阿岗二中2020-2021学年新人教版七年级下期中教学质量监测试卷(样卷)

合集下载

【精品】2020-2021学年人教版七年级下册期中考试数学试卷(含解析)

【精品】2020-2021学年人教版七年级下册期中考试数学试卷(含解析)

2020-2021学年人教版七年级下册期中考试数学试卷一.选择题(共10小题)1.下列叙述,其中不正确的是()A.过一点有且只有一条直线与已知直线平行B.同角(或等角)的余角相等C.两点确定一条直线D.两点之间的所有连线中,线段最短2.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限3.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A.经过一点有无数条直线B.两点之间,线段最短C.经过两点,有且仅有一条直线D.垂线段最短4.±的值等于()A.±8 B.8 C.﹣8 D.5.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是()A.①②B.①②③C.②③D.③6.下列说法正确的有()(1)﹣π<﹣3.14;(2)两个数比较大小,绝对值大的数反而小;(3)﹣a不一定是负数;(4)符号不同的两个数互为相反数A.1个B.2个C.3个D.4个7.在﹣,﹣π,0,3.14,﹣,0.,﹣7,﹣3中,无理数有()A.1个B.2个C.3个D.4个8.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°9.如图,△DEF是△ABC经过平移得到的.已知∠A=54°,∠ABC=36°,则下列结论不一定成立的是()A.∠D=54°B.∠BED=∠FED C.BC⊥DF D.DF∥AC10.下列各图形中均有直线m∥n,则能使结论∠A=∠1﹣∠2成立的是()A.B.C.D.二.填空题(共8小题)11.27的立方根为.12.如图所示,已知∠ACB=90°,若BC=8cm,AC=6cm,AB=10cm,则点A到BC的距离是,点C到AB的距离是.13.我国古代数学著作《增删算法统综》中有如下一道题:“直田七亩半,忘了长和短,记得立契时,长阔争一半,今特问高明,此法如何算”.意思是:有一块7亩半(即1800平方步)的矩形田,忘了长和宽各是多少,记得在立契约的时候,宽是长的一半,现在请问高明能算者,怎样计算出他的长与宽.若设此矩形田的宽为x步,依据题意,可列方程为.14.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x轴的距离为3,则P点的坐标为.15.如图,请填写一个条件,使结论成立:∵,∴a∥b.16.如图,在三角形ABC中,∠ABC=90°,BC=11,把三角形ABC向下平移至三角形DEF后,AD=CG=6,则图中阴影部分的面积为.17.写出一个比2大且比小的整数.18.如图,将一张长方形纸片如图所示折叠后,再展开.如果∠1=66°,那么∠2=.三.解答题(共8小题)19.计算题:(1)﹣×;(2)|2﹣|+(﹣2).20.求下列各式中x的值.(1)(4x﹣1)2=225.(2)27x3+1000=0.21.如图,在平面直角坐标系中,(1)确定点A、B的坐标;(2)描出点C(﹣1,﹣2),点D(2,﹣3).22.已知一个正数m的两个不同的平方根是a﹣1与5﹣2a,求a和m的值.23.如图,已知点E在BD上,AE⊥CE且EC平分∠DEF.(1)求证:EA平分∠BEF;(2)若∠1=∠A,∠4=∠C,求证:AB∥CD.24.如图,在正方形网格中建立平面直角坐标系,已知点A(0,﹣2),B(2,﹣5),C(5,﹣3),请按下列要求操作:(1)请在图中画出△ABC;(2)将△ABC向上平移5个单位长度,再向左平移4个单位长度,得到△A1B1C1.在图中画出△A1B1C1,并直接写出点A1、B1、C1的坐标.25.(1)把图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),写出另外6个“顶点”的对应点的坐标;(2)图(2)与图(1)对应“顶点”的坐标之间有什么样的关系?它可以由图(1)如何变化而来?(3)图(3)与图(1)对应“顶点”的坐标之间有什么样的关系?它可以由图(1)如何变化而来?26.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.已知:.结论:.理由:.参考答案与试题解析一.选择题(共10小题)1.【分析】根据平行公理,线段的性质,直线的性质,余角的性质,可得答案.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,错误;B、同角(或等角)的余角相等,正确;C、两点确定一条直线,正确;D、两点之间的所有连线中,线段最短,正确;故选:A.【点评】本题考查平行线的判定定理以及平行线的性质.注意过直线外一点有且只有一条直线与已知直线平行.2.【分析】根据xy>0,可得x>0,y>0或x<0,y<0,再根据各象限内点的坐标的符号特征判断即可.【解答】解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.【分析】根据两点之间,线段最短进行解答.【解答】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.4.【分析】根据平方根的定义即可求解.【解答】解:±的值等于±8.故选:A.【点评】本题考查了平方根,关键是熟练掌握平方根的定义.5.【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.【解答】解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误;②∵42=16,∴4是16的算术平方根,故②错误,③平方根等于它本身的数只有0,故③正确,④8的立方根是2,故④错误.故选:D.【点评】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.6.【分析】根据实数比较大小的法则、绝对值的性质、正负数的定义、相反数的定义回答即可.【解答】解:(1)﹣π<﹣3.14是正确的;(2)两个负数比较大小,绝对值大的数反而小,原来的说法错误;(3)﹣a不一定是负数是正确的;(4)只有符号不同的两个数互为相反数,原来的说法错误.故选:B.【点评】本题主要考查的是有正负数、绝对值、相反数、比较实数的大小,掌握相关知识是解题的关键.7.【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:在﹣,﹣π,0,3.14,﹣,0.,﹣7,﹣3中,无理数有﹣π,,共2个.故选:B.【点评】本题主要考查了无理数.解题的关键是掌握无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.【分析】根据平行线的性质和三角板的角度解答即可.【解答】解:∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.【点评】此题考查平行线的性质,关键是根据两直线平行,同位角相等解答.9.【分析】根据三角形的内角和定理求出∠C=90°,再根据平移的性质对各选项分析判断后利用排除法求解.【解答】解:∵∠A=54°,∠ABC=36°,∴∠C=180°﹣∠A﹣∠ABC=180°﹣54°﹣36°=90°,由平移可得:∠D=∠A=54°,A、∠D=54°,故本选项错误;B、∠BED=∠FED不一定成立,故本选项正确;C、由平移的性质,AC∥DF,∴BC⊥DF,故本选项错误;D、由平移的性质,AC∥DF,故本选项错误.故选:B.【点评】本题考查了平移的性质,主要利用了平移只改变图形的位置不改变图形的形状与大小,对应相等互相平行,熟记性质是解题的关键.10.【分析】根据平行线的性质解答即可.【解答】解:A、∵m∥n,∴∠2=∠1+∠A,∴∠A=∠2﹣∠1,不符合题意;B、∵m∥n,∴∠1=∠2+∠A,∴∠A=∠1﹣∠2,符合题意;C、∵m∥n,∴∠1+∠2+∠A=360°,∴∠A=360°﹣∠2﹣∠1,不符合题意;D、∵m∥n,∴∠A=∠1+∠2,不符合题意;故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.二.填空题(共8小题)11.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.【分析】直接利用点到直线的距离以及三角形面积求法分别得出答案.【解答】解:∠ACB=90°,即AC⊥BC,若BC=8cm,AC=6cm,AB=10cm,那么A 到BC 的距离是:6cm ,C 到AB 的距离是:=4.8(cm ).故答案为:6cm ,4.8cm .【点评】此题主要考查了点到直线的距离,正确结合三角形面积求出C 到AB 的距离是解题关键.13.【分析】根据题意列出方程即可求出答案.【解答】解:由题意可知:x •2x =1800,故答案为:x •2x =1800,【点评】本题考查列方程,解题的关键是正确找出等量关系,本题属于基础题型.14.【分析】直接利用某个“和谐点”到x 轴的距离为3,得出y 的值,进而求出x 的值求出答案.【解答】解:∵某个“和谐点”到x 轴的距离为3,∴y =±3,∵x +y =xy ,∴x ±3=±3x ,解得:x =或x =.则P 点的坐标为:(,3)或(,﹣3). 故答案为:(,3)或(,﹣3).【点评】此题主要考查了点的坐标,正确分类讨论是解题关键.15.【分析】要使得a ∥b ,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a ∥b .故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.【点评】考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.16.【分析】先根据平移的性质得到AD =BE =6,EF =BC =11,S △ABC =S △DEF ,则BG =5,由于S 阴影部分=S 梯形BEFG ,所以利用梯形的面积公式计算即可.【解答】解:∵三角形ABC 向下平移至三角形DEF ,∴AD =BE =6,EF =BC =11,S △ABC =S △DEF ,∵BG =BC ﹣CG =11﹣6=5,∴S梯形BEFG=(5+11)×6=48,∵S阴影部分+S△DBG=S△DBG+S梯形BEFG,∴S阴影部分=S梯形BEFG=48.故答案为48.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.17.【分析】估算出2和的大小,即可得出答案.【解答】解:∵2=,而<<<,∴2<3<4<,故答案为:3或4.【点评】本题考查无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.18.【分析】根据折叠的性质和平行线的性质,可以得到∠2的度数,从而可以解答本题.【解答】解:由折叠的性质可知,∠1=∠3,∵∠1=66°,∴∠3=66°,∵长方形的两条长边平行,∴∠2+∠1+∠3=180°,∴∠2=48°,故答案为:48°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.三.解答题(共8小题)19.【分析】(1)依据算术平方根以及立方根的意义,即可得到计算结果;(2)依据绝对值的性质以及合并同类二次根式的法则,即可得到结果.【解答】解:(1)﹣×=4﹣4×(﹣2)=4+8=12;(2)|2﹣|+(﹣2)=﹣2+﹣2=﹣2.【点评】本题主要考查了算术平方根以及立方根的意义,在进行实数运算时,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.20.【分析】(1)根据直接开平方法可以解答此方程;(2)先移项,然后根据直接开立方法可以解答此方程.【解答】解:(1)(4x﹣1)2=225,4x﹣1=±15,解得x1=﹣3.5,x2=4;(2)27x3+1000=0,27x3=﹣1000,x3=﹣,x=﹣.【点评】本题考查立方根、平方根、解方程,解答本题的关键是明确解方程的方法.21.【分析】(1)直接利用平面直角坐标系得出A,B点坐标;(2)直接利用C,D点坐标在坐标系中确定即可.【解答】解:(1)A(﹣1,2),B(2,0);(2)如图所示:C,D点即为所求.【点评】此题主要考查了点的坐标,正确理解点的坐标意义是解题关键.22.【分析】直接利用平方根的定义得出a的值,进而得出答案.【解答】解:∵一个正数m的两个不同的平方根是a﹣1与5﹣2a,∴a﹣1+5﹣2a=0,解得:a=4,则a﹣1=3,故m=32=9.【点评】此题主要考查了平方根,正确掌握平方根的定义:一个正数有两个平方根,这两个平方根互为相反数是解题关键.23.【分析】(1)根据垂直的定义,角平分线的定义解答即可;(2)根据平行线的判定解答即可.【解答】证明:(1)∵AE⊥CE,∴∠AEC=90°,∴∠2+∠3=90°且∠1+∠4=90°,又∵EC平分∠DEF,∴∠3=∠4,∴∠1=∠2,∴EA平分∠BEF;(2)∵∠1=∠A,∠4=∠C,∴∠1+∠A+∠4+∠C=2(∠1+∠4)=180°,∴∠B+∠D=(180°﹣2∠1)+(180°﹣2∠4)=360°﹣2(∠1+∠4)=180°,∴AB∥CD.【点评】此题考查平行线的判定和角平分线的定义,关键是根据平行线的判定定理解答.24.【分析】(1)根据点A(0,﹣2),B(2,﹣5),C(5,﹣3),即可画出△ABC;(2)根据平移的性质即可将△ABC向上平移5个单位长度,再向左平移4个单位长度,得到△A1B1C1并写出点A1、B1、C1的坐标.【解答】解:(1)如图,△ABC即为所求;(2)如图,△A1B1C1即为所求,A1(﹣4,3),B1(﹣2,0),C1(1,2).【点评】本题考查了作图﹣平移变换,解决本题的关键是掌握平移的性质.25.【分析】(1)根据图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),即可写出另外6个“顶点”的对应点的坐标;(2)根据平移过程即可得到图(2)与图(1)对应“顶点”的坐标之间的关系,进而可得它由图(1)如何变化而来的;(3)根据平移过程即可得到图(3)与图(1)对应“顶点”的坐标之间的关系,进而可得它由图(1)如何变化而来的.【解答】解:(1)把图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),即图形向下平移4个单位,所以另外6个“顶点”的对应点的坐标分别为:(1,﹣2),(2,﹣2)(2,﹣4),(6,﹣4),(6,﹣2),(7,﹣2);(2)图(2)与图(1)对应“顶点”的坐标之间关系为:横坐标不变,纵坐标减少5,它可以由图(1)向下平移5个单位得到;(3)图(3)与图(1)对应“顶点”的坐标之间关系为:横坐标减去8,纵坐标不变,它可以由图(1)向左平移8个单位得到.【点评】本题考查了坐标与图形变化﹣平移,解决本题的关键是掌握平移的性质.26.【分析】根据题意,请从中任选两个作为条件,另一个作为结论构成一个命题,根据平行线的判定和性质及对顶角相等进行证明.【解答】解:已知:∠1=∠2,∠B=∠C;求证:∠A=∠D;证明:∵∠1=∠3,又∵∠1=∠2,∴∠3=∠2,∴EC∥BF,∴∠AEC=∠B,又∵∠B=∠C,∴∠AEC=∠C,∴AB∥CD,∴∠A=∠D.故答案为:∠1=∠2,∠B=∠C;∠A=∠D;∵∠1=∠3,又∵∠1=∠2,∴∠3=∠2,∴EC∥BF,∴∠AEC=∠B,又∵∠B=∠C,∴∠AEC=∠C,∴AB∥CD,∴∠A=∠D.【点评】此题考查平行线的判定和性质题,证明的一般步骤:写出已知,求证,画出图形,再证明.。

人教版2020-2021学年度第二学期七年级语文期中考试试卷(含答案)

人教版2020-2021学年度第二学期七年级语文期中考试试卷(含答案)

2020-2021学年度第二学期期中考试七年级语文试卷说明:1.全卷共6页,满分为120分,考试用时为120分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.本试卷设有附加题,共10分,考生可答可不答;该题得分作为补偿分计入总分,但全卷最后得分不得超过120分。

6.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、基础(24分)1.根据课文默写古诗文。

(10分)(1),弹琴复长啸。

(王维《竹里馆》)(2),何人不起故园情。

(李白《春夜洛城闻笛》)(3)《木兰诗》中描写木兰从军后艰苦的战地生活的对偶句:,。

(4)小姝暑假参加“中国诗词大会”,增长了知识,扩大了眼界,回校后与同学畅谈中华诗词之神韵,同学们用《孙权劝学》中吕蒙的话“,”来为她的惊人进步点赞。

(5)请把韩愈的《晚春》默写完整。

,。

,。

2.根据拼音写出相应的词语。

(4分)(1)yǎng zhī mí gāo( ),越高,攀得越起劲;钻之弥坚,越坚,钻得越锲而不舍。

(2)那是一个幸运的人对一个不幸者的kuìzuò()。

(3)我似乎遇着了一个pīlì( ),全体都震悚起来。

(4)这个方面,情况就jiǒng hūbùtóng( ),而且一反既往了。

3.下列句子中加点的词语使用不恰当的一项是(3分)()A.听了这个突如其来的消息,我们都十分诧异..。

B.诘问..之下,他终于开口讲了事情的原委。

人教版七年级下册数学《期中检测卷》(带答案解析)

人教版七年级下册数学《期中检测卷》(带答案解析)

2020-2021学年度第二学期期中测试七年级数学试题一.选择题(共10小题,满分30分,每小题3分)1.若点(,)P x y 在第四象限,且||2x =,||3y =,则(x y += ) A .1-B .1C .5D .5-2.下列说法中正确的是( ) A .带根号的数是无理数 B .无理数不能在数轴上表示出来C .无理数是无限小数D .无限小数是无理数 3.下列各式中正确的是( )A 2±B 3=-C 2=D4( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间5.如图,在ABC ∆中,55B ∠=︒,63C ∠=︒,//DE AB ,则DEC ∠等于( )A .63︒B .62︒C .55︒D .118︒6.如图,直线AB 、CD 相交于点O ,OE 平分BOC ∠,OF OE ⊥于O ,若70AOD ∠=︒,则AOF ∠等于( )A .35︒B .45︒C .55︒D .65︒7.如果0m >,0n <,||m n <,那么m ,n ,m -,n -的大小关系是( ) A .n m m n ->>-> B .m n m n >>->- C .n m n m->>>-D .n m n m >>->-8.下列选项中,可以用来说明命题“如果0a b +=,那么0a =,0b =”是假命题的反例是( )A .2a =-,2b =B .1a =,0b =C .1a =,1b =D .2a =,2b =9.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A .第一次向左拐40︒,第二次向右拐40︒B .第一次向右拐140︒,第二次向左拐40︒C .第一次向右拐140︒,第二次向右拐40︒D .第一次向左拐140︒,第二次向左拐40︒10.如图,平行四边形ABCD 的顶点B ,D 都在反比例函数(0)ky x x=>的图象上,点D 的坐标为(2,6),AB 平行于x 轴,点A 的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C 的坐标为( )A .(1,3)B .(4,3)C .(1,4)D .(2,4)二.填空题(共5小题,满分15分,每小题3分)11.2的相反数是 ,||π= ,的算术平方根为 .12的点距离最近的整数点所表示的数为 .13.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为 . 14.对任意两个实数a ,b 定义新运算:()()a a b a b b a b ⎧⊕=⎨<⎩若若…,并且定义新运算程序仍然是先做括号内的,那么2)3=⊕ .15.如图,A 在B 的 方向.三.解答题(共8小题,满分75分)16.(8分)(1(2)2|1|-+(3)已知2(21)90x --=,求x 的值.17.(8分)解方程: (1)29160x -=(2)3(1)270x ++=.18.(9分)如图,点A ,B ,C ,D 在同一条直线上,AB DC =,在以下三个论断“EA ED =,EF AD ⊥,FB FC =”中选择两个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知:如图,点A ,B ,C ,D 在同一条直线上,AB DC =, . 求证: . 证明:19.(9分)已知:如图,把ABC ∆向上平移3个单位长度,再向右平移2个单位长度,得到△A B C '''.(1)写出A '、B '、C '的坐标; (2)求出ABC ∆的面积;(3)点P 在y 轴上,且BCP ∆与ABC ∆的面积相等,求点P 的坐标.20.(9分)已知12x a =-,34y a =-. (1)已知x 的算术平方根为3,求a 的值;(2)如果x ,y 都是同一个数的平方根,求这个数.21.(10分)小丽手中有块长方形的硬纸片,其中长比宽多10cm ,长方形的周长是100cm . (1)求长方形的面积.(2)现小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为5:4,面积为2520cm 的新纸片作为他用.试判断小丽能否成功,并说明理由.22.(10a ,小数部分是b 2ab +=.23.(12分)如图,已知//AB CD ,12∠=∠,56EFD ∠=︒,求EGD ∠的度数.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.若点(,)P x y 在第四象限,且||2x =,||3y =,则(x y += ) A .1-B .1C .5D .5-【解析】由题意,得 2x =,3y =-,2(3)1x y +=+-=-,故选:A .2.下列说法中正确的是( ) A .带根号的数是无理数 B .无理数不能在数轴上表示出来C .无理数是无限小数D .无限小数是无理数【解析】A 2=,不是无理数,故本选项错误;B 、无理数都能在数轴上表示出来,故本选项错误;C 、无理数是无限不循环小数,即无理数都是无限小数,故本选项正确;D 、如1.33333333⋯,是无限循环小数,是有理数,故本选项错误;故选:C .3.下列各式中正确的是( )A 2±B 3=-C 2=D【解析】2=,故选项A 不合题意;3=,故选项B 不合题意;232,故选项C 不合题意;D 符合题意.故选:D .4( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间【解析】Q67∴<,∴6和7之间.故选:B .5.如图,在ABC ∆中,55B ∠=︒,63C ∠=︒,//DE AB ,则DEC ∠等于( )A .63︒B .62︒C .55︒D .118︒【解析】Q 在ABC ∆中,55B ∠=︒,63C ∠=︒, 180180556362A B C ∴∠=︒-∠-∠=︒-︒-︒=︒, //DE AB Q ,62DEC A ∴∠=∠=︒.故选:B .6.如图,直线AB 、CD 相交于点O ,OE 平分BOC ∠,OF OE ⊥于O ,若70AOD ∠=︒,则AOF ∠等于( )A .35︒B .45︒C .55︒D .65︒【解析】070B C AOD ∠=∠=︒Q , 又OE Q 平分BOC ∠, 1352BOE BOC ∴∠=∠=︒.OF OE ⊥Q ,90EOF ∴∠=︒.18055AOF EOF BOE ∴∠=︒-∠-∠=︒.故选:C .7.如果0m >,0n <,||m n <,那么m ,n ,m -,n -的大小关系是( )A .n m m n ->>->B .m n m n >>->-C .n m n m->>>-D .n m n m >>->-【解析】根据正数大于一切负数,只需分别比较m 和n -,n 和m -. 再根据绝对值的大小,得n m m n ->>->. 故选:A .8.下列选项中,可以用来说明命题“如果0a b +=,那么0a =,0b =”是假命题的反例是( )A .2a =-,2b =B .1a =,0b =C .1a =,1b =D .2a =,2b =【解析】当2a =-,2b =时,220a b +=-+=,可以说明命题“如果0a b +=,那么0a =,0b =”是假命题, 故选:A .9.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A .第一次向左拐40︒,第二次向右拐40︒B .第一次向右拐140︒,第二次向左拐40︒C .第一次向右拐140︒,第二次向右拐40︒D .第一次向左拐140︒,第二次向左拐40︒ 【解析】做示意图如下:故选:A .10.如图,平行四边形ABCD 的顶点B ,D 都在反比例函数(0)ky x x=>的图象上,点D 的坐标为(2,6),AB 平行于x 轴,点A 的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C 的坐标为( )A .(1,3)B .(4,3)C .(1,4)D .(2,4)【解析】D Q 在反比例函数(0)ky x x=>的图象上,点D 的坐标为(2,6),2612k xy ∴==⨯=,∴反比例函数为:12y x=, Q 点A 的坐标为(0,3),∴点B 的纵坐标为:3,123x∴=, 解得:4x =,∴点(4,3)B ,Q 四边形ABCD 是平行四边形,∴点(6,6)C ,∴将这个平行四边形向左平移2个单位、再向下平移3个单位后点C 的坐标为:(4,3).故选:B .二.填空题(共5小题,满分15分,每小题3分)11.2的相反数是 2- ,|π= ,的算术平方根为 . 【解析】2的相反数是2-;0π<,所以|ππ=-42.故答案为:2-,π2.12的点距离最近的整数点所表示的数为 3 . 【解析】91112.25<<Q ,∴在数轴上与表示的点的距离最近的整数点所表示的数是3.故答案是3.13.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为(5,9).【解析】5排9号可以表示为(5,9),故答案为:(5,9).14.对任意两个实数a,b定义新运算:()()a a ba bb a b⎧⊕=⎨<⎩若若…,并且定义新运算程序仍然是先做括号内的,那么2)3=⊕3.【解析】2)3⊕3=3=故答案为:3.15.如图,A在B的北偏西60︒方向.【解析】如图,30ABD∠=︒Q60ABC∴∠=︒,A∴在B的北偏西60︒方向,故答案为:北偏西60︒.三.解答题(共8小题,满分75分)16.(8分)(1(2)2|1|-+(3)已知2(21)90x --=,求x 的值.【解析】(116322=-+- 32=(2)2|1|-+21=3=-(3)2(21)9x -=Q ,213x ∴-=±,解得:2x =或1x =-.17.(8分)解方程:(1)29160x -=(2)3(1)270x ++=.【解析】(1)方程整理得:2169x =, 开方得:43x =±; (2)方程整理得:3(1)27x +=-,开立方得:13x +=-,解得:4x =-.18.(9分)如图,点A ,B ,C ,D 在同一条直线上,AB DC =,在以下三个论断“EA ED =,EF AD ⊥,FB FC =”中选择两个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知:如图,点A ,B ,C ,D 在同一条直线上,AB DC =, EA ED =,FB FC = . 求证: .证明:【解答】已知:如图,点A ,B ,C ,D 在同一条直线上,AB DC =,EA ED =,FB FC =, 求证:EF AD ⊥,证明:EF ED =Q ,∴点E 在线段AD 的垂直平分线上,FB FB =Q∴点F 在线段BC 的垂直平分线上,AB DC =Q ,∴点F 在线段AD 的垂直平分线上,EF AD ∴⊥,故答案为:EA ED =,FB FC =;EF AD ⊥.19.(9分)已知:如图,把ABC ∆向上平移3个单位长度,再向右平移2个单位长度,得到△A B C '''.(1)写出A '、B '、C '的坐标;(2)求出ABC ∆的面积;(3)点P 在y 轴上,且BCP ∆与ABC ∆的面积相等,求点P 的坐标.【解析】(1)如图所示:(0,4)A '、(1,1)B '-、(3,1)C ';(2)1(31)362ABC S ∆=⨯+⨯=;(3)设点P 坐标为(0,)y , 4BC =Q ,点P 到BC 的距离为|2|y +, 由题意得14|2|62y ⨯⨯+=, 解得1y =或5y =-,所以点P 的坐标为(0,1)或(0,5)-.20.(9分)已知12x a =-,34y a =-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x ,y 都是同一个数的平方根,求这个数.【解析】(1)x Q 的算术平方根是3,129a ∴-=,解得4a =-.故a 的值是4-;(2)x ,y 都是同一个数的平方根,1234a a ∴-=-,或12(34)0a a -+-=解得1a =,或3a =,2(12)(12)1a -=-=,2(12)(16)25a -=-=.答:这个数是1或25.21.(10分)小丽手中有块长方形的硬纸片,其中长比宽多10cm ,长方形的周长是100cm . (1)求长方形的面积.(2)现小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为5:4,面积为2520cm 的新纸片作为他用.试判断小丽能否成功,并说明理由.【解析】(1)设长方形的长为xcm ,宽为ycm ,根据题意得:102()100x y x y -=⎧⎨+=⎩, 解得:3020x y =⎧⎨=⎩, 3020600xy ∴=⨯=.答:长方形的面积为2600cm .(2)不能成功,理由如下:设长方形纸片的长为5(0)a a cm >,则宽为4acm ,根据题意得:54520a a =g,解得:1a =2a =5a ∴=,4a =20=Q ,即纸片的宽大于原来硬纸片的宽,∴小丽不能成功.22.(10a ,小数部分是b 2ab +=.【解答】证明:12Q ,1a ∴=,1b =,1)1312ab b ab +=+==-=23.(12分)如图,已知//AB CD ,12∠=∠,56EFD ∠=︒,求EGD ∠的度数.【解析】//AB CD Q ,56EFD ∠=︒, 180124BEF EFD ∴∠=︒-∠=︒; 12∠=∠Q ,11622BEF ∴∠=∠=︒; 1EGD EFD ∠=∠+∠Q ,118EGD ∴∠=︒.。

