七年级数学上册_一元一次方程复习课件(北师大版)
合集下载
北师大版七年级数学上册《认识一元一次方程》课件
练习 解下列方程: (1)x – 9 = 8; (2)5 – y = –16
解(1)方程两边同时加上 9,得 x – 9 + 9 = 8 + 9. 于是 x = 17.
(2)5 – y = –16
(2)方程两边同时减去 5,得 5 – y – 5 = – 16 – 5. 于是 – y = – 21. 方程两边同时除以 – 1,得 y = 21.
Hale Waihona Puke 使方程左、右两边的值相等的未知数的值, 叫做方程的解.
检验 x = 300 是否是方程 2.5x + 318 = 1 068 的解.
把 x = 300 代入原方程得, 左边 = 2.5×300 + 318 = 1 068, 左边 = 右边, 所以 x = 300 是方程 2.5x + 318 = 1 068 的解.
xx xxx
x x x 22
2x = 4
xx xx x
x= 2
22 x
xx
等式的基本性质: 等式两边同时加上(或减)同一个代数
式,所得结果仍是等式. 等式两边同时乘同一个数(或除以同一
个不为 0 的数),所得结果仍是等式.
利用等式的基本性质可以解一元一次方程.
例 1 解下列方程: (1)x + 2 = 5; (2)3 = x – 5.
小颖种了一株树苗,开始 时树苗高为 40 cm,栽种后每 周树苗长高约 5 cm,大约几周 后树苗长高到 1 m?
如果设 x 周后树苗长高到 1 m,那么可以 得到方程:___4_0__+_5_x__=_1_0_0_____.
甲、乙两地相距 22 km,张叔叔从甲地出 发到乙地,每时比原计划多行走 1 km,因此 提前 12 min 到达乙地,张叔叔原计划每时行 走多少千米?
北师大版七年级上册数学第五章一元一次方程复习课课件(21张PPT)
12/24/2019
解一解:
4x 8(x 2) 1 40 40
解:
去分母,得 4x 8(x 2) 40
去括号,得 4x 8x 16 40
移项,得 4x 8x 40 16
合并同类项,得 系数化为1,得
12x 24 x2
12/24/2019
指出解方程
(1) 2(x-2)-3=9(1-x)
(2) 2x 5 3x 2 1x 5x 2 0.2
12/24/2019
四、方程ax=b的解的情况
练习:
1、关于x的方程mx-1=5x+3n有无数多个解, 那么分别求出m、n的值.
2、已经关于x的一元一次方程kx=4-x的解为 正整数,求k的整数值.
合并同 运用有理数的加法法则,把
类项 方程变为ax=b(a≠0 ) 的 1)把系数相加
最简形式
2)字母和字母的指数不变
系数化 将方程两边都除以未知
为1
数系数a,得解x=b/a
解的分子,分母位置 不要颠倒
1、试一试
大家判断一下,下列方程的变形是否正确?
为什么?
(1) 由3 x 5,得x 5 3 ; (×)
12/24/2019
列方程解应用题常见的类型
1. 和、差、倍、分问题 6. 数字问题
2. 等积变形问题 3. 调配问题 4. 比例分配问题 5.工程问题
7.行程问题 8.销售中的利润问题 9.储蓄问题 10.年龄问题
列方程解应用题时,先弄清题目是属于上面所 述的哪种类型的问题,再设出末知数,根据各种类型 的数量关系列出方程即可解决问题.
练习4: A、B两车分别停靠在相距115 千米的甲、乙两地,A车每小时行50千 米,B车每小时行30千米,A车出发1.5 小时后B车再出发。 (1)若两车相向而行,请问B车行了多 长时间后与A车相遇? (2)若两车相向而行,请问B车行了多 长时间后两车相距10千米?
北师大版七年级数学上册应用一元一次方程-追赶小明课件
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
练习2:甲骑摩托车,乙骑自行车同时从相距150千米 的两地相向而行,经过5小时相遇,已知甲每小时行驶 的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的速度
解:设乙骑自行车的速度为x千米ቤተ መጻሕፍቲ ባይዱ时, 据题意得 5(3x-6)+5x =150. 解,得 x=9.
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
例1:小明早晨要在
7:20以前赶到距家
1000米的学校上学,一
天,小明以80m/min的
速度出发,5min后,
小明的爸爸发现他忘了
带历史作业,于是,爸
爸立即以180m/min的
速度去追小明,并且在 (1)爸爸追上小明用了多长时间?
途中追上了他.
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
教学目标
1.能借助“线段图”分析复杂问题中的数量关系,从而列出方 程,解决问题.熟悉行程问题中路程、速度、时间之间的关系, 从而实现从文字语言到符号语言的转换. 2.经历画“线段图”找等量关系,列出方程解决问题的过程, 进一步体验画“线段图”也是解决实际问题的有效途径.体会 “方程”是解决实际问题的有效模型,并进一步培养学生的文 字语言、符号语言、图形语言的转换能力.
北师大版七年级《数学》上册
强化练习
5.6应用一元一次方程—追赶小明
小华和小玲同时从相距700米的两地相对走来, 小华每分钟走60米,小玲每分钟走80米。几分钟后两人相遇? 分析:先画线段图:
小结:同向而行 ②甲、乙同时走;
等量关系:甲的时间=乙的时间; 乙的路程=甲的路程+起点距离.
