leslie人口增长模型

合集下载

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

Leslie 矩阵模型预测人口Leslie 矩阵模型的基本概念参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:x k (i )——在时间周期 k 第 i 个年龄段的人数 i =1,2,3,…n注:这里的x k (1)表示的最低年龄段的人数,如0岁~5岁的人数;一定存在整数n 使得 x k (n )表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数:1)b k (i)——在时间周期 k 第 i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)d k (i)——在时间周期k 第i 年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率Leslie 矩阵1.转移过程在一个时间周期内x k−1(i )里的人数转移到x k (i +1)里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k k x i x i d i i n --+=-=(4-1)下面来讨论i =0的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为1()2k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k k i x i b i x i --==∑ (4-2)2. 人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k k k b b b n b n d x x d d n --------⎛⎫- ⎪⎪- ⎪=⨯⎪- ⎪ ⎪⎪--⎝⎭(4-3)其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 1111(0)(1)()k k k k x x x x n ----⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k k k x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

考虑年龄结构的人口模型(leslie模型).doc

考虑年龄结构的人口模型(leslie模型).doc

考虑年龄结构的人口模型(leslie模型)考虑年龄结构的人口模型(Leslie模型)对Logistic模型的批评意见除了实际统计时常采用离散变化的时间变量外,另一种看法是种群增长不应当只和种群总量有关,也应当和种群的年龄结构有关。

不同年龄的个体具有不同的生育能力和死亡率,这一重要特征没有在Logistic模型中反映出来。

基于这一事实,Leslie在20世纪40年代建立了一个考虑种群年龄结构的离散模型。

由于男、女性人口(或雌、雄性个体)通常有一定的比例,为了简便起见,建模时可以只考虑女性人数,人口总量可以按比例折算出来。

将女性按年龄划分成m+1个组,即0,1,…,m组,例如,可5岁(或10岁)一组划分。

将时间也离散成间隔相同的一个个时段,即5年(或10年)为一个时段。

记j时段年龄在i组中的女性人数为N(i,j),b为i组每一i妇女在一个时段中生育女孩的平均数,为i组女性存活一时段到下一时段升入i+1组的人pi数所占的比例(即死亡率d=1-)同时假设没有人能活到超过m组的年龄。

实际上可以这pii样来理解这一假设,少量活到超过m组的妇女(老寿星)人数可以忽略不计,她们早已超过了生育期,对人口总量的影响是微小的而且是暂时性的,对今后人口的增长和人口的年龄结构不产生任何影响,假设b不随时段的变迁而改变,这一假设在稳定状况下是合理的。

、ipi如果研究的时间跨度不过于大,人们的生活水平、整个社会的医疗条件及周围的生活环境没有过于巨大的变化,b、事实上差不多是不变的,其值可通过统计资料估算出来。

pii根据以上假设可以得出以下j+1时段各组人数与j时段各组人数之间的转换关系:N(0,j,1),bN(0,j),bN(0,j),?,bN(m,j),01m,N(1,j,1),pN(0,j),0 ,??,,N(m,j,1),pN(m,1,j)m,1,b,p,0显然,。

jiN(0,j)N(0,j,1),,,,,,,,??N,N,简记, jj,1,,,,,,,,N(m,j)N(m,j,1),,,,并引入矩阵bb?bb,,01m,1m,,p0?000,,,,A,0p?00 1,,,,,,00?p0m,1,,则方程组(4.28)可简写成N,ANj,1j矩阵A被称为Leslie矩阵(或射影矩阵),当矩阵A与按年龄组分布的初始种群向量TN=(N(0,0), N( 1,0),… ,N(m,0))一经给定时,其后任一时段种群按年龄分布的向量即0可用(4.29)式迭代求得1j, N,AN,?,AN10j,j人口(或种群)的增长是否合理不仅仅取决于人口的总量是否过多或过少,还取决于整个的年龄结构是否合理即各年龄段人口数的比例是否恰当。

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

L e s l i e矩阵模型预测人口4.1Leslie矩阵模型的基本概念4.1.1参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:——在时间周期k第i个年龄段的人数注:这里的;一定存在整数n 使得表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数:1)——在时间周期k第i年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)——在时间周期k第i年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率4.1.2Leslie矩阵1.转移过程在一个时间周期内里的人数转移到里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k kx i x i d i i n--+=-=(4-1)下面来讨论的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k的第个i年龄段的女性人数为1()2kx i,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k kix i b i x i--==∑(4-2) 2.人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)0001(1)0k k k kkk kkkb b b n b ndx xdd n--------⎛⎫-⎪⎪-⎪=⨯⎪-⎪⎪⎪--⎝⎭(4-3) 其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭1111(0)(1)()k k k k x x x x n ----⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k kk x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

Leslie人口模型

Leslie人口模型

Leslie人口模型模型三、Leslie人口模型在短时期内男女性别比通常是不会发生变化的,因此讨论总人口的发展变化趋势与只讨论女性人口数量的变化情况意义是相同的。

在该模型中,我们将人口年龄离散化,大小等间隔地分成h个年龄组,相应地,将时间离散化为时段,每十年为一个时段。

k,0,1,2xk()记时段k第i个年龄组的女性人口总数为, ih,且该年龄组的女性生育率(该年龄组的女性在1个时段内xkbxk(1)(),,,ii1i,1bsd,,1的平均生育数量)为,该年龄组的死亡率为d,则相应的存活率为,iiiisd,,1在稳定的环境下存活率与生育率基本上是不随时间的变化而改变biii sd,,1b的,,因此我们将存活率与生育率看作是常数。

则人口的变化情况满iii足以下条件:第k+1时段,第一个年龄组的女性人口数量是时段k各个年龄段生育的人口数之和,即h (6) xkbxk(1)(),,,ii1i,1时段k+1第i+1个年龄段的女性人口数量是k时段第i个年龄组存活下来的女性人口数量,即xksxkih(1)(),1,2,,,, (7) iii,1记时段k女性人口数量按年龄组的分布向量为T (8) Xkxkxkxk()((),(),,()),129XkLXk(1)(),, 综合上述(6)(7)(8)得:其中由出生率和存活率构成的Leslie矩阵为bbbb,,1289,,s000,,1,, L,000s,,2,,0,,,,000s8,,X(0)当矩阵L和按照年龄组的初始分布向量已知时,可以预测任意时段k的女性人口按年龄组的分布情况:kXkLXk()(0),0,1,2,,, (9) 稳定状况分析:01,1,2,9,,,si根据和的定义,矩阵L中的元素满足: sbiiib,0,且至少有一个 xksxkih(1)(),1,2,,,,iiii,1定理1:L矩阵有唯一的正特根值,且它是单根,对应的特征向量为 ,,11ssssssn*T11212 ,X(1,,,,)n2,,,111k,2,3,,9且L矩阵的其他n-1个特征值满足, ,,,,1kk定理2:若L矩阵第一行有两项顺次的元素都大于0,则,bb,,,,ii,11kXk()且由(8)式确定的满足xk()*bs ,其中c是由,及X(0)决定的常数。

基于Leslie模型的人口增长预测与研究

基于Leslie模型的人口增长预测与研究
科技创新与应用 I 2 0 1 4 年 第 2 7 期
的过 去 结果 而不 能用 于 预 测未 来 人 口。 2 阻滞 增 长模  ̄ ( L o g i s t i e )

