八年级数学分式单元测试题
八年级数学分式单元测试卷
一、选择题(每题4分,共20分)1. 下列分式值为1的是()A. 1/2B. 2/3C. 3/4D. 4/52. 若a、b、c是互不相等的实数,则下列分式中值为0的是()A. a/bB. b/cC. c/aD. a/b + c/c3. 分式2x/(x+1)的定义域为()A. x ≠ 0B. x ≠ -1C. x ≠ 1D. x ≠ 0且x ≠ -14. 若x > 0,则下列分式中值最大的是()A. 1/xB. xC. x^2D. 1/x^25. 分式(2x+3)/(x-1)的增减性为()A. 在x < 1时递增,在x > 1时递减B. 在x < 1时递减,在x > 1时递增C. 在整个定义域内递增D. 在整个定义域内递减二、填空题(每题4分,共16分)6. 分式3/(x-2)的值域为______。
7. 若分式f(x) = (x-1)/(x+2)在x = -1时的值为1,则f(x)的定义域为______。
8. 分式(2x+5)/(x-3)的分子分母同时乘以3后,其值为______。
9. 若a、b是实数,且a+b=0,则分式a/b的值为______。
10. 分式(1/x)的倒数是______。
三、解答题(共64分)11. (12分)已知分式f(x) = (x^2-4)/(x-2),求f(x)的定义域和值域。
12. (12分)若分式g(x) = (2x+3)/(x-1)的值在x=3时为5,求g(x)的表达式。
13. (20分)已知函数f(x) = (x^2+2x+1)/(x+1),求f(x)的定义域、值域和f(-1)的值。
14. (20分)若分式h(x) = (x-1)/(x^2-4)在x=2时的值为-1/3,求h(x)的定义域和h(0)的值。
注意:本试卷满分100分,考试时间为60分钟。
请将答案填写在答题卡上相应的位置。
答案:一、选择题1. B2. D3. B4. D5. A二、填空题6. x ≠ 27. x ≠ -28. 29. 010. x三、解答题11. 解:f(x)的定义域为x ≠ 2,值域为实数集R。
八年级数学上册《分式》单元测试卷(含答案解析)
八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
初二数学分式单元测试卷附答案
初二数学分式单元测试卷附答案初二数学分式单元测试卷附答案一、填空题(每空2分,共20分)1.下列有理式:其中分式有________.2.当__________时,分式有意义.3.当__________时,分式的值为零.4.不改变分式的值,把分式的分子、分母各项系数都化为整数,得__________5.分式与的最简公分母是__________.6.化简:__________.7.若分式与的值相等,则x=__________.8.当m=__________时,方程的.根为.9.若方程有增根,则a=__________.10.甲、乙两人在电脑上合打一份稿件,4小时后甲另有任务,余下部分由乙单独完成又用6小时.已知甲打6小时的稿件乙要打7.5小时,若设甲单独完成需x小时,则根据题意可列方程__________.二、选择题(每题3分,共30分)11.如果分式,那么a、b满足()A.a=2bB.a≠一bC.a=2b且a≠一bD.a=一612.分式中,最简分式有()A.4个B.3个C.2个D.1个13.分式约分等于()A.B.C.D.14.若把分式中的x、y都扩大2倍,则分式的值()A.扩大为原来的2倍B.不变C.缩小为原来的2倍D.缩小为原来的4倍15.下列计算正确的是()A.B.C.D.16.计算的结果为()A.B.C.D.17.满足方程的的值是()A.0B.1C.2D.没有18.要使的值和的值互为倒数,则的值是()A.0B.一1C.D.1A.11B.3C.9D.1320.甲、乙两人承包一项任务,合作5天能完成,若单独做,甲比乙少用4天,设甲单独做需x天,则可列方程为()A.B.C.D.三、解答题(共50分)21.计算(每题4分,共16分)(1)(2);22.解分式方程(每题5分,共10分)(1)(2).23.(6分)先化简,再求值:其中a=一2,b=一1.24.(6分)已知x,y满足求的值.26.(6分)用价值为100元的甲种涂料与价值为240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,新涂料的总价值不变,求这种涂料每千克售价多少元?参考答案1.2.3.4.5.6.17.68.29.410.11.C12.C13.D14.B15.C16.A17.A18.B19.B20.C21.(1)2(2)(3)一(x+1)(4)322.(1)(2)x=1523.224.25.原来准备参加春游的学生有300人.26.17元.高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为()A.(,1)B.(,∞)C.(1,+∞)D.(,1)∪(1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为()A.(,1,1)B.(1,,1)C.(1,1,)D.(,,1)3.若,,,则与的位置关系为()A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为()A.B.C.D.5.设,则的大小关系是()A.B.C.D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为()A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是()A.B.C.D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是()A.B.C.D.9.已知,则直线与圆的位置关系是()A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是()A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是()A.B.C.D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则.14.已知,则.15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3cm,则球的体积是.16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足,且.若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱)中,,分别是棱上的点(点不同于点),且为的中点.求证:(1)平面平面;(2)直线平面.21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBADBDCADBC二、填空题13.14.1315.16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵是直三棱柱,∴平面。
