播过程中不受烟雾、空气能见度等因素的影响,在各种场合均得到广泛应用。
然而超声波测距在实际应用也有很多局限性,这都影响了超声波测距的精度。
一是超声波在空气中衰减极大,由于测量距离的不同,造成回波信号的起伏,使回波到达时间的测量产生较大的误差;二是超声波脉冲回波在接收过程中被极大地展宽,影响了测距的分辨率,尤其是对近距离的测量造成较大的影响。
其他还有一些因素,诸如环境温度、风速等也会对测量造成一定的影响,这些因素都限制了超声波测距在一些对测量精度要求较高的场合的应用,如何解决这些问题,提高超声波测距的精度,具有较大的现实意义。
为了今后能够为社会做出更多有益的发明发现,超声测距课程设计应运而生。
二课题要求以单片机AT89C51为中心控制单元,配以超声波发射、接收装置,实现超声波发射及接收其遇到障碍物发生反射形成的回波信号,并根据超声波在介质中的传播速度及超声波从发射到接收到回波的时间,计算出发射点距障碍物的距离,设计出一套基于单片机的脉冲反射式超声波测距系统,利用单片机进行操作控制,用数码管作输出显示,设计发射、接收、检测、显示硬件电路和测距系统软件。
三基本要求1 能实现测距操作;2 能清晰稳定地显示测量结果, 具有测量完成提示;3 能正确实现单次测量;4 测量范围在0.5——2m;5 测量精确度2cm。
实验12 超声波传感器测距
12、超声波测距
一、实验目的:
1、掌握超声波测距原理
2、掌握脉冲宽度测距函数pulseIn()
二、实验原理或参考资料:
1、超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射与接
收回波的时间差t,然后求出距离S=Ct/2,C为超声波波速。
由于超声波也是一种声波,其声速C与温度有关,图下图。
2、工作原理
(1)Arduino的数字引脚给超声波模块的Trig引脚至少10微秒的高电平信号,触发测距
功能
(2)触发测距功能后,模块会自动发送8个40khz的方波脉冲,自动检测是否有信号返回
(3)有信号返回,则Echo引脚会输出高电平,高电平持续的时间就是超声波从发射到返回的时间。
测距=(高电平时间x声速)/2
2、脉冲宽度测量函数PulseIn()
功能:检测指定引脚上的脉冲信号宽度。
语法:PulseIn(pin,value)
pin,需要读取脉冲的引脚。
Value,需要读取的脉冲类型,HIGH或LOW
3、
参考示例代码
三、实验结果
基础题:
1、搭建实验电路图,将以上Arduino的超声波测距程序烧录到arduino控制板中,使得能在串口输出传感器数据。
在每一行代码后面添加注释,将程序代码及串口输出截图。
提高篇:
1、完成以上基本练习的基础上,试增加一个报警功能(灯光报警),即超过设定的距离阈值即灯光报警。
程序代码及串口监视器截图。
超声波测距仪原理
超声波测距仪原理
超声波测距仪是一种利用超声波的特性来测量距离的仪器。
它的测量原理基于声波在不同介质中传播速度不同的特点。
超声波是一种高频声波,其频率通常在20kHz到1GHz之间。
超声波测距仪通过发射超声波并接收其反射信号,来计算测量物体与测距仪之间的距离。
超声波测距仪由发射器和接收器两部分组成。
发射器发射出超声波脉冲,然后接收器接收到脉冲的反射信号。
测距仪通过计算脉冲信号的往返时间,并结合声波在空气中的传播速度,来确定物体与测距仪之间的距离。
具体测量过程如下:
1. 发射器发出一个超声波脉冲。
2. 超声波脉冲在空气中迅速传播,当遇到物体时会发生一部分反射。
3. 接收器接收到反射的超声波信号。
4. 通过计算脉冲的往返时间,即从发射到接收的时间间隔,可以得到声波在空气中行进的时间。
5. 根据声波在空气中的传播速度(通常为343米/秒),可以
利用时间和速度的关系来计算出物体与测距仪之间的距离。
超声波测距仪的精确度取决于发射器和接收器的性能,以及环境的影响。
例如,超声波在不同介质中的传播速度会有所不同,因此在不同介质中测量距离时需要进行相应的校正。
总的来说,超声波测距仪利用声波的传播速度和往返时间的关系来测量距离。
它被广泛应用于工业领域中的测量和控制系统中,常见的应用包括距离测量、物体检测和障碍物避免等。
超声波测距的应用原理
超声波测距的应用原理1. 介绍超声波测距是一种常见的测量距离的技术,广泛应用于工业自动化、智能家居、机器人等领域。
本文将介绍超声波测距的原理及其在实际应用中的一些案例。
2. 超声波测距原理超声波测距利用声波在空气中传播的特性进行测量。
其原理主要包括发射超声波脉冲、接收超声波反射信号以及计算测距距离三个步骤。
2.1 发射超声波脉冲超声波传感器会发射一个超声波脉冲信号,通常频率在20kHz到200kHz之间。
脉冲信号在空气中传播,并在目标物体上发生反射。
2.2 接收超声波反射信号当超声波脉冲信号被目标物体反射后,超声波传感器会接收到反射信号。
接收到的信号经过放大和滤波处理后,被转换成数字信号。
2.3 计算测距距离根据超声波传感器发送脉冲信号到接收到反射信号的时间间隔,可以计算出测距距离。
测距公式如下:距离 = (声速 × 时间间隔) / 2其中,声速通常使用常数值343m/s,时间间隔以秒为单位。
3. 超声波测距的应用案例3.1 工业自动化超声波测距广泛应用于工业自动化领域,例如在机器人的导航和避障中。
通过使用超声波传感器,机器人可以测量到周围的障碍物距离,从而做出相应的动作或路径调整。
3.2 智能家居超声波测距也被应用于智能家居系统中。
例如,在智能安防系统中,超声波传感器可以检测到入侵者的接近,并触发相应的报警系统。
此外,超声波测距还可以用于智能灯光系统中,自动调节灯光的亮度和发散角度。