北师大版七年级《数学》上册 5.6应用一元一次方程—追赶小明
北师大版七年级上数学5.1认识一元一次方程课件(1) (共24张PPT)
x 9 4.5 5 5.5 6 2
66..55 7
7.5
----尝试检验的方法
检验下列各数是否为方程x-3=2x-8的解:
(1) X=5 ;
(2) X=-2 .
解: (1) 把x=5代入方程左右两边,
左边=5-3=2, 右边=2×5-8=2, 左边=右边. 所以x=5是方程x-3=2x-8的解.
8 x 1 x 4.5 _________2__________
丢番图:
古希腊亚历山大学后期的 重要学者和数学家;
代数学的创始人之一,对 算数理论有深入的研究;
他完全脱离了几何形式, 在希腊数学界独树一帜。
希腊数学家丢番图的墓碑上记载着: “他生命 的六分之一是幸福的童年;再活了他生命的十二 分之一,两颊长起了细细的胡须;他结了婚,又 度过了一生的七分之一;再过五年,他有了儿子, 感到很幸福;可是,儿子只活了他父亲全部生命 的一半;儿子死后,他又在极度的悲伤中度过了 四年,也与世长辞了.”
解:如果设x周后树苗长高到1 米, 那么可以得到方程:
40 5x 100
鸡兔同笼,有20个头, 54条腿,鸡兔各有几只?
鸡的腿数+兔的腿数=总的腿数
解:设鸡有 x 只,则兔有 (20 x) 只。
可列方程为 2x 4(20 x) 54 。
( x 25)米
x米
某长方形操场的是 5 850平方米,长和宽之 差为 25 m,这个操场的长与宽分别是多少米?
2 .下列方程中,解为-2的是( C )
A 3x 2 2x
B 4x 1 2x 3
C 3x 1 2x 1 D 5x 3 6x 2
3.小颖的爸爸今年44岁,是小颖年龄的3倍还 大2岁,设小颖今年x岁,则可列方程 ___3_x+_2_=_4_4______
5.1 认识方程 课件 (共20张PPT) 北师大版数学七年级上册
4. 已知方程 (m 2)x m 1 3 m 5 是关于 x 的一元一 次方程,求 m 的值,并写出原方程.
解:因为方程 (m 2)x m 1 3 m 5 是关于 x 的一元 一次方程, 所以 |m|-1 = 1,且 m-2 ≠ 0,得 m = -2. 所以原方程为-4x + 3 = -7.
A. 3x-2=2x
B. 4x-1=2x+3
C. 3x+1=2x-1 D. 5x-3=6x-2
2. 若 x=4 是关于 x 的方程 ax=8 的解,则 a 的值 为___2___.
当堂小结
认识方程
方程的定义 一元一次方程
方程的解
课堂练习 1. x = 1 是下列哪个方程的解
A. 1 x 2 C. x 1 x 2
甲种支数 乙种支数 20支
解:设甲种铅笔买了 x 支,乙种铅笔买了 (20 - x) 支. 0.3x + 0.6(20-x) = 9,是一元一次方程.
(3)一个梯形的下底比上底多 2 cm,高是 5 cm,面 积是 40 cm2,求上底.
1 2 (上底+下底)×高 = 梯形面积
解:设上底为 x cm,则下底为 (x + 2) cm. 1 (x x 2)5 40,是一元一次方程. 2
x
415 424 433 442 451 460 379 388 …
10x + 15(45 - x) 46570 64655 6460 465 470 475 480 485 …
总结 使方程左、右两边的值相等的未知数的值,叫作方 程的解。求方程的解的过程称为解方程。
练一练
1. 下列方程中,解为 x=-2 的是( C )
典例精析
例1 判断下列各式哪些是方程:
2024年秋新北师大版数学7年级上册课件 第5章 1元1次方程 5.1 认识方程 5.1 认识方程
2或-2
1
利用一元一次方程的定义求字母的值
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
1.方程3x5-2k -8=0是关于x的一元一次方程,则k=_____.
2
2.方程x|m| +4=0是关于x的一元一次方程,则m=_____.
3.方程(m-1)x -2=0是关于x的一元一次方程,则m_____.
解:设卖出铅笔x支,则卖出圆珠笔(60-x)支. 等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,
例1 哪些是一元一次方程?(1) ; (2) ; (3) ; (4) ;(5) ;(6) ;(7) .
一元一次方程的识别
不是整式方程
不是等式
是不等式,不是方程
是一元一次方程.
是一元一次方程.
未知数的次数是2
含有两个未知数.
3am+15=3
3x-5=5x+4
x2+2x-6=0
-3x+1.8=3y
√
√
7a+8=10
例2 (1)若关于x的方程2 x |n|-1 – 9 = 0是一元一次方程,则 n 的值为 .
(2)方程(m+1) x |m| + 1 = 0是关于x的一元一次方程,则m= .
某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
列方程:0.52x-(1-0.52)x=80.
等量关系:女生人数-男生人数=80,
例 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.
1
利用一元一次方程的定义求字母的值
注:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
1.方程3x5-2k -8=0是关于x的一元一次方程,则k=_____.
2
2.方程x|m| +4=0是关于x的一元一次方程,则m=_____.
3.方程(m-1)x -2=0是关于x的一元一次方程,则m_____.
解:设卖出铅笔x支,则卖出圆珠笔(60-x)支. 等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,
例1 哪些是一元一次方程?(1) ; (2) ; (3) ; (4) ;(5) ;(6) ;(7) .