分式单元测试一(附答案)
分式1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+ (4)x yx y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111xx x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。
(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xyx -++ 的值。
(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。
(4)已知0132=+-a a ,求142+a a 的值。
4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求c b b a -+-11的值。
5、解下列分式方程:(1)x x x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。
数学单元测试卷初二分式
一、选择题(每题3分,共30分)1. 下列分式值为零的是()A. $$ \frac{2}{3} $$B. $$ \frac{0}{2} $$C. $$ \frac{5}{0} $$D. $$ \frac{3}{2} $$2. 若a、b、c为等差数列,且a=1,c=3,则b的值为()A. 2B. 3C. 4D. 53. 分式$$ \frac{3}{x-2} - \frac{2}{x+1} $$的值为()A. $$ \frac{5}{x^2-3x-2} $$B. $$ \frac{5}{x^2-3x+2} $$C. $$ \frac{5}{x^2+3x-2} $$D. $$ \frac{5}{x^2+3x+2} $$4. 下列分式有意义的是()A. $$ \frac{1}{x} $$B. $$ \frac{1}{0} $$C. $$ \frac{1}{x-1} $$D. $$ \frac{1}{x^2} $$5. 若$$ \frac{a}{b} = \frac{c}{d} $$,且ad≠0,则下列选项中正确的是()A. a=cB. b=dC. ab=cdD. a+d=c+b6. 分式$$ \frac{x-1}{x^2-4} $$的值为()A. $$ \frac{1}{x+2} $$B. $$ \frac{1}{x-2} $$C. $$ \frac{x-2}{x+2} $$D. $$ \frac{x+2}{x-2} $$7. 若$$ \frac{a}{b} $$和$$ \frac{c}{d} $$互为倒数,则下列选项中正确的是()A. ad=bcB. ad=0C. bd=acD. bd=08. 分式$$ \frac{2x+1}{x^2-5x+6} $$的值为()A. $$ \frac{2}{x-3} $$B. $$ \frac{1}{x-2} $$C. $$ \frac{1}{x-3} $$D. $$ \frac{2}{x-2} $$9. 若$$ \frac{a}{b} $$和$$ \frac{c}{d} $$互为相反数,则下列选项中正确的是()A. a=cB. b=dC. ab=cdD. ab=-cd10. 分式$$ \frac{x^2-4}{x+2} $$的值为()A. x-2B. x+2C. x-1D. x+1二、填空题(每题3分,共30分)11. 若$$ \frac{a}{b} = \frac{c}{d} $$,则$$ \frac{a+c}{b+d} $$的值为______。
八年级上册数学《分式》单元测试含答案
一.选择题
1.若分式 在实数范围内有意义,则实数x的取值范围是()
A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2
[答案]D
[解析]
[分析]
直接利用分式有意义的条件分析得出答案.
[详解]∵代数式 在实数范围内有意义,
∴x+2]本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键.
[分析]
根据题意可得 ,解方程组可得A,B,再代入求值.
[详解]解:∵ ,
∴ ,
解得 ,
∴3A﹣B=6﹣4=2.
故3A﹣B的值是2.
[点睛]本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.
17.先约分,再求值: 其中 .
[答案]
[解析]
分析:先把分式的分子分母分解因式,约分后把A、B的值代入即可求出答案.
∴3x=36.
答:自行车的速度是12km/h,公共汽车的速度是36km/h.
[点睛]本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.
20.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了 ,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
[答案]
[解析]
[分析]
分式方程两边同乘3(x+1),解出x的解,再检验解是否满足.
[详解]解:方程两边都乘 ,
得: ,
解得: ,
经检验 是方程的解,
原方程的解为 .
[点睛]本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.
16.若A,B为实数,且 ,求3A﹣B的值.