3.3 车辆辅助系统超声波测距在车辆辅助系统中也得到了广泛应用。
例如,在倒车雷达系统中,超声波传感器可以探测到车辆后方的障碍物,提供给驾驶员倒车时的参考,并发出警告信号。
3.4 液位测量超声波测距还可以用于液位测量领域。
传感器发射超声波脉冲进入液体,当脉冲到达液体表面后会发生反射,传感器接收到反射信号后可以计算出液位的高度。
4. 总结超声波测距技术通过发射和接收超声波信号来测量目标物体的距离。
它在工业自动化、智能家居、车辆辅助系统以及液位测量等领域有着广泛的应用。
超声波测距仪使用说明书
超声波测距仪使用说明书一、产品概述超声波测距仪是一种常用的测量工具,能够通过发射超声波并接收回波来测量距离。
本使用说明书将详细介绍超声波测距仪的安装、操作和注意事项,以确保用户正确有效地使用该设备。
二、产品特点1. 高精度测距:超声波测距仪采用先进的超声波传感技术,具有高精度的测量能力。
2. 非接触式测量:使用超声波进行测距,无需物体接触,减少了测量过程中的损耗和影响。
3. 易于使用:超声波测距仪操作简便,具备用户友好的界面和按键设计,使得使用者能够迅速上手。
4. 多功能显示:该设备配备了清晰的液晶显示屏,能够显示测量结果、工作状态等信息。
5. 轻便便携:超声波测距仪体积小巧,重量轻,方便携带和使用。
三、安装步骤1. 打开包装:将超声波测距仪打开包装箱,确保所有附件完整无损。
2. 安装电池:打开超声波测距仪的电池仓盖,将配套电池正确安装,注意正负极的对应关系。
3. 固定支架:如需要,可以将超声波测距仪安装在合适的支架上,确保其稳定性和固定性。
四、操作步骤1. 打开设备:按下电源开关,超声波测距仪将开始工作。
2. 选择测量模式:根据需要,选择合适的测量模式,如单次测量模式、连续测量模式等。
3. 对准目标物体:将超声波测距仪对准需要测量的目标物体,确保设备与目标物体之间没有遮挡物。
4. 发射超声波:按下测量按钮,设备将发射一束超声波,并等待回波信号。
5. 接收回波:设备会接收到目标物体反射回的超声波信号,并进行测量计算。
6. 显示测量结果:测量结果将显示在液晶显示屏上,用户可以查看测量距离等相关信息。
五、注意事项1. 测量范围:超声波测距仪具有一定的测量范围,在使用过程中请确保测量距离在设备规定的范围内。
2. 测量环境:避免在有强烈干扰或噪音的环境下进行测量,以免影响测量结果的准确性。
3. 遮挡物:在进行测量时,确保超声波测距仪与目标物体之间没有遮挡物,以免影响信号的传输和接收。
4. 清洁保养:定期清洁超声波测距仪的传感器和显示屏,避免灰尘和污物的积累影响测量性能。
超声波测距原理图
超声波测距原理图超声波测距是一种常见的测距方法,它利用超声波在空气中的传播速度来测量距离。
超声波测距原理图是用来说明超声波测距的工作原理和实现方式的图示,下面我们就来详细介绍一下超声波测距原理图的相关内容。
首先,超声波测距原理图中通常包括发射器、接收器和目标物三个主要部分。
发射器负责产生超声波信号,并将其发送出去,接收器则用来接收目标物反射回来的超声波信号,最后根据信号的往返时间来计算目标物与传感器之间的距离。
整个测距过程需要经过一系列的信号处理和计算,最终得出准确的距离数值。
在超声波测距原理图中,发射器和接收器通常被放置在同一传感器模块中,它们之间的距离和角度需要经过精确的设计和校准,以确保测距的准确性和稳定性。
此外,目标物的形状、表面特性和距离都会对超声波的反射和接收产生影响,因此在实际应用中需要对这些因素进行充分的考虑和补偿。
除了硬件部分,超声波测距原理图中还包括了信号处理和算法部分。
信号处理主要包括超声波信号的放大、滤波、去噪等处理,以及对接收到的信号进行特征提取和分析。
算法部分则是根据信号的往返时间和传感器的特性来计算目标物与传感器之间的距离,常见的算法包括时差法、相位差法等。
在实际应用中,超声波测距原理图可以应用于各种领域,比如工业自动化、智能车辆、智能家居等。
它具有测距范围广、精度高、成本低等优点,因此受到了广泛的关注和应用。
同时,超声波测距也面临着一些挑战,比如在复杂环境下的性能稳定性、多目标识别和距离补偿等问题,这些都需要在实际应用中加以解决。
总的来说,超声波测距原理图是超声波测距技术的重要组成部分,它通过图示的方式清晰地展现了超声波测距的工作原理和实现方式。
在实际应用中,我们需要充分理解超声波测距原理图的内容,结合具体的应用场景和需求,来设计和实现高效、稳定的超声波测距系统。
希望本文能够对大家有所帮助,谢谢阅读!。
超声波测距工作原理
超声波测距工作原理
超声波测距是一种常见的非接触式距离测量方法,其工作原理是利用声波在空气或其他介质中传播的特性。
具体而言,超声波测距利用了声波在传输过程中的发射和接收时间差来计算被测物体与发射器之间的距离。
在超声波测距的过程中,首先会有一个超声波发射器产生高频的声波信号。
这些声波信号会以一定的速度传播,当遇到一个物体时会发生反射。
然后,超声波接收器会接收到反射回来的声波信号。
接下来,根据声波的传播速度以及发射和接收的时间差,可以通过简单的计算来确定被测物体与发射器之间的距离。
由于声波在空气中的传播速度是已知的,所以只需要测量时间差即可得到准确的距离值。
需要注意的是,超声波测距的精确度受到多种因素的影响。
首先是发射器和接收器之间的位置摆放,要确保它们在同一直线上且距离合适。
其次是环境因素,如温度、湿度等变化会对声波的传播速度产生影响。
此外,被测物体的形状、材料等也会影响反射信号的强度和形态,进而影响测距的准确性。
综上所述,超声波测距工作原理是基于声波的发射和接收时间差进行距离计算。
