海南省文昌市2018年中考数学模拟试卷含答案解析

合集下载

2018年海南省中考数学试卷(含答案解析)

2018年海南省中考数学试卷(含答案解析)

海南省 2018 年中考试数学试题(考试时间 100 分钟,满分 120 分)一、选择题(本大题满分 42 分,每小题 3 分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的 1.2018 的相反数是 A .-2018 B .2018 C .12018- D .120182.计算 a 2•a 3,结果正确的是 A .a 5 B .a 6 C .a 8D .a 93.在海南建省办经济特区 30 周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据 统计,4 月份互联网信息中提及“海南”一词的次数约 48 500 000 次.数据 48 500 000 用科 学记数法表示为 A .485×105 B .48.5×106 C .4.85×107 D .0.485×1084.一组数据:1,2,4,2,2,5,这组数据的众数是 A .1 B .2 C .4 D .5 5.下列四个几何体中,主视图为圆的是 A .C .D . 6.如图1,在平面直角坐标系中,△ABC 位于第一象限,点A 的坐标是(4,3),把△ABC 向 左平移6个单位长度,得到△A 1B 1C 1,则点B 1的坐标是 A .(-2,3) B .(3,-1) C .(-3,1) D .(-5,2) 7.将一把直尺和一块含 30°和 60°角的三角板 A BC 按如图 2 所示的位置放置,如果 ∠CDE =40°,那么∠BAF 的大小为 A .10° B .15° C .20° D .25°8.下列四个不等式组中,解集在数轴上表示如图 3 所示的是 A .23x x ≥⎧⎨-⎩f 1 B .23x x ≤⎧⎨-⎩p C .23x x ≥⎧⎨-⎩p D .23x x ≤⎧⎨-⎩f 9.分式方程2101x x -=+的解是 A .-1 B .1 C . ± 1 D .无解10.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n的值是A.6 B.7 C.8 D.911.已知反比例函数y=kx的图像经过点P(-1,2),则这个函数的图像位于A.二、三象限B.一、三象限C.三、四象限D.二、四象限12.如图4,在△ABC 中,AB=8,AC=6,∠BAC=30°,将△ABC 绕点A逆时针旋转60°得到△A B1C1,连接B C1,则B C1 的长为A.6 B. 8 C. 10 D. 1213.如图5,□ABCD的周长为36,对角线A C、BD 相交于点O,点E是C D 的中点,BD=12, 则△DOE 的周长为A.15 B.18 C.21 D.2414.如图6-1,分别沿长方形纸片ABCD 和正方形纸片EFGH 的对角线A C、EG 剪开,拼成如图6-2 所示的□KLM N,若中间空白部分四边形OPQR 恰好是正方形,且□KLM N的面积为50,则正方形E FGH 的面积为A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.比较实数的大小:“>”、“<”或“=”).16.五边形内角和的度数是.17.如图7,在平面直角坐标系中,点M是直线y= -x 上的动点,过点M作M N⊥x 轴,交直线y = x 于点N,当M N≤8 时,设点M的横坐标为m,则m的取值范围为.18.如图8,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以 O A 为直径的半圆 M 上,且四边形 O CDB 是平行四边形,则点 C 的坐标为 .三.解答题(本大题满分62分)(满分10分)计算(1)21322--⨯ (2) (a +1)2+2(1-a )(满分8“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49 个,其中国家级10 个,省级比市县级多5个.问省级和市县级自然保护区各多少个?(满分8 分)海南建省30 年来,各项事业取得令人瞩目的成就.以2016 年为例,全省社会固定资产总投资约3730 亿元,其中包括中央项目、省属项目、地(市)属项目、县(市) 属项目和其他项目.图 9-1、图 9-2 分别是这五个项目的投资额不完整的条形统计图和扇形统计图.请完成下列问题:(1)在图9-1 中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图9-2 中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m= ,β= 度(m、β均取整数).(满分8 分)如图10,某数学兴趣小组为测量一棵古树B H 和教学楼C G 的高,先在A处用高1.5 米的测角仪测得古树顶端H的仰角∠HDE 为45°,此时教学楼顶端G恰好在视线D H 上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF 为60°,点A、B、C 三点在同一水平线上.(1)计算古树B H 的高;(2)计算教学楼C G 的高.(参考数据:2≈1.4,3≈1.7)(满分13 分)已知,如图11-1,在□ABCD中,点E 是A B 中点,连接DE 并延长,交CB 的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图11-2,点G是边B C 上任意一点(点G不与点B、C 重合),连接A G 交D F 于点H,连接H C,过点A作A K∥HC,交D F 于点K.①求证:HC=2AK;②当点G是边B C 中点时,恰有H D=n·HK(n为正整数),求n的值.(满分15 分)如图12-1,抛物线y=ax2+bx+3 交x轴于点A(-1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图12-2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形A CFD 的面积;②点P是线段A B 上的动点(点P不与点A、B 重合),过点P作P Q⊥x 轴交该抛物线于点Q,连接AQ、DQ,当△AQD 是直角三角形时,求出所有满足条件的点Q 的坐标.。

海南省 2018中考模拟考试数学试题(一)含答案

海南省 2018中考模拟考试数学试题(一)含答案

海南省 2018中考模拟考试(一)数学科试题(全卷满分120分,考试时间100分钟) 特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效. 2. 答题前请认真阅读试题及有关说明. 一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1. -5的绝对值是A. 5B. 51C. -5D. 51-2. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约 为260000平方米,将260000用科学记数法表示为2.6×10n,则n 的值是 A .3 B .4 C .5 D .6 3.计算()3232a a ⋅-的结果,正确的是A .-6a 5B .6a 5C .-2a 6D . 2a 6 4.函数4-=x y 中,自变量x 的取值范围是A .x >4B .x ≥4C .x >0D .x ≠45.已知-1是关于x 的方程02=+a x 的解,则a 的值为A .2B .-2C .21D . 21-6.如图1,在一个长方体上放着一个小正方体,这个组合体的左视图...是7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同. 小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是A .6 B. 16 C. 18 D. 24 8. 若A (x 1,-3)、B (x 2,-2)、C (x 3,1)三点都在函数xy 6=的图象上,则x 1、x 2、x 3的大小关系是 A .x 2<x 1<x 3 B .x 1<x 2<x 3 C .x 2>x 1>x 3 D .x 1>x 2>x 39. 如图2,AD 是在Rt △ABC 斜边BC 上的高,将△ADC 沿AD 所在直线折叠,点C 恰好A .B .C .D .落在BC 的中点E 处,则∠B 等于A .25°B .30°C .45°D .60°10. 如图3,在⊙O 中,OC ∥AB ,∠A =20°,则∠1等于A. 40°B.45° B. 50° D. 60°11.不等式组⎩⎨⎧>->-04203x x 的解集是A .3>xB .2<xC .32<<xD .2>x 或3-<x 12.将一元二次方程0222=--x x 配方后所得的方程是A. 3)1(2=+xB. 3)1(2=-xC. 2)1(2=-xD. 3)2(2=+x 13.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距A 地18千米的B 地,他们离开A 地的距离s (千米)和行驶时间 t (小时)之间的函数关系图象如图4所示. 根据题目和图象提供的信息,下列说法正确的是A .乙比甲早出发半小时B .乙在行驶过程中没有追上甲C .乙比甲先到达B 地D .甲的行驶速度比乙的行驶速度快14. 如图5, CD 是一平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6, CD=12,则CE 的值为A.3B. 4 C .5 D .6 二、填空题(本大题满分16分,每小题4分) 15.分解因式:92-a = .16.如果正多边形的一个外角为72°,那么它的边数是 .17. 如图6,在菱形ABCD 中, E 、F 分别是DB 、DC 的中点,若AB =10,则EF = .图2 ECBADAB OC图31 2 (小时) 图4 图518.如图7,半径为2的⊙O 与含有30°角的直角三角板ABC 的AC 边切于点A ,将直角三角板沿CA 边所在的直线向左平移,当平移到AB 与⊙O 相切时,该直角三角板平移的距离为 . 三、解答题(本大题满分62分) 19.(本题满分10分,每小题5分)(1)计算:2)2(311516--⎪⎭⎫ ⎝⎛-⨯+. (2)化简:()()211a a a +--. 20.(本题满分8分)明铭同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到该商场为了激励营业员的工作积极性,扩大销售量,实行“月总收入=月基本工资+计件奖金”的方法. (计件奖金=月销售量×每件所得奖金)同时获得如下信息:假设销售每件服装奖励a 元,营业员月基本工资为b 元. 求a 、b 的值; 21. (8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A .1.5小时以上B .1~1.5小时C .0.5~1小时D .0.5小时以下图8.1、8.2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:图8.1 图8.2(1)本次一共调查了 名学生;学生参加体育活动时间的中位数落在 时间段(填写上面所给“A ”、“B ”、“C ”、“D ”中的一个选项); (2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.22.(8分)如图9,要测量一幢楼CD 的高度,在地面上A 点测得楼CD 的顶部C 的仰角为30°,向楼前进50m 到达B 点,又测得点C 的仰角为60°. 求这幢楼CD 的高度(结果保留根号).23. (本题满分13分)如图10,正方形ABCD 中,E 是BD 上一点,AE 的延长线交CD 于F ,交BC 的延长线于G ,M 是FG 的中点. (1)求证:① ∠1=∠2;② EC ⊥MC.(2)试问当∠1等于多少度时,△ECG 为等腰三角形? 请说明理由.24.(本题满分14分)如图11,已知抛物线经过原点O 和点A ,点B (2,3)是该抛物线对称轴上一点,过点B 作BC ∥x 轴交抛物线于点C行四边形. (1)① 直接写出A 、C 两点的坐标;② 求这条抛物线的函数关系式;(2)设该抛物线的顶点为M ,试在线段AC 上找出这样的点P ,使得△PBM 是以BM 为底边的等 腰三角形,并求出此时点P 的坐标;(3)经过点M 的直线把□ OACB 的面积分为1:3两部分,求这条直线的函数关系式.图11A C DEGF M 1 2 图10图9海南省XX 中学2016中考模拟考试(一)数学科试题答题卡否则答案效。

2018海南中考数学试题[含答案解析版]

2018海南中考数学试题[含答案解析版]