数学八年级上册《分式》单元测试卷含答案
八年级上册数学《分式》单元测试卷(考试时间:90分钟 试卷满分:120分)第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.21352πx y x a +-,,,,属于分式的有A .1个B .2个C .3个D .4个2.若分式12x x +-有意义,则x 的取值范围是A .2x ≠B .2x =C .1x =-D .0x =3.计算1a a a÷⨯的结果是 A .a B .2a C .1aD .3a4.下列化简过程正确的是A .22b b a a=B .222()a b a b a b a b -+=++ C .22y yx y x y=++D .0.20.3230.4410x y x yx y x y++=--5.如果把分式52xx y-中的x y 、都扩大3倍,那么分式的值一定A .扩大3倍B .扩大5倍C .扩大15倍D .不变6.下列各式是最简分式的是A .48aB .2a b aC .22a b a b++D .22b ab a --7.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为 A .8.23×10-6 B .8.23×10-7 C .8.23×106D .8.23×1078.若分式29(3)(1)x x x ---的值为零,则x 的值为A .0B .-3C .3D .3或-39.若关于x 的方程2134416m m x x x ++=-+-无解,则m 的值为 A .-1或5 B .-1或5或-13C .5或-13 D .-1310.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 A .4848944x x +=+- B .4848944x x +=+- C .48x+4=9 D .9696944x x +=+- 第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分) 11.化简3213(2)()a bc ---=__________.12.分式2111245x y xy -,,的最简公分母是__________. 13.计算22111m m m ---的结果是__________. 14.方程3x x -–2=43x -的解为__________.15.计算:221642·44244a a a a a a a --+÷++++=__________. 16.当A =__________时,方程2111ax a x -=--的解与方程43x x-=的解相同. 17.甲、乙二人加工某种零件,若单独工作,则乙比甲多用12天才能完成,若两人合作,则8天可以完成,设甲单独工作x 天完成,列方程得__________.18.用四则运算的加法与除法定义一种新运算记为☆.若对于任意有理数A ,B ,A ☆B =a ba b+-,则方程1☆x =5的解是__________.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分6分)已知分式x nx m-+,当x =-3时,该分式没有意义;当x =-4时,该分式的值为0.试求(m +n )2019的值.20.(本小题满分6分)计算:(1)2222510369x y yy x x⋅÷;(2)2492332x x x +--; (3)24()22a a a a a a--⋅-+. 21.(本小题满分8分)解分式方程:(1)23x x x ++=1; (2)22411x x =--. 22.(本小题满分8分)先化简:22121()11a a a a a a ++-÷-++,再从–1,0,1中选取一个数并代入求值. 23.(本小题满分9分)某服装制造厂要在开学前赶制2400套校服,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原来多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?24.(本小题满分9分)若关于x 的分式方程2111x mx x +---=1的解是负数,求m 的取值范围. 25.(本小题满分10分)有一道题“先化简,再求值:22241244x x x x x -+÷+--()+x 2–3,其中x =小玲做题时把“x =x ,但她的计算结果也是正确的,请你解释这是怎么回事?26.(本小题满分10分)商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7000元. (1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一”儿童节促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?参考答案11.12.2013.14.x =215.–216.17.18.x =19.[解析]∵x +m =0时,分式无意义,∴x ≠–m , ∴m =3,(3分)又因为x –n =0,分式的值为0,∴x =n ,即n =–4,则(m +n )2019=[3+(-4)]2019=(–1)2019=-1.(6分)20.[解析](1).(2分) (2).(4分)(3).(6分) 21.[解析](1)=1,两边都乘以x (x +3),得2(x +3)+x 2=x (x +3), 解得x=6,(2分)经检验x=6是原方程的解.(4分) (2), 两边都乘以(x +1)(x –1),得2(x +1)=4, 解得x =1,(6分)检验:当x =1时,(x +1)(x –1)=0,∴x =1是分式方程的增根,原方程无解.(8分) 22.[解析]原式==,(4分) 其中A ≠1且A ≠–1, ∴A 只能取0.(6分)当A =0时,原式=1.(8分)23.[解析]设原计划每天能完成x 套校服,则实际每天能完成(1+20%)x 套校服,根据题意得:, 解得:x =100,经检验,x =100是原方程的解且符合题意. 答:原计划每天能完成100套校服. 24.[解析]由=1,得(x+1)2–m=x 2–1,解得x =–1+.(4分) 由已知可得–1+<0,–1+≠1且–1+≠–1,(7分)解得m<2且m ≠0.(9分)25.[解析]+–3 =(–4)+–3 =+4+–3 =2+1.(6分)因为化简原式的结果是2+1,不论xxx 2的值均为3,原式的计算结果都是7,所以把“x =−x ,计算结果也是正确的.(10分)26.[解析](1)设4月份的销售单价为x 元.由题意得-=50,(2分) 解得x =200.经检验,x =200是原方程的解,且符合题意. 所以4月份的销售单价为200元.