2020-2021学年人教部编版七年级语文下学期期中质量检测试题及答案

2020-2021学年人教部编版七年级语文下学期期中质量检测试题及答案

2020-2021学年度第二学期期中教学质量检测七年级语文试卷温馨提示:1.试卷满分为120分,考试时间为120分钟。

2.试卷包括“试题卷”和“答题卷”两部分。

请务必在“答题卷...”上答题,在“试题卷”上答题是无效的。

3.答题过程中,可以随时使用你所带的《新华字典》。

一、语文积累和运用(34分)1.默写古诗文中的名句名篇。

(10分)(1)补写出下列名句的上句或者下句(6分)①,散入春风满洛城。

(李白《春夜洛城闻笛》)②,双袖龙钟泪不干。

(岑参《逢入京使》)③独坐幽篁里,。

(王维《竹里馆》)④,关山度若飞。

(《木兰诗》)⑤草树知春不久归,。

(韩愈《晚春》)⑥,雌免眼迷离。

(《木兰诗》)(2)根据提示写出相应的句子。

(4分)①《木兰诗》中描写边塞夜景和军营苦寒的句子是:,。

②欧阳修《卖油翁》中陈康肃连用两个问句“??”,表明他是自视甚高、傲慢无礼的人。

2.阅读下面的文字,完成(1)-(4)小题。

(9分)九华山,山山相连,连绵起伏,山腰那曲折险峻的实木栈道,如缕缕飘带缠绕在青山绿水间,成为一道旖旎的风景;幽深的峡谷中氤氲的山气,如神奇的轻纱帷幔,绘成了一幅山水画卷。

粗犷的山峦,敦.实的栈道,别样的情趣,人在景中走,景随人流动。

及至山diān,俯瞰.栈道蜿蜒曲折,远眺山气撩绕瞟缈,心中荡漾着回归的欢乐。

真可谓人在天庭走,胸生万里云。

(1)给加点的字注音,根据拼音写出相应的汉字。

(3分)敦.()实山diān()俯瞰.()(2)文中有错别字的一个词是“”,这个词的正确写法是“”。

(2分)(3)“粗犷的山峦”中,“犷”的意思是(2分)(4)把文中画线句子改为反问句,不得改变原意。

(2分)3.运用你课外阅读积累的知识,完成(1)-(2)题。

(4分)(1)下列有关“虎妞”的情节,按先后顺序排列正确的一项是()(2分)。

①虎妞掏钱买车②虎妞假装怀孕③虎妞“下嫁”祥子④虎妞和父亲彻底吵翻A.③④②① B.②③①④ C.③②①④ D.②④③①①那时常常会出现这样的情景,终于攒够了钱,急急地去书店买下一本心仪已久的书。

人教版数学七年级下学期《期中测试卷》(含答案解析)

人教版数学七年级下学期《期中测试卷》(含答案解析)

2020-2021学年度第二学期期中测试人教版七年级数学试题一、填空题(本大题共6小题,每小题3分,满分18分.请将答案书写在答题卡中相应题号的位置)1.9的平方根是_________.2.若单项式32m a b -与5245n a b -是同类项,则m n +=__________. 3.命题“如果两个角的和为180︒,那么这两个角互补”的逆命题是_______.4.庚子新春,一场突如其来的新冠肺炎疫情肆虐湖北.举国上下,众志成城,为坚决打赢疫情防控的人民战争、总体战、阻击战,截止2020年2月28日,国家卫健委组织支援湖北的医护人员已超过40000人.数字40000用科学记数法表示为________.5.如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是________________________________.6.把一副三角板放在同一水平面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数为_____.二、选择题(本大题共8小题,每小题4分,满分32分.每小题只有一个正确选项,请用2B 铅笔在答题卡上相应位置填涂)7.13,5,-3.14π,81,中,无理数有( ). A. 1个 B. 2个 C. 3个D. 4个 8.如图所示,∠1和∠2是对顶角的是( ) A. B. C. D.9.下列运算中正确的是( )A.±25=5 B. ﹣25=±5 C. 2(2)-=2 D. 144=212 10.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是( )A. ①B. ①②C. ①②③D. ①②③④11.下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠4B. ∠2=∠3C. ∠5=∠BD. ∠BAD +∠D =180° 12.如图,小手盖住的点的坐标可能为( )A. (4,3)B. (4,﹣3)C. (﹣4,3)D. (﹣4,﹣3)13.已知2(1)20x y -+-=,则x+y 的值为( )A. 1B. 2C. 3D. 514.如图,是小明用火柴搭的1条、2条、3条“金鱼”……,则搭10条“金鱼”需要火柴的根数为()A. 52B. 48C. 62D. 86三、解答题(本大题共9小题,满分70分)15.计算(123964(2)--(2)2|3(2)3-+-16.解方程:(1)3541x x +=+(2)()34125x +=17.先化简,再求值:3(2x +1)+2(3-x ),其中x =-1.18.如图,AD BC ∥,AD 平分EAC ∠,证明:B C ∠=∠.19.完成说理过程并注明理由:如图,已知AB CD ∥,B C ∠=∠,求证:12∠=∠.证明:∵AB CD ∥(已知),∴B ∠=_________( ),∵B C ∠=∠(已知),∴BFD C ∠=∠( ),∴EC ___________( ),∴2∠=____________(两直线平行,同位角相等),∵1∠=( ), ∴12∠=∠(等量代换).20.如图,ABC ∆直角坐标系中:(1)请写出ABC ∆的顶点A 、C 的坐标;(2)若把ABC ∆向上平移2个单位,再向左平移1个单位得到A B C '''∆,在图中画出平移后图形,并写出B '的坐标;(3)求出三角形ABC 的面积.21.某文艺团体组织一场义演,售出成人票和学生票共1000张,筹得票款5950元.若成人票7元/张,学生票4元/张,求成人票和学生票各售出多少张?22.阅读下面的文字,解答问题. 大家知道2是无理数,面无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,但是由于122<<,所以2的整数部分为1.将2减去其整数部分1,差就是小数部分21-.根据以上的内容,解答下面的问题:(1)5的整数部分是___________,小数部分是___________;(2)若设23+整数部分是x ,小数部分是y ,求x y -的值.23. 若∠A 与∠B 的两边分别垂直,请判断这两个角的等量关系.(1)如图1,∠A 与∠B 关系是 ;如图2,∠A 与∠B 的关系是 ;(2)若∠A 与∠B 的两边分别平行,试探索这两个角的等量关系,画图并证明你的结论.答案与解析一、填空题(本大题共6小题,每小题3分,满分18分.请将答案书写在答题卡中相应题号的位置)1.9的平方根是_________.【答案】±3 【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9, ∴9的平方根是±3.故答案为±3. 点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.若单项式32m a b -与5245n a b -是同类项,则m n +=__________. 【答案】4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m ,n 的值,再代入代数式计算即可.【详解】解;根据题意得,5m =23n , ∴1n =-,所以514m n ,故答案是:4.【点睛】本题考查了同类项定义,同类项定义中的两个“相同”:相同字母的指数相同.3.命题“如果两个角的和为180︒,那么这两个角互补”的逆命题是_______.【答案】如果两个角互补,那么它们和为180︒.【解析】【分析】根据逆命题的定义将原命题的条件和结论互换即可.【详解】解:命题“如果两个角的和为180︒,那么这两个角互补”的逆命题是:如果两个角互补,那么它们的和为180︒.故答案为:如果两个角互补,那么它们的和为180︒.【点睛】本题考查写一个命题的逆命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.4.庚子新春,一场突如其来的新冠肺炎疫情肆虐湖北.举国上下,众志成城,为坚决打赢疫情防控的人民战争、总体战、阻击战,截止2020年2月28日,国家卫健委组织支援湖北的医护人员已超过40000人.数字40000用科学记数法表示为________.【答案】4×104【解析】【分析】≤<10,n为整数.确定n的值时,要看把原数变成a时,科学计数法的表示形式为10na⨯的形式,其中1a小数点移动了多少位.【详解】解:将40000用科学计数法表示为:4×104故答案为:4×104.【点睛】本题考查了科学计数法,确定n的值是解题关键.5.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是________________________________.【答案】垂线段最短.【解析】【分析】根据垂线段最短作答.【详解】解:根据“连接直线外一点与直线上所有点的连线中,垂线段最短”,所以沿AB开渠,能使所开的渠道最短,故答案为“垂线段最短”.【点睛】本题考查垂线段最短的实际应用,属于基础题目,难度不大.6.把一副三角板放在同一水平面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数为_____.【答案】75°【解析】【分析】根据两直线平行内错角相等求出即可,关键是作出辅助线,如图:【详解】过公共点作EF∥AB∵AB∥CD∴EF∥CD∴∠AFE=∠A,∠EFC=∠C又∵∠A=45°,∠C=30°∴∠1==45°+30°=75°故答案为75°. 【点睛】本题考查平行线的性质,关键是两直线平行内错角相等.二、选择题(本大题共8小题,每小题4分,满分32分.每小题只有一个正确选项,请用2B铅笔在答题卡上相应位置填涂)7.在1 35-3.1481).A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.81,∴13,81是有理数,5和-3.14π是无理数,故选B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.8.如图所示,∠1和∠2是对顶角的是()A. B. C. D.【答案】C【解析】试题分析:根据对顶角的定义可知,图C中的∠1和∠2是对顶角.故选C.考点:对顶角的定义.9.下列运算中正确的是()A. ±255B. 25±5C. 2(2)-=2 D.144212【答案】C【解析】A选项:255=±,故是错误的;B选项:255-=-,故是错误的;C()222-=,故是正确的;D144=172,故是错误的;故选C.【点睛】主要运用了对算术平方根和平方根定义,能理解定义是解此题的关键.10.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是()A. ①B. ①②C. ①②③D. ①②③④【答案】C【解析】①用打气筒打气时,气筒里活塞沿直线运动,符合平移的性质,故属平移;②传送带上,瓶装饮料的移动沿直线运动,符合平移的性质,故属平移;③在笔直的公路上行驶的汽车沿直线运动,符合平移的性质,故属平移;④随风摆动的旗帜,在运动的过程中改变图形的形状,不符合平移的性质;⑤钟摆的摆动,在运动的过程中改变图形的方向,不符合平移的性质,故选C.【点睛】本题考查了平移,能根据平移的特征准确识别出生活中的平移现象是解题的关键.11.下列条件中不能判定AB∥CD的是()A. ∠1=∠4B. ∠2=∠3C. ∠5=∠BD. ∠BAD+∠D=180°【答案】B【解析】解:A.∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),故本选项错误;B.∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),判定的不是AB∥CD,故本选项正确;C.∵∠5=∠B,∴AB∥CD(同位角相等,两直线平行),故本选项错误;D.∵∠BAD+∠D=180°,∴AB∥CD(同旁内角互补,两直线平行),故本选项错误.故选B.12.如图,小手盖住的点的坐标可能为( )A. (4,3)B. (4,﹣3)C. (﹣4,3)D. (﹣4,﹣3)【答案】D【解析】【详解】∵手在第三象限,故选D .13.已知2(1)20x y -+-=,则x+y 的值为( )A. 1B. 2C. 3D. 5【答案】C【解析】【分析】 根据非负数的性质可得关于x 、y 的方程,解方程即可求出x 、y 的值,然后代入所求式子计算即可.【详解】解:∵2(1)20x y -+-=,2(10)x -≥,20y -≥, ∴1-x =0,2-y =0,解得:x =1,y =2,∴x+y =3.故选:C .【点睛】本题考查了非负数的性质,属于常见题型,熟知完全平方式和二次根式的非负性是解题的关键. 14.如图,是小明用火柴搭的1条、2条、3条“金鱼”……,则搭10条“金鱼”需要火柴的根数为( )A. 52B. 48C. 62D. 86【答案】C【解析】【分析】 第一条金鱼用了8根火柴棒,第2条金鱼用了8614+=根火柴棒,第3条金鱼用了82620+⨯=根火柴棒,进而得到第10条金鱼是在8的基础上增加几个6即可.【详解】解:第一条金鱼用了8根火柴;第2条金鱼用了8614+=根火柴;第3条金鱼用了82620+⨯=根火柴;⋯第10条金鱼用了89662根火柴,故选:C .【点睛】考查图形的变化规律;得到第n 条金鱼用的火柴是在8的基础上增加几个6是解决本题的关键. 三、解答题(本大题共9小题,满分70分)15.计算(1(2)2|(2)+-【答案】(1)3-;(2)4【解析】【分析】(1)由题意利用算术平方根和立方根的运算法则进行计算即可;(2)根据题意运用去绝对值和平方进行计算后合并同类项即可.【详解】解:(1342=--3=-(2)2|(2)+-4=4=【点睛】本题考查实数的混合运算,熟练掌握去绝对值以及算术平方根和立方根的运算法则是解题的关键. 16.解方程:(1)3541x x +=+(2)()34125x +=【答案】(1)x=4(2)x=1【解析】【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)直接利用立方根的性质化简得出答案.【详解】解:(1)移项得,3x-4x=1-5,合并同类项得,-x=-4,把x 的系数化为1得,x=4;(2)(x+4)3=125,则45x +=,解得:1x =.【点睛】(1)题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1,是解一元一次方程的一般步骤是解答此题的关键;(2)题主要考查了实数运算,正确化简立方根是解题关键.17.先化简,再求值:3(2x +1)+2(3-x ),其中x =-1.【答案】4x +9,5.【解析】【分析】本题应对代数式去括号,合并同类项,从而将整式化为最简形式,然后把x 的值代入即可.【详解】原式=6x+3+6-2x=4x+9,当x=-1时,原式=5.18.如图,AD BC ∥,AD 平分EAC ∠,证明:B C ∠=∠. 【答案】证明过程见解析. 【解析】 【分析】 根据角平分线和平行线的性质证明即可. 【详解】证明:∵AD 平分EAC ∠(已知), ∴12∠=∠(角平分线的定义),∵AD BC ∥(已知),∴1B ∠=∠(两直线平行,同位角相等),2C ∠=∠(两直线平行,内错角相等), ∴B C ∠=∠(等量代换).【点睛】本题考查角平分线的定义和平行线的性质,熟练掌握平行线的性质是解题的关键.19.完成说理过程并注明理由:如图,已知AB CD ∥,B C ∠=∠,求证:12∠=∠.证明:∵AB CD ∥(已知),∴B ∠=_________( ),∵B C ∠=∠(已知),∴BFD C ∠=∠( ),∴EC ___________( ),∴2∠=____________(两直线平行,同位角相等),∵1∠=( ), ∴12∠=∠(等量代换).【答案】BFD ∠;两直线平行,内错角相等;等量代换;BF ;同位角相等,两直线平行;∠CHG ;∠CHG【解析】【分析】欲证明∠1=∠2,只需推知BC ∥BF 即可.【详解】证明:∵AB CD ∥(已知),∴B BFD ∠=∠(两直线平行,内错角相等),∵B C ∠=∠(已知),∴BFD C ∠=∠(等量代换),∴EC BF ∥(同位角相等,两直线平行),∴2CHG ∠=∠(两直线平行,同位角相等),∵1CHG ∠=∠(对顶角相等),∴12∠=∠(等量代换).故答案为:BFD ∠;两直线平行,内错角相等;等量代换;BF ;同位角相等,两直线平行;∠CHG ;∠CHG 【点睛】本题主要考查了平行线的判定与性质、对顶角相等、等量代换等知识,解答此题的关键是注意平行线的性质和判定定理的综合运用.20.如图,ABC ∆在直角坐标系中:(1)请写出ABC ∆的顶点A 、C 的坐标;(2)若把ABC ∆向上平移2个单位,再向左平移1个单位得到A B C '''∆,在图中画出平移后图形,并写出B '的坐标;(3)求出三角形ABC 的面积.【答案】(1)()2,2A --,()0,2C ;(2)图见解析;()2,3B ';(3)7;【解析】【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A 、B 、C 平移后的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点B′的坐标;(3)利用△ABC 所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】解:(1)根据题图,可得()2,2A --,()0,2C ;(2)把ABC ∆向上平移2个单位,再向左平移1个单位得到A B C '''∆如图所示,则,根据题图,可得()2,3B ';(3)ABC ∆的面积11154245313222=⨯-⨯⨯-⨯⨯-⨯⨯, 2047.5 1.5=---,2013=-,7=.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 21.某文艺团体组织一场义演,售出成人票和学生票共1000张,筹得票款5950元.若成人票7元/张,学生票4元/张,求成人票和学生票各售出多少张?【答案】成人票售出650张,学生票售出350张.【解析】【分析】设成人票售出x 张,则学生票售出()1000x -张,根据题意列出方程求解即可.【详解】解:设成人票售出x 张,则学生票售出()1000x -张,根据题意得:()7410005950x x +-=,解得:650x =,学生票:1000350x -=.答:成人票售出650张,学生票售出350张.【点睛】本题主要考查一元一次方程的应用.关键是找出题中的等量关系,列出方程求解. 22.阅读下面的文字,解答问题. 22的小数部分我们不可能全部地写出来,但是由于122<<2的整数部分为1.2减去其整数部分121.根据以上的内容,解答下面的问题:(1)5的整数部分是___________,小数部分是___________; (2)若设23+整数部分是x ,小数部分是y ,求x y -的值.【答案】(1)2,52-;(2)43-.【解析】【分析】(1)利用253<<求解; (2)由于132<<,则3x =,23331y =+-=-,然后计算x y -.【详解】解:(1)5的整数部分是2,小数部分是52-;(2)132<<,而23+整数部分是x ,小数部分是y ,3x ∴=,23331y =+-=-,3(31)33143x y .【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键.23. 若∠A 与∠B 的两边分别垂直,请判断这两个角的等量关系.(1)如图1,∠A 与∠B 的关系是 ;如图2,∠A 与∠B 的关系是 ; (2)若∠A 与∠B 的两边分别平行,试探索这两个角的等量关系,画图并证明你的结论.【答案】(1)∠A=∠B ,∠A+∠B=180°;(2)见解析【解析】试题分析:(1)根据垂直的量相等的角都等于90°,对顶角相等,所以∠A=∠B ,同样根据垂直的量相等的角都等于90°,根据四边形的内角和等于360°,所以∠A+∠B=360°﹣90°﹣90°=180°.所以如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补;(2)根据平行线的性质得到同位角相等,同旁内角互补即可得到结论.(1)如图1,∠A=∠B,∵∠ADE=∠BCE=90°,∠AED=∠BEC,∴∠A=180°﹣∠ADE﹣∠AED,∠B=180°﹣∠BCE﹣∠BEC,∴∠A=∠B,如图2,∠A+∠B=180°;∴∠A+∠B=360°﹣90°﹣90°=180°.∴∠A与∠B的等量关系是互补;故答案为∠A=∠B,∠A+∠B=180°;(2)如图3,∠A=∠B,∵AD∥BF,∴∠A=∠1,∵AE∥BG,∴∠1=∠B,∴∠A=∠B;如图4,∠A+∠B=180°,∵AD∥BG,∴∠A=∠2,∵AE∥BF,∴∠2+∠B=180°,∴∠A+∠B=180°.【点评】本题考查了平行线的性质,垂线的定义,四边形的内角和等于360°,三角形的内角和等于180°,对顶角相等,正确掌握各性质定理是解题的关键.。