科 技 创 新
3 . 1模 型 的建 立 L e s l i e 模 型 是将 人 口按年 龄 大 小 间 隔 地 划 分成 m个 年 龄 组 ( 比

个 模 型 的 缺 陷, 通 常 可 以在 模 型 假 设 当 中找 到 其症 结 所 在 一 如 以每 1 0 岁 为 一组 ) ,模 型 要讨 论 在 不 同 时 间人 口 的年 龄 分布 , 对 或 者 说, 模 型假 设在 数 学 建模 过 程 中起 着 至 关重 要 的作 用 , 它 决定 了 时 间 也加 以离 散化 , 其 单 位 与年 龄组 的间 隔相 同 。 时 间 离散 化 为 。 设 个 模 型 究竟 可 以走 多远 。在 指数 增 长 模 型 中 , 我 们 只 考 虑 了人 口 在时间段 t 第 i 年龄组 的人 口总数为 n ( t ) , i = l 2一 m, 定义 向量 n ( t ) = 数 量 本 身 一个 因素 影 响人 口 的增 长速 率 , 事 实 上 影 响 人 口增 长 的 另 [ n l ( t ) , n ( t ) , …n m ( t ) 模 型 要 研究 的是 女 性 的人 口分 布 n ( t ) 随t 的 变 化 外一个因素就是资源( 包括 自然资源, 环境条件等 因素) 。随着人 口的 规 律 , 从 而进 一 步研 究 总 人 口数 等 指标 的变化 规 律 。 增长 , 资源量 对人 口开始起阻滞作用, 因而人 口增长率会逐渐下降 。 设第 i 年 龄组 的生育 率 为 b ,即 b 是单 位 时 间第 i 年龄 组 的每 许 多 国家 的实 际情 况 都 是 如此 。定性 的分 析 , 人 口数 与 资 源 量 对人 个 女性 平 均 生育 女 儿 的 人 数 ; 第i 年 龄 组 的死 亡 率 为 d 。 , 即d . 是 单 口增 长 的 贡献 均 应 当是 正 向 的 。 位 时 间 内第 i 年 龄 组 女 性死 亡 人 数 与 总 人 数 之 比 , S = 1 一 d 称 为 存 活 2 . 1模 型假 设 率。 设b … S 不 随时 间 t 变化 , 根据 b 、 s 。 和n i ( t ) 的定 义写 出 n i ( t ) 与n i ( t + 因为 地 球 资 源 是有 限 的 , 假 设 为 一 个 定 值 1( 这 里 事 实 上 也 内 1 ) 应 满 足关 系 : 在 的 假定 了地球 的 极 限承 担人 1 5数 为 1 1 ; f J ( f +1 ) O ) ( 1 ) 在t 时刻, 人 口增 长 的速 率 与 当时 人 口数 成 正 比, 为简 单 方 便 也 1 l 假设与当时剩余资源成正 比; 比例系数表示人 口的固有增长率; 假设 ( t +1 ) =s i n i ( f ) , i =1 , 2 , …, m—l 人 口总数 N m 足够 大 , 可 以视 做 连续 变 量处 理 , 且N m 关于 t 连 续可 微 。 2 . 2 模 型建 立及 求 解 在上 式 中假 设 b 中 已经 扣 除婴 儿 死亡 率 , 即扣 除 了在 时 间段 以 由模 型 假 设 , 可将人 E l 数 的 净 增 长 率 视 为 人 口数 N 的函数, 由 后 出生 而活 不 到岁 的 那些 婴 儿 。若 记 矩 阵 于 资源 对 人 E l 增 长 的限 制 , 应是 N 的减 函数 , 特别是当 N 达 到极 限 b x b 2 承载 人 口数 时 , 应有净增长率, 当人 1 5 I 数N 超 过 时 ,由 于受 到 资 源 、 S 1 0 0 环 境 等 因 素对 人 口增 长 的 阻滞 作 用 , 人 口增 长 到 一 定 数 量 后 , 增 长 L = 0 S 2 率会下降 , 不会一直呈现指数增长 , 再次引入常数 N , 用来表示 自 ( 2 ) 然资源和环境条件下所能容许 的最大人 口数量。 此时的人 口增长率 得到修正 , 修正的人 口自然增长率为 :

基于Leslie模型中国未来人口策略模拟研究

基于Leslie模型中国未来人口策略模拟研究

基于Leslie模型中国将来人口策略模拟探究一、引言中国是世界上人口最多的国家之一,人口问题一直是中国政府关注的重点。

为了猜测将来的人口变化趋势以及制定相应的人口政策,探究人口模型成为必要的手段之一。

Leslie模型是一种经典的人口模型,通过构建各年龄组的人口转移率矩阵,可以猜测将来人口的变化。

本文旨在基于Leslie模型模拟探究中国将来人口的变化,并提出相应的人口策略。

二、Leslie模型简介Leslie模型是由英国统计学家Patrick G. Leslie于1945年提出的,它是一种离散的人口模型。

该模型将人口划分为不同的年龄组,以年龄为单位进行猜测。

Leslie模型的核心是矩阵运算,在矩阵中,每一行代表不同年龄组的人口数量,每一列代表不同年龄组之间的迁移率。

通过计算不同年龄组之间的人口迁移矩阵与初始人口矩阵的乘积,可以得到下一年度的人口分布。

通过迭代运算,可以猜测将来的人口变化。

三、中国将来人口策略模拟探究1. 数据收集和构建为了进行中国将来人口策略模拟探究,起首需要收集相关的人口数据。

我们可以利用中国统计年鉴的数据来得到中国各年龄组的人口数量和迁移率。

依据收集到的数据,构建初始的人口矩阵。

2. 模型参数设置在进行Leslie模型的模拟探究时,需要设置一些参数。

参数的设定需要思量到中国的实际状况和政策因素。

例如,思量到规划生育政策的实施,可以设置适当的生育率和死亡率等。

3. 模拟试验和结果分析在获得初始人口矩阵和模型参数后,可以进行模拟试验。

通过对人口矩阵进行一系列迭代运算,可以得到将来人口的猜测结果。

同时,还可以通过改变不同参数的设定,模拟不同的人口政策对将来人口的影响。

依据模拟结果,可以进行相关的结果分析。

例如,可以分析将来人口的年龄结构变化、人口增长速度以及人口总量等指标的趋势。

分析结果可以为政府制定人口政策提供参考依据。

四、结论与展望本探究基于Leslie模型,对中国将来人口进行模拟,通过构建人口转移率矩阵,猜测了将来人口的变化。

人口leslie模型

人口leslie模型

模型:按年龄分布的Leslie 模型[2]一、模型的准备将人口按年龄大小等间隔地划分成m 个年龄组(譬如每10岁一组),模型要讨论在不同时间人口的年龄分布,对时间也加以离散化,其单位与年龄组的间隔相同。

时间离散化为 2,1,0=t .设在时间段t 第i 年龄组的人口总数为m i t n i ,2,1),(=,定义向量T m t n t n t n t n )](),(),([)(21 =,模型要研究的是女性的人口分布)(t n 随t 的变化规律,从而进一步研究总人口数等指标的变化规律。