一元一次方程的识别
不是整式方程
不是等式
是不等式,不是方程
是一元一次方程.
是一元一次方程.
未知数的次数是2
含有两个未知数.
3am+15=3
3x-5=5x+4
x2+2x-6=0
-3x+1.8=3y
√
√
7a+8=10
例2 (1)若关于x的方程2 x |n|-1 – 9 = 0是一元一次方程,则 n 的值为 .
(2)方程(m+1) x |m| + 1 = 0是关于x的一元一次方程,则m= .
某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
列方程:0.52x-(1-0.52)x=80.
等量关系:女生人数-男生人数=80,
例 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.
北师大版七年级上册第五章一元一次方程章末复习课件(31)
D.1 784.45
5. 如果关于m的方程2m+b=m-1的解是-4,那么b的值为(A )
A.3
B.5
C.-5
D.-13
考点对接
6. 已知方程(m+1)x |m| +3=0是关于x的一元一次方程,则m的值是( B ) A.±1 B.1 C.-1 D.0或1 分析:方程(m+1)x |m| +3=0是关于x的一元一次方程,则m+1≠0,|m|=1, 所以m=1.答案:B 7. 方程 2x 1 x+1 =1 ,去分母,得( B )
4x=8
x=2
当x<0时,原式化为
5x-(-x)=8
6x=8
x=
4 3
(不满足x<0的条件,所以不符合要求,应舍去)
方程的解为x=2
考点对接
13. 已知x 2m-3 +6=m是关于x的一元一次方程,试求代数式(m-3) 2 006 的值.
解:由已知x 2m-3 +6=m是关于x的一元一次方程, 得2m-3=1; 解之,得m=2; 从而(m-3) 2 006
A.13立方米 B.14立方米 C.18立方米 D.26立方米
考点对接
5. 甲、乙两人从同一地点出发前往某地,若乙先走1小时,甲从后面追赶,
当甲追上乙时,不成立的是( C )
A.乙比甲先走1小时
B.甲、乙两人行程之和等于出发地和相遇地两点距离的2倍
C.乙走的路程比甲多
D.甲、乙两人所走的路程相等
6. 教室里有40套课桌椅,共计2 800元,每把椅子20元,问每张桌子多少
等式基本性质2 去括号法则、分配律
等式基本性质1 合并同类项法则
系数化成1 在方程两边都除以未知数的系数a,得x=b/a
【最新】北师大版数学七年级上册第五章《一元一次方程》精品课件
1. 配制一种农药,其中生石灰,硫磺粉和水的重量
比是1:2:5,要配制这种农药2000千克,各种原料分
别需要多少?
组卷网
• 例1:有一列数,按一定规律排列成1,-3,9, -27,81,-243,···,其中某三个相 邻数的和是-1701,这三个数各是多少?
解:设这三个相邻数中第一个数为 x,那么第二个数 为 -3x ,第三个数为 -3×(-3x),得:
X+(-3x)+9x = -1701
7x=-1701 x=-243
50+0.4t = 0.6t 0.4t -0.6t = -50
-0.2t= -50 t=250
答:
1.某饲养场共有鸡和猪70只,它们的腿数为 196,求该场有多少只鸡?
2.父子二人,父亲48岁,儿子21岁,问多少年 前父亲的年龄是儿子年龄的 4 倍.
3. 一份试卷共25道选择题,总分为100分,每 道题选对得4分,选错或不选扣1分,如果一个 学生得85分,那么他做对了多少道题?
那么-3x=729, 9x=-2187
答:这三个数分别是:-243,729,-2187
1. 三个连续偶数的和为120,求这三个偶数?
zxxkw
例2:
两种移动电话
计费方式表
月租费 本地通话费
全球)一个月内在本地通话200分和300分,按两种 方式各需交费多少元?
解:(1)通话200分时,全球通要交费为 50 + 0.4×200 =130 (元)
神州行要交费为 0.6×200 =120 (元)
通话300分时,……
全球通 神州行 月租费 50元/月 0 本地通话费 0.4元/分 0.6元/分
(2)累计通话一段时间后,会出现两种计费方式 的收费一样的情况吗?
《求解一元一次方程》PPT课件 北师大版
变变式式训训练练
解下列方程:
(1)2x-(x+10)=5x+2(x-1)
解:去括号,得 2x-x-10=5x+2x-2 移项,得 2x-x-5x-2x=-2+10 合并同类项,得 -6x=8 系数化为1,得 x=-43
巩固练习
变式训练
(2)3x-7(x-1)=3-2(x+3)
解:去括号,得
3x-7x+7=3-2x-6
(1)5+x=10移项得x= 10+5 ; 10-5 ×
(2)6x=2x+8移项得 6x+2x =8; 6x-2x ×
(3)5-2x=4-3x移项得3x-2x=4-5;
√
(4)-2x+7=1-8x移项得-2x+8x=1-7. √
探究新知
知识点 2 利用移项解一元一次方程
例1 解下列方程: (1)2x+6=1;
连接中考
已知九年级某班30位学生种树72棵,男生每人种3棵树,女生 每人种2棵树,设男生有x人,则( D )
A.2x+3(72-x)=30 C.2x+3(30-x)=72
B.3x+2(72-x)=30 D.3x+2(30-x)=72
课堂检测
基础巩固题
1.解方程3-(x+6)=-5(x-1)时,去括号正确的是( B )
x=1
方程中有带括号 的式子时,去括 号是常用的化简 步骤.