(5分)(2)4月份的销量为20000÷200=100(件),则每件衣服的成本为(20000-8000)÷100=120(元). 6月份的售价为200×0.8=160(元),(7分) 设销量为y 件,由题意得160y -120y ≥8000×(1+25%), 解得y ≥250,所以销量至少为250件,才能保证6月的利润比4月的利润至少增长25%.(10分)6334a b c2xy 11m -1788112x x +=+232232225936102x y x x y x y y⋅⋅=249(23)(23)23232323x x x x x x x +--==+---(2)(2)()2(2)422a a a a a a a a a+--⋅=+--=-+23xx x ++22411x x =--2222121(1)1·111(1)a a a a a a a a a a a +---+--+÷=+++-11a --24002400 4(120%)x x-=+2111x m x x +---2m2m 2m 2m22241244x x x x x -+÷+--()2x 224444x x xx -++⋅-2x 2x 2x 2x 2x 2x 2000070000.9x +20000x。
八年级分式单元测试题(含答案)
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.分式测试题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.下列运算正确的是( )A.x 10÷x 5=x 2B.x -4·x=x -3C.x 3·x 2=x 6D.(2x -2)-3=-8x 62. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时.A.11a b + B.1ab C.1a b + D.aba b+ 3.化简a ba b a b--+等于( ) A.2222a b a b +- B.222()a b a b +- C.2222a b a b -+ D.222()a b a b +-4.若分式2242x x x ---的值为零,则x 的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y -+的值,把分子、分母中各项系数化为整数,结果是( )A.2154x y x y -+ B.4523x y x y -+ C.61542x y x y -+ D.121546x yx y-+6.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( ) A.1个 B.2个 C.3个 D.4个 7.计算4222x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭的结果是( ) A. -12x + B. 12x + C.-1 D.1 8.若关于x 的方程x a cb x d-=- 有解,则必须满足条件( )A. a ≠b ,c ≠dB. a ≠b ,c ≠-dC.a ≠-b , c ≠d C.a ≠-b , c ≠-d 9.若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( ) A.a<3 B.a>3 C.a ≥3D.a ≤3 10.解分式方程2236111x x x +=+--,分以下四步,其中,错误的一步是( ) A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上 .(1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m .12.当a 时,分式321+-a a 有意义. 13.若-1,则x+x -1=__________. 14.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.15.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________.16.已知u=121s s t -- (u ≠0),则t=___________. 17.当m=______时,方程233x mx x =---会产生增根. 18.用科学记数法表示:12.5毫克=________吨. 19.当x 时,分式x x--23的值为负数. 20.计算(x+y)·2222x y x y y x+-- =____________.三、计算题:(每小题6分,共12分)21.23651x x x x x+----; 22.2424422x y x y x x y x y x y x y ⋅-÷-+-+. 四、解方程:(6分) 23.21212339x x x -=+--。
人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)
人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。
人教版八年级上册数学《分式》单元测试题(带答案)
【答案】C
【解析】
试题分析:把分式 中的a、b都扩大6倍后分式的值= ,所以分式的值扩大6倍,故选C.
考点:分式 性质.
5.若分式 的值为零,则 的值为()
A. B.-1C.1D.0
【答案】C
【解析】
【分析】
分式的值为0的条件:分子为0,分母不为0.
【详解】解:根据题意,得
一、选择题:
1.在﹣3x、 、﹣ 、 、﹣ 、 、 中,分式的个数是()
A.3B.4C.5D.6
【答案】A
【解析】
【分析】
根据分式的定义进行分析即可:整式A除以整式B,可以表示成 的形式,如果除式B中含有字母,那么称为分式.
【详解】在﹣3x、 、﹣ 、 、﹣ 、 、 中,分式有: 、﹣ 、﹣ .
故选A
9.化简 的结果是
A.- B. C. D.
10.使分式 的值为整数,则整数x可取的个数为( )
A.2个B.3个C.4个D.5个
11.王老师坚持绿色出行,每天先步行到离家500米的公共自行车点取车,然后骑车4.5千米到校.某天王老师从手机获知,骑车平均每小时比步行多10千米,共用时24分钟.设步行的平均速度为每小时x千米,则可列方程 ( ).
16.已知关于x的方程 =3的解是正数,则m的取值范围为_________.
17.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同.A型机器每小时加工零件的个数_____.
18.已知x,y,z满足 , 则 值是______.
D. 当x≠3时, 有意义
【答案】B
八年级上册数学《分式》单元测试题(含答案)
[答案]B
[解析]
[分析]
根据分式的基本性质和运算法则分别计算即可判断.