设第i 年龄组的生育率为i b ,即i b 是单位时间第i 年龄组的每个女性平均生育女儿的人数;第i 年龄组的死亡率为i d ,即i d 是单位时间第i 年龄组女性死亡人数与总人数之比,i i d s -=1称为存活率。

设i b 、i s 不随时间t 变化,根据i b 、i s 和)(t n i 的定义写出)(t n i 与)1(+t n i 应满足关系:⎪⎩⎪⎨⎧-==+=++=∑1,,2,1),()1()()1(11m i t n s t n t n b t n i i i m i i i i (9) 在(9)式中我们假设i b 中已经扣除婴儿死亡率,即扣除了在时段t 以后出生而活不到1t +的那些婴儿。

若记矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--000000121121m m m s s s b b b b L (10)则(9)式可写作)()1(t Ln t n =+ (11)当L 、)0(n 已知时,对任意的 ,2,1=t 有)0()(n L t n t =(12)若(10)中的元素满足(ⅰ)1,,2,1,0-=>m i s i ;(ⅱ)m i b i ,2,1,0 =≥,且至少一个0>i b 。

则矩阵L 称为Leslie 矩阵。

只要我们求出Leslie 矩阵L 并根据人口分布的初始向量)0(n ,我们就可以求出t 时段的人口分布向量)(t n。

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

L e s l i e矩阵模型预测人口Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998Leslie 矩阵模型预测人口Leslie 矩阵模型的基本概念参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:x k (i )——在时间周期 k 第 i 个年龄段的人数 i =1,2,3,…n 注:这里的x k (1)表示的最低年龄段的人数,如0岁~5岁的人数;一定存在整数n 使得 x k (n )表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数:1)b k (i)——在时间周期 k 第 i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)d k (i)——在时间周期k 第i 年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率Leslie 矩阵 1.转移过程在一个时间周期内x k−1(i )里的人数转移到x k (i +1)里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k k x i x i d i i n --+=-=(4-1)下面来讨论i =0的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为1()2k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k k i x i b i x i --==∑ (4-2)2. 人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k k k b b b n b n d x x d d n --------⎛⎫- ⎪⎪- ⎪=⨯⎪- ⎪ ⎪⎪--⎝⎭(4-3)其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 1111(0)(1)()k k k k x x x x n ----⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭(4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪- ⎪ ⎪⎪--⎝⎭(4-5)则有简写:1k k x L x -=(4-6)则有递推公式:10k k k x L x L x -==(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