探究新知 素养考点 1 解含有括号的一元一次方程
例1 解方程: 4(x+0.5)+x=7.
解:去括号, 得4x + 2 + x = 7, 移项, 得4x + x=7-2,
解下列方程:
(1)2x-(x+10)=5x+2(x-1)
解:去括号,得 2x-x-10=5x+2x-2 移项,得 2x-x-5x-2x=-2+10 合并同类项,得 -6x=8 系数化为1,得 x=-43
巩固练习
变式训练
(2)3x-7(x-1)=3-2(x+3)
解:去括号,得
3x-7x+7=3-2x-6
(1)5+x=10移项得x= 10+5 ; 10-5 ×
(2)6x=2x+8移项得 6x+2x =8; 6x-2x ×
(3)5-2x=4-3x移项得3x-2x=4-5;
√
(4)-2x+7=1-8x移项得-2x+8x=1-7. √
探究新知
知识点 2 利用移项解一元一次方程
例1 解下列方程: (1)2x+6=1;
连接中考
已知九年级某班30位学生种树72棵,男生每人种3棵树,女生 每人种2棵树,设男生有x人,则( D )
A.2x+3(72-x)=30 C.2x+3(30-x)=72
B.3x+2(72-x)=30 D.3x+2(30-x)=72
课堂检测
基础巩固题
1.解方程3-(x+6)=-5(x-1)时,去括号正确的是( B )
x=1
方程中有带括号 的式子时,去括 号是常用的化简 步骤.
探究新知 素养考点 1 解含有括号的一元一次方程
例1 解方程: 4(x+0.5)+x=7.
解:去括号, 得4x + 2 + x = 7, 移项, 得4x + x=7-2,
北师大版数学七年级上册求解一元一次方程课件(第3课时28张)
课堂检测
拓广探索题
方程(3m-4)x2+3mx-4m=5x-2m是关于x的一元一
次方程,求m和x的值.
解: 因为原方程是关于x的一元一次方程,
(3m-1)x2+3mx-4m-5x+2m=0
(3m-1)x2+(3m-5)x-2m=0
所以3m-4=0,3m-5≠0,解得 4
m=
3
将m= 4 代入原方程,得4x
系数相加,不漏项
骤 未知数的系数 等式的性质
:
化为1
2
乘系数的倒数
课后作业
作业 内容
教材作业 从课后习题中选取
自主安排 配套练习册练习
1. 掌握解一元一次方程中“去分母”的方法.
探究新知
知识点
解有分母的一元一次方程
交流讨论
解方程: 3x 1 2 3x 2 2x .
2
10 5
想一想 1. 若使方程的系数变成整系数方程,
方程两边应该同乘以什么数?
2. 去分母时要注意什么问题?
探究新知
3x 1 2 3x 2 2x .
18x+3(x-1) =18-2 (2x -1).
去括号,得 18x+3x-3 =18-4x +2.
移项,得 18x+3x+4x =18 +2+3.
合并同类项,得 系数化为1,得
25x = 23. x 23 . 25
巩固练习
归纳小结
1. 去分母时,应在方程的左右两边乘以分母 的最小公倍数 ;
2. 去分母的根据是 等式性质2 ;去分母时不能 漏乘没有分母的项 ;
思考: (1)题中涉及到哪些数量关系和相等关系? (2)引进什么样的未知数,你能根据这样 的相等关系列出方程吗?
北师大版七年级数学上册《一元一次方程——认识一元一次方程》教学PPT课件(4篇)
元一次方程,求a的值.
解:由题意可知:|a|-2=1, 所以|a|=3,则a=±3. 又因为a+3≠0,所以a≠-3,所以a=3.
易错警示:一元一次方程中未知数的系数不能为0, 这一点要特别注意.
6.列方程: (1)把一些图书分给某班同学,如果每人4本,则剩余12本,如果 每人5本,则还缺30本,则该班有多少名学生 (设该班有x名学生)? (2)一本书的封面的周长为50 cm,长比宽多5 cm,则这本书的 封面的长和宽分别是多少(设这本书的封面的宽为x cm)?
认识一元一次方程
第1课时
情境导入
小游戏:猜老师的年龄
老师的年龄乘以3再减去17刚好为73,那现在你能 知道老师的年龄吗?你是怎么猜?
情景1: 你5猜得小你的出数敏今年你是,年龄年多我1乘3龄少能岁2.减?
不21信
她怎么知道 我的年龄是13
岁的呢?
小敏
如果设小敏的年龄为x岁,那么“乘2再减5”就
是 2x-5 ,因此可以得到方程: 2x-5=21 .
解:(1)根据题意可得4x+12=5x-30. (2)根据题意得x+x+5=50÷2.
古代故事: 隔墙听得客分银, 不知人数不知银. 七两分之多四两, 九两分之少半斤.
(注:在古代1斤是16两,半斤就是8两)
古诗文意思: 有几个客人在房间内分银子,每人分七两,最后多 四两,每人分九两,最后还差八两,问有几个人? 有几两银子?
只含有一个未知数,未知数的系数不等于0 4. (k 2)x2 kx 21 0 是一元一次方程,则k =_-2__
获取新知
使方程左、右两边的值相等的未知数的值, 叫做方程的解.
在“猜年龄”游戏中,当被告知计算的结果是21时,我们 所列的方程为2x-5=21,从而求出年龄是13.由于13能使 方程的两边相等,我们就把13叫做方程2x-5=21的解.
