高中数学一轮复习专题学案——综合运用
高考数学一轮复习 第六章 数列6.5数列的综合应用教学案 理 新人教A版
高考数学一轮复习第六章数列6.5数列的综合应用教学案理新人教A版考纲要求1.以递推关系为背景,在等差、等比数列交汇的题目中,进行数列的基本运算,求数列的通项公式与前n项和.2.在数列与函数、不等式、解析几何的交汇处,考查数列的综合应用.3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.1.数列在实际生活中有着广泛的应用,其解题的基本步骤,可用图表示如下:2.数列应用问题的常见模型(1)等差模型:一般地,如果增加(或减少)的量是一个固定的具体量时,该模型是等差模型,增加(或减少)的量就是公差,其一般形式是:a n+1-a n=d(常数).(2)等比模型:一般地,如果增加(或减少)的量是一个固定的百分数时,该模型是等比模型,与变化前的量的比就是公比.(3)混合模型:在一个问题中,同时涉及到等差数列和等比数列的模型.(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5)递推模型:如果容易找到该数列任意一项(第2项起)与它的前一项(或前几项)间的递推关系式,那么我们可以用递推数列的知识求解问题.1.(2012北京高考)已知{a n}为等比数列,下面结论中正确的是( ).A.a1+a3≥2a2B.a21+a23≥2a22C.若a1=a3,则a1=a2D.若a3>a1,则a4>a22.已知{a n},{b n}均为等差数列,且a2=8,a6=16,b2=4,b6=a6,则由{a n},{b n}的公共项组成的新数列{c n}的通项公式c n=( ).A.3n+4 B.6n+2C.6n+4 D.2n+23.现有200根相同的钢管,把它们堆成三角形垛,要使剩余的钢管尽可能少,那么剩余的钢管为( ).A.9根B.10根C.19根D.21根4.在数列{a n}中,对任意自然数n∈N*恒有a1+a2+…+a n=2n-1,则a1+a22+a33+…+a n n=__________.5.一个蜂巢里有1只蜜蜂,第一天,它飞出去找回了2个伙伴;第二天3只蜜蜂飞出去,各自找回了2个伙伴,…,如果这个找伙伴的过程继续下去,第五天所有蜜蜂都归巢后,蜂巢中一共有__________只蜜蜂.一、等差、等比数列的综合问题【例1】已知等差数列{a n}的前四项的和A4=60,第二项与第四项的和为34,等比数列{b n}的前四项的和B4=120,第二项与第四项的和为90.(1)求数列{a n},{b n}的通项公式;(2)设c n =a n ·b n ,且{c n }的前n 项和为S n ,求S n . 方法提炼1.等差数列与等比数列相结合的综合问题是高考考查的重点,特别是等差、等比数列的通项公式,前n 项和公式以及等差中项、等比中项问题是历年命题的热点.2.利用等比数列前n 项和公式时注意公比q 的取值,同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降低题目的难度,解题时有时还需利用条件联立方程组求解.请做演练巩固提升1二、数列在实际问题中的应用【例2】 有一种零存整取的储蓄项目,在每月某日存入一笔相同金额,这是零存;到期可以提出全部本金和利息,这是整取.它的本利和公式如下:本利和=每期存入的金额×[存期+12×存期×(存期+1)×利率].(1)试解释这个本利和公式;(2)若每月初存入100元,月利率为5.1%,到第12个月底的本利和是多少?(3)若每月初存入一笔金额,月利率是5.1%,希望到第12个月底取得本利和2 000元,那么每月初应存入多少?方法提炼1.解等差、等比数列应用题时,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差、等比数列问题,使关系明朗化、标准化.然后用等差、等比数列知识求解.这其中体现了把实际问题数学化的能力,也就是所谓的数学建模能力.2.等比数列中处理分期付款问题的注意事项 (1)准确计算出在贷款全部付清时,各期所付款额及利息(注:最后一次付款没有利息). (2)明确各期所付的数额连同到最后一次付款时所生的利息之和,等于商品售价及从购买到最后一次付款时的利息之和.只有掌握了这一点,才可顺利建立等量关系.提醒:银行储蓄单利公式及复利公式分别是:单利公式——设本金为a 元,每期利率为r ,存期为n ,则本利和a n =a (1+rn ),属于等差模型.复利公式——设本金为a 元,每期利率为r ,存期为n ,则本利和a n =a (1+r )n,属于等比模型.请做演练巩固提升3三、数列与解析几何、不等式的综合应用【例3】 已知函数f (x )在(-1,1)上有定义,f ⎝ ⎛⎭⎪⎫12=-1,且满足x ,y ∈(-1,1)时,f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy .(1)证明f (x )在(-1,1)上为奇函数;(2)设数列{x n }中,x 1=12,x n +1=2x n1+x 2n,求用n 表示f (x n )的表达式;(3)求证:当n ∈N *时,1f x 1+1f x 2+…+1f x n >-2n +5n +2恒成立.方法提炼数列、函数、解析几何、不等式是高考的重点内容,将三者综合在一起,强强联合命制大型综合题是历年高考的热点和重点.数列是特殊的函数,以数列为背景的不等式证明问题及以函数为背景的数列综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,从而一直成为高考命题者的首选.请做演练巩固提升4构造新数列解答数列问题【典例】 (12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1(n ≥2).求证:S 21+S 22+…+S 2n ≤12-14n.规范解答:∵a n =-2S n ·S n -1(n ≥2), ∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2(n ≥2),(2分)∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列.∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n .∴S n =12n .(4分)将S n =12n 代入a n =-2S n ·S n -1,得a n=⎩⎪⎨⎪⎧12n =1,12n -2n2n ≥2.(7分)∵S 2n =14n 2<14n n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n ≥2),S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n =14+14×2×2+…+14·n ·n<14+14⎝ ⎛⎭⎪⎫1-12+…+14⎝ ⎛⎭⎪⎫1n -1-1n =12-14n;(10分)当n =1时,S 21=14=12-14×1.综上,S 21+S 22+…+S 2n ≤12-14n.(12分)答题指导:1.在数列的解题过程中,常常要构造新数列,使新数列成为等差或等比数列.构造新数列可以使题目变得简单,而构造新数列要抓住题目信息,不能乱变形.2.本题首先构造新数列⎩⎨⎧⎭⎬⎫1S n ,其次应用放缩法,并且发现只有应用放缩法才能用裂项相消法求和,从而把问题解决.事实上:14n 2<14n n -1,也可以看成一个新构造:b n =14n n -1.1.已知等差数列{a n }的公差d ≠0,等比数列{b n }的公比q 是小于1的正有理数.若a 1=d ,b 1=d 2,且a 21+a 22+a 23b 1+b 2+b 3是正整数,则q 等于( ).A .-17B .17C .12D .-122.(2012北京高考)某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,m 的值为( ).A.5 B.7 C.9 D.113.一辆邮政车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),每停靠一站便要卸下前面各站发往该站的邮袋各一个,同时又要装上该站发往后面各站的邮袋各一个,设该车从各站出发时邮政车内的邮袋数构成一个有穷数列{a k}(k=1,2,3,…,n).(1)求a1,a2,a3;(2)邮政车从第k站出发时,车内邮袋共有多少个?4.已知正项数列{a n}的前n项和为S n,且a n+1a n=2S n,n∈N*.(1)求证:数列{S2n}是等差数列;(2)求解关于n的不等式a n+1(S n+1+S n)>4n-8;(3)记数列b n=2S3n,T n=1b1+1b2+…+1b n,证明:1-1n+1<T n<32-1n.参考答案基础梳理自测基础自测 1.B2.C 解析:设{a n }的公差为d 1,{b n }的公差为d 2,则d 1=a 6-a 26-2=84=2,d 2=b 6-b 26-2=124=3.∴a n =a 2+(n -2)×2=2n +4, b n =b 2+(n -2)×3=3n -2.∴数列{a n }为6,8,10,12,14,16,18,20,22,…,数列{b n }为1,4,7,10,13,16,19,22,…. ∴{c n }是以10为首项,以6为公差的等差数列. ∴c n =10+(n -1)×6=6n +4.3.B 解析:设堆成x 层,得1+2+3+…+x ≤200,即求使得x (x +1)≤400成立的最大正整数x ,应为19.∴200-19(19+1)2=10.4.2n +1-3 解析:∵a 1+a 2+…+a n =2n -1, 当n ≥2时,a 1+a 2+…+a n -1=2(n -1)-1, 两式作差得a n =2(n ≥2), 当n =1时,a 1=1,∴a 1+a 22+a 33+...+a n n =1+22+23+ (2)=1+22(1-2n -1)1-2=2n +1-3.5.243 解析:第一天1+2只,第二天有a 2=3a 1=9只,第三天a 3=3a 2=27,…,故第n 天为a n =3n ,则a 5=35=243. 考点探究突破【例1】 解:(1)由题意知,对数列{a n }, ⎩⎪⎨⎪⎧ a 2+a 4=34,A 4=60⇒⎩⎪⎨⎪⎧ a 2+a 4=34,a 1+a 3=26, ①② ∴①-②可得:2d =8. ∴d =4,a 1=9.∴a n =4n +5(n ∈N *).由题意知,对数列{b n },⎩⎪⎨⎪⎧B 4=120,b 2+b 4=90,∴⎩⎪⎨⎪⎧ b 1+b 3=30,b 2+b 4=90.③④④÷③可得q =3,则b 1=3,∴b n =3×3n -1=3n (n ∈N *).(2)由c n =a n ·b n =(4n +5)·3n,∴S n =9·3+13·32+17·33+…+(4n +5)·3n. 两边同乘以3,得3S n =9·32+13·33+17·34+…+(4n +1)·3n +(4n +5)·3n +1. 两式相减,得-2S n =9·3+4·32+4·33+…+4·3n -(4n +5)·3n +1=27+4·32(1-3n -1)1-3-(4n +5)·3n +1=27+2·3n +1-18-(4n +5)·3n +1,∴S n =12[(4n +3)·3n +1-9].【例2】 解:(1)设每期存入的金额为A ,每期利率为P ,存期为n ,则各期的利息之和为nAP +(n -1)AP +…+2AP +AP =n (n +1)AP2,所以本利和为nA +n (n +1)AP2=A ⎣⎢⎡⎦⎥⎤n +n (n +1)2P (元). (2)到第12个月底的本利和为100⎣⎢⎡⎦⎥⎤12+12×12×(12+1)×5.1% =1 597.8(元).(3)设每月初应存入x 元,则有x ⎣⎢⎡⎦⎥⎤12+12×12×(12+1)×5.1%=2 000, 解得x ≈125.2.所以每月初应存入125.2元.【例3】 解:(1)证明:令x =y =0, 得2f (0)=f (0), ∴f (0)=0.令y =-x ,得f (x )+f (-x )=f (0)=0. ∴f (-x )=-f (x ).∴f (x )在(-1,1)上是奇函数.(2)f (x 1)=f ⎝ ⎛⎭⎪⎫12=-1, f (x n +1)=f ⎝ ⎛⎭⎪⎫2x n 1+x 2n =f ⎝ ⎛⎭⎪⎫x n +x n 1+x n x n=f (x n )+f (x n )=2f (x n ),∴数列{f (x n )}是以-1为首项,以2为公比的等比数列.∴f (x n )=-2n -1.(3)证明:1f (x 1)+1f (x 2)+…+1f (x n )=-⎝ ⎛⎭⎪⎫1+12+122+…+12n -1=-1-12n1-12=-2+12n -1>-2,而-2n +5n +2=-⎝ ⎛⎭⎪⎫2+1n +2=-2-1n +2<-2,∴当n ∈N *时,1f (x 1)+1f (x 2)+…+1f (x n )>-2n +5n +2恒成立.演练巩固提升1.C 解析:因为q 是小于1的正有理数,所以首先排除选项A ,D. 又a 12+a 22+a 32b 1+b 2+b 3=a 12+(a 1+d )2+(a 1+2d )2b 1+b 1q +b 1q 2=14d 2d 2(1+q +q 2)=141+q +q 2, 则将B ,C 选项中公比q 的值逐一代入141+q +q 2检验知,只有当q =12时,a 12+a 22+a 32b 1+b 2+b 3才是正整数,所以q =12.2.C 解析:结合S n 与n 的关系图象可知,前2年产量均为0,显然S 22=0为最小,在第3年~第9年期间,S n 的增长呈现持续稳定性.但在第9年之后,S n 的增长骤然降低,因为当n =9时,S 99的值为最大,故m 的值为9.3.解:(1)由题意得a 1=n -1, a 2=(n -1)+(n -2)-1=2n -4,a 3=(n -1)+(n -2)+(n -3)-1-2=3n -9.(2)在第k 站出发时,放上的邮袋共(n -1)+(n -2)+…+(n -k )个, 而从第二站起,每站放下的邮袋共1+2+3+…+(k -1)个,故a k =(n -1)+(n -2)+…+(n -k )-[1+2+…+(k -1)]=kn -12k (k +1)-12k (k -1)=kn -k 2(k =1,2,…,n ),即邮政车从第k 站出发时,车内共有邮袋个数为kn -k 2(k =1,2,…,n ).4.解:(1)证明:∵a n +1a n=2S n ,∴a n 2+1=2a n S n ,当n ≥2时,(S n -S n -1)2+1=2(S n -S n -1)S n ,化简得S n 2-S n -12=1,由a 1+1a 1=2a 1,得a 12=1=S 12.∴数列{S n 2}是以S 12=1为首项,公差为1的等差数列.(2)由(1)知S 2n =1+(n -1)=n ,又由a n +1(S n +1+S n )>4n -8,得(S n +1-S n )(S n +1+S n )>4n -8,∴S 2n +1-S 2n >4n -8,即1>4n -8.∴n <94.又n ∈N *,∴不等式的解集为{1,2}.(3)证明:由(1)知b n =2S 3n =2n n ,∴当n ≥2时,1b n =12n n <1n (n +n -1)=n -n -1n <n -n -1n (n -1)=1n -1-1n. ∴T n <12+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =32-1n.∵1b n =12n n >1n (n +n +1)=n +1-n n >n +1-n n (n +1)=1n -1n +1. ∴T n >⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1, 故1-1n +1<T n <32-1n.。