Leslie人口模型及例题详解

Leslie人口模型及例题详解

L e s l i e人口模型及例题详解The saying "the more diligent, the more luckier you are" really should be my charm in2006.Leslie 人口模型现在我们来建立一个简单的离散的人口增长模型,借用差分方程模型,仅考虑女性人口的发展变化;如果仅把所有的女性分成为未成年的和成年的两组,则人口的年龄结构无法刻划,因此必须建立一个更精确的模型;20世纪40年代提出的Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型;模型假设(1) 将时间离散化,假设男女人口的性别比为1:1,因此本模型仅考虑女性人口的发展变 化;假设女性最大年龄为S 岁,将其等间隔划分成m 个年龄段,不妨假设S 为m 的整数倍,每隔m S /年观察一次,不考虑同一时间间隔内人口数量的变化;2 记)(t n i 为第i 个年龄组t 次观察的女性总人数,记第i 年龄组女性生育率为i b 注:所谓女性生育率指生女率,女性死亡率为i d ,记1,i i s d =-假设,i i b d 不随时间变化;3 不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对人口变化的影响;4 生育率仅与年龄段有关,存活率也仅与年龄段有关;建立模型与求解根据以上假设,可得到方程 )1(1+t n =∑=mi i i t n b 1)()()1(1t n s t n i i i =++ 1=i ,2.…,m -1 写成矩阵形式为其中,L =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000000121121m m m s s s b b b b 1 记)]0(,),0(),0([)0(21m n n n n = 2假设n 0和矩阵L 已经由统计资料给出,则为了讨论女性人口年龄结构的长远变化趋势,我们先给出如下两个条件:i s i > 0,i =1,2,…,m -1;ii b i 0≥,i =1,2,…,m ,且b i 不全为零;易见,对于人口模型,这两个条件是很容易满足的;在条件i 、ii 下,下面的结果是成立的: 定理1t1+tL 矩阵有唯一的单重的正的特征根0λλ=,且对应的一个特征向量为*n =1,s 1/0λ,s 1s 2/20λ,…,s 1s 2 …s m -1/10-m λT3 定理2若1λ是矩阵L 的任意一个特征根,则必有01λλ≤;定理3若L 第一行中至少有两个顺次的0,1>+i i b b ,则i 若1λ是矩阵L 的任意一个特征根,则必有01λλ<;ii t t t n 0/)(lim λ+∞>-=*cn , 4 其中c 是与n 0有关的常数;定理1至定理3的证明这里省去;由定理3的结论知道,当t 充分大时,有*)(0n c t n t λ≈ 5 定理4记121i i i b s s s β-=,q λ=1β/λ+2β/λ2+…+m β/m λ,则λ是L 的非零特征根的充分必要条件为q λ=1 6所以当时间充分大时,女性人口的年龄结构向量趋于稳定状态,即年龄结构趋于稳定形态,而各个年龄组的人口数近似地按λ-1的比例增长;由5式可得到如下结论:i 当λ>1时,人口数最终是递增的;ii 当λ<1时,人口数最终是递减的;iii 当λ=1时,人口数是稳定的;根据6式,如果λ=1,则有b 1 + b 2s 1 + b 3s 1s 2 + … + b m s 1 s 2…s m-1=1记R = b 1 + b 2s 1 + b 3s 1s 2 + … + b m s 1 s 2…s m-1 7R 称为净增长率,它的实际含义是每个妇女一生中所生女孩的平均数;当R >1时,人口递增;当R <1时,人口递减;Leslie 模型有着广泛应用,这里我们给出一个应用的例子,供大家参考;公园大象管理南非的一家大型自然公园放养了大约11000头大象,管理部门希望为大象创造一个健康的生存环境,将大象的总数控制在11000头左右;每年,公园的管理人员都要统计当年大象的总数;过去20年里,公园每年都要处理一些大象,以便保持大象总数维持在11000头左右,通常都是采用捕杀或者迁移的方法来实现;统计表明,每年约处理600-800头大象;近年来,公众强烈反对捕杀大象行为,而且即使是迁移少量的大象也是不允许的;但是一种新的给大象打避孕针的方法也被研制成功;一只成年母象打了避孕针后,两年内不再怀孕;公园有一些关于大象的资料,供建模参考:1几乎不再迁入或迁出大象;2目前性别比接近1:1,采取控制后,也希望维持这个比例;3初生象的性别比也是大约1:1,生双胎的比例为%4母象初次怀孕大约在10-12岁,一直到60岁大约每年怀胎一次,60岁后不再受孕,怀孕期为22个月;5避孕针可能引起大象每个月都发情,但不受孕,因为大象通常每年生育1次,所以按月循坏的方案是不足取的;6避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;7初生象存活到1岁的比例为70%-80%,此后,直至60岁前,存活率都比较均匀,大约在95%以上,大象一般只活到70岁;8公园里不存在捕杀行为,偷猎可以不考虑;公园管理部门有一份过去两年移出公园大象的粗略统计,不幸的是没有捕杀或公园大象的具体数据;你的任务是,构造一个模型,利用模型研究如何采用避孕措施控制公园大象的总数.同时需要完成以下任务:1 建立并利用模型推算2-60岁大象可能的存活率,以及目前的大象年龄结构;2估计每年需要避孕多少大象,才能保证大象总数控制在11000头左右,说明数据不确定性对你的结论的影响,评价一下年龄结构的变化以及对旅游的影响,你可能被要求观察30-60年;3假设每年可以移出50-300头大象,避孕大象数可以减少多少,评价如何根据经济效益平衡两种方案;4有一些反对观点认为,假如出现疾病或者失控的偷猎,使大象总数突然大幅度下降,即使停止避孕,也会对大象群的恢复存在不良影响,研究并回答这个问题;5公园公管理部门正在构造模型,特别希望批驳那些以缺乏完整数据为由而嘲笑利用模型指导决策的观点.希望你的模型包括一份技术报告能给公园管理部门提一些建议,提高公园管理部门的信心,除此之外,你的报告,还应该包括一个详细的技术流程最多3页回答公共关心的问题;6假如非洲其它公园对你的模型感兴趣,有意利用你的模型,请为公园大象数在300-25000头规模的公园提供一份避孕计划,顺便考虑一下存活率稍有不同或者可以有迁移的情况.附过去两年的迁出数据年龄 0 1 2 3 4 5 6 7 8 9总量1 103 77 71 70 68 61 58 51 52 51母象1 50 36 41 29 31 30 28 24 22 29总量2 98 74 69 61 60 54 52 59 58 57母象2 57 34 33 29 34 28 27 31 25 25年龄 10 11 12 13 14 15 16 17 18 19总量1 51 50 51 48 47 49 48 47 43 42母象1 27 27 26 27 26 25 28 27 19 25总量2 60 63 64 60 63 59 52 55 49 50母象2 26 36 38 30 33 34 24 30 21 30年龄 20 21 22 23 24 25 26 27 28 29总量1 42 37 39 41 42 43 45 48 49 47母象1 18 16 19 24 17 25 21 26 29 27总量2 53 57 65 53 56 50 53 49 43 40母象2 29 27 40 23 29 24 21 26 24 16年龄 30 31 32 33 3 4 35 36 37 38 39总量1 46 42 44 44 46 49 47 48 46 41母象1 24 22 20 22 24 24 23 25 21 24总量2 38 35 37 33 20 33 30 29 29 26母象2 17 16 18 18 15 18 12 17 16 13年龄 40 41 42 43 4 4 45 46 47 48 49总量1 41 42 43 38 34 34 33 30 35 26母象1 24 19 26 20 20 15 16 13 20 11总量2 10 24 25 22 21 22 11 21 21 19母象2 6 11 14 10 10 12 8 11 12 9年龄 50 51 52 53 54 55 56 57 58 59总量1 21 18 14 5 9 7 6 0 4 4母象1 10 9 8 4 4 4 3 0 3 2总量2 15 5 10 9 7 6 5 4 7 0母象2 6 4 5 4 4 2 3 2 4 0年龄 60 61 62 63 64 65 66 67 68 69 70总量1 4 3 2 2 1 3 0 2 1 0 2母象1 2 1 1 1 0 3 0 0 1 0 2总量2 2 3 0 2 0 2 0 1 0 0 0母象2 2 1 0 0 0 1 0 1 0 0 0假设与分析1大象性别比接近1:1,初生象的性别比也是大约1:1,采取控制后,也希望维持这个比例;2过去两年迁出的大象是随机抽样,其结构反映了象群总体的年龄结构;3 避孕是随机的,母象是否避孕是不可识别的,假设各个年龄的母象是等比例避孕的,比例系数为k,仅通过调节k 来控制公园大象数量;4母象初次怀孕大约在10-12岁,简化假设大象初孕时间为11岁,当前状态下,成年象的成活率为s,生育母象率为r ,老年象的成活率是线性逐渐递减的,因此其成活率可表示为设初生象活到1岁的存活率为0s ;5避孕针对母象没有副作用,打了避孕针的母象2年内不再受孕;且无论打避孕针前母象是否怀孕,一旦打了避孕针,母象就被避孕或中止怀孕,平均每年有γ比例的母象处于避孕状态;每年母象的避孕率为η,每年的避孕方案时瞬时完成的;6 假设大象的年龄结构是稳定的;数据处理与分析12-60岁大象的存活率与年龄结构母象生育率为r =1/+1+/2=头/年12岁的母象生育母象的生育率为r /6;由题设知道存活率)99.0,95.0(∈s ;以下是第一年迁移出0至70岁大象数据x1=103,77,71,70,68,61,58,51,52,51,51,50,51,48,47,49,48,47,43,42,42,37,39,41,42,43,45,48,49,47,46,42,44,44,46,49,47,48,46,41,41,42,43,38,34,34,33,30,35,26,21,18,14,5,9,7,6,0,4, 