最新人教版七年级下学期数学《期中检测试卷》及答案

最新人教版七年级下学期数学《期中检测试卷》及答案

2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题1. 在平面直角坐标系中,点A (2,-3)在第( )象限.A. 一B. 二C. 三D. 四2.4的平方根是( )A. 2B. ±2C. 2D. 2± 3.实数﹣2,0.31••,3π,0.1010010001,38中,无理数有( )个 A. 1B. 2C. 3D. 4 4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A . 68︒B. 60︒C. 102︒D. 112︒ 5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则G 点坐标为( ) A. ()1,1﹣ B. (2,1)﹣﹣ C. ()3,1﹣ D. (1,)2﹣ 6.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,47.如图,AB∥C D ,BC∥DE,∠A=30°,∠BCD=110°,则∠AED 的度数为()A. 90°B. 108°C. 100°D. 80° 8.下列说法错误的是( ) A. 4=2±± B. 64的算术平方根是4 C. 330a a +-= D. 110x x -+-≥,则x =1 9.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44) 10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3 二、填空题11.2-的绝对值是________.12.x 、y 230x y +-=,则xy =________.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.14.若23n ﹣与1n ﹣是整数x 的平方根,则x =________.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是x 轴上一点,要使MB MA +的值最小,则M 的坐标为________.16.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.三、解答题17.计算:(13316648-(2)333521|1228- 18.求下列各式中的x 值(1)()216149x += (2)3()81125x ﹣= 19.已知a 是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,x 、y 满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在y 轴上是否存在点P ,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点P 的坐标;若不存在,请说明理由.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B 两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕B 点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点A 顺时针旋转一定角度交CD 于H (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G∠+∠+∠+∠+∠+∠+∠的度数.A B C D E F G∠+∠+∠+∠+∠+∠+∠=24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b,0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.答案与解析一、选择题1. 在平面直角坐标系中,点A (2,-3)在第( )象限.A. 一B. 二C. 三D. 四【答案】D【解析】试题分析:根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点A (2,-3)位于第四象限,故答案选D .考点:平面直角坐标系中各象限点的特征.2.4的平方根是( )A. 2B. ±2C.D.【答案】B【解析】【分析】根据平方根的定义即可求得答案.【详解】解:∵(±2)2=4, ∴4的平方根是±2. 故选:B .【点睛】本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.,0.31••,3π,0.1010010001 )个 A. 1 B. 2 C. 3 D. 4【答案】B【解析】【分析】利用无理数的定义判断即可. 【详解】解:在实数2-(无理数),0.31••(有理数),3π(无理数),0.1010010001(有理数),382=(有理数)中,无理数有2个,故选:B .【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A. 68︒B. 60︒C. 102︒D. 112︒ 【答案】D【解析】【分析】根据∠1=∠2,得a ∥b ,进而得到∠5=3∠,结合平角的定义,即可求解.【详解】∵160∠=︒,260∠=︒,∴∠1=∠2,∴a ∥b ,∴∠5=368∠=︒,∴∠4=180°-∠5=112︒.故选D .【点睛】本题主要考查平行线的判定和性质定理以及平角的定义,掌握“同位角相等两直线平行”,“两直线平行,同位角相等”,是解题的关键.5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则G 点坐标为( )A. ()1,1﹣ B. (2,1)﹣﹣ C. ()3,1﹣ D. (1,)2﹣ 【答案】C【解析】【分析】 直接利用已知点得出原点位置进而建立平面直角坐标系,即可得出答案.【详解】解:建立直角坐标系如图所示:则G 点坐标为:(-3,1).故选:C .【点睛】此题主要考查了点的坐标,正确得出原点位置是解题关键.6.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4【答案】C【解析】【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法. 7.如图,AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A. 90°B. 108°C. 100°D. 80°【答案】C【解析】【分析】 在图中过E 作出BA 平行线EF ,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加即可. 【详解】过E 作出BA 平行线EF ,∴∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD ,BC ∥DE ,∴∠ABC=180°-∠BCD =180°-110°=70°, ∴∠AED=∠AEF+∠DEF=30°+70°=100° 【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质. 8.下列说法错误的是( ) A. 4=2±± B. 64的算术平方根是4 C. 330a a -= D. 110x x --≥,则x =1 【答案】B【解析】【分析】根据平方根、算术平方根、立方根的概念对选项逐一判定即可.【详解】A .4=2±±,正确;B .64的算术平方根是8,错误;C .330a a +-=,正确;D .110x x -+-≥,则x =1,正确; 故选:B .【点睛】本题考查了平方根、算数平方根,立方根的概念,理解概念内容是解题的关键.9.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)【答案】D【解析】【分析】 根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标.【详解】解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44).故选:D .【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.10.下列命题是真命题的有()个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3【答案】B【解析】【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题11.的绝对值是________.【解析】【分析】根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.【详解】解:根据负数的绝对值是它的相反数,得=.【点睛】此题主要考查绝对值的意义,熟练掌握,即可解题.12.x 、y 是实数,230x y ++-=,则xy =________.【答案】-6【解析】【分析】根据算术平方根的非负性即可求出x 与y 的值. 【详解】解:由题意可知:20x +=,30y -=, 2x ∴=-,3y =6xy故答案为:6-【点睛】本题考查非负数的性质,解题的关键是熟练运用算术平方根的定义.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.【答案】11【解析】【分析】 根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.【详解】解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得:则1115524351511222ABC S .故答案为:11【点睛】此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.14.若23n ﹣与1n ﹣是整数x 的平方根,则x =________.【答案】1【解析】【分析】分类讨论:当231n n ,解得2n =,所以22(1)(21)1x n ;当2310n n ,解得43n =,所以241(1)(1)39x n . 【详解】解:因为23n ﹣与1n ﹣是整数x 的平方根,当231n n 时,解得2n =,所以22(1)(21)1x n ;当2310n n ,解得43n =,所以241(1)(1)39x n . x 是整数, 1x ∴=,故答案为1.【点睛】本题考查了平方根的应用,若一个数的平方等于a ,那么这个数叫a 的平方根,记作0)a .15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是x 轴上一点,要使MB MA +的值最小,则M 的坐标为________. 【答案】(32,0) 【解析】【分析】连接AB 交y 轴于M ,点M 即为所求;【详解】解:如图示,连接AB 交x 轴于M ,则MB MA +的值最小.设直线AB 的解析式为y kx b =+,根据坐标1(1,)A ﹣,(3,3)B , 则有331k b k b +=⎧⎨+=-⎩, 解得23k b =⎧⎨=-⎩, ∴直线AB 的解析式为23y x ,令0y =,得到32x, 32(M ,0)故本题答案为:(32,0). 【点睛】本题考查了坐标与图形的性质,两点之间线段最短等知识,解题的关键是灵活运用所学知识解决问题.16.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.【答案】4【解析】【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 的距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.三、解答题17.计算:(13316648-(2)333521|1228- 【答案】(1)12;(2)2.【解析】【分析】(1)直接利用算术平方根以及立方根的性质化简得出答案;(2)直接利用绝对值的性质以及立方根的性质进而得出答案.【详解】解:(13316648-442 48=+12=;(2)333521|12|28 33221222=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.求下列各式中的x 值(1)()216149x += (2)3()81125x ﹣= 【答案】(1)12311,44x x ==-;(2)32x =-. 【解析】【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答. 【详解】解:(1)216(1)49x249(1)16x 714x , ∴12311,44x x ==-. (2)38(1)125x3125(1)8x 512x 32x =-. 【点睛】本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.19.已知a 是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,x 、y 满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值【答案】7【解析】【分析】本题应先解不等式组确定a 的整数值,再将a 值代入关于x 、y 的二元一次方程组中求解,最后求得22x xy y -+的值.【详解】解:解不等式513(1)a a ->+得:a >2 解不等式131722a a 得:a <4 所以不等式组的解集是:2<a <4所以a 的整数值为3.把a=3代入方程组27234ax y x y ,得327234x y x y 解得12x y =-⎧⎨=⎩, 所以222212112472x xy y .【点睛】本题考查了一元一次不等式组、不等式组的特殊解、代数求值的综合运用,熟悉基本运算方法、运算法则是解题的关键. 20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在y 轴上是否存在点P ,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点P 的坐标;若不存在,请说明理由.-.【答案】(1)见解析;(2)5;(3)存在;P点的坐标为(0,5)或(0,3)【解析】【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个,分别求解即可.【详解】解:(1)描点如图:(2)依题意,得AB∥x轴,且AB3(2)5=--=,∴S△ABC1525 2=⨯⨯=;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,-3).【点睛】本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积是解题的关键.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.【答案】(1)见解析(2)见解析【解析】【分析】(1)证明∠COD+∠COE=90°即可.(2)证明∠1+∠2=90°即可.【详解】证明:(1)∵OD平分∠AOC,OE平分∠BOC,∴∠COD=12∠AOC,∠COE=12∠COB,∴∠DOE=∠COD+∠COE=12(∠AOC+∠COB)=90°,∴OD⊥OE.(2)∵AB∥CD,∴∠A+∠C=180°,∵∠1=∠B,∠2=∠D,∠A+2∠1=180°,∠C+2∠2=180°,∴∠1+∠2=90°,∴∠DEB=90°,∴DE⊥BE.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B 两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?【答案】(1)m=0,n=3;(2)y=120﹣12x,z=60﹣23x;(3)Q=180﹣16x;当x=90时,Q最小,此时按三种裁法分别裁90张、75张、0张. 【解析】【详解】(1)按裁法二裁剪时,2块A 型板材块的长为120cm ,150﹣120=30,所以无法裁出B 型板, 按裁法三裁剪时,3块B 型板材块的长为120cm ,120<150,而4块B 型板材块的长为160cm >150cm,所以无法裁出4块B 型板;∴m=0,n=3;(2)由题意得:共需用A 型板材240块、B 型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理得:y=120﹣12x ,z=60﹣23x ; (3)由题意,得Q=x+y+z=x+120﹣12x+60﹣23x . 整理,得Q=180﹣16x . 由题意,得11200226003x x ⎧-⎪⎪⎨⎪-⎪⎩, 解得x≤90.[注:0≤x≤90且x 是6的整数倍]由一次函数的性质可知,当x=90时,Q 最小.由(2)知,y=120﹣12x=120﹣12×90=75, z=60﹣23x=60﹣23×90=0; 故此时按三种裁法分别裁90张、75张、0张. 考点:一次函数的应用. 23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕B 点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点A 顺时针旋转一定角度交CD 于H (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=【答案】(1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.【解析】【分析】(1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题; (3)利用(2)中结论,以及五边形内角和540︒即可解决问题;【详解】解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ ,1EBP EBQ ,2132BPD EBP .②如图4中,连接EH .C CEB CBE,180A AEH AHE,180A AEH AHE CEH CHE C,360A AEC C AHC.360(3)如图5中,设AC交BG于H.AHB A B F,∠=∠,AHB CHG在五边形HCDEG中,540CHG C D E G,540A B F C D E G【点睛】本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.b-= 24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b,0)满足| a - 3 |40.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.【答案】(1)A(0,3),B(4,0);(2)E的坐标为(0,72-);(3)∠COF+∠OFP=3∠CPF.【解析】【分析】(1)根据非负数的性质分别求出a、b,得到答案;(2)构造矩形,根据三角形的面积是13,利用割补法求出m,再根据平移的性质,求出直线DC的解析式,则可求出点E的坐标;(3)作HP∥AB交AD于H,OG∥AB交FP于G,设∠OFP=x,∠PCD=y,根据平行线的性质、三角形的外角的性质计算即可.【详解】解:(1)由题意得,a-3=0,b-4=0,解得,a=3,b=4,则A(0,3),B(4,0);(2)如图1所示,∵∆ABC的面积等于13,根据A,B,C三点的坐标,可得:111324232422413222m m,(m<0)解得,m=-2,则点C 的坐标为(-2,-2),根据平移规律,则有点D 的坐标为(2,-5),设直线CD 的解析式为:y=cx+d ,2225cd c d ,解得3472cd , ∴CD 的解析式为:3742yx , ∴CD 与y 轴的交点E 的坐标为(0,72); (3)如图2所示,作HP ∥AB 交AD 于H ,OG ∥AB 交FP 于G ,设∠OFP=x ,∠PCD=y ,则∠BFP=x ,∠PCB=2y ,∵HP ∥AB ,OG ∥AB ,∴∠HPC=∠PCD=y ,∠OPF=∠OFP=x ,∴∠CPF=x+y ,又∵∠COF=∠PCB +∠CPF +∠OFP =2y+(x+y )+ x =2x+3y ,∴∠COF+∠OFP=3x+3y=3∠CPF .【点睛】本题考查的是非负数的性质、坐标与图形的关系、待定系数法求函数解析式以及平行线的性质,掌握待定系数法求函数解析式的一般步骤、平移规律是解题的关键.。