2018年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1084.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.55.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.9.(3.00分)(2018•海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解10.(3.00分)(2018•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.911.(3.00分)(2018•海南)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限12.(3.00分)(2018•海南)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.1213.(3.00分)(2018•海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.2414.(3.00分)(2018•海南)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH 的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR 恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3(填“>”、“<”或“=”).16.(4.00分)(2018•海南)五边形的内角和的度数是.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=,β=度(m、β均取整数).22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)23.(13.00分)(2018•海南)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.24.(15.00分)(2018•海南)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2018年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9【考点】46:同底数幂的乘法.【专题】11 :计算题.【分析】根据同底数幂的乘法法则解答即可.【解答】解:a2•a3=a5,故选:A.【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.3.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×108【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:48500000用科学记数法表示为4.85×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【考点】W5:众数.【专题】1 :常规题型.【分析】根据众数定义可得答案.【解答】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.【点评】此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.5.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【考点】Q3:坐标与图形变化﹣平移.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°【考点】JA:平行线的性质.【专题】1 :常规题型;551:线段、角、相交线与平行线.【分析】由DE∥AF得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【专题】1 :常规题型;524:一元一次不等式(组)及应用.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.9.(3.00分)(2018•海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解【考点】B2:分式方程的解.【专题】11 :计算题;522:分式方程及应用.【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.10.(3.00分)(2018•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【考点】X4:概率公式.【专题】1 :常规题型.【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.(3.00分)(2018•海南)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.【解答】解:反比例函数y=的图象经过点P(﹣1,2),∴2=.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.(3.00分)(2018•海南)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12【考点】KQ:勾股定理;R2:旋转的性质;T7:解直角三角形.【专题】55:几何图形.【分析】根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.13.(3.00分)(2018•海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.24【考点】KX:三角形中位线定理;L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.14.(3.00分)(2018•海南)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH 的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR 恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【考点】L7:平行四边形的判定与性质;LB:矩形的性质;LE:正方形的性质;PC:图形的剪拼.【专题】556:矩形菱形正方形.【分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3>(填“>”、“<”或“=”).【考点】2A:实数大小比较.【专题】11 :计算题.【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.16.(4.00分)(2018•海南)五边形的内角和的度数是540°.【考点】L3:多边形内角与外角.【分析】根据n边形的内角和公式:180°(n﹣2),将n=5代入即可求得答案.【解答】解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.【点评】此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.【考点】F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出MN 是解本题的关键.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).【考点】KQ:勾股定理;L5:平行四边形的性质;M2:垂径定理.【专题】1 :常规题型.【分析】过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.【解答】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=OA=10,∴在Rt△CMF中,由勾股定理得MF==6∴点C的坐标为(2,6)故答案为:(2,6).【点评】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【考点】2C:实数的运算;36:去括号与添括号;4C:完全平方公式;6F:负整数指数幂.【专题】1 :常规题型.【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【考点】8A:一元一次方程的应用.【专题】34 :方程思想;521:一次方程(组)及应用.【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=18,β=65度(m、β均取整数).【考点】VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)用全省社会固定资产总投资约3730亿元减去其他项目的投资即可求得地(市)属项目投资额,从而补全图象;(2)用县(市)属项目投资除以总投资求得m的值,再用360度乘以县(市)属项目投资额所占比例可得.【解答】解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°,故答案为:18、65.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.构建方程即可解决问题;【解答】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米.在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△BCG中,tan60°=,∴=,∴x=+.∴CG=CF+FG=×1.7+3.5+1.5=11.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(13.00分)(2018•海南)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)根据平行四边形的性质得到AD∥BC,得到∠ADE=∠BFE,∠A=∠FBE,利用AAS定理证明即可;(2)作BN∥HC交EF于N,根据全等三角形的性质、三角形中位线定理证明;(3)作GM∥DF交HC于M,分别证明△CMG∽△CHF、△AHD∽△GHF、△AHK ∽△HGM,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BFN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,∴n=4.【点评】本题考查的是平行四边形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.24.(15.00分)(2018•海南)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【考点】HF:二次函数综合题.【专题】16 :压轴题;32 :分类讨论;41 :待定系数法;523:一元二次方程及应用;537:函数的综合应用;554:等腰三角形与直角三角形.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ 的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x 2+2x +3; (2)①∵y=﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4), ∵C (0,3),D (2,3),∴CD=2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ=90°或∠AQD=90°,i .当∠ADQ=90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y=x +1,∴可设直线DQ 解析式为y=﹣x +b′,把D (2,3)代入可求得b′=5,∴直线DQ 解析式为y=﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD=90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y=k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3), 设直线DQ 解析式为y=k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

海南省2018年中考数学模拟试题

海南省2018年中考数学模拟试题

海南省2018年中考数学模拟试题(考试时间100分钟,本卷满分110分)一、选择题(本题满分42分,每小题3分)1.-5的相反数是 ( )A .15B .5-C .15-D .52.下列运算中,结果正确的是( )A .2a+3b=5abB .2a-(a+b)=a-bC .(a+b)2=a 2+b 2D .a 2 ·a 3=a 63.右图1所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )A. B. C. D. 4.海南岛首条高铁客运专线——东环高速铁路全长308110米,途经海口市、文昌市、琼海市、万宁市、陵水黎族自治县、三亚市.数据308110米用科学记数法表示应为(保留两个有效数字)( )A 、3.1×104米 B 、3.1×105米 C 、3.1×106米 D 、3.1×107米5.使分式1212-+x x 有.意义的x 的取值是( ) A .21≠x B .21-≠x C .x =21 D .x =21- 6.如图2,直线EF 分别与直线AB 、CD 相交于点G 、H ,已知∠1=∠2=50°,GM 平分∠HGB 交直线CD 于点M .则∠3的度数为( )A .60B .65C .70D .1307.在正方形网格中,△ABC 位置如图3所示,则sin ∠ABC 的值为( )B. 23C. 22D. 128.如图4,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( ) A .4π cmB .3π cmC .2π cmD .π cm9.下列调查方式合适的是( )A EG C DM H F1 2 3 A B C图3图1A B C D O 图2 图4。

2018年海南中考数学试卷及答案(word解析版)

2018年海南中考数学试卷及答案(word解析版)

海南省2018年初中毕业生学业考试数 学 科 试 题(考试时间:100分钟 满分:120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有是一个正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.(2018海南,1,3分)-5的绝对值是A .15B .-5C .5D .15-【答案】C . 2.(2018海南,2,3分)若代数式x +3的值是2,则x 等于 A .1 B .-1 C .5 D .-5 【答案】B . 3.(2018海南,3,3分)下列计算正确的是 A .x 2·x 3=x 6 B .(x 2)3=x 8 C .x 2+x 3=x 5 D .x 6÷x 3= x 3 【答案】D . 4.(2018海南,4,3分)某班5位学生参加中考体育测试的成绩(单位:分)分别是:35、40、37、38、40,则这组数据的众数是 A .37 B .40 C .38 D .35 【答案】B . 5.(2018海南,5,3分)右图是由5个大小相同的正方体组成的几何体,它的俯视图为【答案】A .6.(2018海南,6,3分)AB.C.D.2【答案】C . 7.(2018海南,7,3分)“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨.数据67500用科学记数法表示为 A .675×102 B .67.5×103 C .6.75×104 D .6.75×105 【答案】C .8.(2018海南,8,3分)如图,在 ABCD 中,AC 与BD 相交于点O ,则下列结论不一定...成立的是 A .BO =DO B .CD =ABC .∠BAD =∠BCDD .AC =BDA B C D【答案】D . 9.(2018海南,9,3分)一个三角形的三条边长分别为1、2、x ,则x 的取值范围是 A .1≤x ≤3 B .1<x ≤3 C .1≤x <3 D .1<x <3 【答案】D . 10.(2018海南,10,3分)今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获荔枝8600kg 和9800kg ,甲荔枝园比乙荔枝园平均每亩少60kg ,问甲荔枝园平均每亩收获荔枝多少kg ?设甲荔枝园平均每亩收获荔枝x kg ,根据题意,可得方程 A .8600980060x x =+ B .8600980060x x =-C .8600980060x x=- D .8600980060x x=+ 【答案】A .11.(2018海南,11,3分)现有四个外观完全一样的粽子,其中有且只有一个有蛋黄,若从中一次随机取出两个,则这两个粽子都没有...蛋黄的概率是A .13B .12C .14D .23【答案】B . 12.(2018海南,12,3分)如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则⊙O 的半径是A .1B .2CD【答案】A . 13.(2018海南,13,3分)如图,将△ABC 沿BC 方向平移得到△DCE ,连结AD ,下列条件中能够判定四边形ACED 为菱形的是 A .AB =BC B .AC =B C .∠B =60° D .∠ACB =60°EDC B A【答案】B . 14.(2018海南,14,3分)直线l 1∥l 2∥l 3,且l 1与l 2的距离为1,l 2与l 3的距离为3.把一块含有45°角的直角三角板如图放置,顶点A 、B 、C 恰好分别落在三条直线上,AC与直线l 2交于点D ,则线段BD 的长度为A .254B .253C .203D .154321l l l C【答案】A .二、填空题(本大题满分16分,每小题4分) 15.(2018海南,15,4分)分解因式:a 2-b 2= . 【答案】(a +b )(a -b ). 16.(2018海南,16,4分)点(2,y 1)、(3,y 2)在函数y =2x-的图象上,则y 1 y 2(填“>”或“=”或“<”). 【答案】<. 17.(2018海南,17,4分)如图,AB ∥CD ,AE =AF ,CE 交AB 于点F ,∠C =110°,则∠A = °.【答案】40°. 18.(2018海南,18,4分)如图,在梯形ABCD 中,AD ∥BC ,AB =CD =AD =8,∠B =60°,则BC = .【答案】16.三、解答题(本大题满分62分) 19.(满分10分)(1)(2018海南,19(1),5分)计算:214()336-⨯-; 【答案】原式=11599--+=-5. (2)(2018海南,19(2),5分)计算:a (a -3)-(a -1)2【答案】原式=a 2-3a -(a 2-2a +1)=a 2-3a - a 2+2a -1=-a -1. 20.(2018海南,20,8分)据悉,2018年财政部核定海南省发行的60亿元地方政府“债券资金”,全部用于交通等重大项目建设.如下是60亿元“债券资金”分配统计图:根据以上信息,完成下列问题: (1)请将条形统计图补充完整;(2)在扇形统计图中,a = ,b = (a 、b 都精确到0.1); (3)在扇形统计图中,“教育文化”对应的扇形圆心角的度数为 °(精确到1°). 【答案】(1)如图:“债券资金”分配条形统计图生态住房文化155(2)36.7,20.5; (3)64.2. 21.(2018海南,21,9分)如图,在正方形网格中,△ABC 各顶点都在格点上,点A 、C的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系,解答下列问题: (1)画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是 ;点C 2的坐标是 ;过C ,C 1,C 2三点的圆的圆弧⌒CC 1C 2的长是 (保留π).文化住房生态“债券资金”分配条形统计图155“债券资金”分配扇形统计图态5.5%房【答案】(1)、(2)作图如下:(3)(1,4);(1,-4).22.(2018海南,22,8分)为迎接6月5日“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制消费杜绝浪费,该校七年级(1)、(2)、(3)三个班共128人参加了活动,其中七(3)班只有8人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?【答案】解:设七(1)班、七(2)班分别有x 人、y 人参加光盘行动,根据题意,得8128,10.x y x y ++=⎧⎨-=⎩解之得65,55.x y =⎧⎨=⎩答:七(1)班、七(2)班分别有65人、55人参加光盘行动.23.(2018海南,23,13分)如图①,点P 是正方形ABCD 的边CD 上的一点(点P 与点C 、D 不重合),点E 在边BC 的延长线上,且CE =CP ,连接BP 、DE . (1)求证:△BCP ≌△DCE ;(2)如图②,直线EP 交AD 于点F ,连接BF 、FC ,点G 是FC 与BP 的交点.①当CD =2PC 时,求证:BP ⊥CF ;②当CD =n ·PC (n 是大于1的实数)时,记△BPF 的面积为S 1,△DPE 的面积为S 2.求证:S 1=(n +1)S 2.【答案】(1)证明:∵四边形ABCD 是正方形, ∴BC =DC ,∠BCD =90°, ∴∠DCE =180°-90°=90°, ∴∠BCD =∠DCE . 在△BCP 和△DCE 中,BC DC BCD DCE CP CE =⎧⎪∠=∠⎨⎪=⎩∴△BCP ≌△DCE .QPD C BAFGE(2)①证明:设延长BP 交DE 于Q . ∵△BCP ≌△DCE ,∴∠BPC =∠E∵在Rt △BCP 中,∠BPC +∠PBC =90° ∴∠E +∠PBC =90°,∴BP ⊥DE ∵CD =2PC ,∴PD =PC又∵正方形ABCD 中,AD ∥BC ∴∠DFP =∠CEP而∠DPF =∠CPE ,∴△DPF ≌△CPE ,∴FD =EC ∴四边形CEDF 是平行四边形,∴FC ∥DE ∴BP ⊥CF②证明:∵CD =n ·PC ,∴DP =(n -1)·PC , ∵AD ∥BC ,∴△DPF ∽△CPE ,∴1FP DPn EP CP==-. 令S △PCE =S ,则1DPE PCES DPn SPC==-, 图①图②EPDC BAEGFABC DP∴S △DPE =(n -1)S ,S △BCP = S △DCE =nS , ∴S △BPE =(n +1)S 又∵1BFP BPES FPn SEP==-,∴S △BFP =(n +1)(n -1)S ∴S △BFP =(n +1)S △DPE ,即S 1=(n +1)S 2.EGFABCDP24.(2018海南,24,14分)如图,二次函数的图象与x 轴相交于点A (-3,0)、B (-1,0),与y 轴相交于点C (0,3),点P 是该图象上的动点;一次函数y =kx -4k (k ≠0)的图象过点P 交x 轴于点Q . (1)求该二次函数的解析式;(2)当点P 的坐标为(-4,m )时,求证:∠OPC =∠AQC ;(3)点M 、N 分别在线段AQ 、CQ 上,点M 以每秒3个单位长度的速度从点A 向点Q运动,同时,点N 以每秒1个单位长度的速度从点C 向点Q 运动,当点M 、N 中有一点到达Q 点时,两点同时停止运动,设运动时间为t 秒. ①连接AN ,当△AMN 的面积最大时,求t 的值;②线段PQ 能否垂直平分线段MN ?如果能,请求出此时点P 的坐标;如果不能,请说明你的理由.【答案】解:(1)设该二次函数的解析式为y =a (x +3)(x +1), 则3=a (0+3)(0+1),解得a =1 ∴y =(x +3)(x +1),即该二次函数的解析式为y =x 2+4x +3(2)∵一次函数令y =kx -4k =0,∴x =4,∴Q (4,0) ∵点P (-4,m )在二次函数y =x 2+4x +3的图象上, ∴m =(-4)2+4×(-4)+3=3,∴P (-4,3) ∵C (0,3),∴PC =OQ =4,而PC ∥OQ ,∴四边形POQC 是平行四边形 ∴∠OPC =∠AQC .(3)①过点N 作ND ⊥x 轴于D ,则ND ∥y 轴,∴△QND ∽△QCO ,∴ND NQCO CQ=. 在Rt △OCQ 中,CQ5,∴535ND t-=,∴3(5)5ND t =- ∴S △AMN =12AM ·ND =12·3t ·3(5)5t -=29545()1028t --+而0≤t ≤73,∴当t =73时,△AMN 的面积最大.②能.假设PQ 垂直平分线段MN ,则MQ =NQ ,即7-3t =5-t , ∴t =1.此时AM =3,点M 与点O 重合.过点N 作ND ⊥x 轴于D ,过点P 作PE ⊥x 轴于E . 则∠MND =∠PQE =90°-∠NMD , ∴Rt △MND ∽Rt △PQE ,∴ND QEMD PE=. 而ND =NQ ·sin ∠NQD =4×35=125,DQ =NQ ·cos ∠NQD =4×45=165,∴MD =OD =4-165=45.设点P (x ,x 2+4x +3),则212454435x x x -=++,解得x =.∴线段PQ能垂直平分线段MN,此时点P的坐标为9)或.。