4, 4 ,3,2,2,1,3,0,2,1,0,2 ;以下是第二年迁移的0-70岁大象数据x2=98,74 69 61 60 54 52 59 58 57 60 63 64 60 63 59 52 55 49 50 53 57 65 53 56 50 53 49 43 40 38 35 37 33 20 33 30 29 29 26 10 24 25 22 21 22 11 21 21 19 15 5 10 9 7 6 5 4 7 0 2 3 0 2 0 2 0 1 0 0 0;x=x1+x2;x0=x/normx,1;以下是第一年迁移的0-59岁母象数据y1=50 36 41 29 31 30 28 24 22 29 27 27 26 27 26 25 28 27 19 25 18 16 19 24 17 25 21 26 29 27 24 22 20 22 24 24 23 25 21 24 24 19 26 20 20 15 16 13 20 11 10 9 8 4 4 4 3 0 3 2;以下是第二年迁移的0-59岁母象数据y2=57 34 33 29 34 28 27 31 25 25 26 36 38 30 33 34 24 30 21 30 29 27 40 23 29 24 21 26 24 16 17 16 18 18 15 18 12 17 16 13 6 11 14 10 10 12 8 11 12 9 6 4 5 4 4 2 3 2 4 0;考虑到有些数据较小及抽样的随机性,我们取两次抽样的平均值作为分析的基本数据;t1=x12:11;t2=x22:11;tt=t1+t2;tt1=tt1:9;tt2=tt2:10;tn=tt2./tt1;meantnans =t1=x112:21;t2=x212:21; tt=t1+t2; tt1=tt1:9;tt2=tt2:10;tn=tt2./tt1; meantnans =t1=x112:31;t2=x212:31; tt=t1+t2; tt1=tt1:19;tt2=tt2:20;tn=tt2./tt1; meantnans =t1=x112:41;t2=x212:41; tt=t1+t2; tt1=tt1:29;tt2=tt2:30;tn=tt2./tt1; meantnans =t1=x112:51;t2=x212:51; tt=t1+t2; tt1=tt1:39;tt2=tt2:40;tn=tt2./tt1; meantnans =t1=x112:60;t2=x212:60; tt=t1+t2;tt1=tt1:48;tt2=tt2:49;tn=tt2./tt1; meantnans =n1=zeros1,71;n11=1;n12=;for i=3:61n1i=n1i-1;endn1;for i=62:71n1i=n1611-i-61/10;endn1;N1=n112:50;xx=x12:50;xx=100xx/normxx,1;N1=100N1/normN1,1;t=1:39;plott,N1,t,xx;axis10,40,0,5;title'图1'通过以上分析大致可以得到,1-60岁大象的存活率约为;0-70岁年龄结构向量见图2; y0=100x0/normx0,1;a=0:70;bara,y0,'stacked';title'图2'下面我们取0120.75,0.98s s s ===;m1=zeros1,71;m11=1;m12=;for i=3:61m1i=m1i-1;endm1;for i=62:71m1i=m1611-i-61/10;endm1;m1=100m1/normm1,1;bara,m1,'stacked';title'图3 稳定的年龄结构'plota,m1,'r-',a,y0,'b-.';title'图4 年龄结构当前状态与稳定状态比较'polyfity0,m1,1ans =从所给的数据来看,象群的年龄结构还没有达到相对稳定的状态;根据以上数据,大体可以得到l=zeros71,71; l1,13=6;l2,1=;for i=14:61l1,i=;endl;for j=3:61lj,j-1=;end; l;for k=62:71lk,k-1=eigl;矩阵的唯一正特征值为;对于不同的存活率,得到的唯一正特征值为:下面我们估计每年处于避孕状态母象的比率γ;此时,女性生育率为0.1448(1)γ-;记由6式得解得1-1/^111/6+ans =即每年应该有%的母象处于避孕状态;为了保证有%的母象处于避孕状态,下面分析每年应该打避孕针母象的比例η;在假设3和假设5的前提下,如果每年打避孕针母象比例为η;母象可以分成3类:即当年被打避孕针而上一年没有被打避孕针或上一年被打避孕针而本年没有被打避孕针,比例为2(1)ηη-;连续两年被打避孕针2η;连续两年没有被打避孕针;只有最后一类母象具有生育能力;因此,只需要η满足方程1-sqrtans =ans =5500ans =+003解得 0.387η=,即每年大约需要给2127头母象打避孕针;在方案实施过程中,实际上根本不需要打这么多针,因为许多小象还是可以识别的;可以采取随机抽样的打针方式,对于抽到的小象只计数不打针,直至计满2127头母象,就算完成当年任务;采取打避孕针的方案对象群的年龄结构是由一些影响的,下面给出了打与不打避孕针情况下稳定的象群年龄结构与各你阿爸年龄段象群数的比较;m1=zeros1,71;m11=1;m12=;for i=3:61m1i=m1i-1;end; m1;for i=62:71m1i=m1611-i-61/10;end; m1;n1=zeros1,71;n11=1;n12=;for i=3:61n1i=n1i-1;end; n1;for i=62:71n1i=n1611-i-61/10;end;n1;subplot1,2,1a=0:70;plota,m1,'r-',a,n1,'b--';title'图5年龄结构比较';axis0,70,0,1;M1=5500m1/normm1,1;N1=5500n1/normn1,1;a=0:70;subplot1,2,2plota,M1,'r-',a,N1,'b--'title'图5各年龄段大象数比较图'axis-0,70,0,300通过以上两个图的比较,可以发现采取避孕措施,将使幼象、小象数减少,中老年象数增加;由于采取避孕措施,使得初生小象数减少,因此会不可避免地引起象群年龄结构的改变,下面分析,15年、30年、60年后的象群年龄结构;L=zeros71,71;L1,13=6;L2,1=;for i=14:61L1,i=;end; L;for j=3:61Lj,j-1=; end; L;for k=62:71Lk,k-1= end; L;eigL;n15=L^15x0';n30=L^15n15;n60=L^30n30;n15=100n15/normn15,1;n30=100n30/normn30,1;n60=100n60/normn60,1;M15=5500n15/normn15,1;M30=5500n30/normn30,1;M60=5500n60/normn60,1;bara,55y0title'图6a 避孕前种群量分布';axis0,70,0,250bara,M15title'图6b 避孕15年后种群量分布';axis0,70,0,250bara,M30title'图6c避孕30年后种群量分布';axis0,70,0,250M60=5500n60/normn60,1;bara,M60title'图6d 避孕前种群量分布';axis0,70,0,250n70=L^70x0';n70=100n70/norm n70,1;k1=100m1/normm1,1;图7给出了避孕前后年龄结构稳定状态的比较plot a,k 1,'r-',a,n70,'b-.';title'图7 避孕前后稳定的年龄结构';axis0,70,0,5数据不确定性对结果的影响分别取0120.7,0.8,0.95,0.99s s s ===1-1/^111/6+ans =1-sqrtans =1-1/^111/6+ans =1-sqrtans =每年需避孕的母象比例为%—% ;对于每年可以迁移50-300头大象及0120.75,0.98s s s ===,下面分析避孕方案的变化及最经济的方案;设增长率为p ,对于 0120.75,0.98s s s ===令当 1.01p =,每年的避孕率为%,每年迁出110头; 当 1.02p =,每年的避孕率为%,每年迁出220头; 当 1.025p =,每年的避孕率为%,迁出275头;1-1/^111/6+ans =1-sqrtans =p=;1-p ^12./^111/6+./p-./p.^49/./pans =1-sqrtans =p=;1-p.^12./^111/6+./p-./p^49/pans =1-sqrtans =p=;1-p.^12./^111/6+./p-./p^49/pans =1-sqrtans =进一步分析可以知道,对于 0120.75,0.98s s s ===,如果增长率为(1 1.0322,11000(p-1))p p ≤≤即每年移,令每年需要避孕的母象为5500'γ,每年需要迁移的大象数为11000(1)p -;从相关的文献中我们大致可以得到,设平均每迁移一头大象的成本约避孕一头大象费用的λ倍,由此得到增长率为p 时的总费用函数为记易见,1,0.3868, 1.01,0.346, 1.02,0.396p y p y p y ======clear ;p=1::;q =1-p.^12./^111/6+./p-./p.^49././pq =Columns 1 through 5Columns 6 through 10Columns 11 through 15Columns 16 through 17a =1-sqrt1-qa =Columns 1 through 5Columns 6 through 10Columns 11 through 15Columns 16 through 17y=a+15p-1y =Columns 1 through 5Columns 6 through 10Columns 11 through 15Columns 16 through 17。