最新人教版数学七年级下学期《期中考试题》含答案解析

最新人教版数学七年级下学期《期中考试题》含答案解析

2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题1. 下列运算正确的是( )A. x 6÷x 3=x 2B. (﹣2x)3=﹣8x 3C. x 6•x 4=x 24D. (x 3)3=x 62. 如图,已知//AB ED ,65ECF ∠=,则BAC ∠的度数为( )A. 115B. 65C. 60D. 253. 在△ABC 和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC ≌△A′B′C′还要从下列条件中补选一个,错误的选法是( )A. ∠B=∠B′B. ∠C=∠C′C. BC=B′C′D. AC=A′C′ 4. 以下列各组线段的长为边,能组成三角形的是( )A. 3cm ,6cm ,8cmB. 3cm ,2cm ,6cmC. 5cm ,6cm ,11cmD. 2cm ,7cm ,4cm 5. 以下是各种交通标志指示牌,其中不是轴对称图形的是( ) A. B. C. D. 6. 已知下列结论:①内错角相等;②相等的角是对顶角;③过直线外一点有且只有一条直线与已知直线平行;④同旁内角互补;⑤垂直于同一条直线的两条直线平行;⑥两点之间的线段就是这两点间的距离;其中正确的有( )个A. 0B. 1C. 2D. 37. 如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c ,则空白部分的面积( )A. 2ab bc ac c -+-B. 2ab bc ac c --+C. ab ac bc --D. 2ab bc ac c --- 8. 如图是某市一天的温度随时间变化的大致图像,则下列说法错误的是( )A. 这天15时的温度最高B. 这天3时的温度最低C. 这天21时的温度是30℃D. 这天最高温度与最低温度的差是13℃9. 下列事件发生的可能性为0的是( )A . 掷两枚骰子,同时出现数字“6”朝上B. 小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C. 今天是星期天,昨天必定是星期六D. 小明步行的速度是每小时50千米10. 如图①,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图②所示,则ABC ∆的面积是( )A. 10B. 16C. 18D. 20二、填空题11. 若∠α=35°,则它的余角为___________度.12. 等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm .13. 一种病毒的长度约为0.000043mm ,用科学记数法表示这个数为_____________mm .14. 某三角形中一个内角为80°,第二个内角为x°,第三个内角为y°,则y 与x 之间的关系式为________________.15. 如图,直线a ∥b ,若∠1=139°,则∠2=_______.16. 如图,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是______.17. 计算:()3622x x x +÷=___________.18. 若x 2+kx +4是一个完全平方式,则整数k 的值为_____.19. 把标有号码1,2,3,…,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是______.20. 一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y (千米)关于时间x (小时)的函数图象如图所示.则a=______(小时).三、解答题21. (1)(5mn2﹣4m2n)(﹣2mn);(2)(a+b)2﹣a(a+2b);(3)(2a﹣1)(2a+1)﹣a(4a﹣3);(4)﹣14+(2020﹣π)0﹣(﹣12)﹣2;(5)利用乘法公式简便计算:20202-2019×2021;(6)先化简,再求值:[(5m﹣3n)(m+4n)﹣5m(m+4n)]÷(-3n),其中m=2,n=﹣1.22. 如图,方格子的边长为1,△ABC的顶点在格点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)求△ABC的面积.23. 如图,已知:∠1=120°,∠C=60°,说明AB∥CD理由.24. 如图,C是线段AB中点,CD=BE,CD∥BE.求证:∠D=∠E.25. 一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)判断摸到什么颜色的球可能性最大?(2)求摸到黄颜色的球的概率;(3)要使摸到这三种颜色的球的概率相等,需要在这个口袋里的球做什么调整?26. 小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?答案与解析一、选择题1. 下列运算正确的是( )A. x 6÷x 3=x 2 B. (﹣2x)3=﹣8x 3 C. x 6•x 4=x 24 D. (x 3)3=x 6【答案】B【解析】【分析】结合同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的运算法则进行求解即可.【详解】解:A 、x 6÷x 3=x 3,本选项错误; B 、(﹣2x)3=﹣8x 3,本选项正确;C 、x 6•x 4=x 10,本选项错误;D 、(x 3)3=x 9,本选项错误.故选:B .【点睛】本题考查了同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握基本运算法则.2. 如图,已知//AB ED ,65ECF ∠=,则BAC ∠的度数为( )A. 115B. 65C. 60D. 25【答案】B【解析】 ∵AB//ED,∴∠BAC=∠ECF=65°;故选B.3. 在△ABC 和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC ≌△A′B′C′还要从下列条件中补选一个,错误的选法是( )A. ∠B=∠B′B. ∠C=∠C′C. BC=B′C′D. AC=A′C′【答案】C【解析】试题分析:由题意知这两个三角形已经具备一边和一角对应相等,那就可以选择SAS,AAS,ASA,由此可知A是,ASA,B是AAS,D是SAS,它们均正确,只有D不正确.故选C考点:三角形全等的判定定理4. 以下列各组线段的长为边,能组成三角形的是( )A. 3cm,6cm,8cmB. 3cm,2cm,6cmC. 5cm,6cm,11cmD. 2cm,7cm,4cm【答案】A【解析】【分析】根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析判断即可.【详解】解:根据三角形的三边关系,得,A、3cm +6cm>8cm,能组成三角形;B、3cm +2cm<6cm,不能组成三角形;C、5cm +6cm=11cm,不能组成三角形;D、2cm +4cm<7cm,不能组成三角形.故选:A.【点睛】此题考查了三角形的三边关系,判断三边能否组成三角形的简便方法是看较小的两边长的和是否大于第三边的长.5. 以下是各种交通标志指示牌,其中不是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项逐一进行分析判断即可得出答案.【详解】A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形是图形两部分沿对称轴折叠后可重合的图形是解题的关键.6. 已知下列结论:①内错角相等;②相等的角是对顶角;③过直线外一点有且只有一条直线与已知直线平行;④同旁内角互补;⑤垂直于同一条直线的两条直线平行;⑥两点之间的线段就是这两点间的距离;其中正确的有( )个A. 0 B. 1 C. 2 D. 3【答案】B【解析】【分析】根据平行线的性质与判定,对顶角的定义,平行公理以及两点间的距离的定义,分别对每一项进行判断即可.【详解】解:①内错角相等的前提条件是两直线平行,故①错误;②两角具有公共顶点,且一个角的两边分别是另一角两边的反向延长线,这样的两角称为对顶角.故相等的角不一定是对顶角,②错误;③过直线外一点有且只有一条直线与已知直线平行,符合平行公理,故③正确;④同旁内角互补前提条件是两直线平行,故④错误;⑤在同一平面内垂直于同一条直线的两条直线平行,故⑤错误;⑥两点之间的线段的长度是这两点间的距离,故⑥错误;则正确的有1个.故选:B.【点睛】本题主要考查平行线的性质与判定、对顶角的定义、平行公理以及两点间的距离的定义,掌握基本定义和性质是解题的关键.7. 如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c ,则空白部分的面积( )A. 2ab bc ac c -+-B. 2ab bc ac c --+C. ab ac bc --D. 2ab bc ac c ---【答案】B【解析】【分析】 采用面积分割的办法,先求得长方形的面积,再求出阴影部分小长方形和两个平行四边形的面积,再相减即可.【详解】由图形可得:长方形面积为ab ,长方形阴影部分面积为ac ,两平行四边形的面积为()-c b c , 则空白部分的面积为()2---=--+ab ac c b c ab bc ac c ,故选B. 【点睛】本题考查列代数式表示图形面积,求不规则图形面积通常采用割补法.8. 如图是某市一天的温度随时间变化的大致图像,则下列说法错误的是( )A. 这天15时的温度最高B. 这天3时的温度最低C. 这天21时的温度是30℃D. 这天最高温度与最低温度的差是13℃【答案】D【解析】【分析】根据图象的信息,逐一判断.【详解】横轴表示时间,纵轴表示温度. 温度最高应找到函数图象的最高点所对应的x 值与y 值:为15时,38℃,A 正确;温度最低应找到函数图象的最低点所对应的x 值与y 值:为3时,22℃,B 正确;从图象看出,这天21时的温度是30℃,C 正确;这天最高温度与最低温度的差应让前面的两个y 值相减,即38-22=16℃,D 错误.故选:D.【点睛】本题考查数形结合,会根据所给条件找到对应的横纵坐标的值.函数的图象定义:对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.9. 下列事件发生的可能性为0的是( )A. 掷两枚骰子,同时出现数字“6”朝上B. 小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C. 今天是星期天,昨天必定是星期六D. 小明步行的速度是每小时50千米【答案】D【解析】【分析】事件发生的可能性是0,说明这件事情不可能发生.据此解答即可.【详解】解:A 、掷两枚骰子,同时出现数字“6”朝上,是可能事件;B 、小明从家里到学校用了10分钟,从学校回到家里却用了15分钟,是可能事件;C 、今天是星期天,昨天必定是星期六,是必然事件,概率为1;D 、小明步行的速度是每小时50千米,是不可能事件,概率为0.故选:D .【点睛】此题主要考查可能性的判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的可能性为1,即P (必然事件)=1;不可能事件发生的可能性为0,即P (不可能事件)=0;如果A 为不确定事件,那么0<P (A )<1.10. 如图①,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,ABP ∆的面积为y ,如果y 关于x 的函数图象如图②所示,则ABC ∆的面积是( )A. 10B. 16C. 18D. 20【答案】A【解析】【分析】根据函数的图象、结合图形求出AB、BC的值,根据三角形的面积公式得出△ABC的面积.【详解】解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9-4=5,∵四边形ABCD是矩形,∴AB=5,BC=4,∴△ABC的面积是:12×4×5=10.故选:A.【点睛】本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出有关的线段的长度,从而得出三角形的面积是本题的关键.二、填空题11. 若∠α=35°,则它的余角为___________度.【答案】55【解析】【分析】根据互余两角的度数之和为90°,求出∠α的余角的度数即可.【详解】解:∵∠α=35°,∴∠α的余角=90°-35°=55°.故答案为:55.【点睛】本题考查了余角的概念,解答本题的关键是掌握互余两角的度数之和为90°.12. 等腰三角形一边长是10cm,一边长是6cm,则它的周长是_______________cm.【答案】26或22【解析】【分析】因为等腰三角形的底边和腰不确定,6cm可以为底边也可以为腰长,故分两种情况:当6cm为腰时,底边为10cm,先判断三边能否构成三角形,若能,求出此时的周长;当6cm为底边时,10cm为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm为等腰三角形的腰长,则10cm为底边的长,6cm,6cm,10cm可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm);若10cm为等腰三角形的腰长,则6cm为底边的长,10cm,10cm,6cm可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm);则等腰三角形的周长为26cm或22cm.故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.13. 一种病毒的长度约为0.000043mm,用科学记数法表示这个数为_____________mm.【答案】4.3×10-5【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000043=4.3×10-5,故答案为:4.3×10-5.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14. 某三角形中一个内角为80°,第二个内角为x°,第三个内角为y°,则y与x之间的关系式为________________.【答案】y=-x+100【解析】由三角形内角和定理可求得答案.【详解】解:由三角形内角和为180°可得:x+y+80=180,∴y=-x+100,故答案为:y=-x+100.【点睛】本题主要考查三角形内角和定理,掌握三角形内角和为180°是解题的关键.15. 如图,直线a∥b,若∠1=139°,则∠2=_______.【答案】41°【解析】【分析】由平行线的性质可得12180∠+∠=︒,即可求解.【详解】解:直线//a b,12180∴∠+∠=︒,1139∠=︒,218013941∴∠=︒-︒=︒,故答案为:41︒.【点睛】本题考查了平行线的性质,熟练运用平行线的性质是本题的关键.16. 如图,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是______.【答案】5 7【解析】直接利用轴对称图形的性质进而结合概率公式得出答案.【详解】解:如图所示:如图所示:在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,符合题意的有:1,2,3,4,5共5个, 故这个事件的概率是:57 故答案为57. 【点睛】此题主要考查了概率的意义,正确把握轴对称图形的性质是解题关键.17. 计算:()3622x x x +÷=___________.【答案】231x +【解析】【分析】根据多项式与单项式的除法法则计算即可.【详解】原式=6x3÷2x+2x ÷2x=231x +.故答案为:231x +.【点睛】本题考察了多项式除以单项式,其运算法则是:先把这个多项式的每一项分别除以单项式,再把所得的商相加.18. 若x 2+kx +4是一个完全平方式,则整数k 的值为_____.【答案】±4. 【解析】【分析】先根据两个平方项求出这两个数,再利用完全平方公式的二倍积的特点解答即可.【详解】解∵x 2+kx +4=x 2+kx +(±2)2, ∴kx =±2×2x ,解得k =±4. 故答案为±4.【点睛】本题考查了完全平方公式,掌握完全平方公式的结构特点是解答本题的关键.19. 把标有号码1,2,3, (10)10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是______.【答案】3 10【解析】【分析】利用号码为小于7的奇数的个数除以总个数10即为号码为小于7的奇数的概率.【详解】解:因为所有机会均等的可能性共有10种,而号码小于7的奇数有1,3,5共3种,所以抽到号码为小于7的奇数的概率是3 10.故答案为:3 10.【点睛】本题考查了等可能条件下的概率,用到的知识点为:概率=所求情况数与总情况数之比.20. 一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示.则a=______(小时).【答案】5.【解析】试题分析:根据题意可得:甲到乙地用时3.2-0.5=2.7小时,返回时速度是原来的1.5倍,则时间就是原来的23,即1.8小时,则a=3.2+1.8=5.考点:函数的应用.三、解答题21. (1)(5mn2﹣4m2n)(﹣2mn);(2)(a+b)2﹣a(a+2b);(3)(2a﹣1)(2a+1)﹣a(4a﹣3);(4)﹣14+(2020﹣π)0﹣(﹣12)﹣2;(5)利用乘法公式简便计算:20202-2019×2021;(6)先化简,再求值:[(5m﹣3n)(m+4n)﹣5m(m+4n)]÷(-3n),其中m=2,n=﹣1.【答案】(1)-10m2n3+8m3n2;(2)b2;(3)3a-1;(4)-4;(5)1;(6)m+4n,-2.【解析】【分析】(1)根据单项式乘以多项式的运算法则进行计算即可;(2)先利用完全平方公式以及单项式乘以多项式的运算法则计算,再合并同类项即可;(3)先利用平方差公式以及单项式乘以多项式的运算法则计算,再合并同类项即可;(4)先利用乘方,零次幂以及负整指数幂的运算法则进行化简,再计算加减即可;(5)先将2019×2021变形为(2020-1)×(2020+1),再利用平方差公式进行简便运算,从而可得出结果;(6)先将原式中括号内的式子进行因式分解,再利用整式除法运算法则进行化简,最后将m,n的值代入即可得出结果.【详解】解:(1)(5mn2﹣4m2n)(﹣2mn)=-10m2n3+8m3n2;(2)(a+b)2﹣a(a+2b)=a2+2ab+b2-a2-2ab=b2;(3)(2a﹣1)(2a+1)﹣a(4a﹣3)=4a2-1-4a2+3a=3a-1;(4)﹣14+(2020﹣π)0﹣(﹣12)﹣2=-1+1-4=-4;(5)20202-2019×2021=20202-(2020-1)×(2020+1)=20202-20202+1=1;(6)[(5m﹣3n)(m+4n)﹣5m(m+4n)]÷(-3n)=[(m+4n)(5m-3n-5m)]÷(-3n)=(m+4n)(-3n)÷(-3n)=m+4n,将m=2,n=﹣1代入上式得,原式=2+4×(-1)=-2.【点睛】本题主要考查整式的混合运算,整式的化简求值以及整数指数幂的混合运算,解题的关键是掌握基本运算法则.22. 如图,方格子的边长为1,△ABC的顶点在格点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)求△ABC的面积.【答案】(1)见解析;(2)5.【解析】【分析】(1)分别找出A、B、C三点关于直线l的对称点,再顺次连接即可;(2)利用长方形的面积减去周围多余三角形的面积即可得到△ABC的面积.【详解】解:(1)△A1B1C1如图所示:(2)△ABC的面积=3×4−12×2×4−12×1×3−12×1×3=5.【点睛】此题主要考查了作图--轴对称变换以及三角形面积的求法,关键是找出对称点的位置以及利用割补法求面积.23. 如图,已知:∠1=120°,∠C=60°,说明AB∥CD理由.【答案】见详解.【解析】【分析】【详解】∵∠BEC与∠1是对顶角,∠C=60°,∴∠BEC=∠1=120°∴∠BEC+∠C=180°∴AB//CD24. 如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.【答案】见解析【解析】【分析】由CD∥BE,可证得∠ACD=∠B,然后由C是线段AB的中点,CD=BE,利用SAS即可证得△ACD≌△CBE,证得结论.【详解】∵C是线段AB的中点,∴AC=CB,∵CD∥BE,∴∠ACD=∠B,在△ACD和△CBE中,∵AC=CB,∠ACD=∠B,CD=BE,∴△ACD≌△CBE(SAS),∴∠D=∠E.25. 一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)判断摸到什么颜色的球可能性最大?(2)求摸到黄颜色的球的概率;(3)要使摸到这三种颜色的球的概率相等,需要在这个口袋里的球做什么调整?【答案】(1)摸到红颜色的球可能性最大;(2)摸到黄颜色的球的概率为13;(3)答案不唯一,如需要在这个口袋中再放入2个白球、1个黄球.【解析】【分析】(1)哪种球的数量最多,摸到哪种球的概率就最大;(2)直接利用概率公式求解即可;(3)使得球的数量相同即可得到概率相同.【详解】解:(1)摸到红颜色的球可能性最大;(2)摸到黄颜色的球的概率为:21 1233=++;(3)只要使袋子中的白球、黄球、红球的个数相等即可,答案不唯一,如需要在这个口袋中再放入2个白球、1个黄球.【点睛】本题考查的是可能性大小的判断.用到的知识点为:可能性等于所求情况数与总情况数之比.26. 小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?【答案】(1)y=1.6x;(2)50千克;(3)36元【解析】【分析】(1)设y与x的函数关系式为y=kx,把已知坐标代入解析式可解;(2)降价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元,故可求出降价后销售的西瓜,从而问题得解;(3)用销售总金额减去购西瓜的费用即可求得利润.【详解】(1)设关系式是y=kx,把x=40,y=64代入得40k=64,解得k=1.6,则关系式是y=1.6x;(2)因为降价前西瓜售价为每千克1.6元,所以降价0.4元后西瓜售价每千克1.2元,降价后销售的西瓜为(76- 64)÷1.2=10(千克),所以小明从批发市场共购进50千克西瓜;(3)76- 50×0.8=76- 40=36(元),即小明这次卖西瓜赚了36元钱.【点睛】本题重点考查了一次函数的图象及一次函数的应用,读懂图象,从图象中找到必要的信息是解题的关键.。

人教版数学七年级下学期《期中考试卷》(含答案解析)

人教版数学七年级下学期《期中考试卷》(含答案解析)

2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是().A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是().A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________.13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______.16、小刚在小明的北偏东60°方向的500m处,则小明在小刚的________________(请用方向和距离描述小明相对于小刚的位置)17、定义“在四边形ABC D中,若AB∥CD,且AD∥BC,则四边形ABCD叫做平行四边形.”若一个平行四边形的三个顶点的坐标分别是(0,0),(3,0),(1,3),则第四个顶点的坐标是______________.三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤)18、(6分)计算:(2m+n-1)²19、(6分)计算:(3a+2b)² -(3a-2b)²20、(6分)一只蚂蚁从O点出发,沿北偏东45°的方向爬了2.5cm,碰到障碍物(记做B 点)后向北偏西60°的方向,爬行3cm(此时的位置记作C),(1)画出蚂蚁爬行的路线,(2)求出∠OBC的度数.21、(8分)如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.22、(8分)如图,如果AB//CD,∠B=37°,∠D=37°,那么BC与DE平行吗? 若平行,请说明你的理由.23、(8分)如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B 北偏东85°方向,求∠ACB.24、(10分)如图,点D为BC的中点,E为AD的中点.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高EF交BD于点F,若△ABC的面积为40,BD=5,求EF 的长.25、(10分)三角形ABC,(记△ABC)在8×8的方格中的位置如图所示,已知A(-3,1),B(-2,4)(1)请你在方格中建立平面直角坐标系,并写出点C的坐标.(2)把△ABC向下平移1个单位,再向右平移2个单位,请你画出平移后的△A1B1C1,若△ABC 内部有一点P的坐标为(m,n),则点P的对应点P1的坐标是___.(3)在x轴上存在一点D,使△DB1C1的面积等于3,写出满足条件的点D的坐标.2答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行【答案】B【解析】同一平面内的两直线只有相交于平行两种位置关系.2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠5【答案】C【解析】由同位角的概念,可得出∠4与∠1是同位角.3、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定【答案】D【解析】①若点A在直线a上,则不能作出a的平行线,②若点A不在直线a上,则有且只有一条直线与a平行.所以不能确定.故选D.4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°【答案】B【解析】当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故答案为:B.5、下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形【答案】C6、一个正数x的平方根是2a-3与5-a,则x的值是().A.64B.36C.81D.49【答案】D【解析】∵正数x的两个平方根是2a-3与5-a,∴2a-3+5-a=0,解得a=-2,所以,2a-3=2×(-2)-3=-4-3=-7,所以,x=(-7)2=49.故选D.7、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定【答案】C【解析】连接AO,延长交BC于D,∵∠BOD=∠1+∠BAO,∠COD=∠CAO+∠3,∴∠BOD+∠COD=∠1+∠3+∠BAO+∠CAO=∠1+∠3+∠BAC,即∠BOC=∠1+∠3+∠BAC,又∵∠3+∠4+∠BOC=180°,∴180°-∠BOC=∠2+∠4,∵∠1=∠2,∠3=∠4,∴∠2+∠4=∠1+∠3,∴∠1+∠3=180°-∠BOC,∴∠BOC=180°-∠BOC+∠BAC,即2∠BOC=180°+∠BAC,∴∠BOC=130°.故选C.8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、7【答案】A【解析】因为a*=1.1062,保留4位小数,而b*=0.947是保留3位,那么,a*+b*只能保留3位小数!≈2.053有4位有效数字.9、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数【答案】B【解析】A、-1与2是符号相百反的两个数,但度不是互为相反数,故本选项错误;B、互为相反数的两个数符号相反但绝对值相等,故本内选项正确;C、只有符号不同的两个数叫互为相反数,故本选项错误;D、如果两个数的乘积等于1,那么这两个数互为倒数容,故本选项错误.故选B.10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A与坐标原点0重合,则B平移后的坐标是().A.(0,-2)B.(4,2)C.(4,4)D.(2,4)【答案】B【解析】已知A(-4,0)、B(0,2),将线段AB向右平移,使A与坐标原点0重合,点B 的坐标是(4,2).故答案为:(4,2).二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.【答案】9.3×106【解析】9 349 000=9.349×106≈9.3×106.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________.【答案】由图形可知∠AOE的对顶角是∠BOF,∠COF的邻补角是∠COE和∠FO D.13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________【答案】垂线段最短【解析】过D点引CD⊥AB于C,然后沿CD开渠,可使所开渠道最短,根据垂线段最短.14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.【答案】m=±6【解析】∵4x 2 +4mx+36=(2x) 2 +4mx+6 2,∴4mx=±2×2x×6,解得m=±6.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______.【答案】∠B AC,∠BAC,DC【解析】解:∵AC平分∠BAD,∴∠DAC=∠BAC,又∵∠DAC=∠DCA,∴∠DCA=∠BAC,∴AB∥D C.16、小刚在小明的北偏东60°方向的500m处,则小明在小刚的________________(请用方向和距离描述小明相对于小刚的位置)【答案】南偏西60°方向的500m处,【解析】∵小刚在小明的北偏东60°方向的500m处,∴小明在小刚的南偏西60°方向的500m处.17、定义“在四边形ABC D中,若AB∥CD,且AD∥BC,则四边形ABCD叫做平行四边形.”若一个平行四边形的三个顶点的坐标分别是(0,0),(3,0),(1,3),则第四个顶点的坐标是______________.【答案】(4,3)或(-2,3)或(2,-3)【解析】如图所示,∴第4个顶点的坐标为(4,3)或(-2,3)或(2,-3).三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤)18、(6分)计算:(2m+n-1)²【解析】(2m+n-1)²=[(2m+n)-1]²=(2m+n)²-2(2m+n)+1=4m²+4mn+n²-4m-2n+119、(6分)计算:(3a+2b)² -(3a-2b)²【解析】(3a+2b)²-(3a-2b)²=(9a²+4b²+12ab)-(9a²-12ab+4b²)=24ab此题运用用平方差公式计算较简便.平方差公式:(a+b)(a-b)=a²-b²20、(6分)一只蚂蚁从O点出发,沿北偏东45°的方向爬了2.5cm,碰到障碍物(记做B点)后向北偏西60°的方向,爬行3cm(此时的位置记作C),(1)画出蚂蚁爬行的路线,(2)求出∠OBC的度数.【解析】(1)如图所示:折线OB,BC即为蚂蚁爬行的路线;(2)由题意得:∠EBO=45°,∠CBE=30°,∴∠OBC=75°.21、(8分)如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.【解析】解∵∠A + ∠B + ∠ACB = 180°∠B = 67°,∠ACB=74°∴∠A=180°-∠B-∠ACB=180°-67°-74°=39°∵∠BDF是△ADE的外角,∠AED=48°∴∠BDF=∠A + ∠AED=39°+48°=87°.22、(8分)如图,如果AB//CD,∠B=37°,∠D=37°,那么BC与DE平行吗? 若平行,请说明你的理由.【解析】BC∥DE;理由:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),∵∠B=∠D=37°(已知),∴∠C=∠D(等量代换),∴BC∥DE(内错角相等,两直线平行).23、(8分)如图,B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B 北偏东85°方向,求∠ACB.【解析】B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,∴∠1=45°,∠2=85°,∠3=15°,由平行线的性质得∠5=∠1=45°.由角的和差得∠6=∠2-∠5=85°-45°=40°,∠4=∠1+∠3=45°+15°=60°,由三角形的内角和定理得∠ACB =180°-∠6-∠4=180°-40°-60°=80°24、(10分)如图,点D 为BC 的中点,E 为AD 的中点.(1)∠ABE =15°,∠BAD =40°,求∠BED 的度数;(2)在△BED 中作BD 边上的高EF 交BD 于点F ,若△ABC 的面积为40,BD =5,求EF 的长.【解析】(1)在△ABE 中,∵∠ABE =15°,∠BAD =40°,∴∠BED =∠ABE +∠BAD =15°+40°=55°(2)∵AD 为△ABC 的中线,BE 为△ABD 的中线,∴S △ABD = 12S △ABC ,S △BDE = 12S △ABD , ∴S △BDE = 14S △ABC ,∵△ABC 的面积为40,BD =5,∴S △BDE = 12BD ·EF = 12×5·EF = 14×40,解得:EF =4.25、(10分)三角形ABC ,(记△ABC )在8×8的方格中的位置如图所示,已知A (-3,1),B (-2,4)(1)请你在方格中建立平面直角坐标系,并写出点C 的坐标.(2)把△ABC 向下平移1个单位,再向右平移2个单位,请你画出平移后的△A 1B 1C 1,若△ABC 内部有一点P 的坐标为(m ,n ),则点P 的对应点P 1的坐标是___. (3)在x 轴上存在一点D ,使△DB 1C 1的面积等于32,写出满足条件的点D 的坐标. 【解析】(1)平面直角坐标系如图所示,点C 坐标(1,1).(2)图中△A 1B 1C 1即为所求.P 1(m +2,n -1),故答案为(m+2,n -1).(3)设点D 坐标(m ,0),由题意:12|m -3|×3= 32,∴m =2或4,∴点D 坐标(2,0)或(4,0).。

人教版七年级下册数学《期中测试卷》(带答案解析)

人教版七年级下册数学《期中测试卷》(带答案解析)