海南省2018年中考数学试卷及答案解析

海南省2018年中考数学试卷及答案解析

23. (13.00 分)已知,如图 1,在▱ ABCD 中,点 E 是 AB 中点,连接 DE 并延长,交 CB 的延长 线于点 F. (1)求证:△ADE≌△BFE; (2)如图 2,点 G 是边 BC 上任意一点(点 G 不与点 B、C 重合) ,连接 AG 交 DF 于点 H,连接
HC,过点 A 作 AK∥HC,交 DF 于点 K. ①求证:HC=2AK; ②当点 G 是边 BC 中点时,恰有 HD=n•HK(n 为正整数) ,求 n 的值.
(2)在图 2 中,县(市)属项目部分所占百分比为 m%、对应的圆心角为β,则 m= β= 度(m、β均取整数) .
22. (8.00 分)如图,某数学兴趣小组为测量一棵古树 BH 和教学楼 CG 的高,先在 A 处用高 1.5 米的测角仪测得古树顶端 H 的仰角∠HDE 为 45°,此时教学楼顶端 G 恰好在视线 DH 上,再向前 走 7 米到达 B 处,又测得教学楼顶端 G 的仰角∠GEF 为 60°,点 A、B、C 三点在同一水平线上. (1)计算古树 BH 的高; (2)计算教学楼 CG 的高. (参考数据: ≈14, ≈1.7)
11. (3.00 分)已知反比例函数 y= 的图象经过点 P(﹣1,2) ,则这个函数的图象位于( A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限
12. (3.00 分)如图,在△ABC 中,AB=8,AC=6,∠BAC=30°,将△ABC 绕点 A 逆时针旋转 60° 得到△AB1C1,连接 BC1,则 BC1 的长为( )
A. (﹣2,3) B. (3,﹣1) C. (﹣3,1) D. (﹣5,2) 7. (3.00 分)将一把直尺和一块含 30°和 60°角的三角板 ABC 按如图所示的位置放置,如果∠ CDE=40°,那么∠BAF 的大小为( )

2018年海南数学中考试卷(含答案)

2018年海南数学中考试卷(含答案)

A.-1
B.1
C. ± 1
D.无解
10.在一个不透明的袋子中装有 n 个小球,这些球除颜色外均相同,其中红球有 2 个,如果从
袋子中随机摸出一个球,这个球是红球的概率为 1 ,那么 n 的值是 3
A.6
B.7
C.8
D.9
11.已知反比例函数 y = k 的图像经过点P(-1,2),则这个函数的图像位于 x
A.10°
B.15°
C.20°
D.25°
数学试题 第 1 页(共 4 页)
8.下列四个不等式组中,解集在数轴上表示如图 3 所示的是
A.
⎧x ⎨⎩ x
≥ >
2, −3
B.
⎧x ⎨⎩ x
≤ <
2, −3
C.
⎧ ⎨ ⎩
x x
≥ <
2, −3
D.
⎧ ⎨ ⎩
x x
≤ >
2, −3
-3
2
图3
9.分式方程 x2 −1 = 0 的解是 x +1
A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限
12.如图 4,在△ABC 中,AB=8,AC=6,∠BAC=30°,将△ABC 绕点A逆时针旋转 60°得
到△A B1C1,连接 B C1,则 B C1 的长为
A.6
B. 8
C. 10
D. 12
A
A
D
C1
B
C B1
图4
O
E
B
C
图5
13.如图 5,□ABCD 的周长为 36,对角线 AC、BD 相交于点 O,点 E 是 CD 的中点,BD=12, 则△DOE 的周长为

【2018年中考真题模拟】海南省2018年中考数学真题试题(含解析)

【2018年中考真题模拟】海南省2018年中考数学真题试题(含解析)

海南省2018年中考数学真题试题一、选择题(本大题共14小题,每小题3分,共42分)1.2018的相反数是()A.﹣2018 B.2018 C.12017D.12017【答案】A.【解析】试题分析:根据相反数特性:若a.b互为相反数,则a+b=0即可解题.∵2018+(﹣2018)=0,∴2018的相反数是(﹣2018),故选 A.考点:相反数.2.已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【答案】C.【解析】试题分析:把a的值代入原式计算即可得到结果.当a=﹣2时,原式=﹣2+1=﹣1,故选C.考点:代数式求值.3.下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3a2=a6D.(a3)2=a9【答案】B.【解析】考点:同底数幂的运算法则.4.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱 C.圆台 D.圆锥【答案】D.【解析】试题分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选D.考点:三视图.5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45° B.60° C.90° D.120°【答案】C.【解析】试题分析:根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选C.考点:垂线的定义,平行线的性质.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(-3,2)B.(2,-3)C.(1,-2)D.(-1,2)【答案】B.【解析】试题分析:首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.考点:平移的性质,轴对称的性质.7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【答案】B.考点:科学记数法.8.若分式211xx--的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【答案】A.【解析】试题分析:直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.∵分式211xx--的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选A.考点:分式的意义.9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【答案】D.【解析】试题分析:众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.考点:中位数,众数.10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.116【答案】D.。

2018年海南省中考数学试卷(含答案与解析)

2018年海南省中考数学试卷(含答案与解析)