通过合理设置发射器和接收器的位置以及考虑环境和被测物体的因素,可以实现准确的距离测量。
超声波测距仪工作原理
超声波测距仪工作原理宝子们,今天咱们来唠唠一个超酷的小玩意儿——超声波测距仪。
你可别小看它,这东西在生活里可帮了大忙了呢。
咱先得知道啥是超声波。
超声波啊,就是一种频率特别高的声波,高到咱人耳朵都听不见。
就像那些超级神秘的小信号,在空气里悄悄穿梭。
那这个超声波从哪儿来呢?这就靠测距仪里面一个叫超声波换能器的小部件啦。
这个换能器就像一个小小的魔法棒,它能把电能变成超声波这种机械能。
就好像它在说:“电能电能,你变成超声波吧,然后出去溜达溜达。
”于是,超声波就从测距仪里发射出去啦。
超声波发射出去之后呢,就像一个小探险家,在周围的空间里横冲直撞。
如果前面有个障碍物,比如说一面墙或者一个小盒子,这个超声波就会一头撞上去。
然后呢,就像皮球撞到墙上会弹回来一样,超声波也会反射回来。
这反射回来的超声波可带着重要的信息呢,它就像是在告诉测距仪:“我碰到东西啦,我回来啦。
”这时候啊,测距仪里面的超声波换能器又要发挥作用啦。
它就像一个多面手,刚刚把电能变成超声波发射出去,现在又能把反射回来的超声波这种机械能再变回电能。
是不是很神奇呀?这个换能器就像一个小小的能量转换站,忙得不亦乐乎。
那测距仪怎么知道距离呢?这就涉及到一个很有趣的数学小知识啦。
咱们都知道,速度乘以时间等于路程对吧。
在超声波测距这个事儿里,超声波在空气里传播是有一个固定的速度的,这个速度大概是340米每秒呢。
从发射超声波到接收到反射回来的超声波,这个时间是可以被测距仪精确测量出来的。
那这个路程是啥呢?这个路程其实就是超声波从测距仪到障碍物再返回测距仪所走过的距离。
但是咱们要求的是测距仪到障碍物的距离呀,所以这个总路程得除以2呢。
就好比你去一个地方再回来,你走的总路程是到那个地方距离的两倍嘛。
想象一下,超声波测距仪就像一个小小的智能精灵。
它发射超声波的时候就像在伸出自己的小触角,去探索周围的世界。
当触角碰到东西反射回来,它就能快速地算出距离,然后告诉你:“前面那个东西离咱们有多远呢。
超声波测距的原理
超声波测距的原理超声波测距是一种常见的测距方法,它利用超声波在空气中的传播速度来测量距离。
超声波是一种频率高于人类听觉范围的声波,通常在20kHz以上。
它在测距领域有着广泛的应用,包括工业自动化、车辆倒车雷达、无人机避障等领域。
超声波测距的原理非常简单,它利用声波在空气中传播的速度和时间的关系来计算距离。
当发射超声波的传感器发送一个超声波脉冲时,超声波会以声速在空气中传播,当它遇到障碍物时会被反射回来。
接收超声波的传感器会记录下超声波发射和接收的时间差,通过时间差和声速的关系,就可以计算出超声波传播的距离。
超声波测距的原理主要涉及到声波的传播速度和时间的关系。
声波在空气中的传播速度约为340m/s,这个数值是一个常数。
因此,当超声波发射后,我们可以通过测量超声波发射和接收的时间差来计算出超声波传播的距离。
这个时间差乘以声速就是超声波传播的距离。
超声波测距的原理非常简单,但是在实际应用中需要考虑到一些因素。
首先,由于超声波在空气中的传播速度是一个常数,所以测量的精度主要取决于时间测量的精度。
其次,由于超声波在传播过程中会受到空气密度、温度等因素的影响,因此在测距过程中需要对这些因素进行修正。
最后,超声波在传播过程中也会受到障碍物表面的反射和散射影响,这些因素也需要考虑在内。
总的来说,超声波测距的原理是利用声波在空气中的传播速度和时间的关系来计算距离。
它在工业自动化、车辆倒车雷达、无人机避障等领域有着广泛的应用。
在实际应用中,需要考虑到时间测量的精度、环境因素的修正以及障碍物表面的影响。
超声波测距是一种简单而有效的测距方法,它为各种应用提供了可靠的测距解决方案。
超声波测距的原理
超声波测距的原理
超声波测距是利用超声波的特性来测量物体到测距仪的距离。
超声波是一种频率高于人能听到的声波的声波。
超声波测距的原理是通过发射器发出超声波脉冲,并注意到当超声波在物体表面发生反射时,将会返回到接收器。
测距仪计算从发射到接收超声波之间的时间差,并乘以声波在空气中传播的速度,即可得到物体与测距仪的距离。
测距仪中的发射器一般是一个压电晶体,当加上电流时,晶体会产生振动并发出超声波。
接收器通常是另一个晶体,它可以将接收到的超声波转换成电压信号。
超声波的传播速度通常取决于介质的类型和温度。
在大多数情况下,超声波在空气中的传播速度约为每秒340米,而在水中约为每秒1500米。
超声波测距广泛应用于工业自动化、避障传感器、机器人导航、汽车停车辅助等领域。
它具有测量范围广、测量精度高、无需接触目标物体等优点,并且不受光线、尘埃、颜色等物理因素的影响。
如何使用超声波测距仪测量距离
如何使用超声波测距仪测量距离超声波测距仪是一种常用的测距设备,广泛应用于工业、建筑、医疗等领域。
它通过发射一束高频超声波,利用超声波在空气中的传播速度与物体间距离的关系,来准确测量距离。
使用超声波测距仪测量距离的准确性和方便性使其成为很多场合的首选工具。
在使用超声波测距仪进行测量之前,首先需要了解超声波测距仪的原理。
超声波是指频率超过20kHz的声波,其在空气中传播的速度受温度、湿度等因素的影响。
超声波测距仪通过发射超声波信号,并在物体表面反射后接收反射回来的超声波信号,然后根据接收到的信号计算出物体与测距仪之间的距离。
为了确保测量结果的准确性,使用超声波测距仪时需要注意一些事项。
首先,要保持超声波测距仪与物体之间的直线距离。
由于超声波是直线传播的,如果在测量过程中遇到障碍物,会导致测量结果不准确。