2020-2021学年度第二学期期中测试七年级数学试题第I卷(选择题)一、选择题(每题3分,共30分)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π2.如图,下列条件不能判定直线a∥b的是A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°3.下列图形中,∠1和∠2是同位角的是()A.B.C.D.4.如图:AB∥DE,∠B=50°,∠D=110°,∠C的度数为( )A.120°B.115°C.110°D.100°5.若a2=25,|b|=3,则a+b=( )A.−8B.±8C.±2D.±2或±86.下列各命题中正确的有( )①若a b >,则0a b ->,②若a b >,则22ac bc >,③若ac bc >,则a b >,④若22ac bc >,则a b >;⑤若a b >,则33a b >,⑥若a b >,则3131a b -+>-+A .1个B .2个C .3个D .4个7.在平面直角坐标系中,点()0,2-在( ).A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上 8.已知0a b <<,点(),A a b a b -+在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >0 10.如图,一个粒子在x 轴上及第一象限内运动,第1次从(0,0)运动到(1,0),第2次从(1,0)运动到(2,0),第3次从(2,0)运动到(1,1),它接着按图中箭头所示的方向运动.则第2019次时运动到达的点为( )A .(59,6)B .(59,5)C .(62,3)D .(62,2)第II 卷(非选择题) 二、填空题(每题3分,共12分)11.如图是一把剪刀,若∠AOB+∠COD=80°,则∠AOC=_____度.12.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).13.已知点A (4,3),AB ∥y 轴,且AB=3,则B 点的坐标为_____.14.====,…,则第8个等式是__________.三、解答题(15,16,17,18题每题5分,19,20,21,22题每题7分,23题8分,24题10分,25题12分,共78分)15.计算: (1)16+38-(-5)2; (2)|1(2019﹣)0﹣(12)﹣216.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.17.点,,,A B C D 在平面直角坐标系的位置如图所示.(1)分别写出点,,,A B C D 的坐标;(2)依次连接A 、C 、D 得到一个封闭图形,判断此图形的形状.18.如图,E 为DF 上的点,B 为AC 上的点,DF ∥AC ,∠C=∠D ,判断∠1=∠2是否成立,并说明理由.19.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、的值;(2)求+a b 的算术平方根.20.将一幅三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F ,(1)求证:CF ∥AB ,(2)求∠DFC 的度数.21.已知点P(2m +4,m -1).试分别根据下列条件,求出点P 的坐标.(1)点P 的纵坐标比横坐标大3;(2)点P 在过A(2,-3)点,且与x 轴平行的直线上.22.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°.求∠COF 的度数.23.如图,在平面直角坐标系xOy中,A(-1,0),B(-3,-3),若BC∥OA,且BC=4OA.(1)求点C的坐标;(2)求△ABC的面积.24.如图,在四边形ABCD中,∠D=100°,CA平分∠BCD,且∠ACB=40°,∠BAC=70°.(1)AD与BC平行吗?试写出推理过程.(2)若点E在线段BA的延长线上,求∠DAC和∠EAD的度数.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C 的坐标为(0,b),且a,b满足a-4+|b-6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的线路移动.(1)a=________,b=________,点B的坐标为__________;(2)当点P移动4 s时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.答案与解析第I卷(选择题)二、选择题(每题3分,共30分)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π【答案】B【解析】在实数|-3|,-2,0,π中,|-3|=3,则-2<0<|-3|<π,故最小的数是:-2.故选B.2.如图,下列条件不能判定直线a∥b的是A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°【答案】C∠=∠,【解析】A. ∵13∠=∠;a∥b(两同位角相等,两直线平行);故A能; B. ∵24∠=∠不能判定a∥b,故C不∴a∥b(两同位角相等,两直线平行);故B能;C. 由23能;∠+∠=︒.∴a∥b(同旁内角互补,两直线平行);故D能;故选C.D. ∵231803.下列图形中,∠1和∠2是同位角的是()A.B.C.D.【答案】A【解析】根据同位角的定义,可知A是同位角,B、C、D不是同位角,故选:A.4.如图:AB ∥DE ,∠B =50°,∠D =110°,∠C 的度数为( )A .120°B .115°C .110°D .100°【答案】A 【解析】过点C 作CF ∥AB .∵AB ∥DE ,∴AB ∥DE ∥CF .∵∠B =50°,∴∠1=50°.∵∠D =110°,∴∠2=70°,∴∠BCD =∠1+∠2=50°+70°=120°.故选A .5.若a 2=25,|b |=3,则a +b =( )A .−8B .±8C .±2D .±2或±8【答案】D【解析】∵a 2=25,∴a=±5;∵|b |=3,∴b=±3,∴a +b =±2或±8,故选:D 6.下列各命题中正确的有( ) ①若a b >,则0a b ->,②若a b >,则22ac bc >,③若ac bc >,则a b >,④若22ac bc >,则a b >;⑤若a b >,则33a b >,⑥若a b >,则3131a b -+>-+A .1个B .2个C .3个D .4个 【答案】C【解析】①若a b >,不等式两边同时减于b ,则0a b ->,故原命题正确,②若a b >,当0c =,a b >两边同时乘以2c ,得220ac bc ==,故原命题错误,③若ac bc >,当0c <时,ac bc >同时除以c ,得a b <,故原命题错误,④若22ac bc >两边同时除以2c ,依题意20c ≠,得a b >故原命题正确,⑤若a b >,不等式两边同时乘以3,得33a b >,故原命题正确,⑥若a b >,则33a b -<-,则3131a b -+<-+,故原命题错误.故选:C.7.在平面直角坐标系中,点()0,2-在( ).A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上【答案】D 【解析】点()0,2-,横坐标为0,纵坐标为20-<,则该点在y 轴负半轴上,故选:D. 8.已知0a b <<,点(),A a b a b -+在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】∵0a b <<,∴00a b a b -<+<,,∴点A 在第三象限内,故选:C. 9.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >0 【答案】D【解析】由数轴可知:10,1 2.b a -<<<< A.0,ab < 故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选D.10.如图,一个粒子在x 轴上及第一象限内运动,第1次从(0,0)运动到(1,0),第2次从(1,0)运动到(2,0),第3次从(2,0)运动到(1,1),它接着按图中箭头所示的方向运动.则第2019次时运动到达的点为( )A .(59,6)B .(59,5)C .(62,3)D .(62,2)【答案】D 【解析】由图形可知:每条斜线上有点的个数与这条线段在x 轴的交点的数一样,如图,线段AB 上有两个点,线段CD 上有5个点,且发现x 轴上奇数的点箭头方向向右下,偶数的点箭头方向向左上,设x轴上的点(n,0),则1+2+3+4+…+n=()12n n+,当n=63时,()636312+=2016,当n=64时,()646412+=2080,∵2016<2019<2080,且第2016次时运动到达的点是(63,0),∴第2019次时运动到达的点为(62,2),故选:D.第II卷(非选择题)二、填空题(每题3分,共12分)11.如图是一把剪刀,若∠AOB+∠COD=80°,则∠AOC=_____度.【答案】140【解析】∵∠AOB+∠COD=80°,∠AOB=∠COD,∴∠AOB=∠COD=40°,又∵∠AOC+∠COD=180°,∴∠AOC=180°﹣40°=140°,故答案为:140.12.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____(度).【答案】75【解析】如图∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.13.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为_____.【答案】(4,6)或(4,0)【解析】∵A(4,3),AB∥y轴,∴点B的横坐标为4,∵AB=3,∴点B的纵坐标为3+3=6或3-3=0,∴B点的坐标为(4,0)或(4,6).14.====,…,则第8个等式是__________.==,通过观察可得,等式两边都有整数和分数,分数相同,等式左边整数比右边整式大1,且等式左边整数在根式里面与分数相加,等式右边整式在根式外面与根式相乘.=,特点跟第一个等式一样,还发现等式左边的整数与第几个等式有关,第几个等式则整数就是几,且分数的分子都为1,分母比整数大2.==,其特点跟第一个等式和第二个等式一样,进一步验证了这个特点.则第n(+1n =所以第8(8+1 ===四、解答题(15,16,17,18题每题5分,19,20,21,22题每题7分,23题8分,24题10分,25题12分,共78分)15.计算:(1)16+38-(-5)2;(2)|1(2019﹣)0﹣(12)﹣2【解析】(1)原式=4+2-5=1;(2)原式1+1﹣416.请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的表面积.【解析】(1)设魔方的棱长为xcm,可得:x 3=216,解得:x=6,答:该魔方的棱长6cm ;(2)设该长方体纸盒的长为ycm ,6y 2=600,y 2=100,y=10,答:该长方体纸盒的长为10cm .17.点,,,A B C D 在平面直角坐标系的位置如图所示.(1)分别写出点,,,A B C D 的坐标;(2)依次连接A 、C 、D 得到一个封闭图形,判断此图形的形状.【解析】(1)根据平面直角坐标系可知点的坐标分别为()3,2A ,()3,4B -,()4,3C --,()3,3D -,(2)依次连接A ,C ,D 得到一个封闭图形,如下图所示,根据图像可知,该图形是直角三角形.18.如图,E 为DF 上的点,B 为AC 上的点,DF ∥AC ,∠C=∠D ,判断∠1=∠2是否成立,并说明理由.【解析】∠1=∠2成立.理由:∵DF ∥AC ,∴∠C=∠CEF ,又∵∠C=∠D ,∴∠CEF=∠D ,∴BD ∥CE ,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠1=∠2.19.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、的值;(2)求+a b 的算术平方根.【解析】(1)∵7a -和24a +是某正数的两个平方根,∴7a -+24a + =0,∴a=1,∵7b -的立方根是1,∴71b -=∴b=8;(2)∵a=1,b=8;∴a+b=9,∴a+b 的算数平方根为320.将一幅三角板拼成如图所示的图形,过点C 作CF 平分∠DCE 交DE 于点F ,(1)求证:CF∥AB,(2)求∠DFC的度数.【解析】(1)证明:∵CF平分∠DCE,∴∠1=∠2=12∠DCE.∵∠DCE=90°,∴∠1=45°.∵∠3=45°,∴∠1=∠3.∴AB∥CF.(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.21.已知点P(2m+4,m-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.【解析】(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).22.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°.求∠COF的度数.【解析】∵EO ⊥CD ,∴∠DOE =90°.∴∠BOD =∠DOE -∠BOE =90°-50°=40°.∴∠AOC =∠BOD =40°,∠AOD =140°.又∵OF 平分∠AOD ,∴∠AOF =12∠AOD =70°. ∴∠COF =∠AOC +∠AOF =40°+70°=110°.23.如图,在平面直角坐标系xOy 中,A (-1,0),B (-3,-3),若BC ∥OA ,且BC=4OA.(1)求点C 的坐标;(2)求△ABC 的面积.【解析】(1)如图所示:∵A (-1,0),∴OA=1,∵B (-3,-3),BC ∥OA ,且BC=4OA ,∴BC=4.设C (x ,-3),当点C 在点B 的右边时,此时x -(-3)=4,解得x=1,即C(1,-3);当点C在点B的左边时,此时-3-x=4,解得x=-7,即C(-7,-3).则点C的坐标为(1,-3)或(-7,-3);(2)△ABC的面积=12BC×3=12×4×3=6.24.如图,在四边形ABCD中,∠D=100°,CA平分∠BCD,且∠ACB=40°,∠BAC=70°.(1)AD与BC平行吗?试写出推理过程.(2)若点E在线段BA的延长线上,求∠DAC和∠EAD的度数.【解析】(1)AD∥BC.推理过程如下:∵CA平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°.∵∠D=100°,∴∠D+∠BCD=180°.∴AD∥BC.(2)由(1)知AD∥BC,∴∠DAC=∠ACB=40°.∵∠BAC=70°,∴∠DAB=∠DAC+∠BAC=40°+70°=110°.∴∠EAD=180°-∠DAB=180°-110°=70°.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C 的坐标为(0,b),且a,b满足a-4+|b-6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的线路移动.(1)a=________,b=________,点B的坐标为__________;(2)当点P移动4 s时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.【解析】(1)4;6;(4,6)(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的线路移动,OA=4,OC=6,∴当点P移动4 s时,点P在线段CB上,离点C的距离为4×2-6=2.∴点P的坐标是(2,6).(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况:第一种情况,当点P在线段OC上时,点P移动的时间是5÷2=2.5(s);第二种情况,当点P在线段BA上时,点P移动的时间是(6+4+1)÷2=5.5(s).故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5 s或5.5 s.。

人教版2020-2021学年第二学期七年级下册期中考试数学试卷及答案

人教版2020-2021学年第二学期七年级下册期中考试数学试卷及答案

2020-2021学年七年级(下)期中数学试卷一.选择题(共10小题)1.下列四个命题中,真命题有()个①若a>0,b>0,则a+b>0②同位角相等③有两边和一个角分别对应相等的两个三角形全等④三角形的最大角不小于60°A.1B.2C.3D.42.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.10°B.15°C.20°D.25°3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为()A.60°B.70°C.80°D.90°5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款()A.11元B.12元C.13元D.不能确定6.如图,若直线a∥b,那么∠x=()A.64°B.68°C.69°D.66°7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.B.3C.1D.8.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A.1B.2C.3D.49.设==,则的值为()A.B.C.D.10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A.40°B.45°C.50°D.55°二.填空题(共4小题)11.已知关于x,y的方程组与方程x+y=3的解相同,则k的值为.12.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是cm2.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有(填序号).三.解答题(共6小题)15.解二元一次方程组(1);(2);(3).16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣x(kg),销售红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?17.如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?19.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.参考答案与试题解析一.选择题(共10小题)1.下列四个命题中,真命题有()个①若a>0,b>0,则a+b>0②同位角相等③有两边和一个角分别对应相等的两个三角形全等④三角形的最大角不小于60°A.1B.2C.3D.4【分析】根据不等式、平行线的性质、三角形全等和三角形的内角和判断即可.【解答】解:①若a>0,b>0,则a+b>0,是真命题;②两直线平行,同位角相等,原命题是假命题,③有两边和其夹角分别对应相等的两个三角形全等,原命题是假命题,④三角形的最大角不小于60°,是真命题;故选:B.2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.10°B.15°C.20°D.25°【分析】先根据平行线的性质得出∠BCD的度数,进而可得出结论.【解答】解:∵AB∥CD,∴∠BCD=∠ABC=45°,∴∠1=∠BCD﹣∠BCE=45°﹣30°=15°.故选:B.3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选:D.4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为()A.60°B.70°C.80°D.90°【分析】依据平行线的性质,即可得到∠BEG=∠A=90°,∠BFG=∠C=110°,再根据四边形内角和为360°,即可得到∠D的度数.【解答】解:∵GF∥CD,GE∥AD,∴∠BEG=∠A=90°,∠BFG=∠C=110°,由折叠可得:∠B=∠G,∴四边形BEGF中,∠B==80°,∴四边形ABCD中,∠D=360°﹣∠A﹣∠B﹣∠C=80°,故选:C.5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款()A.11元B.12元C.13元D.不能确定【分析】设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z元,由“若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C 种2件,共需36元”,即可得出关于x,y,z的三元一次方程组,由(①+②)÷5可求出(x+y+z)的值,此题得解.【解答】解:设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z 元,依题意,得:,(①+②)÷5,得:x+y+z=12.故选:B.6.如图,若直线a∥b,那么∠x=()A.64°B.68°C.69°D.66°【分析】两平行线间的折线所成的角之间的关系是﹣﹣﹣﹣奇数角,由∠1与130°互补可以得知∠1=50°,由a∥b,结合规律“两平行线间的折线所成的角之间的关系﹣左边角之和等于右边角之和”得出等式,代入数据即可得出结论.【解答】解:令与130°互补的角为∠1,如图所示.∵∠1+130°=180°,∴∠1=50°.∵a∥b,∴x+48°+20°=∠1+30°+52°,∴x=64°.故选:A.7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.B.3C.1D.【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED =x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故选:A.8.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A.1B.2C.3D.4【分析】结合角平分线的性质结合全等三角形的判定与性质分析得出答案.【解答】解:∵等边△ABC中,AD是BC边上的高,∴BD=DC,AB=AC,∠B=∠C=60°,在△ABD与△ACD中,∴△ABD≌△ACD,故①正确;在△ADE与△ADF中,∴△ADE≌△ADF,故③正确;∵在Rt△ADE与Rt△ADF中,∠EAD=∠F AD=30°,∴2DE=2DF=AD,故②正确;同理2BE=2CF=BD,∵AB=2BD,∴4BE=4CF=AB,故④正确;故选:D.9.设==,则的值为()A.B.C.D.【分析】设已知等式等于k,表示出x,y,z,代入原式计算即可得到结果.【解答】解:设===k,得到x=2k,y=3k,z=4k,则原式==.故选:C.10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A.40°B.45°C.50°D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.二.填空题(共4小题)11.已知关于x,y的方程组与方程x+y=3的解相同,则k的值为11.【分析】把k看做已知数表示出方程组的解,代入已知方程计算即可求出k的值.【解答】解:,①×2﹣②得:x=k+5,把x=k+5代入①得:3k+15+2y=2k,解得:y=﹣,代入x+y=3得:k+5﹣=3,去分母得:2k+10﹣k﹣15=6,解得:k=11,故答案为:1112.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是67cm2.【分析】设小长方形的长为xcm,宽为ycm,根据图中给定的数据可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.【解答】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴图中阴影部分的面积=19×(7+2×3)﹣6×10×3=67(cm2).故答案为:67.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有①②④(填序号).【分析】易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE,即AD=AE=EC,根据AD=AE=EC可求得④正确.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,在RT△BEG和RT△BEF中,,∴RT△BEG≌RT△BEF(HL),∴BG=BF,在RT△CEG和RT△AFE中,,∴RT△CEG≌RT△AEF(HL),∴AF=CG,∴BA+BC=BF+F A+BG﹣CG=BF+BG=2BF,∴④正确.故答案为:①②④.三.解答题(共6小题)15.解二元一次方程组(1);(2);(3).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②×2﹣①得:5y=10,解得:y=2,把y=2代入②得:x=5,则方程组的解为;(2)方程组整理得:,②×2﹣①得:x=370,把x=370代入②得:y=110,则方程组的解为;(3)方程组整理得:,①﹣②得:y=10,把y=10代入①得:x=6,则方程组的解为.16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣x(kg),销售红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?【分析】(1)设未知数,列二元一次方程组解答即可,(2)根据利润与销售量的关系,得出y与x之间的函数关系式,再根据函数的增减性,得出何时利润最少.【解答】解:(1)设销售这种规格的红枣x袋,小米y袋,由题意得,解得,x=1000,y=500,答:销售这种规格的红枣1000袋,小米500袋.(2)由题意得,y=(60﹣40)x+(54﹣38)=12x+32000,∴y随x的增大而增大,∵x≥1200,当x=1200时,y最小=12×1200+32000=46400元,答:y与x之间的函数关系式为y=12x+32000,后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润46400元.17.如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.【分析】根据中垂线和轴对称及轴对称的最短路线求解.【解答】解:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等知,作出AB的中垂线与河岸交于点P,则点P满足到两村A、B的距离相等,即厂址应选在点P处;(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,即厂址应选在点P处;理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP 是最小的.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?【分析】(1)根据题意,可以先设出y与x的函数关系式为y=kx+b,然后再根据当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm,即可求得该函数的解析式;(2)将x=10代入(1)中的函数解析式,即可得到相应的身高.【解答】解:(1)设y与x之间的关系式为y=kx+b,,得,即y与x之间的关系式是y=7.5x+0.5;(2)当x=10时,y=7.5×10+0.5=75.5,答:当该动物腿长10dm时,其身高为75.5dm.19.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【分析】(1)在Rt△ADE中,求出∠EAD即可解决问题;(2)只要证明AE=AC,利用等腰三角形的性质即可证明;【解答】(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.【分析】(1)根据等边三角形的性质和全等三角形的判定证明即可;(2)根据全等三角形的性质解答即可;(3)根据全等三角形的性质解答即可.【解答】(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC∠DAB=∠EAC=60°∴∠DAC=∠BAE,在△ABE和△ADC中∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC∴∠AEB=∠ACD∵∠ACD=15°∴∠AEB=15°;(3)同上可证:△ABE≌△ADC ∴∠AEB=∠ACD又∵∠ACD=60°∴∠AEB=60°∵∠EAC=60°∴∠AEB=∠EAC∴AC∥BE.1、三人行,必有我师。

最新人教版七年级下学期数学《期中检测试卷》附答案

最新人教版七年级下学期数学《期中检测试卷》附答案

2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题(共40分)1. 已知a 的值不大于3-,用不等式表示a 的范围是( ) A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤-2. 若代数式31x -的值为4-,则x 的值为( ) A. 1B. 1-C. 53-D.353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b> C. 22a b -<- D. 22a b >5.将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+ C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本x 元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( ) A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++=D. x y 50{x y 90=-+= 8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( )A. 2-B. 2C. 1-D. 110. 已知关于,x y 的二元一次方程组43335x y mx y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ).A. 随m 增大而增大B. 随m 减小而减小C. 既可能随m 增大而增大,也可能随m 减小而减小D. 与m 的大小无关二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.12. 已知二元一次方程235x y +=,若用含x 的代数式表示,则y =_______. 13. 已知关于x 的不等式()15m x ->的解集为51x m <-,则m 的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则m 的取值范围是____________.三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件; (2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件? 23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4. (1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围. 24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有A 、B 、C 三种不同价格的彩票,进价分别是A 彩票每捆150元,B 彩票每捆200元,C 彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案; (2)若销售A 型彩票每捆获手续费20元,B 型彩票每捆获手续费30元,C 型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进A、B、C三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知a 的值不大于3-,用不等式表示a 的范围是( ) A. 3a >- B. 3a <-C. 3a ≥-D. 3a ≤-【答案】D 【解析】 【分析】a 的值不大于3-就是a 的值小于或等于3-,据此解答即可.【详解】解:a 的值不大于3-,用不等式表示a 的范围是:3a ≤-. 故选:D .【点睛】本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则x 的值为( ) A. 1B. 1-C. 53-D.35【答案】B 【解析】 【分析】根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值. 【详解】解:由题意,得314x -=-, 解得1x =-; 故选B .【点睛】本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩【答案】D 【解析】【分析】把各选项中的x 、y 的值逐一代入计算即得答案. 【详解】解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意;B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意;C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意;D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键.4. 若a b >,则下列不等式中错误的是( ) A. 22a b +>+ B.22a b> C. 22a b -<- D. 22a b >【答案】D 【解析】 【分析】根据不等式的性质逐项判断即可. 【详解】解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意;B 、在不等式a b >两边同时除以2,得22a b>,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意; D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意. 故选:D .【点睛】本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键. 5. 将方程3213123x x x -++=-去分母,正确的是( )A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+【答案】A 【解析】 【分析】根据去分母的方法:原方程两边同时乘以6可得答案.【详解】解:原方程两边同时乘以6,得:()()18336221x x x +-=-+. 故选:A .【点睛】本题考查了一元一次方程的解法,属于基本题型,熟练掌握去分母的方法是解本题的关键. 6. 某文具店开展促销活动,某种笔记本原价每本x 元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( ) A . 0.68x x -= B. 0.0618x -=C. 80.61x -=D. 0.618x -=【答案】D 【解析】 【分析】由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.【详解】解:根据题意可列方程为:0.618x -=. 故选:D .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++=D. x y 50{x y 90=-+=【答案】C 【解析】【详解】根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C .考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,则下列方程组正确的是( ) A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩【答案】A 【解析】 【分析】设合伙人数为x 人,物价为y 钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.【详解】解:设合伙人数为x 人,物价为y 钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩,故选:A ;【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( )A. 2-B. 2C. 1-D. 1【答案】C 【解析】 【分析】先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值.【详解】x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②,①-②得:y=m+2③, 把③代入②得:x=m-3, ∵x+y=-3, ∴m-3+m+2=-3, ∴m=-1. 故选C .【点睛】本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y mx y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ).A. 随m 增大而增大B. 随m 减小而减小C. 既可能随m 增大而增大,也可能随m 减小而减小D. 与m 的大小无关 【答案】D 【解析】 【分析】方程组中的两个方程相加,再两边同时除以2即可进行判断. 【详解】解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-,∴代数式x y -的值与m 的大小无关. 故选:D .【点睛】本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________. 【答案】5 【解析】 【分析】将2x =-代入方程520x k +=即可求算.【详解】解:∵2x =-是方程520x k +=的解,2x =-代入方程: ∴1020k -+=,解得:5k = 故答案为:5【点睛】本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键. 12. 已知二元一次方程235x y +=,若用含x 的代数式表示,则y =_______. 【答案】523x- 【解析】 【分析】移项,把x 看做已知数求出y 即可. 【详解】解:二元一次方程235x y +=, 移项得:352y x =-,即:523xy, 故答案为:523x-;【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y . 13. 已知关于x 的不等式()15m x ->的解集为51x m <-,则m 的取值范围是_________. 【答案】1m < 【解析】 【分析】根据不等式的性质可得10m -<,解不等式即得答案. 【详解】解:由题意得:10m -<,解得:1m <. 故答案为:1m <.【点睛】本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________. 【答案】5 【解析】 【分析】由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.【详解】解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.【点睛】本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.【答案】314x y z =⎧⎪=⎨⎪=⎩【解析】【分析】根据解三元一次方程组的方法解答即可.【详解】解:对457x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z ++=,即8x y z ++=④,④-①,得z =4,④-②,得x =3,④-③,得y =1,∴方程组的解是:314x y z =⎧⎪=⎨⎪=⎩.故答案为:314x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则m 的取值范围是____________. 【答案】2m ≤-【解析】【分析】先求出不等式的解集,再根据无解得出m 的取值范围.【详解】解:24x x m -≤⎧⎨<⎩①② 由①得:2x ≥- 由②得:x m <∵不等式组无解,没有公共部分∴2m ≤-故答案为:2m ≤-【点睛】本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.【答案】2x =-【解析】【分析】根据解一元一次方程的方法和步骤解答即可.【详解】解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.【点睛】本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.【答案】0x <,图见解析【解析】【分析】分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.【详解】解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:【点睛】本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.【答案】a=5,b=-2【解析】【分析】将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.【详解】解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2【点睛】本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.【答案】这个两位数为45.【解析】【分析】要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x,则十位数字是9﹣x,则原数是10(9﹣x)+x,新数是10x+(9﹣x),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.【详解】解:设原两位数的个位数字是x,则十位数字是9﹣x.根据题意得:10x+(9-x)=10(9﹣x)+x+9解得:x=5,则9﹣x=4,答:这个两位数为45.【点睛】本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x yax y+=⎧⎨+=⎩和2551x yx by-=⎧⎨+=⎩有相同的解,求a+b的值.【答案】16【解析】【分析】根据题意列出x和y的方程组,然后进行求解,将解代入另外的两个方程求出a和b的值,进而即可求解.【详解】解方程组5325x yx y+=⎧⎨-=⎩,得12xy=⎧⎨=-⎩.把12xy=⎧⎨=-⎩代入5451ax yx by+=⎧⎨+=⎩,得142ab=⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?【答案】(1)购进甲种商品800件,购进乙种商品200件;(2)334;【解析】【分析】(1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.【详解】解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000, 解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.【答案】(1)31k b =-⎧⎨=⎩;(2)7≤m <13 【解析】【分析】(1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式的最大整数解是k =-3,来得到m 的取值范围. 【详解】解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.【点睛】主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值; (2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 【答案】(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 【解析】 【分析】 (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可; (3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+ 左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对” 【点睛】本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有A 、B 、C 三种不同价格的彩票,进价分别是A 彩票每捆150元,B 彩票每捆200元,C 彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案; (2)若销售A 型彩票每捆获手续费20元,B 型彩票每捆获手续费30元,C 型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进A、B、C三种彩票20捆,请你帮助经销商设计进票方案.【答案】(1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.【解析】【分析】(1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.【详解】解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.【点睛】此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。