leslie矩阵模型预测人口 原理

leslie矩阵模型预测人口 原理

【南京大学《leslie矩阵模型预测人口》原理分析】Leslie矩阵模型是人口学家Leslie在20世纪40年代提出的一种人口增长模型,用于预测和描述人口的变化规律。

本文将从深度和广度两个维度进行全面评估Leslie矩阵模型预测人口的原理,力求以简明易懂的方式探讨主题。

1. Leslie矩阵模型预测人口的原理Leslie矩阵模型是一种离散时间模型,它假设在单个时间段内,每位女性将生产一个特定数量的女婴,并且在一定芳龄后才能生育。

Leslie 矩阵通过矩阵运算来描述不同芳龄段的人口增长和转移过程,其基本原理可以用以下公式表示:\[ \begin{pmatrix} f_1 & f_2 & f_3 & \cdots & f_n \\ s_1 & 0 & 0 & \cdots & 0 \\ 0 & s_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & s_{n-1}\end{pmatrix} \times \begin{pmatrix} N_1 \\ N_2 \\ N_3 \\ \vdots \\ N_n \end{pmatrix} \]2. Leslie矩阵模型的深度分析Leslie矩阵模型将人口分为不同芳龄段,根据生育率和存活率来描述人口的增长和转移过程。

通过不断迭代计算Leslie矩阵的乘积,可以预测未来几个时间段内的人口数量分布情况。

值得一提的是,Leslie 矩阵模型基于一些基本的假设,如生育率和存活率不变、芳龄段划分合理等,因此在实际应用中要注意对模型参数的调整和修正,以提高预测准确度。

3. Leslie矩阵模型的广度探讨Leslie矩阵模型不仅可以用于预测人口的总量,还可以对不同芳龄段的人口数量进行预测,从而为政府部门的人口政策制定提供参考依据。

基于leslie模型的中国人口预测模型

基于leslie模型的中国人口预测模型

= 其中矩阵 L [
1 d (0)
]
1 d (6) 0 给出 x(k,i),A 就可求出 x(k+1,) MATLAB 程序为:
名词定义:x(k,i) :在第 k 时期内的女性人口数量;
b(i):第 i 组女性的生育率;
d(i) ; 第 i 组女性的死亡率;
根据以上假设可以得出 k + 1 时段各组人数与 k 时段各组人数之间的转换关系:
X(k+1)=L*x(k) ,(a 为女婴所占的百分比)。
a * b(0) a * b(1) ... a * b(7)
i
0
1
2
3
4
5
Hale Waihona Puke 67年龄组 0
1~15 16~30 31~45 46~60 61~75 76~90 90~
注:0 组表示婴儿。
2.考虑到我国近三十年国家整体处于稳定状态没有大的灾难,战争等突发事件,所以假设
各年龄组死亡率 d(i) ,(i=0,1,…7),不随时间变化。
3.各年龄组女性的生育率 b(i),(i=0,1,…7)在较短的时期变化不大。
基于 Leslie 矩阵的中国人口预测模型
问题提出:
中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根 据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问 题。20 世纪 40 年代提出的 Leslie 人口模型,就是一个预测人口按年龄组变化的离散模型。
模型建立:
基本假设:1.假设各年龄段的男女比例保持不变(以 05 年男女性别比例为例: 106.30:100,)所以可以由女性人口数量来计算总人口 SP。将女性分为 8 组见下表

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

Leslie 矩阵模型预测人口4.1 Leslie 矩阵模型的基本概念4.1.1 参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:——在时间周期 k 第 i 个年龄段的人数注:这里的;一定存在整数n 使得表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数: 1)——在时间周期 k 第 i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率 2)——在时间周期k 第i 年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率4.1.2 Leslie 矩阵1.转移过程 在一个时间周期内里的人数转移到里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k k x i x i d i i n --+=-=L L(4-1)下面来讨论的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为1()2k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下:1111()()()2nk k k i x i b i x i --==∑g(4-2)2. 人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k k k b b b n b n d x x d d n --------⎛⎫- ⎪⎪- ⎪=⨯⎪-⎪ ⎪⎪--⎝⎭L LL M M M L M L(4-3)其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M 1111(0)(1)()k k k k x x x x n ----⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭M (4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪-⎪ ⎪⎪--⎝⎭L LL M M M L M L(4-5)则有简写:1k k x L x -=g(4-6)则有递推公式:10k k k x L x L x -==g(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

Leslie矩阵模型预测人口

Leslie矩阵模型预测人口

Leslie 矩阵模型预测人口4.1 Leslie 矩阵模型的基本概念4.1.1 参数定义[11]我们将中国人口按年龄段分成数段,因此当段数到达一定大小的时候就能包含全部年龄层的人。

再将时间序列也分割成数段(一年为一段即可研究年度人口总数),得到:x k (i )——在时间周期 k 第 i 个年龄段的人数 i =1,2,3,…n注:这里的x k (1)表示的最低年龄段的人数,如0岁~5岁的人数;一定存在整数n 使得 x k (n )表示的是年龄最高的人的人数,如“100岁以上的人”的数量。

其他关于人口的参数:1)b k (i)——在时间周期 k 第 i 年龄组的女性的生育率,即女性生的孩子的人数与女性数的比例,我们也称其为年龄别生育率2)d k (i)——在时间周期k 第i 年龄组的死亡率,即死亡人数除以这一年龄组总人数,我们也称其为年龄别死亡率4.1.2 Leslie 矩阵1.转移过程在一个时间周期内x k−1(i )里的人数转移到x k (i +1)里,考虑死亡的人数我们得到如下式子:11(1)()(1()),1,2,k k k x i x i d i i n --+=-=L L(4-1)下面来讨论i =0的情况,即新生儿人数,在这里我们做了一个假设,女性人口大致占总人口的一半(通过以往的人口普查可以得到证实),因此在时间周期k 的第个i 年龄段的女性人数为1()2k x i ,则可以通过女性的年龄别生育率预测第一个递推关系如下: 1111()()()2nk k k i x i b i x i --==∑g(4-2)2. 人口发展模型111111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k k k b b b n b n d x x d d n --------⎛⎫- ⎪⎪- ⎪=⨯⎪-⎪ ⎪⎪--⎝⎭L LL M M M L M L(4-3)其中(0)(1)()k k k k x x x x n ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M 1111(0)(1)()k k k k x x x x n ----⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭M (4-4)为了化简,我们记:11111111111(0)(1)(1)()22221(0)00001(1)00001(1)0k k k k k k k b b b n b n d L d d n -------⎛⎫- ⎪⎪- ⎪=⎪-⎪ ⎪⎪--⎝⎭L LL M M M L M L(4-5)则有简写:1k k x L x -=g(4-6)则有递推公式:10k k k x L x L x -==g(4-7)通过这种方法,我们把人口预测问题的重点落到了一个n 维矩阵运算上。

Leslie人口模型

Leslie人口模型
i r
i r i r i r i r i r i r
四、模型建立
• 种群按年龄大小等分为n个年龄组,记i=1,2,… , n • 时间离散为时段,长度与年龄组区间相等,记k=1,2,… • 第i 年龄组1雌性个体在1时段内的繁殖率为bi • 第i 年龄组在1时段内的死亡率为di, 存活率为si=1- di
பைடு நூலகம்
我们取一岁为一个年龄段,一年为一个时段。设 人口按年龄分组为0到n-1岁及大于等于n岁者(n 岁以上视为同一年龄段)共n+1个年龄段(这里 n为 90)。 设 p (t) d (t) b (t) h (t) k (t) v (t) f (t) 分别表示t到t+1年 第r个 年龄段总人口、人口 死亡率、人口出生率、女性生育模式、女性性别 比、净迁移人口、人口迁移率 (迁移人口比总人 口),R⑴ 为第古年城市化水平 (城 市人口比总人口 )。 为了分别考察城镇、农村人口的发展,以 上各 参数上标i为1时代表城镇,为 2是 代表农村,以 下各参数上标同此。
分别表示t到t1年第r个年龄段总人口人口死亡率人口出生率女性生育模式女性性别比净迁移人口人口迁移率迁移人口比总人口r为第古年城市化水平城市人口比总人口
Leslie人口模型
一、背景 中国是一个人口大国,人口问题始终是制约 我国发展的关键因素之一。根据已有数据, 运用数学建模的方法,对中国人口做出分析 和预测是一个重要问题。
• 二、问题分析
人口的变化受到众多方面因素的影响,因 此对人口的预测与控制也就十分复杂。很 多因素如出生、死亡、迁移、性别比、人 口素质、社会环境、生育政策等等。长期 预测需综合考虑各种因素的影响,在这里 我们主要介绍通过Leslie模型来分析人口增 长问题。