解:由题意可知:|a|-2=1, 所以|a|=3,则a=±3. 又因为a+3≠0,所以a≠-3,所以a=3.
易错警示:一元一次方程中未知数的系数不能为0, 这一点要特别注意.
6.列方程: (1)把一些图书分给某班同学,如果每人4本,则剩余12本,如果 每人5本,则还缺30本,则该班有多少名学生 (设该班有x名学生)? (2)一本书的封面的周长为50 cm,长比宽多5 cm,则这本书的 封面的长和宽分别是多少(设这本书的封面的宽为x cm)?
认识一元一次方程
第1课时
情境导入
小游戏:猜老师的年龄
老师的年龄乘以3再减去17刚好为73,那现在你能 知道老师的年龄吗?你是怎么猜?
情景1: 你5猜得小你的出数敏今年你是,年龄年多我1乘3龄少能岁2.减?
不21信
她怎么知道 我的年龄是13
岁的呢?
小敏
如果设小敏的年龄为x岁,那么“乘2再减5”就
是 2x-5 ,因此可以得到方程: 2x-5=21 .
解:(1)根据题意可得4x+12=5x-30. (2)根据题意得x+x+5=50÷2.
古代故事: 隔墙听得客分银, 不知人数不知银. 七两分之多四两, 九两分之少半斤.
(注:在古代1斤是16两,半斤就是8两)
古诗文意思: 有几个客人在房间内分银子,每人分七两,最后多 四两,每人分九两,最后还差八两,问有几个人? 有几两银子?
只含有一个未知数,未知数的系数不等于0 4. (k 2)x2 kx 21 0 是一元一次方程,则k =_-2__
获取新知
使方程左、右两边的值相等的未知数的值, 叫做方程的解.
在“猜年龄”游戏中,当被告知计算的结果是21时,我们 所列的方程为2x-5=21,从而求出年龄是13.由于13能使 方程的两边相等,我们就把13叫做方程2x-5=21的解.
北师大版七年级数学课件:第五章一元一次方程复习
250x
A
B
2000
小聪 500 小明
200x
250x=2000+500+200x
在一条笔直的公路上,小聪和小明骑自行车同时从相距 500米的A.B两地出发,小聪每分钟行200米,小明每分行 250米,问多少时间后,两人相距2000米?
☺ 当两人相背向行时,需x分钟相距2000米
A
B
小聪
小明
500
☺ 当小明在前,同向而行时,需x分钟相距2000米
A 500 B
小聪
小明
200x
250x
2000
250x+500=2000+200x
在一条笔直的公路上,小聪和小明骑自行车同时从相距 500米的A.B两地出发,小聪每分钟行200米,小明每分行 250米,问多少时间后,两人相距2000米?
☺ 当小聪在前,同向而行时,需x分钟相距2000米
一元一次方程复习
回顾与思考 本章内容框架图:
一 解一元一次方程
元 一 次
方
程 一元一次方程的应用
下列各方程中,哪些是一元一次方程?
(1) 2x+1=3
(3) x 3 2
(2) 2 3 x
(4)x2 2x 1 0
(5)x y 10
(1)(3)
若关于x的方程(m-1)x2+x=2是一元
A. 1 , B. -1 , C. 5 , D. -5 ;
3、方程 x 3 1 2x
去分母后可得-----(,B. 3 x-9 =1+2 x ,
C. 3 x-3 =2+2 x ,D. 3 x-12=2+4 x ;
解下列方程
(1) 4 3x 3 2x
北师大版数学七年级上册求解一元一次方程课件
x 1 2x 3
( 2)
3
7
3
2
3 x 1 x 1
4
3
x 1
1
4
x 2 1
2
3
(1)解一元一次方程,一般要通过
去分母、去括号、移项、合并同类项、
未知系数化为1等步骤,
(2)把这个一元一次方程“转化”成
x=a的情势。
5x 7x 8 ;2
3x 20 4x 25移项,得
3
5
1 x 3x
2
2
移项,得
3x 4x ;25 20
3
5
- x 3x 1
2
;2
例:解方程
2x 3 3x 2
解:移项,得 2x 3x 2 3
x 1
合并同类项,得
第五章 一元一次方程
5.2.1 求解一元一次方程
温故知新
1.等式的基本性质:
(1)等式的两边同时加上(或减去)同一个代数
式,所得结果仍是等式;
(2)等式两边同时乘以(或除以同一个不为0)的
数,所得结果仍是等式.
2.利用等式的性质解下列方程:
5x-2=8
学习目标
1.理解移项法则,准确进行移项
(重点)
2x+5x-3x=5-6-3.
合并同类项,得
4x=-4.
方程两边同时除以4,得x=-1
思考:利用去括号解方程要注意什么?
去括号必须注意的事项
(1)如果括号外的因数是负数时,去括号
后,原括号内各项的符号要改变;
(2)乘数与括号内多项式相乘时,乘数应乘
括号内的每一项,不要漏乘.