其次,要注意环境的影响。
在高温、湿度或其他特殊环境下,超声波的传播速度可能会发生变化,影响测量结果的准确性。
因此,在使用超声波测距仪时,要尽量选择稳定且适合超声波传播的环境。
在进行测量之前,需要根据需要设置超声波测距仪的参数。
超声波测距仪通常具有调节声波频率和测量范围的功能。
选择适当的声波频率和测量范围能够提高测量的精度。
同时,还可以根据实际测量情况选择不同的模式,如单次测量模式、连续测量模式等。
在设置参数时,可以根据实际需求灵活调整。
使用超声波测距仪进行距离测量时,需要将测距仪对准目标物体,并按下测量按钮。
超声波测距仪会发射一束超声波信号,并接收反射回来的信号。
通过测量发射和接收超声波信号之间的时间差,可以计算出距离。
一般超声波测距仪会自动完成这个过程,不需要额外的操作。
测量完成后,超声波测距仪会显示测得的距离值。
虽然超声波测距仪具有较高的测量精度和方便的使用特点,但也存在一些限制。
首先,超声波在空气中传播的速度受温度和湿度等因素的影响,可能导致测量误差。
其次,超声波测距仪只能测量物体与测距仪之间的直线距离,对于不规则形状的物体测量可能不准确。
毕业设计论文--基于单片机的超声波测距系统设计
毕业设计(论文)题目:基于单片机的超声波测距系统设计摘要由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。
超声波测距系统,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于液位、井深、管道长度的测量等场合。
利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求。
本文介绍了一种基于STC89C52单片机的超声波测距系统,阐述了超声波测距系统的硬件电路部分的构成、软件设计思路及工作原理。
硬件部分采用STC89C52 单片机作为主控单片机,硬件电路主要由发射电路、接收电路、显示电路、报警电路等几部分组成;软件部分由主程序、显示子程序、超声波发射子程序、延迟子程序、计算子程序、报警程序等组成。
该电路具有结构简单、操作方便、精度较高、应用广泛的特点。
关键词:超声波;测距系统;单片机AbstractBecause of the strong point of ultrasonic energy consumption slow, medium of communication in the longer distance, thus frequently used ultrasonic distance measurement, such as the range finder and level measurement and so on can be achieved by ultrasound. Ultrasonic Ranging System, can be used in car reversing, the construction site and the location of some industrial site monitoring, can also be used if the level, depth and length of the pipeline, such as measurement occasions. Use of ultrasonic testing is often more rapid, convenient and simple terms, easy to achieve real-time control, and measurement accuracy can meet the practical requirements of industry.The paper describes an ultrasonic measuring system based on the STC89C52, it described an ultrasonic measuring system hardware circuit structure, working principle and software design methods. Hardware using STC89C52 microcontroller as a master MCU, the hardware circuit part includes main transmitter, receiver circuit, display circuit, warning circuit and so on. The software part includes the main program, display subroutine, ultrasonic transmitter subroutine, delay subroutine, calculation subroutine and alarm program. The system Circuits were simply structure, easy to use, high accuracy and wide application.Key Words:Ultrasonic wave;Ranging System;MCU目录摘要 (I)Abstract (II)第1章绪论............................................................................................................. - 