最新人教版数学七年级下学期《期中检测卷》含答案解析

最新人教版数学七年级下学期《期中检测卷》含答案解析

2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是()A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A(﹣2,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为()A.30°B. 40°C. 50°D. 60°4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44° B. 25° C. 26° D. 27°5.下列说法正确的是( ) A. 相等的角是对顶角 B. 一个角的补角必是钝角C. 同位角相等 D. 一个角的补角比它的余角大90°6.点()1,3-向右平移3个单位后的坐标为( ) A.()4,3- B. ()1,6- C. ()2,3 D. ()1,0-7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x个人,这个物品价格是y元.则可列方程组为()A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩8.下列说法正确的是( )A. 0的平方根是0B. 1的平方根1C. 1的平方根1-D. 1-的平方根1- 9.过A(4,-2)和B(-2,-2)两点的直线一定( )A. 垂直于x 轴B. 与y 轴相交但不平行于x 轴C. 平行于x 轴D. 与x 轴,y 轴平行10.二元一次方程2x +y =8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是 .13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________319127-_____. 16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1231981416⎛⎫-- ⎪⎝⎭(2)323220.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点A ',B ',C '的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A 、B 直线1l 上,点C 、D 在直线2l 上,AE 平分∠BAC ,CE 平分∠ACD ,∠EAC+∠ACE=90°.(1)请判断1l 与2l 的位置关系并说明理由;(2)如图2,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(不与点C 重合)∠CPQ+∠CQP 与∠BAC 有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是()A. ﹣3B. ±3C. 3D. 3【答案】C【解析】试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】【分析】先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.【详解】解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.【点睛】本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°【答案】D【解析】【分析】由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.【详解】解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°【答案】D【解析】【分析】 根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.【详解】解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .【点睛】本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键. 6.点()1,3-向右平移3个单位后的坐标为( )A . ()4,3-B. ()1,6-C. ()2,3D. ()1,0-【答案】C【解析】【分析】 直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .【点睛】本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩【答案】A【解析】【分析】根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.【详解】根据题意有83, 74 x yx y=+⎧⎨=-⎩故选:A.【点睛】本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 0的平方根是0B. 1的平方根1C. 1的平方根1-D. 1-的平方根1-【答案】A【解析】【分析】根据平方根的性质,逐一判定即可. 【详解】A选项,0的平方根是0,正确;B选项,1的平方根是±1,错误;C选项,1的平方根是±1,错误;D选项,1-没有平方根,错误;故选:A. 【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题. 9.过A(4,-2)和B(-2,-2)两点的直线一定() A. 垂直于x轴 B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行【答案】C【解析】【分析】根据平行于x轴的直线上两点的坐标特点解答.【详解】∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.【点睛】解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x +y =8的正整数解有( )个.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由于二元一次方程2x +y =8中y 的系数是1,可先用含x 的代数式表示y ,然后根据此方程的解是正整数,那么把最小的正整数x =1代入,算出对应的y 的值,再把x =2代入,再算出对应的y 的值,依此可以求出结果.【详解】解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .【点睛】由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1. 二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个【答案】3【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.12.16的平方根是.【答案】±2.【解析】【详解】解:∵16=4∴16的平方根是±2.故答案为±2.13.若25.36=5.036,253.6=15.906,则253600=__________.【答案】503.6【解析】【分析】根据平方根的计算方法和规律计算即可=5.036×100=503.6.故答案为503.6.【详解】解:253600=25.361000014.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________【答案】15°【解析】【分析】如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.【详解】由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____. 【答案】23【解析】【分析】根据是实数的性质即可化简. 331982127273-==. 故答案为23. 【点睛】此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.【答案】如果两个角是对顶角,那么这两个角相等【解析】【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【详解】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).【答案】①③【解析】【分析】根据平行线的判定和性质解答即可.【详解】解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.【点睛】此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__【答案】(22020,3)【解析】【分析】根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.【详解】∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)【点睛】依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1231981416⎛⎫--⎪⎝⎭(2)3232【答案】(1)12-;(2)423.【解析】【分析】(1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;【详解】(12319151812416442⎛⎫--=-+=- ⎪⎝⎭(2)32323232423==【点睛】考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩【答案】(1)11x y =⎧⎨=-⎩;(2)521x y z =⎧⎪=-⎨⎪=⎩. 【解析】【分析】(1)首先由 ①×2+②,消去y ,然后解关于x 的方程即可求解. (2)由①+②+③得到x+y+z=4④,再由①-④得到y 的值,②-④得到z 的值,③-④得到x 的值.【详解】(1)23321x y x y ①②-=⎧⎨+=⎩ 由 ①×2+②,得 7x =7,解得 x =1, 把 x =1 代入①式,得2﹣y =3,解得y =﹣1所以原方程组的解为11x y =⎧⎨=-⎩. (2)2 2....2 5....29....x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩【点评】考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点A ',B ',C '的坐标;(3)求三角形ABC 的面积.【答案】(1)图见解析(2)点A′的坐标为(0,0)、B'的坐标为(-3,−5)、C′的坐标为(2,−3)(3)192【解析】【分析】(1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.【详解】(1)如图,△ABC和△’’’A B C为所求;(2)∵把三角形ABC向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C'''.∴点A′的坐标为(0,0)、B'的坐标为(-3,−5)、C′的坐标为(2,−3);(3)三角形ABC的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.【点睛】本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?【答案】(1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.【解析】【分析】(1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.【详解】(1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.【点睛】本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键.23.如图,AB ∥CD .∠1=∠2,∠3=∠4,试说明 AD ∥BE ,请你将下面解答过程填写完整.解:∵AB ∥CD ,∴∠4= ( )∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().【答案】∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.【解析】【分析】根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.【详解】解:∵AB∥CD,∴∠4=∠BAE(两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD(等量代换),∴AD∥BE(内错角相等,两直线平行).【点睛】本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.【答案】见解析.【解析】【分析】根据两直线平行,同旁内角互补得到∠A+∠ABC =180°,再根据∠A =∠C 得到∠C+∠ABC =180°,根据同旁内角互补,两直线平行得到DC ∥AB ,再利用两直线平行,内错角相等得到∠1=∠2.【详解】∵AD ∥BC ,∴∠A+∠ABC =180°,又∵∠A =∠C ,∴∠C+∠ABC =180°,∴DC ∥AB ,∴∠1=∠2.【点睛】考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等. 25.如图1,点A 、B 在直线1l 上,点C 、D 在直线2l 上,AE 平分∠BAC ,CE 平分∠ACD ,∠EAC+∠ACE=90°.(1)请判断1l 与2l 的位置关系并说明理由;(2)如图2,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(不与点C 重合)∠CPQ+∠CQP 与∠BAC 有何数量关系?请说明理由.【答案】(1)1l ∥2l ;(2)①当Q 在C 点左侧时,∠BAC=∠CQP +∠CPQ ,②当Q 在C 点右侧时,∠CPQ+∠CQP+∠BAC=180°.【解析】分析】(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.【详解】解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行) (2)①当Q 在C 点左侧时,过点P 作PE ∥1l . ∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行), ∴∠1=∠2,(两直线平行,内错角相等), ∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换) ②当Q 在C 点右侧时,过点P 作PE ∥1l . ∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行), ∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等), 又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.【点睛】本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?【答案】小长方形的长为10mm,宽为6mm.【解析】【分析】设每个小长方形的长为xmm,宽为ymm,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.【详解】设每个长方形的长为xmm,宽为ymm,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.【点睛】考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.精品试卷。

2020--2021学年人教版七年级下册期中测试卷(原卷版)

2020--2021学年人教版七年级下册期中测试卷(原卷版)

2020--2021学年人教版七年级下册期中测试卷;________________________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人 得 分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020秋•榆次区期中)一个正数的两个平方根分别为a +3和4﹣2a ,则这个正数为( )A .7B .10C .﹣10D .1002.(3分)(2020春•梁溪区期中)在以下现象中,属于平移的是( )①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A .①②B .②④C .②③D .③④3.(3分)(2020秋•岐山县期中)在实数,,,,0.1010010001,,中,无理数有( )2277π33632个.A .1B .2C .3D .44.(3分)(2020秋•平阴县期中)如图,小手盖住的点的坐标可能为( )A .(5,2)B .(﹣3,﹣3)C .(﹣6,4)D .(2,﹣5)2‒15.(3分)(2020春•潮安区期中)如果是a的相反数,那么a的值是( )1‒21+2‒22A.B.C.D.6.(3分)(2020秋•南岗区校级期中)如图,直线AB、CD相交于点O,∠AOC=40°,OE平分∠AOD,则∠EOD=( )A.55°B.60°C.65°D.70°7.(3分)(2020春•惠城区期中)如图,给出下列条件,①∠1=∠3;②∠2=∠4;③∠B=∠DCE;④∠D=∠DCE.其中能推出AD∥BC的条件为( )A.②③④B.②④C.②③D.①④8.(3分)(2020秋•南岗区期中)下列说法正确的是( )①在同一平面内,过一点有且只有一条直线与已知直线垂直;②在同一平面内,过一点有且只有一条直线与已知直线平行;③P是直线a外一点,A、B、C分别是直线a上的三点,PA=1,PB=2,PC=3,则点P到直线a的距离一定是1;④相等的角是对顶角;⑤同旁内角互补.A.1个B.2个C.3个D.4个9.(3分)(2020秋•开福区校级期中)如图,将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,若∠AFE=68°,则∠C′EF等于( )A.68°B.80°C.40°D.55°10.(3分)(2020秋•阜南县期中)如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A.(4,44)B.(5,44)C.(44,4)D.(44,5)第Ⅱ卷(非选择题)评卷人得 分二.填空题(共7小题,满分28分,每小题4分)11.(4分)(2020秋•宜阳县期中)计算的结果为 .9‒3‒812.(4分)(2020春•长葛市期中)若利用计算器求得 2.573,8.136,则根据此值估计6.619=66.19=6619的算术平方根是 .13.(4分)(2020秋•即墨区校级期中)已知点P 在第三象限,且点P 到x 轴的距离为3,到y 轴的距离为2,那么点P 的坐标为 .14.(4分)(2020秋•滦州市期中)已知x 为整数,且x 1<x +1,则x 的值为 .<19‒15.(4分)已知A (1,0),B (0,2),点P 在x 轴上,且△PAB 面积是5,则点P 的坐标是 .16.(4分)(2020春•揭东区期中)如图将直角三角形ABC 沿AB 方向平移AD 距离得到△DEF ,已知∠ABC =90°,BE =5,EF =8,CG =3,则图中阴影部分的面积为 .17.(4分)(2020春•高新区期中)如图,若AB ∥CD ,BF 平分∠ABE ,DF 平分∠CDE ,∠BED =90°,则∠BFD = .评卷人得 分三.解答题(共8小题,满分62分)18.(6分)(2020春•凉州区校级期中)(1)计算:(﹣2)2(﹣1)2020;×14+3‒8+2× (2)解方程:3(x ﹣2)2=27.19.(6分)(2020春•潮安区期中)如图,AB ∥CD ,BE 平分∠ABC ,∠DCB =140°,求∠ABD 和∠EDC的度数.20.(6分)(2020春•潮安区期中)有一个边长为9cm的正方形和一个长为24cm、宽为6cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?21.(8分)(2020春•潮安区期中)完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB( )∴∠1= ( )∴EC∥BF( )∴∠B=∠AEC( )又∵∠B=∠C(已知)∴∠AEC= ( )∴ ( )∴∠A=∠D( )22.(8分)(2020春•新余期中)如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.23.(8分)(2020春•靖远县期中)如图,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A ′B ′O ′是三角形ABO 平移之后得到的图形,并且O 的对应点O ′的坐标为(4,3).(1)求三角形ABO 的面积;(2)作出三角形ABO 平移之后的图形三角形A ′B ′O ′,并写出A ′、B ′两点的坐标分别为A ′ ,B ′ ;(3)P (x ,y )为三角形ABO 中任意一点,则平移后对应点P ′的坐标为 .24.(10分)(2020春•马龙县校级期中)如图,在直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a 、b 、c 满足关系式|a ‒2|+(b ‒3)2+c ‒4=0(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,),请用含m 的式子表示四边形ABOP 的面积;12(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积为△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.25.(10分)(2020春•潮安区期中)同一平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB ∥CD ,点P 在AB 、CD 内部,请写出∠BPD 、∠B 、∠D 之间的数量关系(不必说明理由);(2)如图2,将直线AB 绕点B 逆时针方向转一定角度交直线CD 于点Q ,利用(1)中的结论求∠BPD 、∠B 、∠D 、∠BQD 之间有何数量关系?并证明你的结论;(3)如图3,设BF 交AC 于点M ,AE 交DF 于点N .已知∠AMB =140°,∠ANF =105°,利用(2)中的结论直接写出∠B+∠E+∠F的度数和∠A比∠F大多少度.。

2020—2021学年度第二学期期中教学质量检查

2020—2021学年度第二学期期中教学质量检查

2020—2021学年度第二学期期中教学质量检查七年级数学科试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分。

1. C 2. D 3. A 4. C 5. D6. D 7. C 8. A 9. D 10. D二、填空题:本大题共7小题,每小题4分,共28分。

11. 2 12. CD 13.22° 14. (4,1)15.-2 16. 100 17.(1010,1)三、解答题(一):本大题共3小题,每小题6分,共18分. 18. 解:原式=2-3-(-3)-2 ……………………3分 =3-3 ……………………6分19.解:∵∠BOD 与∠AOC 互为对顶角,∴∠BOD=∠AOC,∵∠AOC=70°,∴∠BOD=70°, ……………………2分 ∵OE 平分∠BOD,∴∠EOD=21∠BOD=35°, ……………………4分 ∵∠DOF=90°,∴∠EOF=∠DOF-∠EOD=90°-35°=55°. ……………………6分20.解:如图所示:实验楼(﹣2,2),行政楼(﹣2,﹣2),大门(0,﹣4), 食堂(3,4),图书馆(4,﹣2).(正确画对坐标系得1分,每对一个坐标各得一分)四、解答题(二):本大题共3小题,每小题8分,共24分. 21. 解:(1)正方形工料的边长为=6分米;………………2分答:正方形工料的边长为6分米。

……………………3分(2)设长方形的长为4a 分米,则宽为3a 分米.…………4分 则4a •3a =24,解得:a =, ……………………6分∴长为4a ≈5.656<6,宽为3a ≈4.242<6.答:这块长方形工料满足要求.……………………8分22. 解:(1)BF ∥DE ,理由如下: …………………1分∵∠AGF =∠ABC ,∴GF ∥BC ,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF ∥DE ; ……………………5分(2)∵BF ⊥AC ,∴∠AFB =90°,∵∠1+∠2=180°,∠2=140°,∴∠1=40°,∴∠AFG =90°﹣40°=50°. ……………………8分23. 解:∵+|y ﹣2|=0,∴x+1=0,y ﹣2=0,∴x=﹣1,y=2. ……………………4分∵与互为相反数,∴1﹣2z+3z ﹣5=0,解得z=4. ……………………6分∴yz ﹣x=2×4﹣(﹣1)=9,∴yz ﹣x 的平方根是±3.……………………8分五、解答题(三):本大题共2小题,每小题10分,共20分.24.解:(1)依题意,得C(0,2),D(4,2),……………………2分(2)S 四边形ABDC =AB×OC =4×2=8. ……………………4分(3)存在. ……………………5分 假设y 轴上存在点P (0,y )满足条件,则S △PAB =S 四边形ABDC =21AB ·∣y ∣=8,…………7分 ∴y=±4, ……………………8分∴P点的坐标为(0,4)或(0,-4).……………………10分25.解:(1)AB∥CD;……………………1分理由:∵CM平分∠ACD,AM平分∠BAC,∴∠BAC=2∠MAC,∠ACD=2∠ACM,∵∠MAC+∠ACM=90°,∴∠BAC+∠ACD=180°,∴AB∥CD;……………………4分(2)∠BAM+∠MCD=90°;……………………5分理由:如图2,过M作MF∥AB,∵AB∥CD,∴MF∥AB∥CD,∴∠BAM=∠AMF,∠FMC=∠DCM,∵∠AMC=90°,∴∠BAM+∠MCD=90°;……………………7分(3)∠BAC=∠CGH+∠CHG.……………………8分理由:如图3,过点G作GP∥AB,∵AB∥CD∴GP∥AB∥CD,∴∠BAC=∠PGC,∠CHG=∠PGH,∴∠PGC=∠CHG+∠CGH,∴∠BAC=∠CGH+∠CHG.……………………10分。

部编人教版2020--2021学年七年级语文下学期期中测试卷及答案(含两套题)

部编人教版2020--2021学年七年级语文下学期期中测试卷及答案(含两套题)

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题部编人教版2020--2021学年下学期期中测试卷及答案七年级 语文(满分:120分 时间: 120分钟)题号一 二 三 四 五 六 七 总分 得分第I 卷(选择题 共30分)一、(共9分,每小题3分)1.依次填入下面横线处的词语,恰当的一组是( )老王常有____的____,因为他是单干户。

他靠着____的只是一辆破旧的三轮车。

A .失群落伍 惶恐 活命B .失时落势 担忧 挣钱C .失群落伍 担忧 活命D .失时落势 惶恐 挣钱2.下列各句中有语病的一项是( )A .张爱萍将军称邓稼先为“‘两弹’元勋”是当之无愧的。

B .许先生是忙的,许先生的笑是愉快的,但是头发有些是白了的。

C .在那亘古的地层里,有着一股燃烧的洪流,像我的心喷涌着血液一样。

D .我的保姆,长妈妈即阿长,辞了这人世,大概也有了三十年了吧。

3.下列各句标点符号使用不规范的一项是( )A .也不知道稼先在蓬断草枯的沙漠中埋葬同事、埋葬下属的时候是什么心情?B .他“说”了。

说得真痛快,动人心,鼓壮志,气冲斗牛,声震天地!C .我们谈到红军、谈到苛捐杂税,谈到她住在这里的生活情形。

D .我们那里没有姓长的;她生得黄胖而矮,“长”也不是形容词。

二、(共9分,每小题3分) 阅读下面的文章,完成4~6题。

北平的街道①“无风三尺土,有雨一街泥”,这是北平街道的写照。

也有人说,下雨时像大墨盒,刮风时像大香炉,亦形容尽致。

像这样的地方,还值得去想念么?不知道为什么,我时常忆起北平街道的景象。

②北平苦旱,街道又修得不够好,大风一起,迎面而来,又黑又黄的尘土兜头洒下,顺着脖梗子往下灌,牙缝里会积存沙土,咯吱咯吱的响,有时候还夹杂着小碎石子,打在脸上挺痛,迷眼睛更是常事,这滋味不好受。