[详解]A. = ,故此选项错误;
B.原式= ,故此选项g正确;
C.原式= ,故此选项错误;
D.原式= ,故此选项错误.
故答案选B.
[点睛]本题主要考查分式的混合运算,熟练掌握分式的运算顺序和运算法则是解题的关键.
15.先化简: ,然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.
[答案]x+1,当x=2时,原式=3.
[解析]
试题分析:利用分解因式、完全平方公式以及通分法化简原分式,再分析给定的数据中使原分式有意义的x的值,将其代入化简后的算式中即可得出结论.
试题解析:原式= =x+1.
∵在﹣1,0,1,2四个数中,使原式有意义的值只有2,∴当x=2时,原式=2+1=3.
其中 ,即x≠﹣1、0、1.
又∵﹣2<x≤2且x为整数,∴x=2.
将x=2代入 中得: = =4.
考点:分式的化简求值.
[分析]
根据分式的基本性质,转化为同分母分式,再利用同分母分式的减法法则计算即可得到结果.
[详解]解:原式= =
故答案为
点睛:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
10.化简( )÷ 的结果为____.
[答案]
[解析]
[分析]
先算括号里面的加法运算,再算除法,除法要转化为乘法.
[详解]( )÷
=
=
故答案为
[点睛]本题考核知识点:分式的混合运算.解题关键点:熟练掌握分式的基本运算法则.
11.若式子 在实数范围内有意义,则x 取值范围是____.
人教版数学八年级上册《分式》单元测试题(附答案)
点睛:分式有意义: ,分式无意义: ,分式值为0: ,是分式部分易混的3类题型.
3.化简: ÷ =_____.
【答案】m
【解析】
解:原式= • =m.故答案为m.
4.若分式 无意义,且 =0,那么 =_____.
【答案】﹣
【解析】
【分析】
首先根据分式有意义的条件,以及分式的值为零的条件,分别求出a、b的值各是多少;然后应用代入法,求出 的值是多少即可.
A.甲比乙便宜B.乙比甲便宜
C.甲与乙相同D.由m的值确定
17.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( )
A. + = B. ﹣Fra bibliotek==2019.
故答案为2019.
【点睛】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.
7.方程 =2﹣ 的增根是_____
【答案】x=3
【解析】
【分析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先让最简公分母x-3=0,得到增根x=3.
一.填空题(共7小题)
1.计算: __.
【答案】
【解析】
【分析】
原式利用同分母分式的减法法则计算即可求出值.
【详解】原式= .
故答案为:x-1.
【点睛】本题考查了分式的加减法,熟练掌握运算法则是解题的关键.
2.若分式 的值为0,则x、y需要满足的条件为_____.
八年级数学单元测试题(分式)
八年级数学第一章《分式》单元测试题(满分120分,考试时间90分钟)班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.将分式xyyx 323-中的字母x ,y 的值都扩大为原来的2倍,则分式的值( ) A 、不变 B 、扩大为原来的2倍 C 、扩大为原来的4倍D 、缩小为原来的21 2.计算120090+的结果为( )A 、2009B 、2C 、1D 、03.计算22)(ab ab 的结果为( )A 、bB 、aC 、1D 、b1 4.如果32=b a ,那么b a b+的值是( ) A 、23B 、52 C 、53 D 、32 5.已知分式xyyx -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系( )A 、相等B 、互为相反数C 、互为倒数D 、乘积为-16.若分式21+-x x 的值为0,则x 的值为( ) A 、0B 、1C 、-1D 、-27.化简xy y x y x ---22的结果是( ) A 、y x -- B 、x y - C 、y x - D 、y x +8.若x ≠0,p 是正整数,则下列各式中错误的是( )A 、ppxx1=- B 、ppx x⎪⎭⎫⎝⎛=-1C 、p p x x -=-D 、111-=--pp xx9.纳米是一种长度单位,1纳米=10-9米,已知某种花粉的直径为3500纳米,•那么用科学记数法表示该种花粉的直径为( )A 、3.5×104米B 、3.5×10-5米C 、3.5×10-9米D 、3.5×10-6米10.暑假期间,部分同学包租一辆面包车出去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少分摊了3元车费,若设原来的学生共x 人,则所列方程为( )A 、32180180=+-x x B 、31802180=-+x x C 、32180180=--x x D 、31802180=--xx 二、填空题(每小题3分,共30分) 11.如果分式32-x x有意义,那么x 的取值范围是 。
八年级上册数学《分式》单元检测含答案
一、填空题
1.下列等式成立的是().
A. B.
C. (x≠0)D.
[答案]C
[解析]
[分析]
根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.