1 -1.1 测量距离的意义.................................................................................................... - 1 -1.2 基于单片机的超声波测距系统.......................................................................... - 2 -1.2.1 单片机概述 ...................................................................................................... - 2 -1.2.2 单片机的发展趋势 ........................................................................................ - 2 -1.2.3 基于单片机的超声波测距系统的优点与缺陷 ........................................ - 3 -1.2.4 超声波测距原理............................................................................................. - 4 -1.3设计内容 .................................................................................................................. - 4 -第2章设计方案..................................................................................................... - 5 -2.1 设计的目的和要求................................................................................................ - 5 -2.1.1 设计的目的 ..................................................................................................... - 5 -2.1.2 设计的要求 ..................................................................................................... - 5 -2.2 设计思路................................................................................................................. - 5 -2.2.1 硬件部分.......................................................................................................... - 5 -2.2.2 软件部分.......................................................................................................... - 6 -2.3 重要功能模块的选取 ........................................................................................... - 6 -2.3.1 单片机的选用 ................................................................................................. - 6 -2.3.2 发射器和接收器............................................................................................. - 8 -第3章硬件电路设计............................................................................................. - 9 -3.1 系统硬件设计总框图分析 .................................................................................. - 9 -3.2 处理器STC89C52................................................................................................. - 9 -3.2.1 单片机STC89C52的特点 ......................................................................... - 10 -3.2.2 