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前海南省2018年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2 018的相反数是( ) A .2018-B .2018C .12018-D .120182.计算23a a g ,结果正确的是( ) A .5aB .6aC .8aD .9a3.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48 500 000次.数据48 500 000用科学记数法表示为( ) A .548510⨯ B .648.510⨯C .74.8510⨯D .80.48510⨯ 4.一组数据:1,2,4,2,2,5,这组数据的众数是( ) A .1B .2C .4D .5 5.下列四个几何体中,主视图为圆的是( )ABCD6.如图,在平面直角坐标系中,ABC △位于第一象限,点A 的坐标是(4,3),把ABC △向左平移6个单位长度,得到111A B C △,则点1B 的坐标是( ) A .(2,3)-B .(3,1)-C .(3,1)-D .(5,2)-7.将一把直尺和一块含30︒和60︒角的三角板ABC 按如图所示的位置放置,如果40CDE ︒∠=,那么BAF ∠的大小为( )A .10︒B .15︒C .20︒D .25︒8.下列四个不等式组中,解集在数轴上表示如图 所示的是( )A .2,3x x ≥⎧⎨>-⎩B .2,3x x ≤⎧⎨<-⎩C .2,3x x ≥⎧⎨<-⎩D .2,3x x ≤⎧⎨>-⎩9.分式方程21=01x x -+的解是( ) A .1-B .1C .1±D .无解10.在一个不透明的袋子中装有n 个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n 的值是( ) A .6B .7C .8D .9毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)11.已知反比例函数ky x=的图象经过点(1,2)P -,则这个函数的图象位于( ) A .二、三象限B .一、三象限C .三、四象限D .二、四象限12.如图,在ABC △中,8AB =,6AC =,30BAC ︒∠=,将ABC △绕点A 逆时针旋转60︒得到11AB C △,连接1BC ,则1BC 的长为( )A .6B .8C .10D .1213.如图,□ABCD 的周长为36,对角线AC ,BD 相交于点O ,点E 是CD 的中点,12BD =,则DOE △的周长为( )A .15B .8C .21D .2414.如图1,分别沿长方形纸片ABCD 和正方形纸片EFGH 的对角线AC ,EG 剪开,拼成如图2所示的□KLMN ,若中间空白部分四边形OPQR 恰好是正方形,且□KLMN 的面积为50,则正方形EFGH 的面积为( )A .24B .25C .26D .27第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上) 15.比较实数的大小:填“>”“<”或“=”).16.五边形内角和的度数是 .17.如图,在平面直角坐标系中,点M 是直线y x =-上的动点,过点M 作MN x ⊥轴,交直线y x =于点N ,当8MN ≤时,设点M 的横坐标为m ,则m 的取值范围为 .18.如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为 .三、解答题(本大题共6小题,共62分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分,每题5分) 计算:(1)213|2|2--⨯;(2)2(1)2(1)a a ++-.20.(本小题满分8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个,问省级和市县级自然保护区各多少个?21.(本小题满分8分)海南建省30年来,各项事业取得令人瞩目的成就.以2016年为例,全省社会固定资产总投资约3 730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1,图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图.请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;数学试卷 第5页(共16页) 数学试卷 第6页(共16页)(2)在图2中,县(市)属项目部分所占百分比为%m 、对应的圆心角为β,则m = ,β= 度(m ,β均取整数).22.(本小题满分8分)如图,某数学兴趣小组为测量一棵古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪测得古树顶端H 的仰角HDE ∠为45︒,此时教学楼顶端G 恰好在视线DH 上,再向前走7米到达B 处,又测得教学楼顶端G 的仰角GEF ∠为60︒,点A ,B ,C 三点在同一水平线上. (1)计算古树BH 的高; (2)计算教学楼CG 的高. (1.41.7)23.(本小题满分13分)已知,如图1,在口ABCD 中,点E 是AB 中点,连接DE 并延长,交CB 的延长线于点F .(1)求证:ADE BFE △≌△;(2)如图2,点G 是边BC 上任意一点(点G 不与点B ,C 重合),连接AG 交DF 于点H ,连接HC ,过点A 作AK HC ∥,交DF 于点K .①求证:2HC AK =;②当点G 是边BC 中点时,恰有HD n HK =g (n 为正整数),求n 的值.24.(本小题满分15分)如图1,抛物线23y ax bx =++交x 轴于点(1,0)A -和点(3,0)B . (1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y 轴交于点C ,顶点为F ,点(2,3)D 在该抛物线上. ①求四边形ACFD 的面积;②点P 是线段AB 上的动点(点P 不与点,A B 重合),过点P 作PQ x ⊥轴交该抛物线于点Q ,连接AQ ,DQ ,当AQD △是直角三角形时,求出所有满足条件的点Q 的坐标.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共16页) 数学试卷 第8页(共16页)海南省2018年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】2018的相反数是2018-,故选A . 【考点】相反数 2.【答案】A【解析】235a a a =g ,故选A . 【考点】同底数幂的乘法 3.【答案】C【解析】科学记数法的表示形式为10na ⨯,其中1||10a ≤<,n 为整数,所以748500000 4.8510=⨯,故选C .【考点】科学记数法. 4.【答案】B【解析】数据1,2,4,2,2,5中有3个2,出现的次数最多,∴众数是2,故选B . 【考点】众数. 5.【答案】C【解析】A 中圆柱的主视图为矩形,B 中圆锥的主视图为三角形,C 中球的主视图为圆,D 中正方体的主视图为正方形,故选C . 【考点】几何体的主视图. 6.【答案】C【解析】∵点A 的坐标为(4,3),∴点B 的坐标为(3,1),向左平移6个单位后对应的点1B 的坐标为(3,1)-,故选C . 【考点】点的坐标、图形的平移. 7.【答案】A【解析】由题可得,40CDE ︒∠=,90C ︒∠=, ∴50CED ︒∠=, 又∵DE AF ∥,∴50CAF CED ︒∠=∠=, ∵60BAC ︒∠=,∴605010BAF ︒︒︒∠=-=,故选A .【考点】平行线的性质、三角形内角和定理. 8.【答案】D【解析】由题中的数轴可得32x x >-⎧⎨≤⎩,故选D .【考点】数轴上表示不等式的解集. 9.【答案】B【解析】去分母,得210x -=,解得1x =±.当1x =-时,分母10x +=.∴1x =-是原方程的增根.∴原方程的解是1x =,故选B . 【考点】解分式方程. 10.【答案】A 【解析】由题意可得213n =,解得6n =,故选A . 【考点】概率的计算.11.【答案】D【解析】∵反比例函数ky x=的图象过点(12)P -,, ∴122k =-⨯=-,∴这个函数的图象位于第二、四象限,故选D . 【考点】反比例函数的图象. 12.【答案】C【解析】由旋转可知,16AC AC ==,160CAC ︒∠=, ∵ =30BAC ︒∠, ∴190BAC ︒∠=, ∵8AB =,16AC =,∴110BC =,故选C . 【考点】旋转的性质、勾股定理. 13.【答案】A【解析】∵四边形ABCD 为平行四边形, ∴OB OD =,∵平行四边形ABCD 的周长为36, ∴18BC DC +=,∵点E 是CD 的中点, ∴12OE BC =, ∴9OE DE +=,∴12BD =,数学试卷 第9页(共16页) 数学试卷 第10页(共16页)∴6OD =,DOE △的周长为6915+=,故选A .【考点】平行四边形的性质、三角形的中位线定理. 14.【答案】B 【解析】设PQ QR RO OP x ====,MO KO y ==,则PL PM NR RK EH x y =====+,∴2NQ OL x y ==+,∴21111502222NQ MQ OL OK PM PL NR RK PQ ++++=g g g g ,即2221111(2)(2)()()502222x y y x y y x y x y x ++++++++=, 化简得2()25x y +=,∴正方形EFGH 的面积为25,故选B .【考点】平行四边形和正方形的性质、正方形的面积.第Ⅱ卷二.填空题 15.【答案】>【解析】先求出两数的平方,转化为有理数进行比较.∵239=,25=∴3>.【考点】比较实数的大小. 16.【答案】540︒【解析】五边形的内角和为(52)180540︒︒-⨯=. 【考点】多边形的内角和. 17.【答案】44m -≤≤【解析】∵直线y x =与直线y x =-互相垂直, ∴90MON ︒∠=, ∵MN x ⊥轴,∴MON △为等腰直角三角形, ∴当8MN =时,||4m =, ∴当8MN ≤时,||4m ≤, ∴44m -≤≤.【考点】正比例函数的图象、直角三角形的性质. 18.【答案】(2,6)【解析】如图,分别过点M ,C 作MN CD ⊥,CE OA ⊥,垂足为N ,E ,连接CM .易得四边形CNME 为矩形,∵点B 的坐标为(16,0),点A 的坐标为(20,0),∴ 16OB =,20OA =,又四边形OCDB 是平行四边形, ∴16CD =,10CM =, ∴8CN DN ==,∴6MN =,6CE MN ==,8EM CN ==,∴1082OE OM EM =-=-=. ∴点C 的坐标为(2,6).【考点】垂径定理、平行四边形的性质、勾股定理. 19.【答案】(1)5 (2)23a +【解析】(1)先化简乘方、二次根式、绝对值、负指数幂,然后依据实数的运算法则求解;原式93225=--⨯=.(2)根据完全平方公式和整式的乘法法则化简即可;原式2221223a a a a =+++-=+. 【考点】实数的运算、整式的化简 20.【答案】17【解析】根据省级与市县级自然保护区的数目的关系和全省建立的保护区总数列方程组求解即可.解:设省级自然保护区为x 个,市县级自然保护区为y 个,根据题意,得5,1049.x y x y -=⎧⎨++=⎩解这个方程组,得22,17.x y =⎧⎨=⎩答:省级自然保护区为22个,市县级自然保护区为17个. 【考点】二元一次方程组的实际应用. 21.【答案】(1)830 条形图补充如图所示.数学试卷 第11页(共16页) 数学试卷 第12页(共16页)(2)18,65m β==.【解析】(1)根据条形统计图数据和全省社会固定资产总投资额可求出地(市)属项目投资额,补全条形统计图.(2)先根据条形统计图中数据求出县(市)属项目部分所占百分比,然后用百分比乘360︒即可得到β的度数.【考点】条形统计图、扇形统计图. 22.【答案】(1)8.5米 (2)18.5米【解析】(1)根据等腰直角三角形的性质直接求解; 解:在Rt DEH △中,∵ 90DEH ︒∠=,45HDE ︒∠=, ∴=7HE DE =(米).∴7 1.58.5BH HE BE =+=+=(米).(2)设出EF 的长,分别在Rt GEF △和Rt GDF △中表示出GF 和DF 的长,列出方程求解出GF ,从而可得教学楼CG 的高. 设EF x =米,在Rt GEF △中, ∵90GFE ︒∠=,60GEF ︒∠=,∴tan 60GF EF ︒==g ,在Rt GDF △中∵90GFD ︒∠=,45GDF ︒∠=, ∴DF GF =,∴7x +=,1.7代入上式,解得10x =.17GF ==,∴18.5GC GF FC =+=(米)【考点】直角三角形的应用——仰角俯角问题. 23.【答案】(1)证明:在口ABCD 中,有AD BC ∥, ∴ADE F ∠=∠, ∵E AB 是中点, ∴AE BE =,又∵AED BEF ∠=∠(对顶角相等), ∴ADE BEF △≌△ (2)①证明:如图1,在ABCD Y 中,有AB CD ∥,AB CD =, ∴AEK CDH ∠=∠,∵AK HC ∥,∴AKE CHD ∠=∠, ∴AEK CDH △∽△.∴AE AKCD CH=. 又∵E AB 是边中点, ∴2AE AB CD ==, ∴2HC AK =.②当点G 是BC 中点时,如图2,在ABCD Y 中,有AD BC ∥,AD BC =,数学试卷 第13页(共16页) 数学试卷 第14页(共16页)∴ADH GHF △∽△,∴AD HDGF HF=. 由(1)得ADE BFE △≌△, ∴AD BF =.又∵G BC 是中点,∴2BG AD BF ==, ∴23AD GF =,∴23HD HF =,Ⅰ如图3,∵AD FC ∥,∴ADK F ∠=∠. ∵AK HC ∥,∴AKH CHK ∠=∠, ∴AKD CHF ∠=∠(等角的补角相等), ∴AKD CHF △∽△,∴12AD KD CF HF ==,12KD HF = ⅡⅠ-Ⅱ:16HK HD KD HF =-= Ⅲ由Ⅰ,Ⅲ可得4HDHK=,∴4HD HK =,∴4n =.【解析】(1)根据平行四边形的性质和全等三角形的判定证明; (2)①证明AEK CDH △∽△即可证得结论;②证明AHD GHF △∽△得HD 与HF 的数量关系,再证明AKD CHF △∽△得KD 与HF 的数量关系,从而得到HD 与HK 的数量关系.【考点】平行四边形的性质、全等三角形的判定与性质、相似三角形的判定与性质. 24.【答案】(1)该抛物线的解析式为223y x x =-++解:将(1,0)A -,(3,0)B 代入23y ax bx =++得309330a b a b -+=⎧⎨++=⎩解得12a b =-⎧⎨=⎩,∴该抛物线的解析式为223y x x =-++. (2)①连接CD .∵2223(1)4y x x x =-++=--+,∴(1,4)F ,当0x =时,2233y x x =-++=, ∴(0,3)C ,又(2,3)D , ∴CD x ∥轴,且2CD =.CDF CDA ACFD S S S =+△△四边形1()2F A CD y y =⨯- 12442=⨯⨯= ②设(,0)P t ,则2(,23)Q t t t -++.Ⅰ.若90DAQ ︒∠=,如图1.此时点Q 必在第四象限,所对应的点P 在AB 的延长线上,此种情况不符合题意,故舍去.Ⅱ.若90ADQ ︒∠=,如图2.设PQ 交CD G 于点,则PQ CD ⊥,G 点坐标为(,3)t , 作DH x ⊥轴于H ,则(2,0)H , ∴在Rt DHA △中,3DH AH ==, ∴45DAH ︒∠=,又CD x ∥轴,∴45ADC DAH ︒∠=∠=,数学试卷 第15页(共16页) 数学试卷 第16页(共16页)∴45QDG ADQ ADC ︒∠=∠-∠=, ∴DGQ △为等腰直角三角形, ∴GQ GD =,2(23)32t t t -++-=-, 整理得2320t t -+=, 解得11t =,22t =,当2t =时,D Q 与重合,故舍去. 当1t =时,2234t t -++=, ∴(1,4)Q .Ⅲ.若90AQD ︒∠=,如图3.过点D DK PQ ⊥作于点K . ∴90APQ QKD ︒∠=∠=, ∵90DQK PQA ︒∠+∠=, 又90DQK KDQ ︒∠+∠=, ∴PQA KDQ ∠=∠, ∴PQA KDQ △∽△,∴PQ PAKD KQ= ∴2223123(23)t t t t t t -+++=---++. ∴(3)(1)12(2)t t t t t t --++=--.∵1,2t t ≠-≠(即Q 不与A ,D 重合) ∴1(3)t t--=. 整理得2310t t -+=,解得123322t t +==, 经验证,12,t t 均符合题意,其中:123t <<,符合图3的情况; 212t -<<,符合图4的情况.当1t =223t t -++=; 当2t =223t t -++=.∴Q 或.综上所述,当AQD △为直角三角形时,点Q 坐标为(1,4或或. 【解析】(1)将点A ,B 的坐标代入抛物线的解析式求解即可.(2)①根据抛物线的解析式求出点F 和点C 的坐标,连接CD ,利用三角形面积公式求出四边形ACFD 的面积;②设出P 点坐标,表示出点Q 的坐标,分直角顶点的三种情况讨论,利用直角三角形的性质和相似三角形的判定与性质建立方程进行求解. 【考点】二次函数的图象与性质、直角三角形的性质、相似三角形的判定与性质.。