2025届高考数学一轮复习教案:数列-数列的综合应用
第六节数列的综合应用【核心考点·分类突破】考点一等差、等比数列的综合问题(规范答题)[例1](12分)(2023·新高考Ⅰ卷)设等差数列{a n}的公差为d,且d>1,令b n=2+,记S n,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99-T99=99,求d.审题导思破题点·柳暗花明(1)思路:根据等差数列的定义,灵活运用给定的条件,即可得到所求等差数列的通项公式;同时帮助学生理解题设条件,以顺利进入第(2)问的情境.(2)思路:所给题设条件“{b n}为等差数列”要求学生能够灵活转化为求解数列{a n}中公差与首项的关系,可以采用通性通法来解答.规范答题微敲点·水到渠成【解析】(1)因为3a2=3a1+a3,所以3d=a1+2d,解得a1=d,[1分]关键点根据已知条件,列方程求出首项a1和公差d的关系.所以S3=3a2=3(a1+d)=6d,又T3=b1+b2+b3=2+3+4=9,所以S3+T3=6d+9=21,即2d2-7d+3=0,解得d=3或d=12(舍去),[3分]所以a n=a1+(n-1)d=3n,所以的通项公式为a n=3n.[4分]阅卷现场(1)没有过程,只有a n=3n得1分;(2)结果正确时漏写a1=d不扣分;(3)d=12漏舍只得1分.(2)因为b n=2+,且为等差数列,所以2b2=b1+b3,即122=21+123,[6分]所以61+-11=61+2,所以12-3a1d+2d2=0,解得a1=d或a1=2d.[8分]传技巧取的前3项,利用等差中项2b2=b1+b3,得到首项a1和公差d之间的关系.解法一:①当a1=d时,a n=nd,所以b n=2+=2+B=r1,S99=99(r99)=99×50d,T99=99×51.因为S99-T99=99,所以99×50d-99×51=99,关键点利用S99-T99=99,列出关于d的方程,结果注意d>1.即50d2-d-51=0,解得d=5150或d=-1(舍去).[10分]②当a1=2d时,a n=(n+1)d,所以b n=2+=2+(r1)=,避易错讨论另一种情况,不可遗漏.S99=99(2r100)=99×51d,T99=99×50.因为S99-T99=99,所以99×51d-99×50=99,即51d2-d-50=0,解得d=-5051(舍去)或d=1(舍去).[11分]综上,d=5150.[12分]解法二:因为S99-T99=99,由等差数列的性质知,且99a50-99b50=99,即a50-b50=1,传技巧利用等差数列的性质,可以简化运算过程.列方程求出a50,注意由d>1可知a n>0.所以a50-255050=1,即a502-a50-2550=0,解得a50=51或a50=-50(舍去).[10分]①当a1=d时,a50=a1+49d=50d=51,解得d=5150.②当a1=2d时,a50=a1+49d=51d=51,解得d=1,与d>1矛盾,应舍去.[11分]综上,d=5150.[12分]解法三:因为,都是等差数列,且a nb n=n(n+1),=B=1(+1).[8分]所以可设=1(+1)=B或敲黑板构造新数列要考虑全面,少写一组不得分.(i)当a n=1(n+1),b n=kn时,S99-T99=1(2+3+…+100)-k(1+2+…+99)=99,即50k2+k-51=0,解得k=-5150或k=1,因为d=k>1,所以均不合题意.[10分](ii)当a n=kn,b n=1(n+1)时,S99-T99=k(1+2+…+99)-1(2+3+…+100)=99,即50k2-k-51=0,解得k=5150或k=-1.因为d=k>1,所以k=5150,所以d=5150.[12分]拓思维高考命题强调“多思考,少运算”的理念,试题面向全体学生,为考生搭建展示数学能力的平台.本解法根据给出的条件,巧妙的构造新的数列,突破常规解法,灵活运用数列知识,解题方法“高人一招”,解题速度“快人一步”.【解题技法】等差、等比数列综合问题的求解策略1.基本方法:求解等差、等比数列组成的综合问题,首先要根据数列的特征设出基本量,然后根据题目特征使用通项公式、求和公式、数列的性质等建立方程(组),确定基本量;2.基本思路:注意按照顺序使用基本公式、等差中项、等比中项以及证明数列为等差、等比数列的方法确定解题思路.【对点训练】(2022·全国甲卷)记S n为数列{a n}的前n项和.已知2+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)由2+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②-①,得2a n+1+2n+1=2a n+1(n+1)-2a n n+1,化简得a n+1-a n=1,所以数列{a n}是公差为1的等差数列.(2)由(1)知数列{a n}的公差为1.由a4,a7,a9成等比数列,得72=a4a9,即(a1+6)2=(a1+3)(a1+8),解得a1=-12,所以S n=-12n+(-1)2=2-252=12(n-252)2-6258,所以,当n=12或n=13时,(S n)min=-78.考点二数列与函数、向量的综合[例2](1)(2023·龙岩模拟)已知函数f(x)=13x3+4x,记等差数列{a n}的前n项和为S n,若f(a1+2)=100,f(a2022+2)=-100,则S2022等于()A.-4044B.-2022C.2022D.4044【解析】选A.因为f(-x)=-13x3-4x=-f(x),所以f(x)是奇函数,因为f(a1+2)=100,f(a2022+2)=-100,所以f(a1+2)=-f(a2022+2),所以a1+2+a2022+2=0,所以a1+a2022=-4,所以S2022=2022(1+2022)2=-4044.(2)数列满足a1=1,a2=5,若m=1,r1+1,n=+r2,-2,m·n=0,则数列的通项公式为________.【解析】由已知m·n=0,得1×+r2-2r1+1=0,即r2-r1-r1-=2,则r1-是首项为a2-a1,公差为2的等差数列,则a n+1-a n=2-1+-1×2=2+1,于是a n=--1+-1--2+…+2-1+a1=2n+2-1+…+2×2+1=2+-1+…+2+1=n2+n-1.答案:a n=n2+n-1【解题技法】数列与函数、向量的综合问题的求解策略(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形;(3)涉及数列与三角函数有关的问题,常利用三角函数的周期性等特征,寻找规律后求解;(4)涉及数列与向量有关的综合问题,应根据条件将向量式转化为与数列有关的代数式求解.【对点训练】1.已知数列{a n}满足a n+2-a n+1=a n+1-a n,n∈N*,且a5=π2,若函数f(x)=sin2x+2cos22,记y n=f(a n),则数列{y n}的前9项和为()A.0B.-9C.9D.1【解析】选C.由题意知数列{a n}是等差数列.因为a5=π2,所以a1+a9=a2+a8=a3+a7=a4+a6=2a5=π.f(x)=sin2x+2cos22,所以f(x)=sin2x+cos x+1,所以f(a1)+f(a9)=sin2a1+cos a1+1+sin2a9+cos a9+1=2.同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2.因为f(a5)=1,所以数列{y n}的前9项和为9.2.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为________.【解析】因为a4+λa10+a16=15,所以a1+3d+λ(a1+9d)+a1+15d=15,令λ=f(d)=151+9-2,因为d∈[1,2],所以令t=1+9d,t∈[10,19],因此λ=f(t)=15-2.当t∈[10,19]时,函数λ=f(t)是减函数,故当t=10时,实数λ有最大值,最大值为f(10)=-12.答案:-12考点三数列与不等式的综合【考情提示】数列不等式作为考查数列综合知识的载体,因其全面考查数列的性质、递推公式、求和等知识而成为高考命题的热点,重点考查不等式的证明、参数范围、最值等.角度1数列中的最值[例3]公比为2的等比数列{a n}中存在两项a m,a n满足a m a n=1612,则1+4的最小值为()A.32B.53C.43D.1310【解析】选A.由等比数列的通项公式知a m=a1×2m-1,a n=a1×2n-1,由a m a n=1612,可得12×2m+n-2=1612,易知a1≠0,故2m+n-2=16,解得m+n=6,则1+4=16(m+n)·(1+4)=16(1+4++4)≥16(5+2)=32(当且仅当m=2,n=4时取等号).角度2数列中的不等式证明[例4](2023·宁德模拟)已知数列,满足b n=a n+n2,a1+b1=3,a2+b2=8,且数列是等差数列.(1)求数列的通项公式;(2)n项和为S n,求证:12≤S n<1.【解析】(1)由b n=a n+n2得b1=a1+1,b2=a2+4,代入a1+b1=3,a2+b2=8得2a1+1=3,2a2+4=8,解得a1=1,a2=2.又因为数列为等差数列,故公差为d=a2-a1=1,因此a n=n,b n=n+n2.(2)由(1)可得b n=n+n2,所以1=1r2=1-1r1,所以S n=11+12+13+…+1=(1-12)+(12-13)+(13-14)+…+(1-1r1)=1-1r1,又因为n∈N*,所以0<1r1≤12(n=1时等号成立),所以12≤1-1r1<1,即12≤S n<1.角度3数列中的不等式恒成立[例5]已知数列{a n}的通项公式为a n=5-n,其前n项和为S n,将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n.若存在m∈N*,使对任意n∈N*,S n≤T m+λ恒成立,则实数λ的取值范围是()A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(2,+∞)【解析】选D.依题意得S n=(4+5-)2=(9-)2,根据二次函数的性质知,当n=4,5时,S n 取得最大值为10.另外,根据通项公式得数列{a n}的前4项为a1=4,a2=3,a3=2,a4=1,观察易知抽掉第二项后,余下的三项可组成等比数列,所以数列{b n}中,b1=4,公比q=12,所以T n=4(1-12)1-12=8(1-12),所以4≤T n<8.因为存在m∈N*,对任意n∈N*,S n≤T m+λ恒成立,所以10<8+λ,所以λ>2.【解题技法】数列与不等式交汇问题的解题策略(1)判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.(2)考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(3)数列中有关项或前n 项和的恒成立问题,常转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.【对点训练】1.(2023·重庆模拟)设a >0,b >0,若3是3a 与9b 的等比中项,则1+2的最小值为()A .92B .3C .32+2D .4【解析】选A .因为3是3a 与9b 的等比中项,所以32=3a ·9b =3a +2b ,所以a +2b =2,所以1+2=12·(1+2)·(a +2b )=12(5+2+2)≥12·(5+2)=92,当且仅当a =b =23时取等号.2.数列{a n }满足a 1=14,a n +1=14-4,若不等式21+32+…+r2r1<n +λ对任何正整数n 恒成立,则实数λ的最小值为()A .74B .34C .78D .38【解析】选A .因为数列{a n }满足a 1=14,a n +1=14-4,所以反复代入计算可得a 2=26,a 3=38,a 4=410,a 5=512,…,由此可归纳出通项公式a n =2(r1),经验证,成立,所以r1=1+1(r2)=1+12(1-1r2),所以21+32+…+r2r1=n +1+12(1+12-1r2-1r3)=n +74-12(1r2+1r3).因为要求21+32+…+r2r1<n +λ对任何正整数n 恒成立,所以λ≥74.3.(2023·南京模拟)已知数列的前n 项和为S n ,a 1=2,(n -2)S n +1+2a n +1=nS n ,n ∈N *.(1)求数列的通项公式;(2)求证:112+122+…+12<716.【解析】(1)(n -2)S n +1+2a n +1=nS n ,则(n -2)S n +1+2(S n +1-S n )=nS n ,整理得到nS n +1=(n +2)S n ,故r1(r1)(r2)=(r1),,故(r1)=11×2=1,即S n=n(n+1).当n≥2时,a n=S n-S n-1=n(n+1)-n(n-1)=2n,验证当n=1时满足,故a n=2n,n∈N*.(2)12=142<142-1=12(12-1-12r1),故112+122+…+12<14+12(13-15+15-17+…+12-1-12r1)=14+12(13-12r1)<14+12×13=512<716.考点四数列在实际问题中的综合应用[例6](1)(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为B1B1=0.5,B1B1=k1,B1B1=k2,B1B1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.9【解析】选D.设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且B1+B1+B1+B1B1+B1+B1+B1=0.725,所以0.5+33-0.34=0.725,故k3=0.9.