STC89C52管脚说明 .................................................................................... - 11 -3.3 单片机最小系统设计 ......................................................................................... - 14 -3.3.1 单片机最小系统........................................................................................... - 14 -3.3.2 本次设计中的单片机最小系统................................................................. - 14 -3.4 超声波模块HC-SR04 ........................................................................................ - 17 -3.5 显示模块LCD1602 ............................................................................................ - 18 -3.6 报警模块............................................................................................................... - 21 -3.7 超声波测距系统的实物图 ................................................................................ - 22 -第4章软件程序设计........................................................................................... - 23 -4.1 概述........................................................................................................................ - 23 -4.2 头文件和全局变量.............................................................................................. - 23 -4.3 主程序 ................................................................................................................... - 24 -4.4 初始化函数........................................................................................................... - 25 -4.5 显示子程序和溢出中断程序 ............................................................................ - 25 -4.6 超声波发射程序、T1中断子程序和报警程序 ............................................ - 26 -4.7 距离计算程序 ....................................................................................................... - 27 -第5章系统的调试............................................................................................... - 28 -5.1 硬件的调试........................................................................................................... - 28 -5.2 软件的调试........................................................................................................... - 29 -结论..................................................................................................................... - 32 -参考文献................................................................................................................. - 33 -附录..................................................................................................................... - 34 -1.