基于Leslie模型的人口增长预测与研究

基于Leslie模型的人口增长预测与研究

基于Leslie模型的人口增长预测与研究随着社会的发展,人类生活水平的不断提高,人口数量在不断的增长。

由于地球的资源有限,随着人口的增加,人与人的矛盾日渐突出,人口问题已成为当今世界最备关注的问题之一,当然人口增长规律的探究以及对人口总量的预测在一个国家定制长远的发展规划上面有着非常重要的价值。

标签:人口;人口模型;人口增长;Leslie模型分析引言人口增长模型是人口发展过程的定量推测,需要推测出在未来的人口增长趋势。

通过对Leslie人口模型的更细的结构化,再通过历年的统计数据可以拟合求出未来的人口总数据、人口的性别比例、年龄比例和城镇农村的城乡构成,还有未来人口中劳动力比例人们的抚养水平及老龄化比例,从而可以指定政策来进行宏观调控。

决定人口增长的要素为出生率、死亡率和上一年的人口数,但人口分布,人口素质,宏观政策和人口结构(如:年龄结构,性别比例等)等众多因素能够影响出生率与死亡率的波动,从而从根本上影响人口的增长。

由于对世界人口的研究,每个时间段的世界人口没有人口的流动,故可以认为世界人口为一个封闭的系统。

对于封闭的系统来说,计算人口中数时没有迁入迁出这个因素。

所以某时刻人口总量=人口基数+新生人口数-死亡人口数。

随着社会的不断发展,人们的生活质量得到了不断地提高,人口增长模型也不断地发生着改变。

从最初的Malthus模型到Logistic模型再到Leslie等模型,世界的人口增长随着社会的发展在各个时期都发生着不一样的变化。

有些时候人口增长模型也会因为各国的国情而发上变化。

1 人口指数增长模型(马尔萨斯Malthus,1766--1834)1.1 模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r。

以N(t)表示t时刻某地区(或国家)的人口数,假设人口总数N(t)足够大,可以视做连续函数处理,且N(t)关于t连续可微。

1.2 模型建立及求解显然此时人口数随时间呈指数地增长,故模型称为指数增长模型(或Malthus 模型)。

按年龄分组人口模型

按年龄分组人口模型

按年龄分组的种群增长模型——Leslie 模型 种群直接通过雌性个体的繁殖而增长的,所以用雌性个体数量的变化为研究对象比较方便。

下面提到的种群数量均指其中的雌性,总体数量可按照一定的性别比算出。

将种群按年龄大小等间隔地分成n 个年龄组,如每1岁或5岁为1组。

与之相对应,时间也分成与年龄组区间大小相等的时段,如1年或5年为一个时段。

记时段k 第i 年龄组的种群数量为x i (k),k=0,1,2,……,i=1,2,3,4,……,n 。

在稳定的环境下和不太长的时间内,合理地假设种群的繁殖率和死亡率不随时段k 变化,只与年龄组有关。

记第i 年龄组的繁殖率为b i ,即每个(雌性)个体在1个时段内繁殖的数量;记第i 年龄组的死亡率为d i ,即1个时段内死亡数量(占总量)的比例。

s i =1-d i 称为存活率。

通常,b i 和s i 可由统计资料获得,且有以下性质:b i >=0,i=1,2,3,……,n ,且至少有一个b i >0;0<s i <=1,i=1,2,3,……,n-1。

种群数量x i (k)的变化规律由2个基本关系得到:时段k+1第1年龄组的数量是各年龄组在时段k 的繁殖数量之和;时段k+1第i+1年龄组(i=1,2,……,n-1)的数量是时段k 第i 年龄组存活下来的数量,由此得到x 1(k+1)=1b ()ni i i x k =∑,k=0,1,2, (1)x i+1(k+1)=s i x i (k),k=0,1,2,……,i=1,2,……,n-1(2)(1),(2)是差分方程组,记种群数量在时段k 按照年龄组的分布向量为x(k)=[(x 1(k),x 2(k),......,x n (k)]T ,k=0,1,2 (3)由繁殖率b i 和存活率s i 构成的矩阵1()limk k x k λ→∞112121000000000n n n b b b b s L s s --⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦则(1),(2)可表为x(k+1)=Lx(k),k=0,1,2 (5)当矩阵L 和按年龄组的初始分布x(0)已知时,可以预测种群数量在时间段k 按年龄组的分布为x(k)=L k x(0),k=1,2, (6)有了x(k),不难算出种群在时段k 的总数。

leslie人口增长模型模型

leslie人口增长模型模型

人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。

最后提出了有关人口控制与管理的措施。

模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。

得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。

运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。

模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。

首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。

其次,对人口老龄化问题、人口抚养比进行分析。

得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。

再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。

Leslie模型

Leslie模型
在一定时期内它们基本上是一些常数事实上人们只能通过控制b决定本定理的条件通常能够得到满足故在j充分大时有nn即各年龄组的人口比例总会趋于稳定且nj11的充要条件为r1但并非每一个均能活到足够的年龄并生下r个女孩每一妇女可生子女数可定为某一略大于2的数称为临界生育率
关于建立人口增长模型,我们考虑了两条 主要思路: 一.以微分方程为主要手段: 二.以高等代数为主要手段:
p/ r + p/ t=- µ (r,t)p(r,t)
p(r,0)=p0(r) p(0,t)=f(t)
在社会比较安定的情况下,死亡 率大致与时间无关. μ (r,t)=μ (r) p(r,t)= p0(r-t)e f(t-r)e


r
r t
( s ) ds
0≤t≤r t>r

r
( s ) ds
n0 .
A属于1的特征向量N=
.
nk
解线性方程组 AN= 1N
1k/(P0P1…P k-1)
N=
1k-1(P1…P k-1)
1/P k-1 1
当且仅当1=1时,N j N,人口总量将趋于稳定 且各年龄人数在总人口数中所占的比例也将趋于 一个定值。
在1固定的情况下,N只和Pi有关。Pi为i组人的 存活率。在一定时期内,它们基本上是一些常数, 事实上人们只能通过控制b j的值来保证1=1。
目前我国人口中中年青人的比例很大,加上计 划生育降低出生率,必然造成若干年后社会人 口的严重老龄化,待这一代人越出m组后,又 会使人口迅速青年化而走向另一个极端。
为减少这种年龄结构上的振荡,人们又引入了一 个控制变量h(i,j),使bi(j)=h(i,j)
且 h(i,j)=1 h(i,j)称为女性的生育模式,用来调整育龄妇 女在不同年龄组内生育率的高低。为简便可通过 控制结婚年龄和两胎之间的年龄差来接近h(i,j)的 理想值。 于是Leslie模型可以如下形式上的改变: N j+1=[A(j)+B(j)]N j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。

最后提出了有关人口控制与管理的措施。

模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1963年、1980年、2005年到2012年四组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。