海南省2018届中考模拟测试(二)数学科试题

海南省2018届中考模拟测试(二)数学科试题

海南省2018届中考模拟测试(二)数学科试题(考试时间100分钟,满分120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.下列运算正确的是A.39±=B.33-=-C.39-=-D.932=- 2.方程12222x x x-+=--的解是 A.1x = B.1x =- C.2x = D.2x =-3.已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为A .42110-⨯千克 B .62.110-⨯千克 C .52.110-⨯千克 D .42.110-⨯千克 4.将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图1所示,那么在这个正方体中,和“强”相对的字是 A .文B.明C.民 D.主5.如图2,把一块含有45°角的直角三角板的两个非直角顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是 A .30°B.25°C.20°D.15°6.如图3,直线334y x =+与x 、y 轴分别交于A 、B 两点,则cos ∠BAO 的值是A .54 B.53 C.34 D.457.数据3,6,7,4,x 的平均数是5,则这组数据的中位数是A.4B.4.5C.5D.68.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 A.12 B.14 C.16 D.1129.已知反比例函数y =kx的图象经过点(1,-2),则k 的值为 A .2 B .-12C .1D .-2 10.把x 3﹣9x 分解因式,结果正确的图2 富 强 民 主 文 明 图1图7 A .()29x x -B .()23x x -C .()()33x x x +- D .()23x x +11.如图4,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r =5,AC则∠B 的度数是A .30°B.45°C.50°D.60°12.海口市2011年平均房价为每平方米8000元,2013年平均房价降到每平方米7000元,设这两年平均房价年平均降低率为x ,根据题意,下面所列方程正确的是 A .8000(1+x )2=7000 B .8000(1﹣x )2=7000 C .7000(1﹣x )2=8000 D .7000(1+x )2=8000 13.如图5,△ABC 的两条中线BE 、CD 交于O ,则:EDO ADE S S ∆∆=A .1∶2B .1∶3C .1∶4D .1∶614.如图6,△ABC 的面积为2,将△ABC 沿AC 方向平移至△DFE ,且AC =CD ,则四边形AEFB 的面积为A .6B .8C .10D .12 二、填空题(本大题满分16分,每小题4分) 15.计算:16.分式方程xx x -=+--23123的解是_________.17.如图7,在∆ABC 中,AB =5,AC =4,点D 在边AB 上,若ACD ∠=B ∠,则AD 的长为 .18.如图8,在△ABC 中,AB=4,BC=6,∠B=600,将△ABC 沿射线BC 方向平移2个单位后得到△DEF , 连接DC ,则DC 的长为 .三、解答题(本大题满分62分) 19.(满分10分,每小题5分)AB OC 图4DA C E D 图6B F O图5 B DC A E AD BF 图8(1)计算:()121123-⎛⎫⎛⎫-⨯--- ⎪ ⎪⎝⎭⎝⎭;(2)化简:(a 2b -2ab 2-b 3)÷b -(a -b )(a +b )20.(满分8分)从A 地到B 地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,一辆客车从A 地开往B 地一共行驶了3.5h .求A 、B 两地间国道和高速公路各多少千米? 21.(本题满分8分)近年来,琼海市在国际和国内的知名度越来越大,带动旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假,下面的图7.1和7.2分别反映了该市2011—2014年游客总人数和旅游业总收入情况.根据统计图提供的信息,解答下列问题: (1)2014年游客总人数为万人次,旅游业总收入为万元;(2)在2012年,2013年,2014年这三年中,旅游业总收入增长幅度最大的是年,这一年的旅游业总收入比上一年增长的百分率为(精确到1%);(3)据统计,2014年琼海共接待国内游客1200万人,人均消费约700元.求海外游客人均消费约多少元?(注:旅游收入=游客人数×游客的人均消费)22.(满分9分)如图8,一艘轮船向正东方向航行,在A 处测得灯塔P 在A 的北偏东60°方向上,航行40海里到达B 处,此时测得灯塔P 在B 的北偏东15°方向. (1)求灯塔P 到轮船航线的距离PD 是多少海里(结果保留根号)?(2)当轮船从B 处继续向东航行时,一艘快艇从灯塔P 处同时前往D 处,尽管快艇速度是轮船速度的2倍,但快艇还是比轮船晚15分钟到达D 处,求轮船每小时航行多少海里?(结果精确到个位,参考数据:3≈1.73)23.(满分13分)ABPD 是一个边长为1的正方形,△DPC 是一个直角边长为1的等腰直角三角形,把正方形ABPD 和△DPC 拼成一个如图9所示的直角梯形,E 、F 分别为线段DP 、CP 上两个动点(不与D 、P 、C 重合),且DE =CF =x ,BE 的延长线分别交DF 、DC 于H 、G . (1)求证:①△BPE ≌△DPF .②BG ⊥DF .图7.1人数(万人次) 0500100015002011 2012 2013 2014 年份 2011—2014年游客总人数统计图 收入(万元) 020000040000060000080000010000002011 2012 2013 2014 年份 2011—2014年旅游业总收入统计图图7.2图8(2)试问:是否存在这样x 的值,使得DF 和EG 互相垂直平分,若存在,请求出x 的值; 若不存在,请说明理由.(3)若连结AH ,在运动过程中,∠AHB 的大小是否发生改变?若改变,请说出是如何变化的;若不改变,请猜想∠AHB 的度数,不用说明理由. .24.(满分14分)如图10,已知抛物线与x 轴交于A (-1,0)、B (5,0)两点,与y 轴交于点C (0,5). (1)求该抛物线所对应的函数关系式;(2)D 是笫一象限内抛物线上的一个动点(与点C 、B 不重合),过点D 作DF ⊥x 轴于点F ,交直线BC 于点E ,连结BD 、CD .设点D 的横坐标为m ,△BCD 的面积为S .① 求S 关于m 的函数关系式及自变量m 的取值范围;②当m 为何值时,S 有最大值,并求这个最大值;③直线BC 能否把△BDF 分成面积之比为2:3的两部分?若能,请求出点D 的坐标;若不能,请说明理由.图9ACFBDE H PGx参考答案及评分标准一、选择题:1.C,2.A,3.C,4.A,5.B,6.A,7.C,8.C,9.D,10.C,11.D,12.B,13.B,14.C. 二、填空题:15.0,16.x=1,17.165,18.4.三、解答题:19.(1)解:原式=8⨯(-12)-(-3)…(3分) (2)解:原式=a 2-2ab -b 2-(a 2-b 2)…(3分)=-4+3 ………(4分) =-2ab …(5分)=-1 ………(5分)20.解:设A 、B 两地间国道和高速公路分别是x 、y 千米,依题意得…(1分)2903.560100x y x y +=⎧⎪⎨+=⎪⎩……………(4分)解得90200x y =⎧⎨=⎩……………(7分) 答:A 、B 两地间国道和高速公路分别是90、200千米.…(8分)21.解:(1)1225;940000.…(2分)(2)2014;41%……(5分)(3)4000(元)……(8分) 22.(1)过点B 作BC ⊥AP 于点C 在Rt △ABC 中,∠ACB =90°,∠BAC =30° ∴BC =21AB =20,AC =AB ·cos30°=203 ∵∠PBD =90°-15°=75°,∠ABC =90°-30°=60° ∴∠CBP =180°-75°-60°=45°∴PC =BC ·tan45°=20∴AP =AC +PC =(20+203)海里 ………………(3分)∵PD ⊥AD ,∠P AD =30°∴PD =21AP =10+103………………(4分) 答:灯塔P 到轮船航线的距离PD 是(10+103)海里. ……………(5分)(2)设轮船每小时航行x 海里,在Rt △ADP 中,AD =AP ·cos30°=23(20+203)=(30+103)海里 ∴BD =AD -AB = 30+103-40=(103-10)海里 ………………(6分)x 10310-+6015=x210310+ 解得x =60-203经检验,x =60-203是原方程的解 …………………(8分) ∴x =60-3≈60-20×1.73 =25.4 ≈25 答:轮船每小时航行约25海里. …………………(9分)23.(1)①证明:∵四边形ABPD是正方形,△DPC是等腰直角三角形∴BP=PD=PC,∠BPE=∠DPF=90º. ……(2分)又∵DE=CF,∴PE=PF……(3分)∴ΔBPE≌ΔDPF.……(4分)②∵ΔBPE≌ΔDPF,∴∠EBP=∠FDP……(5分)又∵∠FDP+∠BFH=90º∴∠EBP+∠BFH=90º……(6分)∴BG⊥DF……(7分)(2)存在. ………(8分)连结BD,若直线BG垂直平分线段DF.则BF=BD x(9分)此时,∠FBH=∠PDF=∠CDF=22.5º,又∵BG⊥DF,直线DF垂直平分线段EG.……(10分)∴当x DF和EG互相垂直平分……(11分)(3)∠AHB的大小不改变,∠AHB=450.……(13分)24.(1)∵抛物线经过A(-1,0),B(5,0),C(0,5)∴设y=a(x+1)(x-5). ………(3分)∴5=a(0+1)(0-5),解得a=-1. ………(4分)∴抛物线的函数关系式为y=-(x+1)(x-5),即245y x x=-++.……(5分)(2)①设直线BC的函数关系式为y kx b=+∴5,50.bk b=⎧⎨+=⎩解得1,5.kb=-⎧⎨=⎩,∴5y x=-+…(5分)设D(m,-m2+4m+5),E(m,-m+5) ∴DE=-m2+4m+5+m-5=-m2+5m∴s=152⨯(-m2+5m)= -52m2+252m (0<m<5)②s= -52m2+252m =255125m228⎛⎫--+⎪⎝⎭∵52-<,∴当m=52时,S有最大值,最大值S=1258. ……(9分)③∵ΔBDE和ΔBFE是等高的,∴它们的面积比=DE:EF (ⅰ)当DE:EF =2:3时,即2m5m2m53-+=-+,解得:122m m53==,(舍),此时,D(26539,)(ⅱ)当DE:EF =3:2时,即2m5m3m52-+=-+,解得:123m m52==,(舍),此时,D(33524,)。

2018海南省中考数学试卷(含答案解析版)备课讲稿

2018海南省中考数学试卷(含答案解析版)备课讲稿

2018年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1084.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.55.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A. B. C. D.9.(3.00分)(2018•海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解10.(3.00分)(2018•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.911.(3.00分)(2018•海南)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限12.(3.00分)(2018•海南)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.1213.(3.00分)(2018•海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.2414.(3.00分)(2018•海南)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH 的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR 恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3(填“>”、“<”或“=”).16.(4.00分)(2018•海南)五边形的内角和的度数是.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=,β=度(m、β均取整数).22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)23.(13.00分)(2018•海南)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.24.(15.00分)(2018•海南)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2018年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9【考点】46:同底数幂的乘法.【专题】11 :计算题.【分析】根据同底数幂的乘法法则解答即可.【解答】解:a2•a3=a5,故选:A.【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.3.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×108【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:48500000用科学记数法表示为4.85×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【考点】W5:众数.【专题】1 :常规题型.【分析】根据众数定义可得答案.【解答】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.【点评】此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.5.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【考点】Q3:坐标与图形变化﹣平移.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°【考点】JA:平行线的性质.【专题】1 :常规题型;551:线段、角、相交线与平行线.【分析】由DE∥AF得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A. B. C. D.【考点】C4:在数轴上表示不等式的解集.【专题】1 :常规题型;524:一元一次不等式(组)及应用.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.9.(3.00分)(2018•海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解【考点】B2:分式方程的解.【专题】11 :计算题;522:分式方程及应用.【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.10.(3.00分)(2018•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【考点】X4:概率公式.【专题】1 :常规题型.【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.(3.00分)(2018•海南)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.【解答】解:反比例函数y=的图象经过点P(﹣1,2),∴2=.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.(3.00分)(2018•海南)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12【考点】KQ:勾股定理;R2:旋转的性质;T7:解直角三角形.【专题】55:几何图形.【分析】根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.13.(3.00分)(2018•海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.24【考点】KX:三角形中位线定理;L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.14.(3.00分)(2018•海南)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH 的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR 恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【考点】L7:平行四边形的判定与性质;LB:矩形的性质;LE:正方形的性质;PC:图形的剪拼.【专题】556:矩形菱形正方形.【分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3>(填“>”、“<”或“=”).【考点】2A:实数大小比较.【专题】11 :计算题.【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.16.(4.00分)(2018•海南)五边形的内角和的度数是540°.【考点】L3:多边形内角与外角.【分析】根据n边形的内角和公式:180°(n﹣2),将n=5代入即可求得答案.【解答】解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.【点评】此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.【考点】F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出MN 是解本题的关键.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).【考点】KQ:勾股定理;L5:平行四边形的性质;M2:垂径定理.【专题】1 :常规题型.【分析】过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.【解答】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=OA=10,∴在Rt△CMF中,由勾股定理得MF==6∴点C的坐标为(2,6)故答案为:(2,6).【点评】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【考点】2C:实数的运算;36:去括号与添括号;4C:完全平方公式;6F:负整数指数幂.【专题】1 :常规题型.【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【考点】8A:一元一次方程的应用.【专题】34 :方程思想;521:一次方程(组)及应用.【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=18,β=65度(m、β均取整数).【考点】VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)用全省社会固定资产总投资约3730亿元减去其他项目的投资即可求得地(市)属项目投资额,从而补全图象;(2)用县(市)属项目投资除以总投资求得m的值,再用360度乘以县(市)属项目投资额所占比例可得.【解答】解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°,故答案为:18、65.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.构建方程即可解决问题;【解答】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米.在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△BCG中,tan60°=,∴=,∴x=+.∴CG=CF+FG=×1.7+3.5+1.5=11.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(13.00分)(2018•海南)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)根据平行四边形的性质得到AD∥BC,得到∠ADE=∠BFE,∠A=∠FBE,利用AAS定理证明即可;(2)作BN∥HC交EF于N,根据全等三角形的性质、三角形中位线定理证明;(3)作GM∥DF交HC于M,分别证明△CMG∽△CHF、△AHD∽△GHF、△AHK ∽△HGM,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BFN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,∴n=4.【点评】本题考查的是平行四边形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.24.(15.00分)(2018•海南)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q 的坐标.【考点】HF :二次函数综合题.【专题】16 :压轴题;32 :分类讨论;41 :待定系数法;523:一元二次方程及应用;537:函数的综合应用;554:等腰三角形与直角三角形.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD=90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y=k 1x +b 1,则可用t 表示出k′,设直线DQ 解析式为y=k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x 2+2x +3;(2)①∵y=﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD=2,且CD ∥x 轴,∵A (﹣1,0), ∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2018年海南省中考数学试卷及解析