(2)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t倍.下列选项中,与t值最接近的是()A.11B.13C.15D.17【解析】选B.设鱼原来的质量为a,饲养n年后鱼的质量为a n,q=200%=2,则a1=a(1+q),a2=a1(1+2)=a(1+q)(1+2),…,a5=a(1+2)×(1+1)×(1+12)×(1+122)×(1+123)=40532a≈12.7a,即5年后,鱼的质量预计为原来的13倍.【解题技法】数列在实际应用中的常见模型等差模型如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差等比模型如果后一个量与前一个量的比是一个固定的非零常数,则该模型是等比模型,这个固定的数就是公比递推数列模型如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n项a n与第(n+1)项a n+1(或者相邻三项等)之间的递推关系还是前n项和S n 与前(n+1)项和S n+1之间的递推关系【对点训练】1.(2023·武汉模拟)南宋数学家杨辉为我国古代数学研究作出了杰出贡献,他的著名研究成果“杨辉三角”记录于其重要著作《详解九章算法》,该著作中的“垛积术”问题介绍了高阶等差数列.以高阶等差数列中的二阶等差数列为例,其特点是从数列中的第二项开始,每一项与前一项的差构成等差数列.若某个二阶等差数列的前4项为2,3,6,11,则该数列的第15项为()A.196B.197C.198D.199【解析】选C.设该数列为,则a1=2,a2=3,a3=6,a4=11.由二阶等差数列的定义可知,a2-a1=1,a3-a2=3,a4-a3=5,…所以数列r1-是以a2-a1=1为首项,公差d=2的等差数列,即a n+1-a n=2n-1,所以a2-a1=1,a3-a2=3,a4-a3=5,…,a n+1-a n=2n-1.将所有上式累加可得a n+1=a1+n2=n2+2,所以a15=142+2=198,即该数列的第15项为198.2.(2023·深圳模拟)将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去,最后挖剩下的就是一条“雪花”状的Koch曲线,如图所示.已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是()A.1681B.2081C.827D.1027【解析】选A.根据题意可知,每次挖去的三角形面积是被挖三角形面积的13,所以每一次操作之后所得图形的面积是上一次三角形面积的23,由此可得,第n次操作之后所得图形的面积是,即经过4次操作之后所得图形的面积是=1681.。
高考数学一轮复习 专题32 数列及其综合应用教学案 文-人教版高三全册数学教学案
专题32 数列及其综合应用1. 掌握数列的求和方法:(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、逆序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;(5) 在证明有关数列和的不等式时要能用放缩的思想来解题(如n(n-1)<n2<n(n+1),能用函数的单调性(定义法)来求数列和的最值问题及恒成立问题.2. 数列是特殊的函数,这部分内容中蕴含的数学思想方法有函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握.高频考点一等差、等比数列求和公式及利用例1 已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1) 求数列{a n}和{b n}的通项公式;(2) 求数列{b n}的前n项和.从而b n=3n+2n-1(n=1,2,…).(2) 由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n 项和为32n(n +1),数列{2n -1}的前n 项和为1×1-2n1-2=2n-1,所以,数列{b n }的前n 项和为32n(n +1)+2n-1.【变式探究】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N +),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N +),求数列{T n }的最大项的值与最小项的值.(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N +,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.高频考点二 可转化为等差、等比数列求和 例2、已知数列{a n }的前n 项和S n =n 2+n 2,n∈N *.(1) 求数列{a n }的通项公式;(2) 设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和.则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n]=n. 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.高频考点三 根据数列特征,用适当的方法求和例3 已知数列{a n }的前n 项和S n =-12n 2+kn(k∈N *),且S n 的最大值为8.(1) 确定常数k ,求a n ;(2) 求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .【解析】(1) 当n =k∈N *时,S n =-12n 2+kn 取最大值,即8=-12k 2+k 2=12k 2,故k =4,从而a n =S n -S n -1=92-n(n≥2).又a 1=S 1=72,所以a n =92-n.(2) 因为b n =9-2a n 2n =n 2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n=2+1+12+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.【变式探究】已知数列{a n }和{b n }满足a 1=1,a 2=2,a n >0,b n =a n a n +1(n∈N *),且{b n }是以q 为公比的等比数列.(1) 证明:a n +2=a n q 2;(2) 若=a 2n -1+2a 2n ,证明:数列{}是等比数列; (3) 求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1a 2n.【解析】(解法1)(1) 证明:由b n +1b n =q ,有a n +1a n +2a n a n +1=a n +2a n=q, ∴ a n +2=a n q 2(n∈N *) . (2) 证明:∵ a n =a n -2q 2,∴ a 2n -1=a 2n -3q 2=…=a 1q 2n -2,a 2n =a 2n -2q 2=…=a 2q2n -2,∴ =a 2n -1+2a 2n =a 1q2n -2+2a 2q2n -2=(a 1+2a 2)q2n -2=5q2n -2,∴ {}是首项为5,以q 2为公比的等比数列.(3) 解:由(2)得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n ,于是1a 1+1a 2+…+1a 2n =(1a 1+1a 3+…+1a 2n -1)+(1a 2+1a 4+…+1a 2n )=1a 1⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2+1a 2(1+1q 2+1q 4+…+1q 2n -2)=32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2.由题知q>0,当q =1时,1a 1+1a 2+…+1a 2n =32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32n ;当q≠1时,1a 1+1a 2+…+1a 2n =32⎝⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1-q -2n1-q -2=32⎣⎢⎡⎦⎥⎤q 2n-1q 2n -2(q 2-1).故1a 1+1a 2+…+1a 2n=⎩⎪⎨⎪⎧32n ,q =1,32⎣⎢⎡⎦⎥⎤q 2n-1q 2n -2(q 2-1),q≠1.面同解法1).高频考点四 数列求和的综合应用例4 将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1 a 2a 3 a 4a 5a 6 a 7a 8a 9a 10…记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1,S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n≥2).【解析】(1) 证明:数列⎩⎨⎧⎭⎬⎫1S n 成等差数列,并求数列{b n }的通项公式;所以q =2.记表中第k(k≥3)行所有项的和为S ,则S =b k (1-q k )1-q =-2k (k +1)·(1-2k)1-2=2k (k +1)(1-2k)(k≥3).1.【2016高考某某理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】(Ⅰ)证明:由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(Ⅱ)证明:()()()2222221234212n n n T b b b b b b -=-++-+++-+()()()24222222221,n n d a a a n a a d d n n =++++=⋅=+所以()222211111111111112121212nn n k k k k T d k k d k k d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 2.【2016高考新课标3理数】已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ. 【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-.解得1λ=-.3.【2016高考某某理数】设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a-≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )证明见解析;(II )证明见解析. 【解析】(I )由112n n a a +-≤得1112n n a a +-≤,故 111222n n n n n a a ++-≤,n *∈N ,否则,存在0n *∈N ,有02n a >,取正整数000342log 2n n a m ->且00m n >,则003402log 23322244n n a m m n n a -⎛⎫⎛⎫⋅<⋅=- ⎪⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n *∈N ,均有2n a ≤. 4.【2016年高考理数】(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a . 【答案】(1)()G A 的元素为2和;(2)详见解析;(3)详见解析. 【解析】(Ⅰ))(A G 的元素为和.(Ⅱ)因为存在n a 使得1a a n >,所以{}12,i i i N a a *∈≤≤>≠∅N . 记{}1min 2,i m i i N a a *=∈≤≤>N , 则2≥m ,且对任意正整数m k a a a m k <≤<1,. 因此)(A G m ∈,从而∅≠)(A G . (Ⅲ)当1a a N ≤时,结论成立.又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意p n k N ≤≤,p n k a a ≤,特别地,p n N a a ≤. 对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n n n a a a a a .所以p a aa a a a i ip n pi n n N ≤-=-≤--∑=)(1111.因此)(A G 的元素个数p 不小于1N a a -. 5.【2016年高考某某理数】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ .(Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221ny x a -= 的离心率为n e ,且253e = ,证明:121433n n n n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q ;(Ⅱ)详见解析.(Ⅱ)由(Ⅰ)可知,1n n a q .所以双曲线2221n y xa 的离心率 22(1)11nnn e a q .由2513q q 解得43q . 因为2(1)2(1)1+k kq q 2(1)1*1+k k q q kN (). 于是11211+1n n nq e e e q qq ,故1231433n nn e e e . 6.【2016高考某某理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析.(3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N ,使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠. 设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.7.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,. (Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 【解析】8.【2016高考某某理数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T . 【解析】(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n , 当1=n 时,1111==S a ,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T9.