[详解]解:A.分式的分子分母都加上x,分式的值一般会改变,故A错误;
B.分式的分子分母都减去x,分式的值一般会改变,故B错误;
C.分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C正确;
20.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.
21.人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
12.分式 , , 的最简公分母是________.
13. __________.
14.计算: =______________.
15.分式 的最简公分母是_____________.
三、解答题
16.化简:
17.计算: + .
18 解方程: .
19.若有理数A,B满足|A-1|+|A B-3|=0,试求 +…+ 的值.
D.该方程符合分式方程的定义,属于分式方程,故本选项错误.
故选B.
[点睛]本题考查了分式方程的定义:分母中含有未知数的方程叫做分式方程.
二、填空题
11 当A=_____时,分式 无意义.
[答案]
[解析]
[分析]
根据分式无意义的条件是分母等于0解答即可.
人教版新八年级数学分式单元测试题及答案
人教版新八年级数学分式单元测试题及答案一、选择题1. 下列各式:()2221451, , , 532x x y x x xπ---其中分式共有( )A .1个B .2个C .3个D .4个2.下列计算正确的是( )A.m m m x x x 2=+B.22=-n n x xC.3332x x x =⋅D.264x x x -÷=3. 下列约分正确的是( ) A .313m m m +=+ B .212yx y x -=-+ C .123369+=+a ba b D .()()y x a b y b a x =--4.若x 、y 的值均扩大为原来的2倍;则下列分式的值保持不变的是( )A.y x 23B.223y xC.y x 232D.2323y x5.计算xx -++1111的正确结果是( )A.0B.212x x - C.212x - D.122-x6. 在一段坡路;小明骑自行车上坡的速度为每小时V 1千米;下坡时的速度为每小时V 2千米;则他在这段路上、下坡的平均速度是每小时( ) A .221v v +千米 B .2121v v v v +千米 C .21212v v v v +千米 D .无法确定7. 某厂接到加工720件衣服的订单;预计每天做48件;正好按时完成;后因客户要求提前5天交货;设每天应多做x 件;则x 应满足的方程为( ) A .x+48720─548720= B .x +=+48720548720 C .572048720=-xD .-48720x +48720=58. 若0≠-=y x xy ;则分式=-xy 11( ) A .xy1B .x y -C .1D .-1 9. 已知xy x y +=1;yz y z +=2;zxz x+=3;则x 的值是( )A .1 B.125 C.512D.-110.小明骑自行车沿公路以akm/h 的速度行走全程的一半;又以bkm/h 的速度行走余下的一半路程;小刚骑自行车以akm/h 的速度走全程时间的一半;又以bkm/h 的速度行走另一半时间(a b ≠);则谁走完全程所用的时间较少?( )A .小明 B.小刚 C.时间相同 D.无法确定二、填空题11. 分式12x ;212y ;15xy-的最简公分母为 .12. 约分:(1)=ba ab2205__________;(2)=+--96922x x x __________. 13. 方程xx 527=-的解是 .14. 使分式2341xx -+的值是负数x 的取值范围是 .15. 一项工程;甲单独做x 小时完成;乙单独做y 小时完成;则两人一起完成这项工程需要__________小时.16. 一个两位数的十位数字是6;如果把十位数字与个位数字对调;那么所得的两位数与原来的两位数之比是74;原来得两位数是______________.17. 若13x x+=;则4221x x x ++__________.18. 对于正数x ;规定f (x )= x 1x +;例如f (3)=33134=+;f (13)=1131413=+;计算f (20171)+ f (20161)+ f (20151)+ …f (13)+ f (12x )+ f (1)+ f (1)+ f (2)+ f (3)+ … + f (2015)+ f (2016)+ f (2017)= .三、解答题19.计算:(1) 333x x x --- (2) 222246⎪⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛x y x y20.计算: (1) bc c b ab b a +-+ (2)÷+--4412a a a 214a a --21.(1)计算:⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛----42318521q p q p (2)32232)()2(b a c ab ---÷22.计算:2222221m n mn n mnm mn n m n n ⎡⎤-+-⋅⎢⎥-+--⎣⎦23.解分式方程: (1)3215122=-+-x x x (2)1637222-=-++x x x x x24.先化简;再求值:已知12+=x ;求xx x x x x x 112122÷⎪⎭⎫ ⎝⎛+---+的值25.一根约为1m 长、直径为80mm 的圆柱形的光纤预制棒;可拉成至少400km 长的光纤.