练一练:
( 2)
3
7
3
2
3 x 1 x 1
4
3
x 1
1
4
x 2 1
2
3
(1)解一元一次方程,一般要通过
去分母、去括号、移项、合并同类项、
未知系数化为1等步骤,
(2)把这个一元一次方程“转化”成
x=a的情势。
5x 7x 8 ;2
3x 20 4x 25移项,得
3
5
1 x 3x
2
2
移项,得
3x 4x ;25 20
3
5
- x 3x 1
2
;2
例:解方程
2x 3 3x 2
解:移项,得 2x 3x 2 3
x 1
合并同类项,得
第五章 一元一次方程
5.2.1 求解一元一次方程
温故知新
1.等式的基本性质:
(1)等式的两边同时加上(或减去)同一个代数
式,所得结果仍是等式;
(2)等式两边同时乘以(或除以同一个不为0)的
数,所得结果仍是等式.
2.利用等式的性质解下列方程:
5x-2=8
学习目标
1.理解移项法则,准确进行移项
(重点)
2x+5x-3x=5-6-3.
合并同类项,得
4x=-4.
方程两边同时除以4,得x=-1
思考:利用去括号解方程要注意什么?
去括号必须注意的事项
(1)如果括号外的因数是负数时,去括号
后,原括号内各项的符号要改变;
(2)乘数与括号内多项式相乘时,乘数应乘
括号内的每一项,不要漏乘.
练一练:
北师大七年级数学上册教学课件:第5章 一元一次方程
1、小明在解方程3x–4x=7时,是这样写解的过程的: 3x–4x=7=-x=7=x=-7 (1)小明这样写对不对? (2)应该怎样写?
小试牛刀
2、解下列方程
(1)x-3x=-4(2) -x+3x=4
(3) 3x-x=8-0.5×8(4) -x+3x-6=-2
注意这4道题的符号和结果哟!
(2) X=-25
(3)
问题1: 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
设前年购买x台。可以表示出:去年购买计算机 台,今年购买计算机 台。你能找出问题中的相等关系吗?
2 x
4 x
6÷(-0.2)
填一填:(1)如果3x+4=7,那么3x=________,其依据是________ ,在等式的两边都________.(2)如果- 2x=8,那么x=________,依据是________ ,在等式的两边都________.(3)如果-x=3,那么x=________(4) 如果-2x=4, ,那么x =________。(5) 如果2x- ,那么6x-1=________.
右
左
c
a = b
右
左
c
a = b
右
左
a = b
右
左
a = b
a-c b-c
=
右
左
等式的性质1:等式的两边加(或减)同一个数(或式子),结果仍相等.
如果a=b,那么a+c=b+c.
等式的性质1: 等式两边同加(或同减)同一个数(或式子),结果仍相等。
b
a
a = b
设A、B两地相距x km,则根据题意得:
小试牛刀
2、解下列方程
(1)x-3x=-4(2) -x+3x=4
(3) 3x-x=8-0.5×8(4) -x+3x-6=-2
注意这4道题的符号和结果哟!
(2) X=-25
(3)
问题1: 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
设前年购买x台。可以表示出:去年购买计算机 台,今年购买计算机 台。你能找出问题中的相等关系吗?
2 x
4 x
6÷(-0.2)
填一填:(1)如果3x+4=7,那么3x=________,其依据是________ ,在等式的两边都________.(2)如果- 2x=8,那么x=________,依据是________ ,在等式的两边都________.(3)如果-x=3,那么x=________(4) 如果-2x=4, ,那么x =________。(5) 如果2x- ,那么6x-1=________.
右
左
c
a = b
右
左
c
a = b
右
左
a = b
右
左
a = b
a-c b-c
=
右
左
等式的性质1:等式的两边加(或减)同一个数(或式子),结果仍相等.
如果a=b,那么a+c=b+c.
等式的性质1: 等式两边同加(或同减)同一个数(或式子),结果仍相等。
b
a
a = b
设A、B两地相距x km,则根据题意得:
北师大版数学七年级上册第五章一元一次方程认识一元一次方程课件(共18张)
判断方程的条件: ①有未知数; ②是等式;
选一选:判断下列各式是不是方程,是
的打“√”,不是的打“x”.
(1)-2+5=3 (x)
(2)3x-1=7 (√ )
(3)m=0 ( √ )
(4)x﹥3 (x)
(5)x+y=8 (√ )
(6)2a +b ( x)
(7)2x2-5x+1=0(√ )
a
竞答:判断下列各式是不是方程, 请说明判断的根据.
(1) -2+5=3 ( x) (2) 3x-1=7
( √)
(3) m=0
( √ ) (4) x﹥ 3
( x)
(5) x+y=8 ( √) (6) 2x2-5x+1=0 ( √ ) (7) 2a +b ( x)
我发现 方程是等式,等式不一定是方程. 了:
a (二)学习概念:什么叫方程的解?
使方程左、右两边的值相等的未知数的值 叫做方程的解.
只含有一个未知数的方程的解,也叫做根.
是
2是2x=4的解吗? 不是 3是2x+1=8的解吗? 求得方程的解的过程,叫解方程.
a
合作与交流
a
情境一
40cm
小颖种了一株树苗,开始时树苗
高为40厘米,栽种后每周树苗长
x周
高约15厘米,大约几周后树苗长
高到1米?
100cm
40
15x
100
树苗开始的高度+长高的高度=树苗将到达的高度
a
A:
1、判断下列各式中,哪些是等式,哪些是方程,哪 些是一元一次方程. ①-2+5=3 ②3x-1=7 ③m=0 ④x>3 ⑤x+y=8⑥2x2-5x+1=0 ⑦ 2a+b
选一选:判断下列各式是不是方程,是
的打“√”,不是的打“x”.