【2016高考某某卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0TS=;若{}12,,k T t t t =…,,定义12+kT t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N∈是公比为3的等比数列,且当{}=2,4T 时,=30TS.(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<;(3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析 【解析】(1)由已知得1*13,n n a a n -=⋅∈N .②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令UE CD =,UF DC =则E ≠∅,F ≠∅,EF =∅.于是C E C D S S S =+,D F C D S S S =+,进而由C D S S ≥,得E F S S ≥.设是E 中的最大数,为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l kl F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-, 从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤,故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.【2015某某高考,20】(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得kn k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由.【答案】(1)详见解析(2)不存在(3)不存在 【解析】(1)证明:因为112222n n n n a a a d a ++-==(1n =,2,)是同一个常数,所以12a ,22a ,32a ,42a 依次构成等比数列.(3)假设存在1a ,d 及正整数n ,k ,使得1n a ,2n ka +,23n ka +,34n ka +依次构成等比数列,则()()()221112n kn k n a a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a =(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++, 且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦.再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**).令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,则()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++.故()g t 只有唯一零点0t =,即方程(**)只有唯一解0t =,故假设不成立. 所以不存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列.【2015高考某某,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N ) (1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).【答案】(1)详见解析;(2)详见解析.【解析】(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,12n a ≤,由11(1)n n n a a a --=- 得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由102n a <≤得, 211[1,2]1n n n n n na a a a a a +==∈--,即112n n a a +≤≤;(2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n na a +≤-≤, ∴11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得 112(2)2(1)n S n n n ≤≤++.【2015高考某某,理18】设数列{}n a 的前n 项和为n S .已知233nn S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【答案】(I )13,1,3,1,n n n a n -=⎧=⎨>⎩; (II )13631243n nn T +=+⨯.所以1113T b ==当1n > 时,()()12112311323133n n n T b b b b n ---=++++=+⨯+⨯++-所以()()01231132313n n T n --=+⨯+⨯++-两式相减,得()()012122333133n nn T n ---=+++--⋅()11121313313n n n ----=+--⋅- 1363623nn +=-⨯ 所以13631243n n n T +=+⨯ 经检验,1n = 时也适合, 综上可得:13631243n n n T +=+⨯ 【2015高考某某,理18】设*n N ∈,n x 是曲线221n y x+=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14nT n ≥. 【答案】(Ⅰ)1n nx n =+;(Ⅱ)14n T n ≥.【解析】当2n ≥时,因为222222122221(21)(21)1441()2(2)(2)(2)n n n n n n n xn n n n n-------==>==, 所以211211()2234n n T n n->⨯⨯⨯⨯=. 综上可得对任意的*n N ∈,均有14n T n≥.1.(2014·某某卷) 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝ ⎛⎭⎪⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1. 2.(2014·某某卷) 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p>1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.【解析】证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k>1+kx 成立. 当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x .所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p>1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p.①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立.即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p,则x p ≥c , 所以f ′(x )=p -1p +c p (1-p )x -p=p -1p ⎝ ⎛⎭⎪⎫1-c x p >0. 由此可得,f (x )在[c 1p,+∞)上单调递增,因而,当x >c 1p时,f (x )>f (c 1p)=c 1p. ①当n =1时,由a 1>c 1p>0,即a p1>c 可知a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎢⎡⎦⎥⎤1+1p ⎝⎛⎭⎪⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.3.(2014·某某卷) 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.4.(2014·某某卷) 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令=a n b n,求数列{}的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .【解析】(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即+1-=2, 所以数列{}是以c 1=1为首项,d =2为公差的等差数列,故=2n -1. (2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n=-2-(2n -2)×3n,所以S n =(n -1)3n+1.5.(2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.所以1a 1+1a 2+…+1a n <32.6.(2014·某某卷) 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图像上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n .【解析】(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2, 所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2. 由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1. 从而a n =n ,b n =2n,所以数列{a n b n }的通项公式为a n b n =n2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 7.(2014·某某卷) 已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n .(2)设=1a n -1b n(n ∈N *).记数列{}的前n 项和为S n .(i)求S n ;(ii)求正整数k ,使得对任意n ∈均有S k ≥S n .(ii)因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,=1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n≤5×(5+1)25<1,所以,当n ≥5时,<0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4.8.(2013年高考某某卷)下面是关于公差d >0的等差数列{a n }的四个命题:P 1:数列{a n }是递增数列; P 2:数列{na n }是递增数列; P 3:数列{a nn }是递增数列;P 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4【答案】D9.(2013年高考某某卷)已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.【解析】因为{a n }为等差数列,且a 1,a 2,a 5成等比数列,所以a 1(a 1+4d )=(a 1+d )2,解得d =2a 1=2,所以S 8=64. 【答案】6410. (2013年高考某某卷)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.【解析】(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,1a 1+1a 2+…+1a n =1+122+132+142+…+1n 2<1+14+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =1+14+12-1n =74-1n <74. 综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.1.在数列{a n }中,a 1=1,数列{a n +1-3a n }是首项为9,公比为3的等比数列. (1)求a 2,a 3;(2)求数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和S n .解:(1)∵数列{a n +1-3a n }是首项为9,公比为3的等比数列, ∴a n +1-3a n =9×3n -1=3n +1,∴a 2-3a 1=9,a 3-3a 2=27, ∴a 2=12,a 3=63.(2)∵a n +1-3a n =3n +1,∴a n +13n +1-a n3n =1,∴数列⎩⎨⎧⎭⎬⎫a n 3n 是首项为13,公差为1的等差数列,∴数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和S n =n 3+nn -12=3n 2-n6.2.已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式; (2)若数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1an ,且a 1=4,求数列{a n }的通项公式. (1)a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =42n -12(n ∈N *).3.已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,某某数λ的取值X 围. 解:(1)∵a 1=1,S 3=6,∴3a 1+3d =6, ∴数列{a n }的公差d =1,a n =n .由题知,⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n , ①b 1·b 2·b 3·…·b n -1=2S n -1n ≥2, ②①÷②得b n =2S n -S n -1=2a n =2n(n ≥2), 又b 1=2S 1=21=2,满足上式,故b n =2n. (2)λb n >a n 恒成立⇒λ>n2n 恒成立,设=n2n ,当n ≥2时,<1,数列{}单调递减, ∴()max =12,故λ>12.所以实数λ的取值X 围为⎝ ⎛⎭⎪⎫12,+∞.4.数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.