试问:光纤预制棒被拉成400km 时;12cm 是这种光纤此时的横截面积的多少倍?(结果保留两位有效数字;要用到的公式:圆柱体体积=底面圆面积×圆柱的高)26.从甲地到乙地有两条公路;一条是全长600km 的普通公路;另一条是全长480km 的高速公路;某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ;由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半;求该客车由高速公路从甲地到乙地所需的时间.27. 问题探索:(1)已知一个正分数mn(m >n >0);如果分子、分母同时增加1;分数的值是增大还是减小?请证明你的结论.(2)若正分数mn(m >n >0)中分子和分母同时增加2;3…k (整数k >0);情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积;但按采光标准;窗户面积与地板面积的比应不小于10%;并且这个比值越大;住宅的采光条件越好;问同时增加相等的窗户面积和地板面积;住宅的采光条件是变好还是变坏?请说明理由.八年级数学分式单元测试答案一、选择题1.A 2.D 3.C 4.A 5.C 6.C 7.D 8.C 9.A 10.B(提示:)二、填空题11.210xy 12.(1)14a (2)33x x +- 13.x =-5 14.x >3415.xy x y +16.63 17.18(提示:由13x x +=得21()9x x +=;2217x x +=;∴4221x x x ++=22118x x++=)18.2007(提示:原式=20181+20171+20161+…+13+12+12+23+…20162015+20172016+20182017=(20181+20182017)+(20171+20172016)+(20171+20162015)+…+(12+12)=2017三、解答题19.(1)原式=3(3)33x x x x ---=--=-1(2)原式=24423616y y x x ÷=22441636y x x y =2249x y20.(1)原式=()()c a b a b c abc abc ++-=()()c a b a b c abc abc ++-=ac bc ab acabc+--bc ab abc -=()b c a abc -=c aac-(2)原式=211(2)(2)(2)a a a a a --÷-+-=21(2)(2)(2)1a a a a a -+---=2a +21.1.原式=1(2)3(4)15()28p q ------÷-=45pq - 2. 7644bc a22.原式=2()()()()1m n n m n mn m n m n m n n ⎡⎤-+-⎢⎥-+--⎣⎦=1()1n mnm n m n n ----11n mn m n n ---=mnm n--23.(1)原方程变形为252121x x x ---=3;方程两边同乘以(21)x -;得253(21)x x -=-;解得x =12-;检验:把12x =-代入(21)x -;(21)x -≠0;∴12x =-是原方程的解;∴原方程的解是12x =-.(2)原方程变形为736(1)(1)(1)(1)x x x x x x +=+-+-;方程两边同乘以最简公分母(1)(1)x x x +-;得7(1)3(1)6x x x -++=;解得x =1;检验:把1=x 代入最简公分母(1)(1)x x x +-;(1)(1)x x x +-=0;∴1=x 不是原方程的解;应舍去;∴原方程无解.24.原式=211(1)(1)x x x x x x ⎛⎫+-÷ ⎪--⎝⎭=222(1)(1)1(1)(1)x x x x x x x x ⎛⎫+--÷ ⎪--⎝⎭=22211(1)x x x x x--÷-=21(1)x x x --=21(1)x --;当12+=x 时;原式==21-=12-25.光纤的横截面积为:1×π)10400()21080(323⨯÷⨯⨯-=4π910-⨯(平方米); ∴()9410410--⨯÷π≈8.0310⨯.答:平方厘米是这种光纤的横截面积8.0310⨯倍.26.设客车由高速公路从甲地到乙地需x 小时;则走普通公路需2x 小时;根据题意得:6004804.52x x-=;解得x =8;经检验;x =8是原方程的根;答:客车由高速公路从甲地到乙地需8小时. 27.(1)m n <11++m n (m >n >0) 证明:∵m n -11++m n =()1+-m m m n ;又∵m >n >0;∴()1+-m m m n <0;∴m n <11++m n(2)m n <km kn ++(m >n >0;k >0) (3)设原来的地板面积和窗户面积分别为x 、y ;增加面积为a ;则由(2)知:ax a y ++>xy;所以住宅的采光条件变好了。
人教版数学八年级上册《分式》单元检测题含答案
A x+1B. C.x-1D.
【答案】A
【解析】
【分析】
根据同分母分式相减,分母不变,将分子相减,再将分子利用平方差公式分解因式,然后约分即可化简.
【详解】解:原式= .
故答案为A
【点睛】此题考查分式的加减法,解题关键在于掌握运算法则.
7.下列计算错误的是()
A. B. C. D.
详解:原式= = =1.
故答案为1.
点睛:本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.
15.若3x-1= ,则x=_______.
【答案】-2
【解析】
3x-1= ,
x-1=-3,x=-2.