下雨的时候,大街上有时候积水没膝。

小胡同里到处是大泥塘,走路得靠墙,还要留心泥水溅个满脸花。

我小时候每天穿行大街小巷上学下学,深以为苦,长辈告诫我说,不可抱怨,从前的道路不是这样子,甬路高与檐齐,上面是深刻的车辙,那才令人视为畏途。

最新人教版七年级下学期数学《期中检测试题》附答案

最新人教版七年级下学期数学《期中检测试题》附答案

2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题(共10小题,每小题4分,满分40分,每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.9的平方根是( ) A. 9B. 3C. 9±D. 3±2.如图,∠1,∠2是对顶角的是( )A.B.C.D.3.在实数5,56,38-,3.14,3π,36,0.1010010001中,无理数有( )A. 2个B. 3个C. 4个D. 5个4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A. 60°B. 45°C. 50°D. 30°5.如图,数轴上表示实数5的点可能是( )A. 点AB. 点BC. 点CD. 点D6.下列命题是真命题是( ) A. 相等的角是对顶角 B. 在同一平面内,如果a b ⊥,b c ⊥,则a c ⊥ C. 内错角相等D. 如果//a b ,//b c ,则//a c7.如图所示,下列推理不正确的是( )A. 若1B ∠=∠,则//BC DEB. 若2ADE ∠=∠,则//AD CE C .若180A ADC ∠+∠=︒,则//AB CDD. 若180B BCD ∠+∠=︒,则//BC DE8.如果方程3x y -=与下列方程中的某个方程组成的方程组的解是4,1.x y =⎧⎨=⎩那么这个方程可以是( )A. 3416x y -=B. ()26x y y -=C.1254xy += D.1382x y += 9.某运输队接到给武汉运输物资的任务,该队有A 型卡车和B 型卡车,A 型卡车每次可运输6t 物资,每天可来回6次,B 型卡车每次可运输10t 物资,每天可来回4次,若每天派出20辆卡车,刚好运输860t 物资,设该运输队每天派出A 型卡车x 辆,B 型卡车y 辆,则所列方程组正确的是( )A. 6420610860x y x y +=⎧⎨+=⎩B. 2066410860x y x y +=⎧⎨⋅+⋅=⎩C. 20610860x y x y +=⎧⎨+=⎩D. 642066410860x y x y +=⎧⎨⋅+⋅=⎩10.若有330x y +=,则x 和y 的关系是( ) A. 0x y ==B. 0x y -=C.1xy =D. 0x y +=二、填空题(共6小题,每小题4分,满分24分,请将答案填写在答题卡相应位置)11.计算:64=__________;318-=__________. 12.已知1x =,8y =-是方程31ax y -=-解,则a 的值为__________.13.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.14.把命题改写成“如果……,那么……”的形式:两直线平行,同位角相等.________________________________________.15.已知α∠与β∠互补,且α∠与β∠的差是70°,则α∠=__________,β∠=__________. 16.一束光线照射到平面镜AB 上,然后在平面镜AB 和CD 之间来回反射,这时光线的入射角等于反射角,即12∠=∠,34∠=∠,56∠=∠.若已知150∠=︒,665∠=︒,那么∠3的度数为__________.三、解答题17.计算: (1)575-+;(2)310.0984+--18.解下列方程组:234327x y x y +=⎧⎨-=-⎩19.某小组去看电影,甲种票每张24元,乙种票每张20元.如果40人购票恰好用去920元,甲乙两种票各买了多少张? 20.完成下列证明:已知CD AB ⊥,FG AB ⊥,垂足分别为D 、F ,且12∠=∠,求证//DE BC .证明:∵AB CD ⊥,FG AB ⊥(已知), ∴90BDC BFG ∠=∠=︒(________________) ∴//CD GF (________________)∴23∠∠=(________________) 又∵12∠=∠(已知) ∴13∠=∠(等量代换)∴//DE BC (________________)21.已知47a +的立方根是3,222a b ++的算术平方根是4. (1)求a ,b 的值; (2)求63a b +的平方根.22.如图,已知AC BC ⊥于点C ,70DAB ∠=︒,AC 平分DAB ∠,35DCA ∠=︒.求B 的度数.23.某电器超市销售每台进价分别为2000元、1700元的A 、B 两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售款A 种型号B 种型号第一周4台5台 20500元第二周 5台 10台 33500元(1)求A 、B 两种型号的空调的销售单价; (2)求近两周的销售利润. 24.先阅读下面材料,再解答问题:材料:已知a ,b 是有理数,并且满足等式257273a b a =,求a ,b 的值. 解:∵257273a b a =- ∴257(2)73a b a =-∵a ,b有理数∴2523b a a -=⎧⎪⎨-=⎪⎩解得23136a b ⎧=-⎪⎪⎨⎪=⎪⎩问题:(1)已知a ,b 是有理数,3252a b +=+,则a =________,b =________. (2)已知x ,y 是有理数,并且满足等式7925232x x y y -+=-++,求x ,y 的值. 25.如图1,//AM CN ,点B 为平面内一点,AB BC ⊥于B ,过B 作BD CN ⊥,垂足为D .(1)求证:BAM CBD ∠=∠;(2)如图2,分别作CBD ∠、ABD ∠的平分线交DN 于E 、F ,连接AF ,若54CBF CBE ∠=∠,①求CBE ∠的度数; ②求证:CBF CFB ∠=∠.答案与解析一、选择题(共10小题,每小题4分,满分40分,每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.9的平方根是()A. 9 B. 3 C. 9± D. 3±【答案】D【解析】【分析】根据平方根的定义直接回答即可.【详解】9的平方根是3±,故选D.【点睛】本题是对平方根知识的考查,熟练掌握平方根的定义是解决本题的关键.2.如图,∠1,∠2是对顶角的是()A. B. C. D.【答案】C【解析】【分析】根据对顶角的定义,判断解答即可.【详解】解:根据对顶角的定义,选项C的图形符合对顶角的定义.故选:C.【点睛】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.3.55638- 3.14,3π360.1010010001中,无理数有()A. 2个B. 3个C. 4个D. 5个【答案】A【解析】【分析】根据无理数的三种类型:无限不循环小数、开方开不尽的数、含π的式子,进行判断即可.-,36=6【详解】38=-2π无理数有:5,3故答案选:A.【点睛】本题考查无理数,掌握无理数的定义是解题关键.4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A. 60°B. 45°C. 50°D. 30°【答案】D【解析】【分析】先根据∠1=60°,∠FEG=90°,求得∠3=30°,再根据平行线的性质,求得∠2的度数.【详解】如图,∵∠1=60°,∠FEG=90°,∴∠3=30°,∵AB∥CD,∴∠2=∠3=30°.故选D.【点睛】本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.5.5)A. 点AB. 点BC. 点CD. 点D【答案】A 【解析】 【分析】5 459<<, ∴253<<,52与3之间的数, 故选:A .459<<是解题的关键. 6.下列命题是真命题的是( ) A. 相等的角是对顶角 B. 在同一平面内,如果a b ⊥,b c ⊥,则a c ⊥ C. 内错角相等 D. 如果//a b ,//b c ,则//a c【答案】D 【解析】 【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案. 【详解】解:A .对顶角相等但相等的角不一定是对顶角,故该选项错误; B .在同一平面内,如果a b ⊥,b c ⊥,但a 不一定垂直c ,故该选项错误; C .两直线平行,内错角才相等,故该选项错误; D .如果//a b ,//b c ,则//a c ,故该选项是真命题. 故选:D【点睛】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.如图所示,下列推理不正确的是( )A. 若1B ∠=∠,则//BC DEB. 若2ADE ∠=∠,则//AD CEC. 若180A ADC ∠+∠=︒,则//AB CDD. 若180B BCD ∠+∠=︒,则//BC DE【答案】D 【解析】 【分析】根据平行线的判定定理即可判断.【详解】A 、若∠1=∠B ,则BC ∥DE ,不符合题意; B 、若∠2=∠ADE ,则AD ∥CE ,不符合题意; C 、若∠A+∠ADC=180°,则AB ∥CD ,不符合题意; D 、若∠B+∠BCD=180°,则AB ∥CD ,符合题意. 故选:D .【点睛】此题考查平行线的判定,解题关键在于掌握平行线的判定定理. 8.如果方程3x y -=与下列方程中的某个方程组成的方程组的解是4,1.x y =⎧⎨=⎩那么这个方程可以是( ) A. 3416x y -= B. ()26x y y -=C.1254x y += D.1382x y += 【答案】B 【解析】 【分析】把41x y =⎧⎨=⎩分别代入选项中的每一个方程,能够使得左右两边相等的即是正确选项.【详解】解:A 、当41x y =⎧⎨=⎩时,3x -4y =3×4-4×1=8≠16,故此选项错误; B 、当41x y =⎧⎨=⎩时,2(x -y )=2×(4-1)=6=6y ,故此选项正确;C 、当41x y =⎧⎨=⎩时,14x +2y =14×4+2×1=3≠5,故此选项错误;D 、当41x y =⎧⎨=⎩时,12x +3y =12×4+3×1=5≠8,故此选项错误.故选B .【点睛】本题考查的是二元一次方程组的解,熟知二元一次方程组的解一定适合此方程组中的每一个方程是解答此题的关键.9.某运输队接到给武汉运输物资的任务,该队有A 型卡车和B 型卡车,A 型卡车每次可运输6t 物资,每天可来回6次,B 型卡车每次可运输10t 物资,每天可来回4次,若每天派出20辆卡车,刚好运输860t 物资,设该运输队每天派出A 型卡车x 辆,B 型卡车y 辆,则所列方程组正确的是( )A. 6420610860x y x y +=⎧⎨+=⎩B. 2066410860x y x y +=⎧⎨⋅+⋅=⎩C. 20610860x y x y +=⎧⎨+=⎩D. 642066410860x y x y +=⎧⎨⋅+⋅=⎩【答案】B 【解析】 【分析】根据每天派出20辆卡车且刚好运输860t 物资,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】依题意,得:2066410860x y x y +=⎧⎨⋅+⋅=⎩.故选:B .【点睛】此题考查实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10.0=,则x 和y 的关系是( ) A. 0x y == B. 0x y -=C. 1xy=D. 0x y +=【答案】D 【解析】 【分析】根据立方根的性质得出x+y=0即可解答.0+=, ∴x+y=0故答案为D .【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.二、填空题(共6小题,每小题4分,满分24分,请将答案填写在答题卡相应位置) 11.计算:64=__________;318-=__________. 【答案】 (1). 8 (2). 12-【解析】【分析】根据算术平方根和立方根的定义求解即可.【详解】解:64=8,318-=12-. 故答案为:8,12-. 【点睛】本题考查了算术平方根和立方根的定义,掌握求算术平方根和立方根方法是解答本题的关键. 12.已知1x =,8y =-是方程31ax y -=-的解,则a 的值为__________.【答案】-3【解析】【分析】将x 、y 的值代入31ax y -=-,然后求解关于a 的一元一次方程即可.【详解】解:将x 、y 的值代入31ax y -=-,得3a+8=-1,解得a=-3.故答案为-3.【点睛】本题考查了方程的解以及解一元一次方程,解答本题的关键在于根据题意列出关于a 的一元一次方程.13.如图,要把池中的水引到D 处,可过D 点作CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据:______.【答案】垂线段距离最短.【解析】【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段, 且垂线段最短.【详解】解:过D 点引CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,根据垂线段最短.故答案为: 垂线段距离最短.【点睛】本题主要考查垂线段的应用,解决本题的关键是要掌握垂线段距离最短.14.把命题改写成“如果……,那么……”的形式:两直线平行,同位角相等.________________________________________.【答案】如果两直线平行,那么同位角相等.【解析】【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”, ∴写成“如果…,那么…”的形式为:“如果两直线平行,那么同位角相等”,故答案为:如果两直线平行,那么同位角相等.【点睛】本题考查了一个命题写成“如果…那么…”的形式,如果后面是题设,那么后面是结论,难度适中.15.已知α∠与β∠互补,且α∠与β∠的差是70°,则α∠=__________,β∠=__________. 【答案】 (1). 125° (2). 55°【解析】【分析】根据题意,结合补角的概念,易得∠α+∠β=180°,∠α-∠β=70°,联立方程解可得答案.【详解】解:根据题意得:∠α+∠β=180°,∠α-∠β=70°;解得:∠α=125°,∠β=55°.故答案为:125°,55°.【点睛】考查了余角和补角,此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.既有一定的综合性,是道不错的题.16.一束光线照射到平面镜AB 上,然后在平面镜AB 和CD 之间来回反射,这时光线的入射角等于反射角,即12∠=∠,34∠=∠,56∠=∠.若已知150∠=︒,665∠=︒,那么∠3的度数为__________.【答案】57.5°【解析】【分析】利用三角形内角和定理求出∠,再求出∠3与∠4的和即可解决问题.【详解】解:如图:∵∠1=∠2=50°,∠5=∠6=65°,∴∠7=180°-∠2-∠5=65°,∴∠3+∠4=180°-65°=115°,∵∠3=∠4,∴∠3=12×115°=57.5°, 故答案为:57.5°.【点睛】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题17.计算:(1575;(2310.0984-【答案】(17;(2)115 【解析】【分析】(1)先去绝对值,然后合并同类项,即可得到答案;(2)先计算算术平方根和立方根,然后合并,即可得到答案.【详解】(1)解:原式=(== (2)解:原式10.3(2)2=+--115=-. 【点睛】本题考查了二次根式的加减混合运算,绝对值的化简,算术平方根,立方根,解题的关键是熟练掌握运算法则进行解题.18.解下列方程组:234327x y x y +=⎧⎨-=-⎩【答案】12x y =⎧⎨=⎩ 【解析】【分析】由加减消元法解二元一次方程组,即可得到答案.【详解】解:234327x y x y +=⎧⎨-=-⎩①②, 将①×3得:6912x y +=③,②×2得:6414x y -=-④,将③-④得:1326y =,∴2y =,将2y =代入①中,得2324x +⨯=,∴1x =;∴这个方程组的解是12x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.19.某小组去看电影,甲种票每张24元,乙种票每张20元.如果40人购票恰好用去920元,甲乙两种票各买了多少张?【答案】甲种票买了30张,乙种票买了10张.【解析】【分析】设甲种票买了x 张,乙种票买了y 张,根据购买40张票共用了920元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设甲种票买了x 张,乙种票买了y 张,依题意可得402420920x y x y +=⎧⎨+=⎩解得:3010x y =⎧⎨=⎩; 答:甲种票买了30张,乙种票买了10张.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 20.完成下列证明:已知CD AB ⊥,FG AB ⊥,垂足分别为D 、F ,且12∠=∠,求证//DE BC .证明:∵AB CD ⊥,FG AB ⊥(已知),∴90BDC BFG ∠=∠=︒(________________)∴//CD GF (________________)∴23∠∠=(________________)又∵12∠=∠(已知)∴13∠=∠(等量代换)∴//DE BC (________________)【答案】详见解析【解析】【分析】由平行线的判定和性质进行证明,即可得到答案.【详解】证明:如图:∵AB CD ⊥,FG AB ⊥(已知),∴90BDC BFG ∠=∠=︒(垂直的定义)∴//CD GF (同位角相等,两直线平行)∴23∠∠=(两直线平行,同位角相等)又∵12∠=∠(已知)∴13∠=∠(等量代换)∴//DE BC (内错角相等,两直线平行).【点睛】本题考查了平行线的判定和性质,解题的关键是熟练掌握平行线的判定和性质进行证明. 21.已知47a +的立方根是3,222a b ++的算术平方根是4.(1)求a ,b 的值;(2)求63a b +的平方根.【答案】(1)5a =,2b =;(2)±6【解析】【分析】(1)运用立方根和算术平方根的定义求解.(2)根据平方根,即可解答.【详解】解:(1)∵47a +的立方根是3,222a b ++的算术平方根是4,∴4727a +=,22216a b ++=,∴5a =,2b =;(2)由(1)知5a =,2b =,∴63653236a b +=⨯+⨯=,∴63a b +的平方根为±6;【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的定义.22.如图,已知AC BC ⊥于点C ,70DAB ∠=︒,AC 平分DAB ∠,35DCA ∠=︒.求B 的度数.【答案】55°【解析】【分析】证明//DC AB ,求出125DCB ∠=︒ 即可解决问题.【详解】∵70DAB ∠=︒,AC 平分DAB ∠∴35DAC BAC ∠=∠=︒又∵35DCA ∠=︒∴DCA BAC ∠=∠∴//DC AB∴180DCB B ∠+∠=︒又∵AC BC ⊥∴90ACB ∠=︒∴125DCB DCA ACB ∠=∠+∠=︒∴18055B DCB ∠=︒-∠=︒【点睛】本题考查了三角形内角和定理和平行线的判定等知识,解题的郑爽旭熟练掌握基本知识.23.某电器超市销售每台进价分别为2000元、1700元的A 、B 两种型号的空调,如表是近两周的销售情况:销售时段 销售数量销售款A 种型号B 种型号 第一周 4台 5台 20500元第二周5台 10台 33500元(1)求A 、B 两种型号的空调的销售单价;(2)求近两周的销售利润.【答案】(1)A 型号空调的销售单价为2500元,B 型号空调的销售单价为2100元;(2)近两周的销售利润为10500元.【解析】【分析】(1)设A 型号空调的销售单价为x 元,B 型号空调的销售单价为y 元,由题意列出方程组,解方程组即可; (2)由每台空调的利润乘以两周的销售台数,即可得出答案.【详解】解:(1)设A 型号空调的销售单价为x 元,B 型号空调的销售单价为y 元,依题意可得4520500{51033500x y x y +=+= 解得25002100x y =⎧⎨=⎩答:A 型号空调的销售单价为2500元,B 型号空调的销售单价为2100元.(2)由(1)题知A 型号空调的销售单价为2500元,B 型号空调的销售单价为2100元,则销售总利润(25002000)(45)(21001700)(510)-++-+45006000=+10500=(元)答:近两周的销售利润为10500元.【点睛】本题考查了二元一次方程组的应用;正确列出方程组是解题的关键.24.先阅读下面材料,再解答问题:材料:已知a ,b是有理数,并且满足等式52b a =,求a ,b 的值.解:∵52b a =-∴5(2)b a =-∵a ,b 是有理数 ∴2523b a a -=⎧⎪⎨-=⎪⎩解得23136a b ⎧=-⎪⎪⎨⎪=⎪⎩问题:(1)已知a ,b 是有理数,3252a b +=+,则a =________,b =________.(2)已知x ,y 是有理数,并且满足等式7925232x x y y -+=-++,求x ,y 的值.【答案】(1)5a =,3b =;(2)21x y =⎧⎨=-⎩【解析】【分析】(1)根据阅读材料中的方法确定出a 与b 的值即可;(2)根据题意列出方程组,求出方程组的解即可得到x 与y 的值.【详解】(1)3252a b +=+,得到a=5,b=3;故答案为:5;3(2)∵7925232x x y y -+=-++∴79252(3)x x y y -+=-++∵a ,b 是有理数∴7953x y x y -=-⎧⎨=+⎩ 解得21x y =⎧⎨=-⎩【点睛】此题考查了二元一次方程组的解,以及实数的运算,弄清阅读材料中的方法是解本题的关键. 25.如图1,//AM CN ,点B 为平面内一点,AB BC ⊥于B ,过B 作BD CN ⊥,垂足为D . (1)求证:BAM CBD ∠=∠;(2)如图2,分别作CBD ∠、ABD ∠的平分线交DN 于E 、F ,连接AF ,若54CBF CBE ∠=∠,①求CBE ∠的度数;②求证:CBF CFB ∠=∠.【答案】(1)详见解析;(2)①20CBE ∠=︒;②详见解析【解析】【分析】(1)过点B 作//BG AM ,依据平行线的性质,以及同角的余角相等,即可得到BAM CBD ∠=∠; (2)设DBE CBE x ∠=∠=,依据平行线的性质表达各角即可求解.【详解】解:(1)过点B 作//BG AM∴BAM ABG ∠=∠∵AB BC ⊥∴90ABG CBG ∠=︒-∠∴90BAM CBG ∠=︒-∠∵//BG AM ,//AM CN∴//BG CN∵BD CN ⊥∴90DBG D ∠=︒=∠∴90CBD CBG ∠=︒-∠∴BAM CBD ∠=∠(2)如图2,∵BE 为CBD ∠的平分线精品试卷∴DBE CBE ∠=∠设DBE CBE x ∠=∠=,则2BAM x ∠=,54CBF x ∠= ①∵BF 为ABD ∠的平分线 ∴134ABF DBF x ∠=∠=∴13518 4 44ABC x x x ∠=+= ∵AB BC ⊥∴90ABC ∠=︒,即18904x =︒ ∴20x =︒,即20CBE ∠=︒②∵//BG AM ,//AM CN∴ABG BAM ∠=∠,//BG CN∴CFB FBG ∠=∠∴CFB BAM FBG ABG ∠+∠=∠+∠即CFB BAM ABF ∠+∠=∠ ∴135244CFB ABF BAM x x x ∠=∠-∠=-= ∴CBF CFB ∠=∠【点睛】本题主要考查了平行线的性质以及垂线的定义的综合运用,解决问题的关键是掌握:两直线平行,同旁内角互补;两直线平行,内错角相等.。