(1)求数列{a n },{b n }的通项公式; (2)设=1b n ·log 2a 2n +2,数列{}的前n 项和为T n ,证明:13≤T n <12.∴T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=∵n ∈N *,∴T n =12⎝ ⎛⎭⎪⎫1-12n +1<12, 12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=12n +12n -1>0,∴数列{T n }是一个递增数列,∴T n ≥T 1=13.综上所述,13≤T n <12.5.对于数列{x n },若对任意n ∈N *,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设数列{a n }是各项都为正数的等比数列,其前n 项和为S n ,且a 1=1,S 3=74.(1)求数列{a n }的通项公式,并判断数列{S n }是否为“减差数列”;(2)设b n =(2-na n )t +a n ,若数列b 3,b 4,b 5,…是“减差数列”,某某数t 的取值X 围. 解:(1)设数列{a n }的公比为q , 因为a 1=1,S 3=74,所以1+q +q 2=74,即4q 2+4q -3=0, 所以(2q -1)(2q +3)=0.因为q >0,所以q =12,所以a n =12n -1,S n =1-12n1-12=2-12n -1,所以S n +S n +22=2-12n -12n +2<2-12n =S n +1,所以t >⎝⎛⎭⎪⎫1n -2max=1.故t 的取值X 围是(1,+∞).6.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m的取值X 围.解 (1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8. ∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n .(2)b n =2n ·log 122n =-n ·2n, ∴-S n =1×2+2×22+3×23+…+n ×2n,① ∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,②①-②,得S n =2+22+23+…+2n -n ×2n +1word- 31 - / 31 =2(1-2n )1-2-n ×2n +1=2n +1-n ×2n +1-2. 由S n +(n +m )a n +1<0,得2n +1-n ×2n +1-2+n ×2n +1+m ×2n +1<0对任意正整数n 恒成立, ∴m ·2n +1<2-2n +1,即m <12n -1对任意正整数n 恒成立.∵12n -1>-1, ∴m ≤-1,即m 的取值X 围是(-∞,-1].。
高三数学人教版A版数学(理)高考一轮复习教案:2.12 导数的综合应用 Word版含答案
高三数学人教版A版数学(理)高考一轮复习教案:2.12 导数的综合应用 Word版含答案高三数学人教版a版数学(理)高考一轮复习教案:2.12导数的综合应用word版含答案第十二节衍生工具1的综合运用。
最大值会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.衍生工具的综合应用会利用导数解决某些实际问题.知识点-函数的最大值和导数-函数的最大值和导数1.函数y=f(x)在[a,b]上的最大值点x0指的是:函数在这个区间上所有点的函数值都不超过f(x0).2.[a,b]上函数y=f(x)的最小值点x0表示该区间内函数所有点的函数值不小于f (x0)n易误提醒1.易于混合极值和最大值:请注意,函数的最大值是一个“全局”概念,而极值是一个“局部”概念。
2.极值只能在定义域内获得,但最大值可以在区间结束时获得。
有极值的可能没有最大值,有最大值的可能没有极值;极值可能成为最大值,只要不在终点,它就必须是极值[自测练习]一1.(2021济宁一模)函数f(x)=x2-lnx的最小值为()21a。
2c.021x-1解析:f′(x)=x-=,且x>0.xxb.1d.不存在如果f'(x)>0,则得到x>1;设f′(x)<0,则得到0‰f(x)。
最小值也是x=1、11和f(1)=-ln1=时的最小值。
22回答:A2。
给定函数f(x)=ex-x2,如果对于任何x∈ [1,2],不等式-M≤ f(x)≤ M2-4为常数,则实数m的取值范围为()A.(-∞, 1-e]B.[1-e,e]C.-e,e+1]D.[e,+∞). 分析:从问题的意义出发,得出f'(x)=ex-2x,并且对于任何x都是常数∈ R、 f'(x)>0,所以函数f(x)在[1,2]上单调增加,所以E-1≤ f(x)≤ e2-4和不等式-M≤ f(x)≤ M2-4是常数,所以{E-1≥ - m、 -m≤M2-4,e2-4≤ M2-4,解为m≥ e、因此选择D.答案:D知识点2生活中的优化问题利用导数解决生活中优化问题的一般步骤n容易出错提示在建立数学模型解决实际应用问题时,很容易忽略函数的定义域,导致错误。
高三数学一轮复习第33课时数列的综合应用学案
高三数学一轮复习第33课时数列的综合应用学案例1 已知等差数列{a n}的首项a1=1,公差d>0,且第2项、第5项、第14项分别是等比数列{b n}的第2项、第3项、第4项.(1)求数列{a n}、{b n}的通项公式;(2)设数列{c n}对n∈N*,均有c1b1+c2b2+…+c nb n=a n+1成立,求c1+c2+…+c2 012.思考题1 已知等比数列{a n}的公比为q,前n项的和为S n,且S3,S9,S6成等差数列.(1)求q3;(2)求证:a2,a8,a5成等差数列.题型二数列与函数、不等式的综合应用例2已知函数f(x)=log k x(k为常数,k>0且k≠1),且数列{f(a n)}是首项为4,公差为2的等差数列.(1)求证:数列{a n}是等比数列;(2)若b n=a n·f(a n),当k=2时,求数列{b n}的前n项和S n;(3)若c n=a n lg a n,问是否存在实数k,使得{c n}中的每一项恒小于它后面的项?若存在,求出k的范围;若不存在,说明理由.思考题2 已知函数f(x)对任意实数p,q都满足f(p+q)=f(p)·f(q),且f(1)=13 .(1)当n∈N*时,求f(n)的表达式(2)设a n=nf(n)(n∈N*),S n是数列{a n}的前n项的和,求证:S n<34;(3)设b n=nf n+f n(n∈N*),数列{b n}的前n项和为T n,试比较1T1+1T2+1T3+…+1T n与6的大小.题型三数列与导数、解析几何的综合应用例3 已知在正项数列{a n}中,a1=2,点A n(a n,a n+1)在双曲线y2-x2=1上,数列{b n}中,点(b n,T n)在直线y=-12x+1上,其中T n是数列{b n}的前n项和.(1)求数列{a n}的通项公式; (2)求证:数列{b n}是等比数列;(3)若c n=a n·b n,求证:c n+1<c n.思考题3 已知函数f(x)=x2-4,设曲线y=f(x)在点(x n,f(x n))处的切线与x轴的交点为(x n+1,0)(n∈N*),其中x1为正实数.(1)用x n表示x n+1;(2)若x1=4,记a n=lg x n+2x n-2,证明数列{a n}成等比数列,并求数列{a n}的通项公式.题型四数列的实际应用例4 为了增强环保建设,提高社会效益和经济效益,郑州市计划用若干年更换10 000辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车40辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.(1)求经过n年,该市被更换的公交车总数S(n);(2)若该市计划用7年的时间完成全部更换,求a的最小值.思考题4 某林场为了保护生态环境,制定了植树造林的两个五年计划,第一年植树16a亩,以后每年植树面积都比上一年增加50%,但从第六年开始,每年植树面积都比上一年减少a亩.(1)求该林场第6年植树的面积;(2)设前n(1≤n≤10且n∈N)年林场植树的总面积为S n亩,求S n的表达式.。
高三数学(文科)一轮学案【第47-48课时】圆锥曲线的综合应用
一、复习目标:1、 利用圆锥曲线的几何性质解决实际问题,灵活运用解析几何的常用方法解决问题.2、会处理圆锥曲线内部知识综合以及与向量、数列、三角等其它知识的综合问题。
3、通过问题的解决,理解函数与方程、等价转化、数形结合以及分类讨论等数学思想.二、基础训练:1、已知点),(y x P 是椭圆12422=+y x 上的动点, 21,F F 是左右焦点,则||||21PF PF ⋅的取值范围是_______,21PF F ∠的最大值为_________,21PF PF ⋅的取值范围是_______.2、设圆锥曲线I’的两个焦点分别为F 1,F 2,若曲线I’上存在点P 满足1PF :12F F :2PF = 4:3:2,则曲线I’的离心率等于_________3、若动点(),x y 在曲线()22104x y b b+=>上变化,则22x y +的最大值为 .4、在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A C B+= .5、已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 交椭圆于A ,B 两点,且斜率分别为k 1,k 2.若点A ,B 关于原点对称,则k 1·k 2的值为________.6、设12,F F 为双曲线()22440x y a a -=>的两个焦点,点P 在双曲线上, 且满足120PF PF ∙=,122PFPF ∙=,则a 的值为三、例题讲解:1、(1)设AB 是过椭圆x a y ba b 222210+=>>()中心的弦,椭圆的左焦点为F c 10()-,,则△F 1AB 的面积最大为 ;(2)已知双曲线x a y ba b 2222100-=>>(),的左右焦点分别为F 1,F 2,点P 在双曲线的右支上,且||||PF PF 124=,则此双曲线的离心率的最大值是 ;(3)已知A (3,2)、B (-4,0),P 是椭圆x y 222591+=上一点, 则|PA|+|PB|的最大值为2、在平面直角坐标系x Oy 中,抛物线y=x 2上异于坐标原点O 的两不同动点A 、B 满足AO ⊥BO(如图所示).(1) 求证:直线AB 过定点.(2)求ΔAOB 的重心G(即三角形三条中线的交点)的轨迹方程;(3)ΔAOB 的面积是否存在最小值?A3、已知半椭圆x 2a 2+y 2b 2=1(x ≥0)(焦点为F 0)与半椭圆y 2b 2+x 2c 2=1(x ≤0)(相应椭圆的左右焦点为F 1,F 2)组成的曲线称为“果圆”,其中a 2=b 2+c 2,a >b >c >0.(1)若△F 0F 1F 2是边长为1的等边三角形,求“果圆”的方程;(2)设A 1,A 2为“果圆”在x 轴上的端点,B 1,B 2为“果圆”在y 轴上的端点,若|A 1A 2|>|B 1B 2|,求b a的取值范围.4、某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划成一个矩形高科技工业园区.已知,AB BC OA ⊥∥BC 且24AB BC AO km ===,曲线段OC 是以点O 为顶点且开口向右的抛物线的一段. (1) 建立适当的坐标系,求曲线段的方程; (2)如果要使矩形的相邻两边分别落在AB 、BC 上,且一个顶点落在OC 上,问如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积。
高三数学一轮复习学案:三角函数的最值与综合应用
高三数学一轮复习学案:三角函数的最值与综合应用一、考试要求: 1、理解正弦函数、余弦函数在[]π2,0上最大值、最小值,理解正切函数在上性质。
,⎪⎭⎫ ⎝⎛22-ππ2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题。
二、知识梳理:1、型三角函数式,可化为x b x a cos sin y += )sin(y 22ϕ++=x b a ,再求最值。
2、c x b x a y ++=sin sin 2型三角函数式,利用换元法转化成二次函数在闭区间上的最值问题进行求解。
三、基础检测: 1.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= ( )(A )3 (B )2 (C )32 (D )232.已知函数R x x x x f ∈-=,cos sin 3)(,若()1f x ≥,则x 的取值范围为( ) A. |,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. |22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C. 5{|,}66x k x k k Z ππππ+≤≤+∈ D. 5{|22,}66x k x k k Z ππππ+≤≤+∈ 3.已知函数()sin(2)f x x φ=+其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立, 且()()2f f ππ>,则()f x 的单调递增区间是 ( ) (A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭ (C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭4.函数sin cos 26y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭的最大值为 5.函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f6.已知函数f (x )=A tan (ωx+ϕ)(ω>0,2π<ω),y=f (x )的部分图像如下图,则f (24π)=____________.7.函数f(x)=2cosx(sinx-cosx)在[43,8ππ]上的最大值和最小值分别是 8.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,则ω=__________9.求f(x)=cos 2(x-12π)+sin2(x+12π)-1的最小正周期及单调区间,以及取最值时x 的集合。
2012年高三数学第一轮复习教案(新人教A)数列的综合运用