2018年海南省中考数学试卷及解析

2018年海南省中考数学试卷及解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3.00分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.(3.00分)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1084.(3.00分)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.55.(3.00分)下列四个几何体中,主视图为圆的是()A.B.C.D.6.(3.00分)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.(3.00分)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°8.(3.00分)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.9.(3.00分)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解10.(3.00分)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.911.(3.00分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限12.(3.00分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A 逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.1213.(3.00分)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.2414.(3.00分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.(4.00分)比较实数的大小:3(填“>”、“<”或“=”).16.(4.00分)五边形的内角和的度数是.17.(4.00分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.18.(4.00分)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为.三、解答题(本大题满分62分)19.(10.00分)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)20.(8.00分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(8.00分)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=,β=度(m、β均取整数).22.(8.00分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)23.(13.00分)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.24.(15.00分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2018年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【解答】解:2018的相反数是:﹣2018.故选:A.2.(3.00分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9【解答】解:a2•a3=a5,故选:A.3.(3.00分)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×108【解答】解:48500000用科学记数法表示为4.85×107,故选:C.4.(3.00分)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【解答】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.5.(3.00分)下列四个几何体中,主视图为圆的是()A.B.C.D.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.6.(3.00分)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.7.(3.00分)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°【解答】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选:A.8.(3.00分)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.9.(3.00分)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解【解答】解:两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.10.(3.00分)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【解答】解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.11.(3.00分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限【解答】解:反比例函数y=的图象经过点P(﹣1,2),∴2=.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.12.(3.00分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A 逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.13.(3.00分)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.24【解答】解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.14.(3.00分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.二.填空题(本大题满分16分,每小题4分)15.(4.00分)比较实数的大小:3>(填“>”、“<”或“=”).【解答】解:∵3=,>,∴3>.故答案是:>.16.(4.00分)五边形的内角和的度数是540°.【解答】解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.17.(4.00分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.18.(4.00分)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).【解答】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=OA=10,∴在Rt△CMF中,由勾股定理得MF==6∴点C的坐标为(2,6)故答案为:(2,6).三、解答题(本大题满分62分)19.(10.00分)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.20.(8.00分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.21.(8.00分)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=18,β=65度(m、β均取整数).【解答】解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°,故答案为:18、65.22.(8.00分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)【解答】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米.在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△BCG中,tan60°=,∴=,∴x=+.∴CG=CF+FG=×1.7+3.5+1.5=11.3米.23.(13.00分)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BFN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,∴n=4.24.(15.00分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4; ②∵点P 在线段AB 上, ∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ=90°或∠AQD=90°, i .当∠ADQ=90°时,则DQ ⊥AD , ∵A (﹣1,0),D (2,3), ∴直线AD 解析式为y=x +1, ∴可设直线DQ 解析式为y=﹣x +b′, 把D (2,3)代入可求得b′=5, ∴直线DQ 解析式为y=﹣x +5, 联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD=90°时,设Q (t ,﹣t 2+2t +3), 设直线AQ 的解析式为y=k 1x +b 1, 把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3),设直线DQ 解析式为y=k 2x +b 2,同理可求得k 2=﹣t , ∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t=,当t=时,﹣t 2+2t +3=, 当t=时,﹣t 2+2t +3=, ∴Q 点坐标为(,)或(,); 综上可知Q 点坐标为(1,4)或(,)或(,).。

2018年海南省中考数学模拟试题及参考答案

2018年海南省中考数学模拟试题及参考答案

购买的质量(千克) 不超过 10 千 超过 10 千


每千克价格
6元
5元
张欣两次共购买了 25 千克这种水果(第二次多于第一次),共付款132 元.问张
欣第一次、第二次分别购买了多少千克这种水果?
22.(8 分如图,AB 是⊙O 直径,点 C 在⊙O 上,AD 平分∠CAB,BD 是⊙O 的切线,AD 与 BC 相交于点 E. (1)求证:BD=BE; (2)若 DE=2,BD= ,求 CE 的长.
21.(8 分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进 行“使用手机目的”和“每周使用手机的时间 ”的问卷调查,并绘制成如图①,②的 统计图,已知“查资料”的人数是 40 人.
23.(12 分)如图,AM 是△ABC 的中线,D 是线段 AM 上一点(不与点 A 重 合).DE∥AB 交 AC 于点 F,CE∥AM,连结 AE.
∵CE∥AM, ∴四边形 DMGE 是平行四边形, ∴ED=GM,且 ED∥GM,
由(1)可知 AB=GM,AB∥GM, ∴AB∥DE,AB=DE, ∴四边形 ABDE 是平行四边形. (3)①如图 3 中,取线段 HC 的中点 I,连接 MI,
∵BM=MC, ∴MI 是△BHC 的中位线, ∴MI∥BH,MI= BH, ∵BH⊥AC,且 BH=AM. ∴MI= AM,MI⊥AC, ∴∠CAM=30°. ②设 DH=x,则 AH= x,AD=2x, ∴AM=4+2x, ∴BH=4+2x, ∵四边形 ABDE 是平行四边形, ∴DF∥AB, ∴=, ∴= , 解得 x=1+ 或 1﹣ (舍弃),
2018 年海南省中考模拟试题 数学试卷
第Ⅰ卷(选择题) 一、选择题(本大题共 14 小题,每小题 3 分,共 42 分) 1.在实数﹣3,2,0,﹣4 中,最大的数是( ) A.﹣3 B.2 C.0 D.﹣4 2.下列计算正确的是( ) A.a•a2=a3 B.(a3)2=a5 C.a+a2=a3 D.a6÷a2=a3 3.已知 x2﹣2x﹣3=0,则 2x2﹣4x 的值为( ) A.6 B.﹣6 C.﹣2 或 6D.﹣2 或 30 4.下列四个图形中,是轴对称图形,但不是中心对称图形的是( )

海南省2018年中考数学试卷及答案解析

海南省2018年中考数学试卷及答案解析
2018 年海南中考数学试卷
一、选择题(本大题满分 42 分,每小题 3 分)在下列各题的四个备选答案中,有且只有一个是 正确的,请在答题卡上把你认为正确的答案的字母代号按要求用 2B 铅笔涂黑 1. (3.00 分)2018 的相反数是( A.﹣2018 B.2018 C.﹣ ) D. )
2. (3.00 分)计算 a2•a3,结果正确的是( A.a5 B.a6 C.a8 D.a9
成如图 2 所示的▱ KLMN, 若中间空白部分四边形 OPQR 恰好是正方形, 且▱ KLMN 的面积为 50, 则正方形 EFGH 的面积为( )
A.24 B.25 C.26 D.27
二.填空题(本大题满分 16 分,每小题 4 分) 15. (4.00 分)比较实数的大小:3 16. (4.00 分)五边形的内角和的度数是 (填“>”、“<”或“=”) . .
三、解答题(本大题满分 62 分) 19. (10.00 分)计算: (1)32﹣ ﹣|﹣2|×2
﹣1
(2) (a+1)2+2(1﹣a) 20. (8.00 分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至 2017
年底,全省建立国家级、省级和市县级自然保护区共 49 个,其中国家级 10 个,省级比市县级 多 5 个.问省级和市县级自然保护区各多少个? 21. (8.00 分)海南建省 30 年来,各项事业取得令人瞩目的成就,以 2016 年为例,全省社会固 定资产总投资约 3730 亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目 和其他项目.图 1、图 2 分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完 成下列问题: (1)在图 1 中,先计算地(市)属项目投资额为 亿元,然后将条形统计图补充完整; ,