22.以下是小明同学解方程 的过程.
【解析】方程两边同时乘 ,得 .
第一步解得
第二步检验:当 时, .第三步
所以,原分式方程的解为 .第四步
(1)小明 解法从第________步开始出现错误;
(2)写出解方程 的正确过程.
23.先化简,再求值: ,其中x是不等式组 的整数解.
24.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:
21.(1)先化简,再求值: ,其中x=1;
(2)先化简,再求值: ,从不大于4的正整数中,选择一个合适的值代入x求值.
【答案】(1) ,2(2)取x=4,原式=
【解析】
试题分析:(1)通分,化简,代入求值.
(2)通分,化简,代入求值.
试题解析:
(1)原式= ,
当x=1时,原式=2.
(2)原式=( ·(x-3)= ·(x-3)= ,
八年级上册数学《分式》单元测试卷(附答案)
考点:分式方程的应用.
22.扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵树比原计划多20%,结果提前4天完成,求实际每天栽树多少棵?
[答案]实际每天栽树60棵
[解析]
试题分析:根据题意分别表示出实际栽树的天数和原计划的栽树的天数,进而得出等式求出答案.
[解析]
①2x+ =10是整式方程,
②x- 是分式方程,
③ 是分式方程,
④ 是整式方程,
所以,属于分式方程的有②③.
故选:B.
7.下列分式从左至右的变形正确的是( )
A. B. C. D.
[答案]A
[解析]
A、分子、分母、分式改变其中任意两项的符号,分式的值不变,故A正确;
B、分子分母加数,分式的值改变,故B错误;
当x=4时, =﹣3,符合题意;
当x=5时, =﹣2,符合题意;
当x=6时, =﹣ ,不符合题意,舍去;
当x=7时, =﹣ ,不符合题意,舍去;
当x=8时, =﹣1,符合题意;
当x≥9时,﹣1< <0,不符合题意.故x的值为3,4,5,8.
故答案为:3、4、5、8.
14.我国医学界最新发现的一种病毒其直径仅为0.000512mm,这个数字用科学记数法可表示为________ mm.
在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
[答案]方案(3)最节省.
[解析]
试题分析:设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 分式 单元测试题
一、选一选(请将唯一正确答案代号填入题后的括号内) 1.已知x ≠y ,下列各式与
x y
x y
-+相等的是( ).
(A )()5()5x y x y -+++ (B)22x y
x y -+ (C) 222()x y x y -- (D )2222
x y x y -+
2.化简2
122
93
m m +-+的结果是( ). (A )
269m m +- (B)23m - (C)23m + (D )229
9
m m +-
3
322121
x x x x --+4(A 5(A 6(A 7(A 82km ,
(A
9.下列说法:①若a ≠0,m,n 是任意整数,则a m
.a n
=a m+n
; ②若a 是有理数,m,n 是整
数,且mn>0,则(a m )n =a mn ;③若a ≠b 且ab ≠0,则(a+b)0=1;④若a 是自然数,则a -3.a 2=a -1
.其中,正确的是( ).
(A )① (B )①② (C )②③④ (D )①②③④ 10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是:( )
(A )1515112x x -=+ (B )15
15
112x x -=+ (C )
1515112x x -=- (D )15
15
112
x
x -=-
二、填一填
11.计算
2
21
42a a a -=-- . 12.方程 3470x x
=-的解是 . 13.计算 a 2b 3
(ab 2)-2
= . 14.瑞士中学教师巴尔末成功地从光谱数据
9162536
,,,,5122132
中得到巴尔末公式,从而打开了光谱奥秘的大门,请你按这种规律写出第七个数据是 .
15.如果记 2
2
1x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=
+;f(12)表
那么示).
16
17
18.有一道题“先化简,再求值: 2221
()244
x x x x x -+÷+-- 其中,x=-3”
小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么
回事?
19.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,问这笔钱全部用来买钢笔或日记本,可买多少?
20.A、B两地相距80千米,甲骑车从A地出发1小时后,乙也从A地出发,以甲的速度的1.5倍追赶,当乙到达B地时,甲已先到20分钟,求甲、乙的速度.
21.
设计如图1
(1
(2)
一、1.C 2.B 3.A 4.A 5.D 6.C 7.D 8.A 9.B 10.B
二、11.
1
2
a+
12.x=30 13.
1
6
14.
81
77
15.
1
2
n-
三、16.-5 17.x=
13
2
- 18. 24
x+. 19.可以买钢笔100支或者日记本450本.
20.甲的速度为40千克/时,乙速为60千克/时. 21.(1)
1
1
2n
-;(2)略。