§2.2 数列的综合运用考点核心整合1.函数思想、方程思想、分类讨论等思想在解决数列综合问题时常常用到.2.数列与函数、数列与不等式的综合、用数列知识解决实际问题等内容是近几年高考的热点之一.考题名师诠释【例1】设数列{a n }的前n 项和为S n ,点(n,n S n )(n ∈N *)均在函数y=3x-2的图象上. (1)求数列{a n }的通项公式;(2)设b n =13+n n a a ,T n 是数列{b n }的前n 项和,求使得T n <20m 对所有n ∈N *都成立的最小正整数m.解:(1)依题意得nS n =3n-2,即S n =3n 2-n. 当n ≥2时,a n =S n -S n-1=(3n 2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a 1=S 1=3×12-2×1=1=6×1-5.所以a n =6n-5(n ∈N *).(2)由(1)得b n =13+n n a a =]5)1(6)[56(3-+-n n =21(561-n -161+n ), 故T n =∑=ni i b 1=21[(1-71)+(71-131)+…+(561-n -161+n )]=21(1-161+n ). 因此,使得21(1-161+n )<20m (n ∈N *)成立的m 必须且仅需满足21≤20m ,即m ≤10,故满足要求的最小整数m 为10.评述:本小题主要考查等差数列、数列求和、不等式等基础知识和基本运算技能,考查分析问题的能力和推理能力.【例2】已知函数f(x)=2n 21x +-x 在[0,+∞)上的最小值是a n (n ∈N *).(1)求数列{a n }的通项公式;(2)证明211a +221a +…+21n a <21; (3)在点列A n (2n,a n )中是否存在两点A i 、A j (i 、j ∈N *),使直线A i A j 的斜率为1?若存在,求出所有的数对(i,j);若不存在,请说明理由.(1)解:由f(x)=2n 21x +-x ,得f ′(x)=212x nx+-1.令f ′(x)=0,得x=1412-n .当x ∈(0,1412-n )时,f ′(x)<0; 当x ∈(1412-n ,+∞)时,f ′(x)>0.∴f(x)在[0,+∞]上,当x=1412-n 时取得最小值142-n .∴a n =142-n .(2)证明:∵21n a =1412-n =21(121-n -121+n ), ∴211a +221a + (21)a =21[(1-31)+(31-51)+…+(121-n -121+n )] =21(1-121+n )<21. (3)解:不存在.设A i (2i,a i )、A j (2j,a j )(其中i 、j ∈N *),则j i A A k =)(2j i a a ji --=)(2141422j i j i ----=1414)(2)(42222-+---j i j i j i . 又1414)(222-+-+j i j i >2244)(2j i j i ++=1,故不存在.链接·思考若a n =242-n ,则点列A n (2n,a n )呈现什么样的分布特征?从而本题第(3)问能否从曲线的角度给出解答?提示:令x=2n,y=a n ,则y=12-x (x ≥2).点(x,y)在曲线x 2-y 2=1(x ≥2,y ≥0)上,而双曲线的一条渐近线方程为y=x,其斜率为1,A i 、A j 在双曲线上,故j i A A k <1矛盾.评述:本题从研究函数最值入手推导通项公式,比较新颖,又考查了数列、不等式及直线的斜率公式、圆锥曲线,综合性非常强.【例3】(2005山东高考,21理)已知数列{a n }的首项a 1=5,前n 项和为S n ,且S n+1=2S n +n+5(n ∈N *).(1)证明数列{a n +1}是等比数列;(2)令f(x)=a 1x+a 2x 2+…+a n x n ,求函数f(x)在点x=1处的导数f ′(1),并比较2f ′(1)与23n 2-13n 的大小.解:(1)由已知S n+1=2S n +n+5,∴n ≥2时,S n =2S n-1+n+4.两式相减,得S n+1-S n =2(S n -S n-1)+1,即a n+1=2a n +1,从而a n+1+1=2(a n +1).当n=1时,S 2=2S 1+1+5,∴a 1+a 2=2a 1+6.又a 1=5,∴a 2=11.从而a 2+1=2(a 1+1).故总有a n+1+1=2(a n +1),n ∈N *.又∵a 1=5,∴a n +1≠0.从而111+++n n a a =2,即{a n +1}是以a 1+1=6为首项,2为公比的等比数列. (2)由(1)知a n =3×2n -1.∵f(x)=a 1x+a 2x 2+…+a n x n ,∴f ′(x)=a 1+2a 2x+…+na n x n-1.从而f ′(1)=a 1+2a 2+…+na n=(3×2-1)+2(3×22-1)+…+n(3×2n -1)=3(2+2×22+…+n ×2n )-(1+2+…+n)=3[n ×2n+1-(2+…+2n )]-2)1(+n n =3[n ×2n+1-2n+1+2]-2)1(+n n =3(n-1)·2n+1-2)1(+n n +6. 由上2f ′(1)-(23n 2-13n)=12(n-1)·2n -12(2n 2-n-1)=12(n-1)·2n -12(n-1)(2n+1)=12(n-1)[2n -(2n+1)]. (*)当n=1时,(*)式=0,∴2f ′(1)=23n 2-13n;当n=2时,(*)式=-12<0,∴2f ′(1)<23n 2-13n;当n ≥3时,n-1>0.又2n =(1+1)2=0n C +1n C +…+1-n n C +nn C ≥2n+2>2n+1,∴(n-1)[2n -(2n+1)]>0,即(*)式>0,从而2f ′(1)>23n 2-13n.链接·思考在比较2f ′(1)与23n 2-13n 的大小时能否采用数学归纳法证明呢?用数学归纳法:n ≥3时,猜想2f ′(1)>23n 2-13n.由于n-1>0,只要证明2n >2n+1.事实上,①当n=3时,23>2×3+1.不等式成立.②设n=k 时(k ≥3),有2k >2k+1,则2k+1>2(2k+1)=4k+2=2(k+1)+1+(2k-1).∵k ≥3,∴2k-1>0.从而2k+1>2(k+1)+1+(2k-1)>2(k+1)+1,即n=k+1时,亦有2n >2n+1.综上①②知,2n >2n+1对n ≥3,n ∈N *都成立.∴n ≥3时,有2f ′(1)>23n 2-13n.综上,n=1时,2f ′(1)=23n 2-13n;n=2时,2f ′(1)<23n 2-13n;n ≥3时,2f ′(1)>23n 2-13n.【例4】(2005上海高考,20理)假设某市2004年新建住房400万平方米,其中有250万平方米是低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的低价房的面积占该年建造住房面积的比例首次大于85%?解:(1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列.其中a 1=250,d=50. 则S n =250n+2)1(-n n ×50=25n 2+225n, 令25n 2+225n ≥4 750,即n 2+9n-190≥0,而n 是正整数,∴n ≥10.∴到2013年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米.(2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列.其中b 1=400,q=1.08.则b n =400(1.08)n-1.由题意可知a n >0.85b n .有250+(n-1)·50>400·(1.08)n-1·0.85.用计算器解得满足上述不等式的最小正整数n=6.∴到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 评述:本题主要考查学生运用所学数列知识解决实际问题的能力,以及数学建模能力.【例5】(2006上海高考,21理)已知有穷数列{a n }共有2k 项(整数k ≥2),首项a 1=2,设该数列的前n 项和为S n ,且a n+1=(a-1)S n +2(n=1,2,…,2k-1),其中常数a>1.(1)求证:数列{a n }是等比数列;(2)若a=1222-k ,数列{b n }满足b n =n1log 2(a 1a 2…a n )(n=1,2,…,2k),求数列{b n }的通项公式; (3)若(2)中的数列{b n }满足不等式.|b 1-23|+|b 2-23|+…+|b 2k-1-23|+|b 2k -23|≤4,求k 的值. 解:(1)a n+1=(a-1)S n +2, ①当n ≥2时,a n =(a-1)S n-1+2, ②两式相减得a n+1-a n =(a-1)(S n -S n-1)=(a-1)a n ,∴a n+1=aa n . ∴nn a a 1+=a 为常数. ∴数列{a n }是以a 1=2为首项,以a 为公比的等比数列.(2)由(1)知a n =2·a n-1,∴b n =n 1log 2(2·2a ·2a 2·…·2a n-1) =n1log 2(2n ·a 1+2+…+(n-1)) =n1(n+2)1(2log -n n a )=1+n 1·2)1(-n n ·log 2a =1+21-n ·122-k =1+121--k n . (3)|b n -23|=|121--k n -21|=|)12(2122---k k n |, ∴|b 1-23|+|b 2-23|+…+|b 2k-1-23|+|b 2k -23| =|)12(221--k k |+|)12(223--k k |+…+|)12(232--k k |+|)12(212--k k | =2[)12(21-k +)12(23-k +…+)12(232--k k +)12(212--k k ] =12)12(531--+⋅⋅⋅+++k k =122-k k . 令122-k k ≤4,即k 2-8k+4≤0, ∴4-23≤k ≤4+23.又∵k ≥2,k ∈Z ,∴k 的值为2,3,4,5,6,7.评注:本题主要考查数列知识的综合运用以及对数知识和解绝对值不等式的能力.。
2019-2020学年高考数学一轮复习 第4课时 集合的综合应用教学案.doc
2019-2020学年高考数学一轮复习第4课时集合的综合应用教学案1.能利用集合间的关系或集合的运算确定参数的取值(范围)问题.2.能利用集合来解决一些实际问题.3.掌握集合创新性问题的解法.前面我们学习了集合的概念、元素与集合的关系、集合的表示方法、集合间的关系、集合的运算等.对于集合的综合应用,主要有与集合运算有关的参数取值问题、集合的实际应用问题、集合的创新性问题等,这些都是各类考题考查的重点和热点,这一讲我们就来探讨这几类问题.问题1:集合中元素满足的特征有;集合的表示方法有.问题2:若有限集合A中有m(m∈N*)个元素,则集合A的子集个数为,真子集个数为,非空真子集的个数为.问题3:常见集合间的运算公式:(1)A∩B=A⇔. (2)A∪B=A⇔.(3)C U(A∪B)= ,C U(A∩B)= .问题4:含参数的集合间的运算的数学思想是、数形结合思想,要注意对集合的的检验,情形的讨论,常见含参型的空集讨论情形有:(1)若集合A={x|x2+4x+m=0}是空集,则m的取值范围是.(2)若集合A={x|1-m<x<m+3}是空集,则m的取值范围是.(3)若集合A={x|mx+2=0}是空集,则m的值是.(4)若集合A={x|+1=0}是空集,则m的值为.1.设A={a,b},B={x|x⊆A},则集合B中的元素个数为.2.已知2a∈A,a2-a∈A,若A只含这2个元素,则下列说法中正确的是.①a可取全体实数;②a可取除去0以外的所有实数;③a可取除去3以外的所有实数;④a可取除去0和3以外的所有实数.3.设集合A,B都是U={1,2,3,4}的子集,已知(C U A)∩(C U B)={2},(C U A)∩B={1},且A∩B=∅ ,则A= .4.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅ ,B⊆A,求a,b的值.与集合运算有关的参数问题集合A={x|-1<x<1},B={x|x<a}.(1)若A∩B= ,求实数a的取值范围.(2)若A∪B={x|x<1},求实数a的取值范围.集合中的实际应用问题某校高一年级举行语、数、英三科联赛,高一(2)班共有32名同学参加三科联赛,有16人参加语文竞赛,有10人参加数学竞赛,有16人参加英语竞赛,同时参加语文和数学竞赛的有3人,同时参加语文和英语竞赛的有3人,没有人同时参加全部三科比赛,问:同时参加数学和英语竞赛的有多少人?只参加语文一科竞赛的有多少人?集合中的创新问题若x∈A,且∈A,则称集合A为“和谐集”.已知集合M={-2,-1,-,0,1,,,2,3},则集合M的子集中,“和谐集”的个数为.设集合A={x|2-a≤x≤a+3},B={x|x<-1或x>5},如果U=R,A⊆C U B,试求实数a的取值集合.为完成一项实地测量任务,夏令营的同学们成立了一支测绘队,需要24人参加测量,20人参加计算,16人参加绘图,测绘队的成员中有许多同学是多面手,有8人既参加了测量又参加了计算,有6人既参加了测量又参加了绘图,有4人既参加了计算又参加了绘图,另有一些人3项工作都参加了,请问这个测绘队至少有多少人?若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,∈A.则称集合A是“好集”.(1)分别判断集合B={-1,0,1},有理数集Q是否是“好集”,并说明理由;(2)设集合A是“好集”,求证:若x,y∈A,则x+y∈A.1.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N*}的关系的Venn图如图所示,则阴影部分所示的集合的元素个数为.2.已知U为全集,集合M,N是U的子集,若M∩N=N,则.①(C U M)⊇(C U N);②M⊆N;③(C U M)⊆(C U N);④M⊇(C U N).3.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(C N B)= .4.已知全集U=R,A=[-4,2],B=(-1,3],P=(-∞,0]∪[,+∞).(1)求A∩B; (2)求(C U B)∪P; (3)求(A∩B)∩( C U P).(2013年·广东卷)设整数n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列选项正确的是().A.(y,z,w)∈S,(x,y,w)∉SB.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)∉S,(x,y,w)∈SD.(y,z,w)∉S,(x,y,w)∉S考题变式(我来改编):。
高考数学理科一轮复习导数的综合应用学习型教学案(有答案)