(1)-2+5=3 (x)
(2)3x-1=7 (√ )
(3)m=0 ( √ )
(4)x﹥3 (x)
(5)x+y=8 (√ )
(6)2a +b ( x)
(7)2x2-5x+1=0(√ )
a
竞答:判断下列各式是不是方程, 请说明判断的根据.
(1) -2+5=3 ( x) (2) 3x-1=7
( √)
(3) m=0
( √ ) (4) x﹥ 3
( x)
(5) x+y=8 ( √) (6) 2x2-5x+1=0 ( √ ) (7) 2a +b ( x)
我发现 方程是等式,等式不一定是方程. 了:
a (二)学习概念:什么叫方程的解?
使方程左、右两边的值相等的未知数的值 叫做方程的解.
只含有一个未知数的方程的解,也叫做根.
是
2是2x=4的解吗? 不是 3是2x+1=8的解吗? 求得方程的解的过程,叫解方程.
a
合作与交流
a
情境一
40cm
小颖种了一株树苗,开始时树苗
高为40厘米,栽种后每周树苗长
x周
高约15厘米,大约几周后树苗长
高到1米?
100cm
40
15x
100
树苗开始的高度+长高的高度=树苗将到达的高度
a
A:
1、判断下列各式中,哪些是等式,哪些是方程,哪 些是一元一次方程. ①-2+5=3 ②3x-1=7 ③m=0 ④x>3 ⑤x+y=8⑥2x2-5x+1=0 ⑦ 2a+b
北师大版七年级数学上册5.移项解一元一次方程课件
就可以化为ax=b(a≠0)的情势,这时要求方
程的解,只要将方程两边都除以未知数的系
数a就可以得到方程的解
。
慧眼识珠
判断下列方程的解法是否正确,如 果不对错在哪里?应该怎样改正?
9x=-4,得x= x= ,得x=1
(1) x+7=0 • -3 =x-10
(3)
大显身手
(4) 3x=2x-6
(5)
讲授点一:如何理解“移项”?
正确理解“移项”:将方程中的某些项改 变符号从这边移到另一边,这样的变形就 叫移项。
注意(1)所移动的是方程中的项,并且是从方 程一边移到另一边,而不是将方程的一边“交 换”到另一边。这里的“一边”和“另一边” 是指等号的左边和右边。 (2)移项要变号,没有移动的项符号不能改变。 (3)通常情况下,在解方程时,我们把含有未 知数的项移到方程的左边,把常数项移到方程 的右边。
பைடு நூலகம்你发现了什么?
视察比较:
5x-2= 8
4x=60+3x
5x = 8+2 4x-3x=60
你发现了什么?
移项
什么是移项?
移项:把方程中的某 一项,改变符号后,从 方程的一边移到另一 边,这种变形叫做移 项。
移项的目的是什么 ?
使含有未知数的项集中 于方程的一边(左 边),常数项集中于方 程的另一边(右边)。
移项的根据是什么?移项要注意什么?
等式的基本性质一。 移项要变号。
1.把下列方程进行移项变形。
4x-3=5移项,得 ( 4x=5+3 ) 5x-2=7x+8移项,得(5x-7x=8+2) 3x+20=4x-25移项,得(3x-4x=-25-20) 1-3x=3x+5移项,得( -3x-3x=5-1)
北师大版七年级上册5.解含有分母的一元一次方程课件
去分母法解一元一次方程
学习目标
1、经历解方程基本思路是把‘复杂’转化为‘简单’把
新转化为旧的过程;
2、理解并掌握如何去分母的解方程方法.
重难点
重点
去分母解方程。
难点
熟练解决含有分母的方程。
例5
解方程:
去括号:
移项:
合并同类项:
系数化为1:
+ = +
+= +
=
− = − −
= −
随堂练习
解下列方程:
+
()
=
+ =
() + = −
+ = −
+ =
+ = −
− = −
− = − −
− = −
移项,得 30 x +140 x 21+119
合并同类项,得170 x 140
14
系数化1,得x
17
把小数化
成分数
利用分式
的性质
练习
x 1 x 3
解方程:
3
0.5
0.1
10 x 10 10 x 30
解:原方程可化为
1
5
1
去分母,得10 x 10 5 10 x 30 5
− = − −
+ = − +
=
=
例
x 0.17 0.2 x
解方程:
学习目标
1、经历解方程基本思路是把‘复杂’转化为‘简单’把
新转化为旧的过程;
2、理解并掌握如何去分母的解方程方法.
重难点
重点
去分母解方程。
难点
熟练解决含有分母的方程。
例5
解方程:
去括号:
移项:
合并同类项:
系数化为1:
+ = +
+= +
=
− = − −
= −
随堂练习
解下列方程:
+
()
=
+ =
() + = −
+ = −
+ =
+ = −
− = −
− = − −
− = −
移项,得 30 x +140 x 21+119
合并同类项,得170 x 140
14
系数化1,得x
17
把小数化
成分数
利用分式
的性质
练习
x 1 x 3
解方程:
3
0.5
0.1
10 x 10 10 x 30
解:原方程可化为
1
5
1
去分母,得10 x 10 5 10 x 30 5
− = − −
+ = − +
=
=
例
x 0.17 0.2 x
解方程:
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:去括号,得 5x-25+2x=-4, 移项,得 5x+2x=25-4, 合并同类项,得 7x=21, 系数化为 1,得 x=3.