得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。

运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。

模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。

首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。

其次,对人口老龄化问题、人口抚养比进行分析。

得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。

再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。

最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。

关键词 Logistic人口模型 Leslie人口模型人口增长预测 MATLAB软件§1、问题重述一、背景知识:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

我国人口发展经历了多个阶段,近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。

全面建设小康社会时期是我国社会快速转型期,人口发展面临着前所未有的复杂局面,人口安全面临的风险依然存在二、相关数据:附件1 《国家人口发展战略研究报告》附件2 人口数据(《中国人口统计年鉴》中的部分数据)及其说明根据已有数据三、要解决的问题:1、试从中国的实际情况和人口增长的上述特点出发,参考附件2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。

2、利用所建立模型的预测结果,参照附件1的相关叙述对反映中国人口增长特点的一系列指标如人口老龄化、人口抚养比等进行分析预测。

3、根据模型的计算结果,对未来人口发展高峰进行预测并针对中国人口的调控和管理进行分析。

§2、问题分析人口的变化受到众多方面因素的影响,因此对人口的预测与控制也就十分复杂,很难在一个模型中综合考虑到各个因素的影响。

为了更好的解决此问题,我们分析了题目以及附录1中所给的相关信息,考虑到可以根据对人口增长不同的评价指标及不同的时期建立多个模型分别加以讨论。

一、从附件1中,我们看到过去一些专家对中国的总人口数做出了2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右的预测。

因而,我们也可以先对总人口的增长趋势做出自己的预测与专家预测数据进行比较,对于预测所要用到的一些相关数据,我们作了相应的补充,由此我们建立了模型Ⅰ:阻滞增长模型。

二、模型Ⅰ只考虑了人口总数,对人口总数进行了预测分析。

但实际中在对人口进行分析时,按年龄段分布的人口结构是非常重要的。

在人口总数一定时,不同年龄段的人的生育率和死亡率是不同的,它们对人口未来发展的影响也是很不一样的。

为了讨论不同年龄段的人口分布对人口增长的影响,我们依据附件2建立了模型Ⅱ:按年龄分布的Leslie模型。

三、由模型Ⅰ和模型Ⅱ的结果我们预测了人口总数的发展趋势,由模型Ⅱ的计算结果我们还能够得到各年份处在各年龄段的人口数量、男女比率的预测值。

根据这些预测值我们可以计算出反映人口增长特点的其他指标,由此我们可以对模型的计算结果进行进一步的分析。

§3、合理的假设1、社会稳定,不会发生重大自然灾害和战争i i s b ,不随时间而变化2、超过90岁的妇女(老寿星)都按90岁年龄计算3、在较短的时间内,平均年龄变化较小,可以认为不变4、不考虑移民对人口总数的影响§4、名词解释与符号说明一、名词解释1、总和生育率——指一定时期(如某一年)各年龄组妇女生育率的合计数,说明每名妇女按照某一年的各年龄组生育率度过育龄期,平均可能生育的子女数,是衡量生育水平最常用的指标之一。

2、更替水平——指这样一个生育水平,同一批妇女生育女儿的数量恰好能替代她们本身。

一旦达到生育更替水平,出生和死亡将逐渐趋于均衡,在没有国际迁入与迁出的情况下,人口将最终停止增长,保持稳定状态。

3、人口抚养比——指人口总体中非劳动年龄人口数与劳动年龄人口数之比。

通常用百分比表示。

说明每 100 名劳动年龄人口大致要负担多少名非劳动年龄人口。

用于从人口角度反映人口与经济发展的基本关系。

根据劳动年龄人口的两种不同定义( 15-59 岁人口或 15-64 岁人口),计算总抚养有两种方式4、人口老龄化——指人口中老年人比重日益上升的现象。

促使人口老龄化的直接原因是生育率和死亡率降低,主要是生育率降低。

一般认为,如果人口中65岁及以上老年人口比重超过7%,或60岁及以上老年人口比重超过10%,那么该人口就属于老年型。

5、出生人口性别比——是活产男婴数与活产女婴数的比值,通常用女婴数量为100时所对应的男婴数来表示。

正常情况下,出生性别比是由生物学规律决定的,保持在103~107之间。

二、符号说明15: m i n i ,2,1),0(= 2001年第i 年龄段的人口总数16: )3,2,1(=i v i 3,2,1=i 时分别表示市、镇、乡的女孩出生率 17: )j (L j 时段具有劳动能力的人口 18: )j (ρ 社会的抚养比指数19: k总和生育率 20:)(j K i j 时段i 年龄组中女性所占的百分比§5、模型的建立与求解模型Ⅰ:阻滞增长模型(Logistic 模型)[1] 一、模型的准备阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。

阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。

若将r 表示为x 的函数)(x r 。

则它应是减函数。

于是有:0)0(,)(x x x x r dtdx== (1)对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )0,0()(>>-=s r sxr x r (2)设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即增长率0)(=m x r ,代入(2)式得mx rs =,于是(2)式为)1()(mx x r x r -= (3)将(3)代入方程(1)得:⎪⎩⎪⎨⎧=-=0)0()1(x x x x rx dtdxm (4)解方程(4)可得:rtm me x xx t x --+=)1(1)(0(5)二、模型的建立为了对以后一定时期内的人口数做出预测,我们首先从中国经济统计数据库(http://211.86.245.155/index.aspx )上查到我国从1954年到2005年全国总人口的数据如表1。

1、将1954年看成初始时刻即0=t ,则1955为1=t ,以次类推,以2005年为51=t 作为终时刻。

用函数(5)对表1中的数据进行非线性拟合,运用Matlab 编程(程序见附录1)得到相关的参数-0.0336,180.9871 ==r x m ,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标):9959.0)y y()yˆy(1R 51i 2i51i 2i i2=---=∑∑==由可决系数来看拟合的效果比较理想。

所以得到中国各年份人口变化趋势的拟合曲线:te t x 0336.0.0)12.609871.180(19871.180)(--+=(6)根据曲线(6)我们可以对2010年(56=t )、2020年(66=t )、及2033年(79=t ) 进行预测得(单位:千万):6028.158)79(,5400.148)66(,6161.138)56(===x x x结果分析:从附录1所给信息可知从1951年至1958年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。

1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。

总的来说1951-1962年的人口增长的随机误差不是服从正态分布,由于上面的曲线拟合是用最小二乘法,所以很难保证拟合的准确性。

因此我们再选择1963年作为初始年份对表1中的数据进行拟合。

2、 将1963年看成初始时刻即0=t ,以2005年为32=t 作为终时刻。

运用Matlab编程(程序见附录2)得到相关的参数0.0484 ,151.4513 ==r x m ,可以算出可决系数9994.02=R 得到中国各年份人口变化趋势的另一拟合曲线:te t x 0484.0)11.694513.151(14513.151)(--+=(7)根据曲线(7)我们可以对2010年(47=t )、2020年(57=t )、及2033年(70=t ) 进行预测得(单位:千万):145.5908 )70(,140.8168)57(,134.9190 )47(===x x x结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。

总的来说,人口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布;1980-2005年这一时间段,虽然人口的增长受到国家计划生育政策的控制,但计划生育的政策是基本稳定的,这一阶段随机误差也应服从正态分布(当然均值与方差可能不同)因此用最小二乘法拟合所得到的结果应有较大的可信度。

相关文档
最新文档