高考数学理科一轮复习导数的综合应用学案(有答案)本资料为woRD文档,请点击下载地址下载全文下载地址学案15 导数的综合应用导学目标:1.应用导数讨论函数的单调性,并会根据函数的性质求参数范围.2.会利用导数解决某些实际问题.自主梳理.函数的最值函数f在[a,b]上必有最值的条件如果函数y=f的图象在区间[a,b]上________,那么它必有最大值和最小值.求函数y=f在[a,b]上的最大值与最小值的步骤:①求函数y=f在内的________;②将函数y=f的各极值与________比较,其中最大的一个是最大值,最小的一个是最小值.2.实际应用问题:首先要充分理解题意,列出适当的函数关系式,再利用导数求出该函数的最大值或最小值,最后回到实际问题中,得出最优解.自我检测.函数f=x3-3ax-a在内有最小值,则a的取值范围为A.0≤a<1B.0<a<1c.-1<a<1D.0<a<122.设f′是函数f的导函数,将y=f和y=f′的图象画在同一个直角坐标系中,不可能正确的是3.对于R上可导的任意函数f,若满足f′≥0,则必有A.f+f<2fB.f+f≤2fc.f+f≥2fD.f+f>2f4.函数f=12ex在区间0,π2上的值域为______________.5.f=x2在x=2处有极大值,则常数c的值为________.探究点一求含参数的函数的最值例1 已知函数f=x2e-ax,求函数在[1,2]上的最大值.变式迁移1 设a>0,函数f=alnxx.讨论f的单调性;求f在区间[a,2a]上的最小值.探究点二用导数证明不等式例2 已知f=12x2-alnx,求函数f的单调区间;求证:当x>1时,12x2+lnx<23x3.变式迁移2 设a为实数,函数f=ex-2x+2a,x∈R.求f的单调区间与极值;求证:当a>ln2-1且x>0时,ex>x2-2ax+1.探究点三实际生活中的优化问题例3 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元的管理费,预计当每件产品的售价为x元时,一年的销售量为2万件.求分公司一年的利润L与每件产品的售价x的函数关系式;当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q.变式迁移3 甲方是一农场,乙方是一工厂.由于乙方生产需占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x与年产量t满足函数关系x=XXt.若乙方每生产一吨产品必须赔付甲方S元.将乙方的年利润ω表示为年产量t的函数,并求出乙方获得最大利润的年产量;甲方每年受乙方生产影响的经济损失金额y=0.002t2,在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S是多少?转化与化归思想的应用例已知函数f=lnx-x+1.若xf′≤x2+ax+1,求a的取值范围;证明:f≥0.【答题模板】解∵f′=x+1x+lnx-1=lnx+1x,x>0,∴xf′=xlnx+1.由xf′≤x2+ax+1,得a≥lnx-x,令g=lnx-x,则g′=1x-1,[2分] 当0<x<1时,g′>0;当x>1时,g′<0,[4分]∴x=1是最大值点,gmax=g=-1,∴a≥-1,∴a的取值范围为[-1,+∞).[6分]证明由知g=lnx-x≤g=-1,∴lnx-x+1≤0.是快速解决的关键.)[8分]当0<x<1时,x-1<0,f=lnx-x+1=xlnx +lnx-x+1≤0,∴f≥0.当x≥1时,x-1>0,f=lnx-x+1=lnx+xlnx-x+1=lnx-xln1x-1x+1≥0,∴f≥0.[11分]综上,f≥0.[12分]【突破思维障碍】本小题主要考查函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力以及计算能力,同时也考查了函数与方程思想、化归与转化思想.通过转化,本题实质还是利用单调性求最值问题..求极值、最值时,要求步骤规范,含参数时,要分类讨论参数的范围.若已知函数单调性求参数范围时,隐含恒成立思想.2.利用导数解决生活中的优化问题的一般步骤:分析实际问题中各变量之间的关系,列出实际问题的数学模型,写出相应的函数关系式y=f;求函数的导数f′,解方程f′=0;比较函数的区间端点对应的函数值和极值,确定最值;回到实际问题,作出解答.一、选择题.已知曲线c:y=2x2-x3,点P,直线l过点P且与曲线c相切于点Q,则点Q的横坐标为A.-1B.1c.-2D.22.已知函数y=f,y=g的导函数的图象如图所示,那么y=f,y=g的图象可能是3.设f′是函数f的导函数,y=f′的图象如图所示,则y=f的图象最有可能是4.函数f=-x3+x2+tx+t在上是增函数,则t的取值范围是A.t>5B.t<5c.t≥5D.t≤55.若函数f=sinxx,且0<x1<x2<1,设a=sinx1x1,b=sinx2x2,则a,b的大小关系是A.a>bB.a<bc.a=bD.a、b的大小不能确定题号2345答案二、填空题6.在直径为d的圆木中,截取一个具有最大抗弯强度的长方体梁,则矩形面的长为________.7.要建造一个长方体形状的仓库,其内部的高为3m,长和宽的和为20m,则仓库容积的最大值为_____________________________________________________________m3.8.若函数f=4xx2+1在区间上是单调递增函数,则实数m的取值范围为________.三、解答题9.已知函数f=122-ln.求f的单调区间;若x∈[1e-1,e-1]时,f<m恒成立,求m的取值范围.0.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用c与隔热层厚度x满足关系:c=k3x +5,若不建隔热层,每年能源消耗费用为8万元,设f为隔热层建造费用与20年的能源消耗费用之和.求k的值及f的表达式;隔热层修建多厚时,总费用f达到最小,并求最小值.1.设函数f=lnx,g=ax+bx,函数f的图象与x轴的交点也在函数g的图象上,且在此点有公共切线.求a、b的值;对任意x>0,试比较f与g的大小.答案自主梳理.连续①极值②端点值自我检测.B 2.D 3.c4.12,12eπ25.6课堂活动区例1 解题导引求函数在闭区间上的最值,首先应判断函数在闭区间上的单调性,一般方法是令f′=0,求出x 值后,再判断函数在各区间上的单调性,在这里一般要用到分类讨论的思想,讨论的标准通常是极值点与区间端点的大小关系,确定单调性或具体情况.解∵f=x2e-ax,∴f′=2xe-ax+x2•e-ax=e-ax.令f′>0,即e-ax>0,得0<x<2a.∴f在,2a,+∞上是减函数,在0,2a上是增函数.①当0<2a<1,即a>2时,f在[1,2]上是减函数,∴fmax=f=e-a.②当1≤2a≤2,即1≤a≤2时,f在1,2a上是增函数,在2a,2上是减函数,∴fmax=f2a=4a-2e-2.③当2a>2,即0<a<1时,f在[1,2]上是增函数,∴fmax=f=4e-2a.综上所述,当0<a<1时,f的最大值为4e-2a;当1≤a≤2时,f的最大值为4a-2e-2;当a>2时,f的最大值为e-a.变式迁移1 解函数f的定义域为,f′=a•1-lnxx2,由f′=a•1-lnxx2>0,得0<x<e;由f′<0,得x>e.故f在上单调递增,在上单调递减.∵f在上单调递增,在上单调递减,∴f在[a,2a]上的最小值[f]min=min{f,f}.∵f-f =12lna2,∴当0<a≤2时,[f]min=lna;当a>2时,[f]min=ln2a2.例2 解题导引利用导数解决不等式问题的主要方法就是构造函数,通过研究函数的性质进而解决不等式问题.解f′=x-ax=x2-ax,若a≤0时,f′>0恒成立,∴函数f的单调增区间为.若a>0时,令f′>0,得x>a,∴函数f的单调增区间为,减区间为.证明设F=23x3-,故F′=2x2-x-1x.∴F′=x-12x2+x+1x.∵x>1,∴F′>0.∴F在上为增函数.又F在上连续,F=16>0,∴F>16在上恒成立.∴F>0.∴当x>1时,12x2+lnx<23x3.变式迁移2 解由f=ex-2x+2a,x∈R,知f′=ex-2,x∈R.令f′=0,得x=ln2.于是当x变化时,f′,f的变化情况如下表:xln2f′-+f极小值故f的单调递减区间是,单调递增区间是,f在x=ln2处取得极小值,极小值为f=eln2-2ln2+2a=2.证明设g=ex-x2+2ax-1,x∈R.于是g′=ex-2x+2a,x∈R.由知当a>ln2-1时,g′最小值为g′=2>0.于是对任意x∈R,都有g′>0,所以g在R内单调递增,于是当a>ln2-1时,对任意x∈,都有g>g.而g=0,从而对任意x∈,都有g>0,即ex-x2+2ax-1>0,故ex>x2-2ax+1.例3 解分公司一年的利润L与售价x的函数关系式为L=2,x∈[9,11].L′=2-2=.令L′=0,得x=6+23a或x=12.∵3≤a≤5,∴8≤6+23a≤283.在x=6+23a两侧L′的值由正变负.∴①当8≤6+23a<9,即3≤a<92时,Lmax=L=2=9.②当9≤6+23a≤283,即92≤a≤5时,Lmax=L=[12-]2=43.所以Q=96-a,3≤a<92,43-13a3,92≤a≤5.综上,若3≤a<92,则当每件售价为9元时,分公司一年的利润L最大,最大值Q=9;若92≤a≤5,则当每件售价为元时,分公司一年的利润L最大,最大值Q=43.变式迁移3 解因为赔付价格为S元/吨,所以乙方的实际年利润为ω=XXt-St.由ω′=1000t-S=1000-Stt,令ω′=0,得t=t0=2.当t<t0时,ω′>0;当t>t0时,ω′<0.所以当t=t0时,ω取得最大值.因此乙方获得最大利润的年产量为2吨.设甲方净收入为v元,则v=St-0.002t2.将t=2代入上式,得到甲方净收入v与赔付价格S之间的函数关系式:v=10002S-2×10003S4.又v′=-10002S2+8×10003S5=10002×8000-S3S5,令v′=0,得S=20.当S<20时,v′>0;当S>20时,v′<0,所以S=20时,v取得最大值.因此甲方向乙方要求赔付价格S=20元/吨时,可获得最大净收入.课后练习区.A 2.D 3.c 4.c 5.A6.63d解析如图所示,为圆木的横截面,由b2+h2=d2,∴bh2=b.设f=b,∴f′=-3b2+d2.令f′=0,由b>0,∴b=33d,且在上f′>0,在[33d,d]上f′<0.∴函数f在b=33d处取极大值,也是最大值,即抗弯强度最大,此时长h=63d.7.300解析设长为xm,则宽为m,仓库的容积为V,则V=x•3=-3x2+60x,V′=-6x+60,令V′=0得x=10.当0<x<10时,V′>0;当x>10时,V′<0,∴x=10时,V最大=300.8.=41-x2x2+12≥0,解得-1≤x≤1.由已知得⊆[-1,1],即m≥-12m+1≤1m<2m +1,解得-1<m≤0.9.解∵f=122-ln,∴f′=-11+x=x2+x1+x.……………………………………………………………………………………………∴f在上单调递增,在上单调递减.…………………………………………………………………令f′=0,即x=0,则xf′-+f极小值……………………………………………………………………………………………又∵f=12e2+1,f=12e2-1>12e2+1,又f<m在x∈[1e-1,e-1]上恒成立,∴m>12e2-1.………………………………………………………………………………0.解设隔热层厚度为xcm,由题设,每年能源消耗费用为c=k3x+5,再由c=8,得k=40,因此c=403x+5,…………………………………………而建造费用为c1=6x.…………………………………………………………………最后得隔热层建造费用与20年的能源消耗费用之和为f=20c+c1=20×403x+5+6x=8003x+5+6x.………………………………………………………………f′=6-24003x+52,令f′=0,即24003x+52=6,解得x=5,x=-253.…………………………………………当0<x<5时,f′<0,当5<x<10时,f′>0,………………………………………………………………故x=5是f的最小值点,对应的最小值为f=6×5+80015+5=70.当隔热层修建5cm厚时,总费用达到最小值70万元.……………………………………………………………………………………………1.解f=lnx的图象与x轴的交点坐标是,依题意,得g=a+b=0.①……………………………………………………………又f′=1x,g′=a-bx2,且f与g在点处有公共切线,∴g′=f′=1,即a-b= 1.②……………………………………………………由①②得a=12,b=-12.…………………………………………………………………令F=f-g,则F=lnx-=lnx-12x+12x,∴F′=1x-12-12x2=-122≤0.∴F在上为减函数.………………………………………………………当0<x<1时,F>F=0,即f>g;当x=1时,F=0,即f=g;当x>1时,F<F=0,即f<g.综上,0<x<1时,f>g;x=1时,f=g;x>1时f<g.…………………………………………………………………………。
【全国通用高考数学一轮复习】学案32数列的综合应用
1 an
,n∈ N*,
(1) 求数列 { an} 的通项公式; (2) 令 Tn=a1a2-a2a3+a3a4- a4a5+…- a2na2n+1,求 Tn;
(3) 令bn=a来自n1 - 1a
n
m- 2 001 (n≥ 2),b1= 3,Sn= b1+ b2+…+ bn,若 Sn< 2 对一切
n∈N *成立,
(1) 该市历年所建中低价房的累计面积 (以 2011 年为累计的第一年 )将首次不少于 4 750 万
平方米?
(2) 当年建造的中低价房的面积占该年建造住房面积的比例首次大于 1.084≈ 1.36,1.085≈ 1.47,1.086≈ 1.59)
85%? (参考数据:
1 .数列实际应用问题: (1)数学应用问题已成为中学数学教学与研究的一个重要内容,
学案 32 数列的综合应用
导学目标: 1.通过构造等差、等比数列模型,运用数列的公式、性质解决简单的实际问 题 .2.对数列与其他知识综合性的考查也高于考试说明的要求,另外还要注重数列在生产、生 活中的应用.
自主梳理
1.数列的综合应用 数列的综合应用一是指综合运用数列的各种知识和方法求解问题,二是数列与其他数学
年年底这个职工有多少资金?若贷款年利息为
25%,问这个职工还清银行贷款后纯收入多少
元?
变式迁移 3 假设某市 2011 年新建住房 400 万平方米,其中有 250 万平方米是中低价房,
预计在今后的若干年内,该市每年新建住房面积平均比上一年增长
8%. 另外,每年新建住房
中,中低价房的面积均比上一年增加 50 万平方米.那么,到哪一年底,
特别是等
差、等比数列的通项公式、前 n 项和公式以及等差中项、等比中项问题是历年命题的热点.