2018年海南省中考数学试卷含答案解析版

2018年海南省中考数学试卷含答案解析版

2018年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提与“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1084.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.55.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△位于第一象限,点A的坐标是(4,3),把△向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板按如图所示的位置放置,如果∠40°,那么∠的大小为()A.10° B.15° C.20° D.25°8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.9.(3.00分)(2018•海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解10.(3.00分)(2018•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.911.(3.00分)(2018•海南)已知反比例函数的图象经过点P (﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限12.(3.00分)(2018•海南)如图,在△中,8,6,∠30°,将△绕点A逆时针旋转60°得到△1C1,连接1,则1的长为()A.6 B.8 C.10 D.1213.(3.00分)(2018•海南)如图,▱的周长为36,对角线、相交于点O,点E是的中点,12,则△的周长为()A.15 B.18 C.21 D.2414.(3.00分)(2018•海南)如图1,分别沿长方形纸片和正方形纸片的对角线,剪开,拼成如图2所示的▱,若中间空白部分四边形恰好是正方形,且▱的面积为50,则正方形的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3 (填“>”、“<”或“=”).16.(4.00分)(2018•海南)五边形的内角和的度数是.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M是直线﹣x上的动点,过点M作⊥x轴,交直线于点N,当≤8时,设点M的横坐标为m,则m的取值范围为.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以为直径的半圆M上,且四边形是平行四边形,则点C的坐标为.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(1)2+2(1﹣a)20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为、对应的圆心角为β,则,β=度(m、β均取整数).22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树和教学楼的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠为45°,此时教学楼顶端G恰好在视线上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠为60°,点A、B、C三点在同一水平线上.(1)计算古树的高;(2)计算教学楼的高.(参考数据:≈14,≈1.7)23.(13.00分)(2018•海南)已知,如图1,在▱中,点E 是中点,连接并延长,交的延长线于点F.(1)求证:△≌△;(2)如图2,点G是边上任意一点(点G不与点B、C重合),连接交于点H,连接,过点A作∥,交于点K.①求证:2;②当点G是边中点时,恰有•(n为正整数),求n的值.24.(15.00分)(2018•海南)如图1,抛物线23交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形的面积;②点P是线段上的动点(点P不与点A、B重合),过点P作⊥x轴交该抛物线于点Q,连接、,当△是直角三角形时,求出所有满足条件的点Q的坐标.2018年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9【考点】46:同底数幂的乘法.【专题】11 :计算题.【分析】根据同底数幂的乘法法则解答即可.【解答】解:a2•a35,故选:A.【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.3.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提与“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×108【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:48500000用科学记数法表示为4.85×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数,表示时关键要正确确定a的值以与n的值.4.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【考点】W5:众数.【专题】1 :常规题型.【分析】根据众数定义可得答案.【解答】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.【点评】此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.5.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△位于第一象限,点A的坐标是(4,3),把△向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【考点】Q3:坐标与图形变化﹣平移.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板按如图所示的位置放置,如果∠40°,那么∠的大小为()A.10° B.15° C.20° D.25°【考点】:平行线的性质.【专题】1 :常规题型;551:线段、角、相交线与平行线.【分析】由∥得∠∠40°,再根据三角形的外角性质可得答案.【解答】解:由题意知∥,∴∠∠40°,∵∠30°,∴∠∠﹣∠40°﹣30°=10°,故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【专题】1 :常规题型;524:一元一次不等式(组)与应用.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.9.(3.00分)(2018•海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解【考点】B2:分式方程的解.【专题】11 :计算题;522:分式方程与应用.【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以1,得:x2﹣1=0,解得:1或﹣1,当1时,1≠0,是方程的解;当﹣1时,1=0,是方程的增根,舍去;所以原分式方程的解为1,故选:B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.10.(3.00分)(2018•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【考点】X4:概率公式.【专题】1 :常规题型.【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得6,所以口袋中小球共有6个.故选:A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.(3.00分)(2018•海南)已知反比例函数的图象经过点P (﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.【解答】解:反比例函数的图象经过点P(﹣1,2),∴2=.∴﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.(3.00分)(2018•海南)如图,在△中,8,6,∠30°,将△绕点A逆时针旋转60°得到△1C1,连接1,则1的长为()A.6 B.8 C.10 D.12【考点】:勾股定理;R2:旋转的性质;T7:解直角三角形.【专题】55:几何图形.【分析】根据旋转的性质得出1,∠1=90°,进而利用勾股定理解答即可.【解答】解:∵将△绕点A逆时针旋转60°得到△1C1,∴1,∠1=90°,∵8,6,∠30°,∴∠1=90°,8,1=6,∴在△1中,1的长=,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质得出1,∠1=90°.13.(3.00分)(2018•海南)如图,▱的周长为36,对角线、相交于点O,点E是的中点,12,则△的周长为()A.15 B.18 C.21 D.24【考点】:三角形中位线定理;L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形的周长为36,∴18,∵,,∴()=9,∵12,∴6,∴△的周长为9+6=15,故选:A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.14.(3.00分)(2018•海南)如图1,分别沿长方形纸片和正方形纸片的对角线,剪开,拼成如图2所示的▱,若中间空白部分四边形恰好是正方形,且▱的面积为50,则正方形的面积为()A.24 B.25 C.26 D.27【考点】L7:平行四边形的判定与性质;:矩形的性质;:正方形的性质;:图形的剪拼.【专题】556:矩形菱形正方形.【分析】如图,设,正方形的边长为b,构建方程即可解决问题;【解答】解:如图,设,正方形的边长为b.由题意:a22+()(a﹣b)=50,∴a2=25,∴正方形的面积2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3 >(填“>”、“<”或“=”).【考点】2A:实数大小比较.【专题】11 :计算题.【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.16.(4.00分)(2018•海南)五边形的内角和的度数是540°.【考点】L3:多边形内角与外角.【分析】根据n边形的内角和公式:180°(n﹣2),将5代入即可求得答案.【解答】解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.【点评】此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M是直线﹣x上的动点,过点M作⊥x轴,交直线于点N,当≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m ≤4 .【考点】F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】先确定出M,N的坐标,进而得出2,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线﹣x上,∴M(m,﹣m),∵⊥x轴,且点N在直线上,∴N(m,m),∴﹣m﹣2,∵≤8,∴|2≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出是解本题的关键.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以为直径的半圆M上,且四边形是平行四边形,则点C的坐标为(2,6).【考点】:勾股定理;L5:平行四边形的性质;M2:垂径定理.【专题】1 :常规题型.【分析】过点M作⊥于点F,则8,过点C作⊥于点E,由勾股定理可求得的长,从而得出的长,然后写出点C的坐标.【解答】解:∵四边形是平行四边形,B(16,0),∴∥,16,过点M作⊥于点F,则8,过点C作⊥于点E,∵A(20,0),∴﹣﹣10﹣8=2.连接,则10,∴在△中,由勾股定理得6∴点C的坐标为(2,6)故答案为:(2,6).【点评】本题考查了勾股定理、垂径定理以与平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(1)2+2(1﹣a)【考点】2C:实数的运算;36:去括号与添括号;4C:完全平方公式;6F:负整数指数幂.【专题】1 :常规题型.【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式2+21+2﹣2a2+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【考点】8A:一元一次方程的应用.【专题】34 :方程思想;521:一次方程(组)与应用.【分析】设市县级自然保护区有x个,则省级自然保护区有(5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(5)个,根据题意得:10549,解得:17,∴5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830 亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为、对应的圆心角为β,则18 ,β=65 度(m、β均取整数).【考点】:扇形统计图;:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)用全省社会固定资产总投资约3730亿元减去其他项目的投资即可求得地(市)属项目投资额,从而补全图象;(2)用县(市)属项目投资除以总投资求得m的值,再用360度乘以县(市)属项目投资额所占比例可得.【解答】解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为×100%≈18%,即18,对应的圆心角为β=360°×≈65°,故答案为:18、65.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树和教学楼的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠为45°,此时教学楼顶端G恰好在视线上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠为60°,点A、B、C三点在同一水平线上.(1)计算古树的高;(2)计算教学楼的高.(参考数据:≈14,≈1.7)【考点】:解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作⊥于G.则△是等腰三角形,四边形是矩形,设.构建方程即可解决问题;【解答】解:(1)由题意:四边形是矩形,可得7米.在△中,∵∠45°,∴7米.(2)作⊥于G.则△是等腰三角形,四边形是矩形,设.在△中,60°=,∴=,∴.∴×1.7+3.5+1.5=11.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(13.00分)(2018•海南)已知,如图1,在▱中,点E 是中点,连接并延长,交的延长线于点F.(1)求证:△≌△;(2)如图2,点G是边上任意一点(点G不与点B、C重合),连接交于点H,连接,过点A作∥,交于点K.①求证:2;②当点G是边中点时,恰有•(n为正整数),求n的值.【考点】:四边形综合题.【专题】152:几何综合题.【分析】(1)根据平行四边形的性质得到∥,得到∠∠,∠∠,利用定理证明即可;(2)作∥交于N,根据全等三角形的性质、三角形中位线定理证明;(3)作∥交于M,分别证明△∽△、△∽△、△∽△,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形是平行四边形,∴∥,∴∠∠,∠∠,在△和△中,,∴△≌△;(2)如图2,作∥交于N,∵△≌△,∴,∴,由(1)的方法可知,△≌△,∴,∴2;(3)如图3,作∥交于M,∵点G是边中点,∴,∵∥,∴△∽△,∴,∵∥,∴△∽△,∴,∴=,∵∥,∥,∴△∽△,∴,∴=,即4,∴4.【点评】本题考查的是平行四边形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.24.(15.00分)(2018•海南)如图1,抛物线23交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形的面积;②点P是线段上的动点(点P不与点A、B重合),过点P作⊥x轴交该抛物线于点Q,连接、,当△是直角三角形时,求出所有满足条件的点Q的坐标.【考点】:二次函数综合题.【专题】16 :压轴题;32 :分类讨论;41 :待定系数法;523:一元二次方程与应用;537:函数的综合应用;554:等腰三角形与直角三角形.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接,则可知∥x轴,由A、F的坐标可知F、A到的距离,利用三角形面积公式可求得△和△的面积,则可求得四边形的面积;②由题意可知点A处不可能是直角,则有∠90°或∠90°,当∠90°时,可先求得直线解析式,则可求出直线解析式,联立直线和抛物线解析式则可求得Q点坐标;当∠90°时,设Q(t,﹣t2+23),设直线的解析式为11,则可用t表示出k′,设直线解析式为22,同理可表示出k2,由⊥则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为﹣x2+23;(2)①∵﹣x2+23=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴2,且∥x轴,∵A(﹣1,0),∴S四边形△△×2×3+×2×(4﹣3)=4;②∵点P在线段上,∴∠不可能为直角,∴当△为直角三角形时,有∠90°或∠90°,i.当∠90°时,则⊥,∵A(﹣1,0),D(2,3),∴直线解析式为1,∴可设直线解析式为﹣′,把D(2,3)代入可求得b′=5,∴直线解析式为﹣5,联立直线和抛物线解析式可得,解得或,∴Q(1,4);.当∠90°时,设Q(t,﹣t2+23),设直线的解析式为11,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线解析式为22,同理可求得k2=﹣t,∵⊥,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得,当时,﹣t2+23=,当时,﹣t2+23=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉与待定系数法、三角形的面积、二次函数的性质、直角三角形的性质与分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

海南省2018届中考数学模拟试题(2)

海南省2018届中考数学模拟试题(2)

海南省2018届中考数学模拟试题(2)(考试时间100分钟,满分120分)班别___________姓名___________座号___________评分__________一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.|2-5|=A .-7B . 7C . -3D . 32.下列计算,正确的是A .a 2·a 3=a 6B .3a 2-a 2=2C .a 8÷a 2=a 4D .(-2a )3=-8a 33.计算222---x xx 的结果是 A .1 B .-1 C .2 D .-2 4. 若二次根式62-x 在实数范围内有意义,则x 的取值范围是A .x ≤3B .x >3C .x ≥3D .x >-3 5.从-1、-2、3、4这四个数中,随机抽取两个数相乘,积为负数的概率是A .32B .21C .41D .436.某种股票原价格为a 元,连续两天上涨,每次涨幅10%,则该股票两天后的价格为A .1.21a 元B .1.1a 元C .1.2a 元D .(0.2+a )元 7. 我市今年4月19—25日的日最高气温统计如下表,则这组数据的众数与中位数分别是A .25,25B .32,29.5C .25,27D .32,32 8. 图1所示的几何体的俯视图是9. 如图2,直线a ∥b ,c ∥d ,∠1=56°,则∠2等于 A .56ºB .112ºC .124ºD .134º10.如图3,在△ABC 中,AB =AC ,AD 平分∠BAC ,E 为AC 的中点,DE =3,则AB 等于A .4B .5C .5.5D .611.如图4,已知A (-3,3),B (-1,1.5),将线段AB 向右平移d 个单位长度后,点A 、B 恰好同时落在反比例函数xy 6=(x >0)的图象上,则d 等于 A .3B .4C .5D .612.如图5,□ABCD 纸片,∠A =120°,AB =4,BC =5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF =1,HG =2,则这个六边形的周长为 A .12 B .15C .16D .1813.如图6,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,∠A =36°,点P 在圆周上,则∠P 等于 A .27º B .30º C .36º D .40º14.如图7,在菱形ABCD 中,AC =4,BD =6,P 是BD 上的任意一点,过点P 作EF ∥AC ,与菱形的两条边分别交于点E 、F . 设BP =x ,EF =y ,则下列图象能大致反映y 与x 的函数关系的是二、填空题(本大题满分16分,每小题4分) 15. 因式分解:2a 2-4a +2= . 16. 方程01123=--x x 的解是 .17. 如图8,边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB ′C ′D ′,则图中阴影部分的面积为 .A .B .C .D .C .D .B .A .EBDCA图3图212a bcd 图4图7图5 图6 C 图8D18.如图9,在△ABC 中,∠B =90°,AB =3,BC =2,点O 在AC 边上,⊙O 与AB 、BC 分别切于点D 、E ,则⊙O 的半径长为 .三、解答题(本大题满分62分) 19.(满分10分,每小题5分) (1)计算: 6212315)1(25⨯-⨯+--;(2)求不等式组⎪⎩⎪⎨⎧->+<-121,631x x x 的所有整数解. 20.(满分8分)现有180件机器零件需加工,任务由甲、乙两个小组合作完成. 甲组每天加工12件,乙组每天加工8件,结果共用20天完成了任务. 求甲、乙两组分别加工机器零件多少件. 21.(满分8分)某机构对2016年微信用户的职业分布进行了随机抽样调查(职业说明:A :党政机关、军队,B :事业单位,C :企业,D :自由职业及人体户,E :学生,F :其他),图10.1和图10.2是根据调查数据绘制而成的不完整的统计图. 请根据图中提供的信息,解答下列问题:(1)该机构共抽查微信用户 人; (2)在图10.1中,补全条形统计图;(3)在图10.2中,“D ”用户所对应的扇形的圆心角是 度; (4)2016年微信用户约有7.5亿人,估计“E ”用户大约有 亿人.22.(满分8分)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB 的高.他们在旗杆正前方台阶上的点C 处,测得旗杆顶端A 的仰角为45°,朝着旗杆的方向走到台阶下的点F 处,测得旗杆顶端A 的仰角为60°.已知升旗台的高度BE 为1米,点C 距地面的高度CD 为3米,台阶CF 的坡角为30°,且点E ,F ,D 在同一条直线上.求旗杆AB 的高.(计算结果精确到0.1米,参考数据:2 1.413 1.73≈=, )23.(满分12分)如图1,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的点E 处,EQ 与BC 相交于F ,若AD =8cm ,AB =6cm ,AE =4cm .求△EBF 的周长.24.(满分16分)如图1,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A →B →C 方向运动,它们到C 点后都停止运动,设点P 、Q 运动的时间为t 秒. (1)在运动过程中,求P 、Q 两点间距离的最大值;(2)经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形.若存在,求出此时的t 值,若不存在,请说明理由.(24.25≈,结果保留一位小数)图113005547 125007200 3453 0 5000 10000 1500020000 25000 A B C D E F 人数职业 图10.1图10.2A : 2.6% CBDE F 40.0% OBC E 图9。

海南省2018届中考数学模拟试题(3)

海南省2018届中考数学模拟试题(3)