源程序 .................................................................................................................... - 34 -2.英文原文 ................................................................................................................ - 41 -3.中文译文 ................................................................................................................ - 53 -致谢..................................................................................................................... - 62 -第1章绪论1.1 测量距离的意义准确而快速地测定任意两个空间点间的距离,对人类活动的许多方面都具有十分重要的意义。
超声波测距原理解读
超声波测距原理解读超声波测距是一种常用的测量技术,通过发射超声波并接收其反射波来确定物体与传感器之间的距离。
超声波测距具有精度高、反应速度快等优点,广泛应用于工业自动化、智能交通和安防监控等领域。
本文将解读超声波测距的原理和工作过程。
一、原理概述超声波测距利用声波在空气中传播的速度很快的特点,通过发射超声波并测量其传播时间来计算距离。
其原理基于声波的发射、传播和接收。
二、工作过程1. 超声波发射:传感器会发射一束超声波脉冲。
超声波脉冲的频率通常在20 kHz到200 kHz之间,人耳无法听到。
发射的超声波脉冲会在空气中传播。
2. 超声波传播:超声波脉冲在空气中以声速传播,当遇到物体时,部分能量被物体吸收,另一部分能量通过反射返回传感器。
3. 超声波接收:传感器接收到反射波,并将其转化为电信号。
传感器通常由超声波发射器和接收器组成,可以同时发射与接收超声波信号。
4. 信号处理:接收到的反射波经信号处理后,可以通过计算发射和接收之间的时间差来确定物体与传感器的距离。
根据声波在空气中的传播速度,可以使用速度乘以时间差的方法计算出物体的距离。
三、应用领域超声波测距技术由于其精度高、反应速度快的特点,被广泛应用于各个领域。
以下是几个常见的应用领域:1. 工业自动化:超声波测距可用于测量物体的距离、检测物体的位置和尺寸,广泛应用于自动化生产线上的物体检测与定位。
2. 智能交通:超声波测距可以用于车辆与障碍物之间的距离测量,帮助驾驶员避免碰撞事故。
在停车辅助系统中也有广泛应用。
3. 安防监控:超声波测距可用于检测入侵者的接近,结合其他传感器设备,可以构建智能安防系统,提升安全性能。
4. 医疗领域:超声波测距技术在医疗设备中有广泛应用,如超声波图像仪、超声波测量仪器等,用于诊断、检测和治疗等方面。
四、优缺点超声波测距技术具有以下优点:1. 测量精度高,一般可以达到毫米级别。
2. 反应速度快,测量时间通常在纳秒或微秒级别。
超声波测距
超声测距大致有以下方法:① 取输出脉冲的平均值电压,该电压 (其幅值基本固定 )与距离成正比,测量电压即可测得距离;② 测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。
本测量电路采用第二种方案。
由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。
如果测距精度要求很高,则应通过温度补偿的方法加以校正。
超声波测距适用于高精度的中长距离测量。
因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。
超声波测距学习板采用STC89C51单片机,晶振:12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,断码用74LS245,位码用8550驱动.超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。
X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2- X1=0.03S,则有340m×0.03S=10.2m。
由于在这10.2m的时间里,超声波发出到遇到返射物返回的距离,超声波测距器的系统框图如下图所示:硬件部分超声波测距学习板采用STC89C51单片机,晶振:12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,断码用74LS244,位码用8550驱动.主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。
采用STC89C51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。
单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。
超声波传感器测距实验.