最新人教版七年级下学期数学《期中考试题》附答案

最新人教版七年级下学期数学《期中考试题》附答案

2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各图中,∠1与∠2是对顶角的是( ) A.B.C.D.2.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A. 1B. 2C. 3D. 43.下列各式中,正确的是( ) A.4=±2 B. ±42=C.2(2)2-=-D.3644-=-4.在实数:3.141 59,364,1.010 010 001, 4.21,π,227中,无理数有( ) A. 1个B. 2个C. 3个D. 4个5. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是( )°.A. 55B. 35C. 65D. 256.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A.B.C.D.7.已知点P (m ,n )在第三象限,则点Q (-m ,│n │)在( ). A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.已知点P 在第二象限,且到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为( ) A. (-5,3) B. (3,5)C. (-3,-5)D. (5,-3)9.若a 是16的平方根,b 是64的立方根,则a+b 的值是( )A . 4B. 4或0C. 6或2D. 610.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A. (1,3)B. (5,1)C. (1,3)或(3,5)D. (1,3)或(5,1)二、填空题(本大题共10小题,每小题3分,共30分)11.如图,∠1=∠2,∠3=110°,则∠4=_______. 12.一个正数的平方根是2a -1与5-a ,则这个正数是_________. 13.已知212a b +++=0,则ab 的平方根为_________. 14.如图,将直角三角形 ABC 沿 AB 方向平移 AD 长度得到三角形DEF ,已知BE=5, EF=8, CG=2,则图中阴影部分的面积为__________.15.点M (x ,y )位于第四象限,且|x|=2,y 2=9,则点M 的坐标是__________.16.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点__________ .17.若点M (a+2,a-3)在y 轴上,则点M 的坐标为____________. 18.已知 6.213≈2.493,62.13≈7.882,则0.006213≈______.19.命题“平行于同一条直线的两直线平行”的题设是__________________________,结论是_______,它是一个______命题(填“真”或“假”).20.已知AB 平行于y 轴,A 点的坐标为(-2,-1),并且AB=3,则B 点的坐标为__________. 三、解答题(本大题共8小题,共60分.)21.计算(1)+|-5|+364--(-1)2020(2)2316273|32|(5)+----+- 22.求下列各式中x 的值: (1)()22125x +=;(2)33(2)240x ++=.23.如图,已知AB ∥CD ,∠1=∠2,CF 平分∠DCE .(1)试判断直线AE 与BF 有怎样的位置关系,并说明理由; (2)若∠1=80°,求∠3的度数.24.已知21a -的立方根是3,31a b +-的算术平方根是9,求a+2b+6的平方根. 25.如图,EF ∥AD ,∠1=∠2,∠AGD=105°,求∠BAC 的度数.26.将下面的解答过程补充完整:如图,点E 在DF 上,点B 在AC 上,12∠=∠,C D ∠=∠.试说明:AC ∥DF .解:∵ 12∠=∠(已知)13∠=∠ ( )∴ 23∠∠=(等量代换)∴ ______∥_______( ) ∴ C ABD ∠=∠ ( ) ∵ C D ∠=∠(已知)∴ D ABD ∠=∠( ) ∴ AC ∥DF ( ) 27.三角形ABC (记作△ABC )8×8方格中,位置如图所示,A (-3,1),B (-2,4).(1)请你在方格中建立直角坐标系,并写出C 点坐标;(2)把△ABC 向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A 1B 1C 1,若△ABC 内部一点P 的坐标为(a ,b ),则点P 的对应点P 1的坐标是 .(3)在x 轴上存在一点D ,使△DB 1C 1的面积等于3,求满足条件的点D 的坐标.28.如图,已知AB∥CD,分别探究下面三个图形中∠P和∠A,∠C的关系,请你从所得三个关系中任意选出一个,说明你探究结论的正确性.结论:(1)___________________;(2)____________________;(3)_____________________;(4)选择结论____________,说明理由.答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各图中,∠1与∠2是对顶角的是()A. B. C. D. 【答案】A【解析】【分析】根据对顶角的定义对各图形判断即可.【详解】解:A、∠1和∠2是对顶角,故选项正确;B、∠1和∠2不是对顶角,故选项错误;C、∠1和∠2不是对顶角,故选项错误;D、∠1和∠2不是对顶角,故选项错误.故选A.【点睛】本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.2.如图,下列能判断AB∥CD的条件有()①∠B+∠BCD=180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A. 1B. 2C. 3D. 4【答案】C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB ∥CD ; ④∠B = ∠5,同位角相等,可判断AB ∥CD 故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB 与CD 这两条直线,故是错误的.3.下列各式中,正确的是( )=±2 2=2=-4=-【答案】D 【解析】 【分析】根据平方根及立方根的定义依次计算各项后即可解答.【详解】选项A =2,选项A 错误;选项B 2=±,选项B 错误;选项C =,选项C 错误;选项D 4=-,选项D 正确. 故选D .【点睛】本题考查了平方根及立方根的定义,熟练运用平方根及立方根的定义是解决问题的关键. 4.在实数:3.141 591.010 010 001, 4.21,π,227中,无理数有( ) A. 1个 B. 2个 C. 3个D. 4个【答案】A 【解析】 【分析】根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断即可得出答案. 【详解】解∵3.14159,1.010010001,4.21都是有限小数, ∴以上3个数是有理数4=,4是有限小数,∵223.1428577,3.142857是无限循环小数,∴227是有理数∵π是无限不循环小数,因此为无理数综上所述,无理数的个数为1.故答案为:A.【点睛】本题考查的知识点是无理数的定义,熟记定义是判断一个数是不是无理数的关键.5. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是()°.A. 55B. 35C. 65D. 25【答案】A【解析】试题分析:先根据直角定义求出∠1的余角,再利用两直线平行,同位角相等即可求出∠2的度数.解:如图,∵∠1=35°,∴∠3=90°﹣∠1=55°,∵直尺两边平行,∴∠2=∠3=55°(两直线平行,同位角相等).故选A.【点评】本题与实际生活联系,主要考查平行线的性质,需要熟练掌握.6.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.【答案】B【解析】【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键.7.已知点P(m,n)在第三象限,则点Q(-m,│n│)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数,确定-m>0,│n│>0,再判断点Q所在的象限即可.【详解】∵点P(m,n)在第三象限,∴m<0,n<0,∴-m>0,│n│>0,∴点Q(-m,│n│)在第一象限,故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.已知点P在第二象限,且到x轴的距离为3,到y轴的距离为5,则点P的坐标为()A. (-5,3)B. (3,5)C. (-3,-5)D. (5,-3)【答案】A【解析】【分析】已知点P在第二象限,可得点P的横坐标为负,纵坐标为正;再由点P到x轴的距离是3,可得点P的纵坐标为3;由点P到y轴的距离是5,可得点P的横坐标为-5,由此即可得点P的坐标为(-5,3).【详解】∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是3,∴纵坐标为3,∵到y轴的距离是5,∴横坐标为-5,∴P(-5,3),故选A.【点睛】本题考查了平面内的点的坐标特征及点到坐标轴距离的意义,熟练运用相关知识是解决问题的关键.9.若a b a+b的值是()A. 4B. 4或0C. 6或2D. 6【答案】C【解析】【分析】由a a=±2,由b b=4,由此即可求得a+b的值.【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、b=4是解决问题的关键.10.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A. (1,3)B. (5,1)C. (1,3)或(3,5)D. (1,3)或(5,1)【答案】D【解析】【分析】分两种情况考虑:①A点移动到C点,则向右移动一位,向上移动两位,另一个点同等平移即可;②B点移动到C点,则向右移动三位,再向上移动一位,另一个点同等平移即可.【详解】分两种情况考虑:1,3;①A点移动到C点,则向右移动一位,向上移动两位,则B点平移后坐标为()5,1.②B点移动到C点,则向右移动三位,再向上移动一位,则A点平移后坐标为()故答案选:D.【点睛】本题考查坐标系中点的平移变换,掌握点的变换情况以及分类讨论是解题关键.二、填空题(本大题共10小题,每小题3分,共30分)11.如图,∠1=∠2,∠3=110°,则∠4=_______.【答案】70【解析】【分析】由∠1=∠2可得AB//CD,根据平行线的性质可得∠3+∠4=180°,进而可得答案.【详解】∵∠1=∠2,∴AB//CD,∴∠3+∠4=180°,∴∠4=180°-110°=70°.故答案为70°【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定定理及性质是解题关键.12.一个正数的平方根是2a -1与5-a ,则这个正数是_________.【答案】81【解析】【分析】根据平方根的定义得到2a-1与5-a 互为相反数,列出关于a 的方程,求出方程的解得到a 的值,即可确定出这个正数. 【详解】解:根据题意得:2a-1+5-a=0,解得:a=-4,∴2a -1=-9;5-a =9,则这个正数为81故答案为:81.【点睛】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.13.已知21a +,则ab 的平方根为_________.【答案】±1【解析】【分析】根据绝对值和二次根式的非负性求出a,b 的值,再求出ab 的平方根.【详解】∵21a +∴2a+1=0,b+2=0解得a=12-,b=-2∴ab=1故ab 的平方根为±1故答案为:±1.【点睛】此题主要考查平方根的求解,解题的关键是熟知非负性的运用.14.如图,将直角三角形 ABC 沿 AB 方向平移 AD 的长度得到三角形DEF ,已知BE=5,EF=8, CG=2,则图中阴影部分的面积为__________.【答案】35【解析】【分析】根据平移的性质可得△DEF≌△ABC,S△DEF=S△ABC,则阴影部分的面积=梯形BEFG的面积,再根据梯形的面积公式即可得到答案.【详解】解:∵Rt△ABC沿AB的方向平移AD距离得△DEF,∴△DEF≌△ABC,∴EF=BC=8,S△DEF=S△ABC,∴S△ABC-S△DBG=S△DEF-S△DBG,∴S四边形ACGD=S梯形BEFG,∵CG=2,∴BG=BC-CG=8-2=6,∴S梯形BEFG=12(BG+EF)•BE=12(6+8)×5=35.故答案为:35.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.同时考查了梯形的面积公式.15.点M(x,y)位于第四象限,且|x|=2,y2=9,则点M的坐标是__________.【答案】(2,-3)【解析】【分析】根据绝对值的性质与有理数乘方的定义求出x、y的值,再根据第四象限内点的横坐标是正数,纵坐标是负数解答.【详解】解:∵|x|=2,y2=9,∴x=±2,y=±3,∵点M(x,y)在第四象限,∴x=2,y=-3,∴点M的坐标为(2,-3).故答案:(2,-3).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点__________.【答案】(-2,1)【解析】【分析】以“将”位于点(1,-2)为基准点,再根据右加左减,上加下减来确定坐标即可.【详解】解:以“将”位于点(1,-2)为基准点,则“炮”位于点(1-3,-2+3),即为(-2,1)故答案为:(-2,1).【点睛】本题考查了类比点的坐标及学生解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.17.若点M(a+2,a-3)在y轴上,则点M的坐标为____________.【答案】(0,-5)【解析】【分析】让点M的横坐标为0即可求得a的值,进而求得点M的坐标.【详解】解:∵M(a+2,a-3)在y轴上,∴a+2=0,a=-2,∴点M的坐标为(0,-5).故答案为:(0,-5).【点睛】本题考查坐标轴上的点的坐标特点,掌握y轴上的点的横坐标为0是本题的解题关键.18. 2.4937.882【答案】0.07882【解析】【分析】根据被开方数的小数点每向左或右移动两位,算术平方根的小数点就向左或右移动一位即可得出答案.7.882,0.07882.故答案为:0.07882.【点睛】本题考查了算术平方根,掌握算术平方根和被开方数小数点的移动规律是解题的关键.19.命题“平行于同一条直线的两直线平行”的题设是__________________________,结论是_______,它是一个______命题(填“真”或“假”).【答案】(1). 两条直线平行于同一条直线(2). 这两条直线也互相平行(3). 真【解析】【分析】每一个命题都一定能用“如果…那么…”的形式来叙述.“如果”后面的内容是题设,“那么”后面的内容是结论.然后根据平行线的判定方法可判断命题为真命题.【详解】解:命题:“平行于同一条直线的两条直线平行”的题设是两条直线平行于同一条直线,结论是这两条直线也互相平行.它是一个真命题故答案为:两条直线平行于同一条直线;这两条直线也互相平行;真.【点睛】本题考查了命题与定理:命题判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.20.已知AB平行于y轴,A点的坐标为(-2,-1),并且AB=3,则B点的坐标为__________.【答案】(-2,2)或(-2,-4)【解析】【分析】先确定出点B的纵坐标,再分点B在点A的上边与下边两种情况求出点B的横坐标,从而得解.【详解】解:∵AB∥y轴,点A的坐标为(-2,-1),∴点B 的横坐标为-2,∵AB=3,∴点B 在点A 的上边时,点B 的纵坐标为-1+3=2,点B 在点A 的下边时,点B 的纵坐标为-1-3=-4,∴点B 的坐标为:(-2,2)或(-2,-4).故答案为:(-2,2)或(-2,-4).【点睛】本题考查了坐标与图形的性质,根据平行线间的距离相等求出点B 的纵坐标,求横坐标时要注意分点B 在点A 的上下两种情况求解.三、解答题(本大题共8小题,共60分.)21.计算(1)+|-5|+1)2020(22|【答案】(1)0;(2)4.【解析】【分析】(1)实数的混合运算,先化简绝对值、求一个数的立方根,乘方,然后再做加减;(2)二实数的混合运算,先化简二次根式和求一个数的立方根及绝对值,然后去括号,最后做加减.【详解】解:(1)+|-5|1)2020=5-4-1=0(22|=43(25--+=435-=4【点睛】本题考查实数的混合运算,掌握运算法则和顺序正确计算是解题关键.22.求下列各式中x 的值:(1)()22125x +=;(2)33(2)240x ++=.【答案】(1)x=2或-3;(2)x=-4.【解析】【分析】(1)利用平方根的概念解方程;(2)利用立方根的概念解方程.【详解】解:(1)()22125x +=215x +=± 215x +=24=x2x =或215x +=-26x =-3x =-∴x=2或-3;(2)33(2)240x ++=33(2)=24x +-3(2)=8x +-2=2x +-=4x -【点睛】本题考查平方根和立方根的应用,掌握平方根和立方根的概念正确计算是本题的解题关键. 23.如图,已知AB ∥CD ,∠1=∠2,CF 平分∠DCE .(1)试判断直线AE 与BF 有怎样的位置关系,并说明理由;(2)若∠1=80°,求∠3的度数.【答案】1)AC ∥BD ,理由见解析;(2)50°【分析】(1)先根据AB ∥CD 得出∠2=∠CDF ,再由∠1=∠2即可得出结论;(2)先求出∠ECD 的度数,再由角平分线的性质求出∠ECF 的度数,根据平行线的性质即可得出结论.【详解】解:(1)AC ∥BD .理由:∵AB ∥CD ,∴∠2=∠CDF .∵∠1=∠2,∴∠1=∠CDF ,∴AC ∥BD ;(2)∵∠1=80°,∴∠ECD=180°-∠1=180°-80°=100°.∵CF 平分∠ECD ,∴∠ECF=12∠ECD=50°. ∵AC ∥BD ,∴∠3=∠ECF=50°.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.24.已知21a -的立方根是3,31a b +-的算术平方根是9,求a+2b+6的平方根.【答案】±10【解析】【分析】根据立方根的和算术平方根的定义列出二元一次方程组,求出a ,b 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:21273181a ab -=⎧⎨+-=⎩, 解得:1440a b =⎧⎨=⎩, 则a+2b+6=14+80+6=100,100的平方根是±10∴a+2b+6的平方根是±10.【点睛】本题考查了立方根的定义,平方根的定义及解二元一次方程组,熟记概念并求出a 、b 的值是解题25.如图,EF ∥AD ,∠1=∠2,∠AGD=105°,求∠BAC 的度数.【答案】∠BAC=75°【解析】【分析】依据平行线的性质,即可得到∠2=∠3,结合∠1=∠2,即可得出∠1=∠3,进而得到AB ∥DG ,依据平行线的性质,即可得到∠BAC 的度数.【详解】解:∵EF ∥AD (已知)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3(等式性质或等量代换)∴AB ∥DG (内错角相等,两直线平行)∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)又∵∠AGD=105°(已知)∴∠BAC=75°【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.26.将下面的解答过程补充完整:如图,点E 在DF 上,点B 在AC 上,12∠=∠,C D ∠=∠.试说明:AC ∥DF .解:∵ 12∠=∠(已知)13∠=∠ ( )∴ 23∠∠=(等量代换)∴ ______∥_______( )∴ C ABD ∠=∠ ( )∵ C D ∠=∠(已知)∴ D ABD ∠=∠( )∴ AC ∥DF ( )【答案】对顶角相等;BD ;CE ;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行【解析】【分析】由已知条件结合对顶角相等求得23∠∠=,从而根据同位角相等,两直线平行的判定方法证得BD ∥ CE ,然后根据两直线平行,同位角相等的性质求得C ABD ∠=∠,从而求得∠D=∠ABD ,然后内错角相等,两直线平行的判定方法即可解决问题;【详解】解:∵ 12∠=∠(已知)13∠=∠(对顶角相等)∴ 23∠∠=(等量代换)∴ BD ∥ CE (同位角相等,两直线平行)∴ C ABD ∠=∠(两直线平行,同位角相等)∵ C D ∠=∠(已知)∴ D ABD ∠=∠(等量代换)∴ AC ∥DF (内错角相等,两直线平行)故答案为:对顶角相等;BD ;CE ;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行【点睛】本题考查了平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.三角形ABC (记作△ABC )在8×8方格中,位置如图所示,A (-3,1),B (-2,4).(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.【答案】(1)画图见解析,C(1,1);(2)画图见解析,(a+2,b-1);(3)D(1,0)或(5,0)【解析】【分析】(1)根据点A、B的坐标和直角坐标系的特点建立直角坐标系;(2)分别将点A、B、C向下平移1个单位长度,再向右平移2个单位长度,然后顺次连接各点,并写出点P的对应点P1的坐标;(3)根据三角形的面积求出C1D的长度,再分两种情况求出OD的长度,然后写出点D的坐标即可.【详解】解:(1)直角坐标系如图所示,C点坐标(1,1);(2)△A1B1C1如图所示,点P1坐标(a+2,b-1);故答案为:(a+2,b-1);(3)设点D坐标为(a,0),则:△DB1C1的面积=12C1D×OB1=3,即12|a-3|×3=3,解得:a=1或a=5,综上所述,点D的坐标为(1,0)或(5,0).【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.28.如图,已知AB∥CD,分别探究下面三个图形中∠P和∠A,∠C的关系,请你从所得三个关系中任意选出一个,说明你探究结论的正确性.结论:(1)___________________;(2)____________________;(3)_____________________;(4)选择结论____________,说明理由.【答案】(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PCD=∠APC+∠PAB;(4)∠APC+∠PAB+∠PCD=360°,理由见解析.【解析】【分析】(1)过点P作PE∥AB,则AB∥PE∥CD,再根据两直线平行,同旁内角互补即可解答;(2)过点P作PF∥AB,则AB∥CD∥PF,再根据两直线平行,内错角相等即可解答;(3)根据AB∥CD,可得出∠1=∠PCD,再根据三角形外角的性质进行解答;(4)选择以上结论任意一个进行证明即可.【详解】解:(1)过点P作PE∥AB,则AB∥PE∥CD,∴∠1+∠PAB=180°,∠2+∠PCD=180°,∴∠APC+∠PAB+∠PCD=360°.故答案为:∠APC+∠PAB+∠PCD=360°;(2)过点P作直线PF∥AB,∵AB∥CD,∴AB∥PF∥CD,∴∠PAB=∠1,∠PCD=∠2,∴∠APC=∠PAB+∠PCD.故答案为:∠APC=∠PAB+∠PCD;(3)∵AB∥CD,∴∠1=∠C,∵∠1=∠PAB+∠APC,∴∠PCD=∠APC+∠PAB.故答案为:∠PCD=∠APC+∠PAB.(4)选择结论∠APC+∠PAB+∠PCD=360°理由:过点P作PE∥AB,则AB∥PE∥CD,∴∠1+∠PAB=180°,∠2+∠PCD=180°,∴∠APC+∠PAB+∠PCD=360°故答案为:∠APC+∠PAB+∠PCD=360°.【点睛】本题考查的是平行线的性质及三角形外角的性质,能根据题意作出辅助线,再利用平行线的性质进行解答是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

43
2
1E
D
C
B
A
阿岗二中2020-2021学年下学期期中教学质量监测
七年级数学
(全卷三个大题,满分12021考试用时12021)
一、选择题(本题共8小题,每小题3分,满分共24分)
1. 在平面直角坐标系中,点A(-4,0)在( )
A.x 轴正半轴上
B.x 轴负半轴上
C.y 轴正半轴上
D.y 轴负半轴上
2. 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )
A. ∠D+∠DAB=180°
B.∠B=∠DCE
C.∠1=∠2.
D.∠3=∠4 3.以下列各组长度的线段为边,能构成三角形的是( )
A .7cm ,5cm ,12cm
B .6cm ,8cm ,15cm
C .4cm ,6cm ,5cm
D .8cm ,4cm ,3cm
4.如图,木工师傅做门框时,常用木条EF 固定矩形门框ABCD ,使其不变 形,这种做法的依据是( )
A .两点之间线段最短
B .四边形的不稳定性
C .三角形的稳定性
D .矩形的四个角都是直角 5.下列说法正确的是( )
A .同位角相等
B .过一点有且只有一条直线与已知直线平行
C .过一点有且只有一条直线与已知直线垂直
D .只用一种图形进行镶嵌,三角形、四边形、六边形都可以镶嵌 6.点M 在y 轴的左侧,到x 轴,y 轴的距离分别是3和5,则点M 的坐标是( ) A .(-5,3) B .(-5,-3) C .(5,3)或(-5,3) D .(-5,3)或(-5,-3)
7.△DEF 是由△ABC 平移得到的,点A(-1,-4)的对应点为D(1,-1),点B(1,1)的对应点E 、点C(-1,4)的对应点F .则E 、F 的坐标分别为( )
A .(2,2),(3,4)
B .(3,4),(1,7)
C .(-2,2),(1,7)
D .(3,4),(2,-2)
8. 在△ABC 中,∠A=500
,∠ABC 的角平分线和∠ACB 的角平分线相交所成的∠BOC 的度数是( ) A. 1300
B.1250
C.1150
D.250
二、填空题(每小题3分,共30分) 9. 二元一次方程kx -3y=2的一组解是1
2
x y =⎧⎨
=-⎩,则k=_______
10.如图,计划把河水引到水池A 中,先引CD AB ⊥,垂足为B ,然后沿AB 开渠,能使所开的渠道
11.如图,直线12.已知一个多边形的内角和与它的外角和的比是9:2,则这个多边形是 边形 13. 等腰三角形一边等于4,另一边等于9,则周长是_________ . 14. 将方程632=+y x 写成用含x 的代数式表示y ,则y =
15.命题“等角的余角相等”的题设是: 结论是: 。

16. 一个多边形的每一个外角都等于30°,则该多边形的内角和等于
17.已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|=_____________ 18. 把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点 为G ,D 、C 分别在M 、N 的位置上,若∠EFG =55°, 则 ∠1=_______,∠2=_______.
三、解答题(本大题共8个小题,满分66分) 19. 用你掌握的方法解下列方程组(8分) 15(2)(2)362
3x y x y +=+⎧⎪
-+⎨=⎪⎩
(1)
321324
x y x y -=⎧⎨
+=⎩
2021如图,EF ∥AD,∠1=∠2,∠BAC=80°.将求∠AGD 的过程填写完整. 因为EF ∥AD, (8分)
所以∠2=____(____________________________)
又因为∠1=∠2 所以∠1=∠3(______________)
所以AB ∥_____(_____________________________) 所以∠BAC+______=180°(_____________________) 因为∠BAC=80°所以∠AGD=_______
O
C B A
a
(18题图)
B
A C
D E
F G
M
N
1
2
G
F
D C
B
A
2
1
21. 如图,△ABC 在直角坐标系中,(10分) (1)请写出△ABC 各点的坐标.(2)求出S △ABC. (3)若把△ABC 向上平移2个单位,再向右平移2个单位得△A ′B ′C ′,在图中画出△ABC 变化位置,并写出A ′、B ′、C ′的坐标.
22.(7分)如图,已知BA DG //,21∠=∠,你能否判断EF AD //? 试说明你的理由.
23. (8分)如图,△ABC 中,AD ⊥BC ,AE 平分∠BAC ,∠B=50°,∠C=70°,求∠DAE 的度数.
24. (8分)已知,如图,BD 是△ABC 的角平分线,且DE ∥BC 交AB 于E 点,∠A = 45°,∠BDC = 60°,求∠BDE 的度数。

25. 观察下面图形,解答下列问题:(9分)
(1)在上面第四个图中画出六边形的所有对角线;(2分)
(2)
(3)若一个多边形的内角和为1440°,求这个多边形的边数和对角线的条数。

(3分)
26.(8分) 在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:
李小波:阿姨,您好!
售货员:同学,你好,想买点什么?
李小波:我只有100元,请帮我安排买10支钢笔和12本笔记本.
售货员:好,每支钢笔比每本笔记本贵3元,退你4元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
A E
B C
D。

相关文档
最新文档