海南省2018届中考数学模拟试题(3)(考试时间100分钟,满分120分)班别___________姓名___________座号___________评分__________一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B铅笔涂黑.题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14答案1.﹣8的相反数是()A.﹣8 B.8 C.D.2.下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4 3.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A.3.71×107B.0.371×107C.3.71×106D.37.1×106 4.已知整式x2﹣2x的值为﹣1,则x2﹣2x+3的值为()A.﹣2 B.2 C.﹣4 D.45.数据:2,5,4,5,3,5,4的众数与中位数分别是()A.4,3 B.4,5 C.3,4 D.5,46.小明从上面观察如图所示的两个物体,看到的是()A.B.C.D.7.已知函数y=(k≠0),当x=﹣时,y=8,则此函数的解析式为()A.y=﹣B.y=C.y=﹣D.y=﹣8.化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.19.如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90°B.100°C.110°D.120°10.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC=BC11.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20°B.30°C.40°D.60°12.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是()A.B.C.D.13.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣3,1),C(﹣1,2),若将△ABC平移后,点A的对应点A1的坐标为(1,2),则点C的对应点C1的坐标为()A.(﹣1,5)B.(2,2)C.(3,1)D.(2,1)14.如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.25,则CE=()A.B.C.D.二、填空题(共4小题,每小题4分,满分16分)15.方程=5的解是.16.(a+2)(a﹣2)﹣(a﹣1)2=___________.17.如图,菱形ABCD的边长为5,一条对角线长为8,则此菱形的面积是.18.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为.(结果保留π)三、解答题(共6小题,满分62分)19.(10分)(1)计算:9×3﹣2+20160﹣×(2)解不等式组.20.(8分)某酒店的客房有三人间和双人间两种,三人间每间225元,双人间每间210元,一个50人的旅游团到了该酒店住宿,住了若干间客房,且每间客房恰好住满,一天共花去4530元,求两种客房各住了多少间?21.(8分)某校举行九年级体育锻炼考试,现随机抽取了部分学生的成绩为样本,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面两图不完整的统计图和统计表:请根据以如图表提供的信息,解答下列问题:(1)m=,x=;(2)在扇形统计图中,B等级所对应的圆心角是度;(3)若该校九年级共有600名学生参加了体育模板考试,请你估计成绩等级达到“优秀”的学生有人;(4)小明同学第一次模拟考试成绩为40分,第二次成绩为48分,则小明体育成绩提高的百分率是%.22.(9分)如图,AB、CD为两栋建筑物,建筑物CD的高度为20m,从建筑物CD 的顶部D点测得建筑物AB的顶部A点的仰角为45°,从建筑物CD的底部C点测得建筑物AB的顶部A点的仰角60°,求建筑物AB的高度(结果保留整数)(参考数据:≈1.41,≈1.73)23.(13分)如图,在边长为6的正方形ABCD中,将正方形ABCD绕点A逆时针旋转角度α(0°<α<90°),得到正方形AEFG,EF交线段CD于点P,FE的延长线交线段BC于点H,连接AH、AP.(1)求证:△ADP≌△AEP;(2)①求∠HAP的度数;②判断线段HP、BH、DP的数量关系,并说明理由;(3)连接DE、EC、CF、DF得到四边形CFDE,在旋转过程中,四边形CFDE能否为矩形?若能,求出BH的值;若不能,请说明理由.24.(14分)如图,已知抛物线与y轴交于点C(0,3),与x轴交于点A、B,点A 在点B的左边,且B(3,0),AB=2(1)求该抛物线的函数关系式;(2)如果抛物线的对称轴上存在一点P,使得△APC的周长最小,求此时P点的坐标,并求出△APC周长;(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.等级成绩(分)频数(人数)频率A45~50400.4 B40~4442x C35~39m0.12 D30~3460.03合计 1.00。

2018年海南省中考数学试题及答案解析

2018年海南省中考数学试题及答案解析
评卷人
得分
二、填空题(本大题满分16分,每小题4分)
15、(2018年)比较实数 大小:3_____ (填“>”、“<”或“=”).
16、(2018年)五边形的内角和的度数是______.
17、(2018年)ቤተ መጻሕፍቲ ባይዱ图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为_______.
A. ﹣1 B. 1 C. ±1 D. 无解
10、(2018年)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为 ,那么n的值是( )
A. 6B. 7C. 8D. 9
11、(2018年)已知反比例函数y= 的图象经过点P(﹣1,2),则这个函数的图象位于( )
7、(2018年)将一把直尺和一块含30°和60°角 三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为( )
A. 10° B. 15° C. 20° D. 25°
8、(2018年)下列四个不等式组中,解集在数轴上表示如图所示的是( )
A. B. C. D.
9、(2018年)分式方程 =0的解是( )
②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.
海南省2018年中考数学试卷答案
一、选择题(本大题满分42分,每小题3分)
1、【详解】2018与-2018只有符号不同,
由相反数的定义可得2018的相反数是-2018,
故选C
2、【详解】同底数幂相乘,底数不变,指数相加.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年海南省文昌市中考数学模拟试卷一.选择题(共14小题,满分42分,每小题3分)1.(3分)﹣2的相反数是()A.2 B.C.﹣2 D.以上都不对2.(3分)在解方程﹣=1时,去分母正确的是()A.3(x﹣1)﹣2(2+3x)=1 B.3(x﹣1)+2(2x+3)=1 C.3(x﹣1)+2(2+3x)=6 D.3(x﹣1)﹣2(2x+3)=63.(3分)如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.4.(3分)在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()305.(3分)给出下列计算,其中正确的是()A.a5+a5=a10B.(2a2)3=6a6C.a8÷a2=a4D.(a3)4=a126.(3分)舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法(精确到十亿位),应表示为()A.4.995×1010B.4.995×1011C.5.0×1010D.4.9×10107.(3分)方程=的解是()A.﹣ B.C.﹣ D.8.(3分)如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个 B.4个 C.5个 D.6个9.(3分)某次试验中,测得两个变量v和m的对应数据如下表,则v和m 之间的关系最接近下列函数中的()﹣1.51A.v=m2﹣2 B.v=﹣6m C.v=﹣3m﹣1 D.v=10.(3分)已知△ABC三个顶点的坐标分别为A(3,3),B(1,1),C (4,1),将△ABC向右平移4个单位,得△A′B′C′,再把△A′B′C′绕点A′逆时针旋转90°,得到△A″B″C″,则点C″的坐标是()A.(9,4)B.(8,5)C.(5,2)D.(4,9)11.(3分)将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的概率是()A.B.C.D.12.(3分)如图,甲、乙、丙、丁四位同学从四块全等的等腰直角三角形纸板上裁下四块不同的纸板(阴影部分),他们的具体裁法如下:甲同学:如图1所示裁下一个正方形,面积记为S1;乙同学:如图2所示裁下一个正方形,面积记为S2;丙同学:如图3所示裁下一个半圆,使半圆的直径在等腰Rt△的直角边上,面积记为S3;丁同学:如图所示裁下一个内切圆,面积记为S4则下列判断正确的是()①S1=S2;②S3=S4;③在S1,S2,S3,S4中,S2最小.A.①②B.②③C.①③D.①②③13.(3分)如图,要得到DG∥BC,则需要条件()A.CD⊥AB,EF⊥AB B.∠1=∠2C.∠1=∠2,∠4+∠5=180° D.CD⊥AB,EF⊥AB,∠1=∠214.(3分)如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q 是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.二.填空题(共4小题,满分12分,每小题3分)15.(3分)分解因式:9abc﹣3ac2=.16.(3分)已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数是%.按此年平均增长率,预计第4年该工厂的年产量应为万台.17.(3分)等腰三角形ABC的底边BC=6,△ABC的外接圆⊙O的半径为5,则S=.△ABC18.(3分)如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为.三.解答题(共2小题)19.观察下列各式:=1﹣,=﹣,=﹣…(1)根据以上式子填空:①=;②=(n是正整数)(2)根据以上式子及你所发现的规律计算:++…++20.解不等式组:,并把解集在数轴上表示出来.四.解答题(共4小题)21.初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.22.某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.23.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).24.如图,P是正方形ABCD边BC上的一点,且BP=3PC,Q是CD中点.(1)求证:△ADQ∽△QCP.(2)试问:AQ与PQ有什么关系(位置与数量)?五.解答题(共1小题)25.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.2018年海南省文昌市中考数学模拟试卷参考答案与试题解析一.选择题(共14小题,满分42分,每小题3分)1.【解答】解:﹣2的相反数是2,故选:A.2.【解答】解:去分母得:3(x﹣1)﹣2(2x+2)=6,故选:D.3.【解答】解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C 折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选:B.4.【解答】解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数,故选:B.5.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.6.【解答】解:499.5亿=4.995×1010≈5.0×1010.故选:C.7.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.8.【解答】解:∵=,而(0<x<150)是一个整数,且x为整数,∴5×5×2×3x一定可以写成平方的形式,所以可以是6,24,54,96共有4个.故选:B.9.【解答】解:将表中的数据m=1代入所给的解析式后,得到:A、v=﹣1;B、v=﹣6;C、v=﹣4;D、v=﹣6;将表中的数据m=2代入所给的解析式后,得到:A、v=2;B、v=﹣12;C、v=﹣7;D、v=﹣3;所有只有第四选项的值与表中的数据相近,其他的差距太大,所以选第四个选项.故选:D.10.【解答】解:∵将△ABC向右平移4个单位,∴A′(7,3);C′(8,1).由图中可以看出点C″的坐标是(9,4).故选:A.11.【解答】解:将一个各面涂有颜色的正方体,分割成同样大小的27个小正方体,从这些正方体中任取一个,恰有3个面涂有颜色的小正方体只能在大正方体的8个角上,共8个,故恰有3个面涂有颜色的概率是.故选:D.12.【解答】解:图1中,设四块全等的等腰直角三角形的腰长为1,则斜边长为,图1中阴影正方形的对角线长为,S1=;图2中,设正方形的边长为x,则3x=,x=,S2=;图3中,设半圆的半径为r,则1+r=,r=﹣1,S3=(﹣)π;图4中,设三角形的内切圆半径为R,则2﹣2R=,解得R=1﹣,S4=()π;根据以上计算的值进行比较,S3=S4,在S1,S2,S3,S4中,S2最小,所以正确的是②③.故选:B.13.【解答】解:A、∵CD⊥AB,EF⊥AB,∴∠BEF=∠BDC=90°,∴EF∥DC,故条件不充分,错误;B、∠1与∠2不是DG与BC形成的内错角,故推不出DG∥BC,故错误;C、∠1与∠2不是DG与BC形成的内错角,∠4与∠5不是DG与BC形成的同旁内角,故推不出DG∥BC,故错误;D、当DG∥BC时,则∠1=∠3,当EF∥DC时,∠2=∠3,要使EF∥DC,则需CD⊥AB,EF⊥AB,所以要使DG∥BC,则需要CD⊥AB,EF⊥AB,同时∠1=∠2.故选:D.14.【解答】解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP==7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选:B.二.填空题(共4小题,满分12分,每小题3分)15.【解答】解:原式=3ac(3b﹣c).故答案为:3ac(3b﹣c).16.【解答】解:设年平均增长率为x,依题意列得100(1+x)2=121解方程得x1=0.1=10%,x2=﹣2.1(舍去)所以第4年该工厂的年产量应为121(1+10%)2=146.41万台.故答案为:10,146.4117.【解答】解:连接AO,并延长与BC交于一点D,连接OC,∵BC=6cm,⊙O的半径为5cm,AB=AC,∴AD⊥BC,∴OD=4,AD=9,∴△ABC的面积为27,同理当BC在圆心O的上方时,三角形的高变为5﹣4=1,∴△ABC的面积为3.故答案为:3或27.18.【解答】解:设直线l与BC相交于点G在Rt△CDF中,CF⊥DG∴∠DCF=∠CGF∵AD∥BC∴∠CGF=∠ADE∴∠DCF=∠ADE∵AE⊥DG,∴∠AED=∠DFC=90°∵AD=CD∴△AED≌△DFC∴DE=CF=a在Rt△AED中,AD2=17a2,即正方形的面积为17a2.故答案为:17a2.三.解答题(共2小题)19.【解答】解:(1)①=;②=(n是正整数);(2)++…++==1﹣=.20.【解答】解:由①得x≥4,由②得x<1,∴原不等式组无解,四.解答题(共4小题)21.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.22.【解答】解:(1)20÷40%=50(人)15÷50=30%答:本次调查的学生共有50人,在扇形统计图中,m的值是30%.(2)50×20%=10(人)50×10%=5(人).(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,的情况有12种,则P(一男一女)==答:所抽取的2名同学恰好是1名男同学和1名女同学的概率是.故答案为:50、30%.23.【解答】解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.24.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠C=∠D=90°;又∵Q是CD中点,∴CQ=DQ=AD;∵BP=3PC,∴CP=AD,∴==,又∵∠C=∠D=90°,∴△ADQ∽△QCP;(2)AQ=2PQ,且AQ⊥PQ.理由如下:由(1)知,△ADQ∽△QCP,==,则===,AQ=2PQ;∵△ADQ∽△QCP,∴∠AQD=∠QPC,∠DAQ=∠PQC,∴∠PQC+∠DQA=DAQ+AQD=90°,∴AQ⊥QP.五.解答题(共1小题)25.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。

相关文档
最新文档