超声波传感器测距实验
一、实验目的:了解超声波在介质中的传播特性;了解超声波传感器测量距离的原理和结构。
二、基本原理:超声波传感器由发射探头、接收探头及相应的测量电路组成。
超声波是听觉阈值以外的振动,其常用频率范围在104~3×106之间,超声波在介质中可以产生三种形式的振荡波:横波、纵波、表面波。
用于测量距离时采用纵波。
本实验用超声波发射探头的发射频率为40KHz,在空气中波速为344m/s。
当超声波在空气中传播碰到金属介面时会产生一个反射波和折射波,从金属介面反射回来的波由接收探头接收探头接输入测量电路,计算超声波从发射到接收之间的时间差Δt,从s=v·Δt就能算出相应的距离。
三、需用器件与单元:超声波传感器实验模板、超声波发射及接收器件、反射挡板、数显表、±15V电源。
四、实验步骤:
1、超声波传感器发射和接收四根尾线中,编号为1、2的二根线插入发射电路两个端孔;编号为3、4的二根线插入接收电路二个端孔。
从主控箱接入±15V。
2、距超声波传感器5cm(0~5cm左右为超声波测量盲区)处放置反射挡板,合上电源。
实验模板滤波电路输出端与主控箱V i相接,电压选择2V档。
调节挡板对正探头的角度,使输出电压达到最大。
3、以三源板侧边为基准,平行移动反射板,依次递增2cm,读出数显表上
的数据,记入表16-1。
表16-1超声波传感器输出电压与距离之关系。
4、根据一16-1数据画出V-X曲线,并计算其灵敏和线性度。
五、思考题:
调节反射档板的角度,重复上述实验,超声波传感还可用于测量角度吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机课程设计
之
设
计
设计者:徐多
课题题目:基于单片机的超声波测距系统
1.1课题研究的背景
随着科学技术的快速发展,超声波将在传感器中的应用越来越广。
比如倒车提示系统,测水位系统等等.但就目前技术水平来说,人们可以具体利用的传感技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。
展望未来,超声波传感器作为一种新型的非常重要有用的工具在各方面都
将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题。
毋庸置疑,未来的超声波传感器将与自动化智能化接轨,与其他的传感器集成和融合,形成多传感器。
随着传感器的技术进步,传感器将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力[1]。
1.2课题研究的意义
在现实生活中,一些传统的距离测量方式在某些特殊场合存在不可克服的缺陷,例如,液面测量就是一个距离测量,传统的电极法是采用差位分布电极,通过给电或脉冲检测液面,电极长期浸泡在水中或其它液体中,极易被腐蚀、电解,从而失去灵敏性。
而利用超声波测量距离可以很好地解决这一问题。
目前市面上常见的超声波测距系统不仅价格昂贵,体积过大而且精度也不高等种种因素,使得在一些中小规模的应用领域中难以得到广泛的应用。
为解决这一系列难题,本文设计了一款基于AT89C51单片机的低成本、高精度、微型化的超声波测距仪[2]。
3项目实现原理
3.1系统结构设计原理
超声波是利用反射的原理测量距离的,被测距离一端为超声波传感器,另一端必须有能反射超声波的物体。
测量距离时,将超声波传感器对准反射物发射超声波,并开始计时,超声波在空气中传播到达障碍物后被反射回来,传感器接收到反射脉冲后立即停止计时,然后根据超声波的传播速度和计时时间就能计算出两端的距离[5]。
测量距离D为
ctD2 1 (2-1)
式中 c——超声波的传播速度;t2 1 ——超声波发射到接收所需时间的一半,也就是单程传播时间。
由上式可知,距离的测量精度主要取决于计时精度和传播速度两方面。
计时精度由单片机定时器决定,定时时间为机器周期与计数次数的乘积,可选用12MHz的晶振,使机器周期为精确的1µs,不会产生累积误差,使定时间达到1µs
可以采用AT89C52单片机作为主控制器,它控制发射触发脉冲的开始时间及脉宽,响应回波时刻并测量、计数发射至往返的时间差。
利用软件产生超声波信号,通过输出引脚输入至驱动器,经驱动器驱动后推动探头产生超声波;超声波信号的接收采用锁相环LM567对放大后的信号进行频率监视和控制。
一旦探头接到回波,若接收到的信号频率等于振荡器的固有频率(此频率主要由RC值决定),则其输出引脚的电平将从“1”变为“0”(此时锁相环已进入锁定状态),
这种电平变化可以作为单片机对接收探头的接收情况进行实时监控。
可对测得数据优化处理,并采用温度补偿,使测量误差降到更低限度;AT89C51还控制显示电路,用动态扫描法实现LED数字显示。
3.2系统结构设计结构
超声波测距仪系统结构如图3-1所示。
它主要由单片机、超声波发射及接收电路、超声波传感器、键盘、LED显示电路及电源电路组成。
系统主要功能包括:
1) 超声波的发射、接收,并根据计时时间计算测量距离;
2) LED显示器显示距离;
3) 键盘接收用户命令并处理;
4) 当系统运行不正常时,用电平式开关与上电复位电路复位。
4主要元器件
器件数量STC89C52 1 LED显示器 1 74HC573 1 蜂鸣器 1 排阻 1 电阻若干电容若干按键若干其他。