数学·课标版(BS)
第五章复习 针对第2题训练
1.下列运用等式的性质变形正确的是( A.若 x=y,则 x-5=y+5 B.若 a=b,则 ac=bc B a b C.若 c=c,则 2a=3b x y D.若 x=y,则a=a
)
数学·课标版(BS)
第五章复习
2.下列等式变形正确的是( ) 1 s A.如果 s=2ab,那么 b=2a C 1 B.如果2x=6,那么 x=3 C.如果 x-3=y-3,那么 x-y=0 D.如果 mx=my,那么 x=y
数学·课标版(BS)
针对第3题训练 第五章复习
1. 已知(m-3)x =18 是关于 x 的一元一次方程, 则( ) A. m = 2 B.m=-3 C.m=±3 D.m=1B
[解析] 设 x 秒后甲追上乙, 根据等量关系: 甲 x 秒所跑 的路程=乙 x 秒所跑的路程+乙 2 秒所跑的路程. 列方程得: 7x=6.5(x+2).
数学·课标版(BS)
第五章复习 针对第15题训练
0 -8 1.若 x2+|y+8|=0,则 x=________ ,y=________.
-3 2.在 2x-3y=12 中,若 x=1.5,则 y=________.
数学·课标版(BS)
第五章复习
3.如图 5-3 中标有相同字母的物体的质量相同,若 A 的质量为 20 克,当天平处于平衡状态时, B 的质量为 10 __________ 克.
数学·课标版(BS)
2 .关于 x 的方程 (k - 1)x - 3k = 0 是一元一次方程,则 k__________. ≠1
| m|- 2
3. 已知关于 x 的方程(m-3)x +18=0 是一元一次方程. 试求:(1)m 的值及方程的解; (2)2(3m+2)-3(4m-1)的值.
数学·课标版(BS)
m+ 4
第五章复习
-
数学·课标版(BS)
第五章复习
易错警示 一元一次方程必须满足三个条件: 一是只含有一个 未知数;二是未知数的指数是 1;三是未知数的系数不 能为 0.三个条件缺一不可.
数学·课标版(BS)
第五章复习 ►考点二 解一元一次方程
解方程:5(x-5)+2x=-4.
[解析] 方程中没有分母,应按照去括号、移项、合 并同类项、未知数系数化为 1 的步骤进行.
数学·课标版(BS)
第五章复习
3.主要的几种等量关系 (1)数字之间的规律; (2)形积变化问题:几何体或几何图形变化前后的体积ቤተ መጻሕፍቲ ባይዱ 变、面积不变、周长不变等; 利润率 ; (3)利润=售价-进价=进价×_________ (4)相遇问题:行程之和=距离; 追及问题:行程之差=距离; 本息和 (5)本金+本金×利率×期数=_________.
数学·课标版(BS)
第五章复习 考点攻略 ►考点一 一元一次方程及等式性质
3-2k
若 kx +2k=3 是关于 x 的一元一次方程,则 k 1 =____________.
[解析] 因为 kx3 2k+2k=3 是关于 x 的一元一次方 程,所以未知数 x 的指数为 1,且系数 k 不等于 0.即 3- 2k=1,解得 k=1.
数学·课标版(BS)
第五章复习
2.解方程 (1)等式的基本性质: ①等式两边同时加上(或减去)同一个 _________ 代数式 ,所得结果仍是等式; ②等式两边同时乘同一个数 (或除以同一个不为 0 的数),所得结果仍是等式. 改变符号 后,从方程的一 (2)移项:把方程中的某一项__________ 边移到另一边,这种变形叫做移项. (3)解一元一次方程的步骤:①去分母;②去括号;③移 合并同类项 ;⑤未知数的系数化为 1. 项;④____________
数学·课标版(BS)
第五章复习 针对第16题训练
1.已知甲、乙、丙三人各有一些钱,其中甲的钱是乙的 2 倍,乙比丙多 1 元,丙比甲少 11 元,求三人的钱共有多少元 ( D ) A.30 B.33 C.36 D.39
2.根据图 5-2 中提供的信息,可 知一个杯子的价格是( C ) A.51 元 B.35 元 C. 8 元 D.7.5 元
第五章复习
数学·课标版(BS)
第五章复习
知识归纳
1.方程的有关概念 未知数 的_______ 等式 叫做方程; (1)方程:含有________ 未知数 的值,叫 (2)方程的解:使方程左右两边相等的_______ 做方程的解; (3)一元一次方程:在一个方程中,只含有_____ 一 个未知 1 ,这样的方程叫做一元一次 数,且未知数的指数都是______ 方程.
数学·课标版(BS)
第五章复习 针对第8题训练
1.甲、乙两人练习短距离赛跑,测得甲每秒跑 7 米,乙 每秒跑 6.5 米,如果甲让乙先跑 2 秒,那么几秒钟后甲可以 追上乙,若设 x 秒后甲追上乙,列出的方程应为( B ) A.7x=6.5 B.7x=6.5(x+2) C.7(x+2)=6.5x D.7(x-2)=6.5x
[解析] (1)根据未知数的指数为 1,系数不为 0 求解. (2)将(1)求得的 m 的值代入即可.
解: (1)由一元一次方程的特点得 m+4=1, m-3≠0, 解得 m=-3. 故原方程可化为-6x+18=0,解得 x=3. (2)2(3m+2)-3(4m-1)=-6m+7,把 m=-3 代入, 原式=-6m+7=18+7=25.