高考数学一轮复习—— 直线与椭圆的综合应用(学案)
直线与椭圆的综合应用直线0=++C By Ax 与椭圆12222=+by a x 联立得:0)(2)(2222222222=-+++B b C a ACx a x B b A a 所以我们有,结论一:⎪⎪⎩⎪⎪⎨⎧+-=+-=+22222222212222221)(2B b A a B b C a x x B b A a AC a x x ⎪⎪⎩⎪⎪⎨⎧+-=+-=+22222222212222221)(2B b A a A a C b y y B b A a BC b y y 22222212212B b A a AB b a y x y x +=+ 结论二:22222222222))((2||B b A a C B b A a B A ab AB +-++= 结论三:0022222>-+⇒>∆C B b A a焦距为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知直线x-y+m=0与椭圆C 交于不同两点A,B,且线段AB 的中点M 不在圆椭圆的右顶点C,证明这样的直线l 恒过定点,并求出该点坐标.8.已知椭圆C 的中心在坐标原点,长轴在x 轴上,F 1、F 2分别为其左、右焦点,P 在椭圆上任意一点,且P F P F 21⋅的最大值为1,最小值为-2.(1)求椭圆C 的方程;(2)设A 为椭圆C 的右顶点,直线l 是与椭圆交于M 、N 两点的任意一条直线,若AN AM ⊥,证明直线l 过定点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l:y=kx+m 与椭圆C 相交于A,B 两点(A,B 不是左右顶点),椭圆的右顶点为D,且满足0=⋅DB DA ,试判断直线l 是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.课后习题1.已知椭圆的焦点在x 轴上,短轴长为4,离心率为5. (1)求椭圆的标准方程;(2)若直线l 过该椭圆的左焦点,交椭圆于M 、N 两点,且MN =l 的方程.2.过椭圆+=1的右焦点作一条斜率为2的直线与椭圆交于A,B 两点,O 为坐标原点,求△OAB 的面积.3.已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的一个顶点为A(2,0),离心率为√22,直线y=k(x-1)与椭圆C 交于不同的两点M,N.(1)求椭圆C 的方程. (2)当△AMN 的面积为√103时,求k 的值.4.在平面直角坐标系xOy 中,已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)过点P(2,1),且离心率e=√32. (1)求椭圆C 的方程. (2)直线l 的斜率为12,直线l 与椭圆C 交于A,B 两点.求△PAB 面积的最大值.6.(12分)已知椭圆的中心在原点,焦点为F 1(0,-22),F 2(0,22),且离心率e =223. (1)求椭圆的方程;(2)直线l (与坐标轴不平行)与椭圆交于不同的两点A 、B ,且线段AB 中点的横坐标为-12,求直线l 斜率的取值范围.7.已知椭圆C:x 2a 2+y 2b 2=1(a>b>0)的离心率为√22,其中左焦点为F(-2,0).(1)求椭圆C 的方程.(2)若直线y=x+m 与椭圆C 交于不同的两点A,B,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.8.设椭圆C :+=1(a>b>0)过点(0,4),离心率为. (1)求C 的方程. (2)求过点(3,0)且斜率为的直线被C 所截线段的中点坐标.9.已知点P 坐标为(4,2),椭圆方程为193622=+y x ,问:是否存在过点P 的直线,使得直线与椭圆相交的交点的中点恰为P 点?10.设椭圆E:x 2a 2+y 2b 2=1(a>b>0)过M(2,√2),N(√6,1)两点,O 为坐标原点.(1)求椭圆E 的方程.(2)若直线y=kx+4(k>0)与圆x 2+y 2=83相切,并且与椭圆E 相交于A,B 两点,求证:OA →⊥OB →.x 2y 2√3截得的线段长为4√33. (1)求椭圆的方程.(2)设A,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.。
高考数学一轮复习 专题15 导数的综合应用教学案 文-人教版高三全册数学教学案
专题15 导数的综合应用1.会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.会利用导数解决某些实际问题.1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数X 围问题转化为研究新函数的值域问题. 3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数.高频考点一 用导数解决与不等式有关的问题 例1、已知函数f (x )=ax +bx 2+1在点(-1,f (-1))处的切线方程为x +y +3=0. (1)求函数f (x )的解析式;(2)设g (x )=ln x ,求证:g (x )≥f (x )在[1,+∞)上恒成立; (3)若0<a <b ,求证:ln b -ln a b -a >2aa 2+b 2.(1)解 将x =-1代入切线方程得y =-2,所以f (-1)=b -a1+1=-2,化简得b -a =-4.①f ′(x )=a (x 2+1)-(ax +b )·2x(x 2+1)2, f ′(-1)=2a +2(b -a )4=-1.②联立①②,解得a =2,b =-2.所以f (x )=2x -2x 2+1.(3)证明 因为0<a <b ,所以b a>1,由(2)知ln b a >2·ba -2⎝ ⎛⎭⎪⎫b a 2+1,整理得ln b -ln a b -a >2aa 2+b 2,所以当0<a <b 时,ln b -ln a b -a >2aa 2+b2.【方法规律】证明不等式通常需要构造函数,利用函数的最值、单调性证明.(1)证明不等式f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),利用导数求F (x )的值域,得到F (x )<0即可;(2)对于证明含有两个变量a ,b 的不等式时,一种方法是通过变形构造成不等式f (a )>f (b ),然后利用函数f (x )的单调性证明,另一种方法是通过换元构造成单变量不等式,如本例令x =ba然后再利用已知关系证明即可.【变式探究】 (2016·全国Ⅲ卷)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x.(1)解 依题意,f (x )的定义域为(0,+∞).f ′(x )=1x-1,令f ′(x )=0,得x =1,∴当0<x <1时,f ′(x )>0,f (x )单调递增. 当x >1时,f ′(x )<0,f (x )单调递减.(2)证明 由(1)知f (x )在x =1处取得最大值,且最大值f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x-1,因此1<x -1ln x<x .高频考点二、不等式恒成立问题求参数的X 围 例2、已知函数f (x )=ax +ln x ,x ∈[1,e]. (1)若a =1,求f (x )的最大值;(2)若f (x )≤0恒成立,某某数a 的取值X 围. 解 (1)若a =1,则f (x )=x +ln x , f ′(x )=1+1x =x +1x .∵x ∈[1,e],∴f ′(x )>0,∴f (x )在[1,e]上为增函数,∴f (x )max =f (e)=e +1.(2)法一 ∵f (x )≤0即ax +ln x ≤0对x ∈[1,e]恒成立, ∴a ≤-ln xx,x ∈[1,e].令g (x )=-ln x x,x ∈[1,e],则g ′(x )=ln x -1x2, ∵x ∈[1,e],∴g ′(x )≤0, ∴g (x )在[1,e]上递减, ∴g (x )min =g (e)=-1e ,∴a ≤-1e.法二 要使x ∈[1,e],f (x )≤0恒成立,只需x ∈[1,e]时,f (x )max ≤0,显然当a ≥0时,f (x )=ax +ln x 在[1,e]上递增,③当1<-1a <e 时,即-1<a <-1e时,f (x )在⎣⎢⎡⎦⎥⎤1,-1a 上递增,在⎣⎢⎡⎦⎥⎤-1a ,e 上递减,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a ,∵1<-1a<e ,∴0<ln ⎝ ⎛⎭⎪⎫-1a <1,∴f ⎝ ⎛⎭⎪⎫-1a <0成立.由①②③可得a ≤-1e.【方法规律】由不等式恒(能)成立求参数的X 围常有两种方法:(1)讨论最值:先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值X 围;(2)分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值X 围.【变式探究】已知a 为实数,函数f (x )=a ln x +x 2-4x .(1)是否存在实数a ,使得f (x )在x =1处取得极值?证明你的结论;(2)设g (x )=(a -2)x ,若∃x 0∈⎣⎢⎡⎦⎥⎤1e ,e ,使得f (x 0)≤g (x 0)成立,某某数a 的取值X 围. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a x +2x -4=2x 2-4x +ax.假设存在实数a ,使f (x )在x =1处取得极值,则f ′(1)=0,∴a =2,此时,f ′(x )=2(x -1)2x,当x >0时,f ′(x )≥0恒成立, ∴f (x )在(0,+∞)上单调递增, ∴x =1不是f (x )的极值点.∴G ′(x )=(2x -2)(x -ln x )-(x -2)(x -1)(x -ln x )2=(x -1)(x -2ln x +2)(x -ln x )2. ∵x ∈⎣⎢⎡⎦⎥⎤1e ,e , ∴2-2ln x =2(1-ln x )≥0, ∴x -2ln x +2>0,∴x ∈⎝ ⎛⎭⎪⎫1e ,1时,G ′(x )<0,G (x )单调递减; x ∈(1,e)时,G ′(x )>0,G (x )单调递增,∴G (x )min =G (1)=-1. ∴a ≥G (x )min =-1.故实数a 的取值X 围为[-1,+∞). 高频考点三、利用导数解决函数零点问题 例3、设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx .由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞).f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.【方法技巧】函数零点问题通常可作以下适当转化来处理.函数y =f (x )的零点⇔方程f (x )=0的根⇔若f (x )=g (x )-h (x ),则f (x )的零点就是函数y =g (x )与y =h (x )图象交点的横坐标. 【变式探究】设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值X 围.解 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b , 所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.当x 变化时,f (x )与f ′(x )的变化情况如下:x (-∞,-2) -2 ⎝ ⎛⎭⎪⎫-2,-23 -23 ⎝ ⎛⎭⎪⎫-23,+∞ f ′(x ) +-+f (x )cc -3227所以,当c >0且c -3227<0,存在x 1∈(-4,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.高频考点四、利用导数解决生活中的优化问题例4、某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解 (1)因为x =5时,y =11,所以a2+10=11,a =2.于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (3,4) 4 (4,6) f ′(x ) + 0 - f (x )单调递增极大值42单调递减由上表可得,x =4时,函数f (x )取得极大值,也是最大值. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【感悟提升】在某某际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数某某际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.【变式探究】某品牌电动汽车的耗电量y 与速度x 之间有关系y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 答案 401.【2016高考某某卷】(本小题满分16分)已知函数()(0,0,1,1)xxf x a b a b a b =+>>≠≠. 设12,2a b ==. (1)求方程()2f x =的根;(2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,某某数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。
天津市高考数学一轮复习 导数的综合应用问题导学案
导数的综合应用知识梳理教学重、难点作业完成情况典题探究例1已知函数1()f x x a=+,2()3g x bx x =+. (Ⅰ)若曲线()()()h x f x g x =-在点(1,0)处的切线斜率为0,求a,b 的值; (Ⅱ)当[3,)a ∈+∞,且ab=8时,求函数()()()g x x f x ϕ=的单调区间,并求函数在区间[-2,-1]上的最小值。
例2已知函数2()ln f x x ax bx =++(其中,a b 为常数且0a ≠)在1x =处取得极值.(I) 当1a =时,求()f x 的单调区间;(II) 若()f x 在(]0,e 上的最大值为1,求a 的值.例3已知函数ax x x a x f ++-=2221ln 2)()(R a ∈. (Ⅰ) 讨论函数)(x f 的单调性;(Ⅱ)当0<a 时,求函数)(x f 在区间],1[e 的最小值.例4已知函数()ln f x ax x =-,()e 3axg x x =+,其中a ∈R .(Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围.五、演练方阵A 档(巩固专练)1.已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎪⎫-1,-12 C .(-1,0) D.⎝ ⎛⎭⎪⎫12,12.设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x<0,-x ,x≥0,则当x>0时,f[f(x)]表达式的展开式中常数项为( )A .-20B .20C .-15D .153.函数y =x33x -1的图像大致是( )图1-54. 函数f(x)=2ln x 的图像与函数g(x)=x 2-4x +5的图像的交点个数为( ) A .3 B .2 C .1 D .05. 若曲线y =kx +ln x 在点(1,k)处的切线平行于x 轴,则k =________.6.设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x,则f′(1)=________.7. 若函数f(x)=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞是增函数,则a 的取值范围是( )A .[-1,0]B .[-1,+∞)C .[0,3]D .[3,+∞) 8. 已知函数f(x)=x -aln x (a∈R ).(1)当a =2时,求曲线y =f(x)在点A(1,f(1))处的切线方程; (2)求函数f(x)的极值.9. 已知e 为自然对数的底数,设函数f(x)=(e x -1)(x -1)k(k =1,2),则( ) A .当k =1时,f(x)在x =1处取到极小值 B .当k =1时,f(x)在x =1处取到极大值 C .当k =2时,f(x)在x =1处取到极小值 D .当k =2时,f(x)在x =1处取到极大值10. 直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ) A.43 B .2C.83D.16 23B 档(提升精练)1. 函数f (x )=ax m (1-x )n在区间[0,1]上的图像如图1-2所示,则m ,n 的值可能是( )图1-2A .m =1,n =1B .m =1,n =2C .m =2,n =1D .m =3,n =1 2.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥2,x -13,x <2.若关于x 的方程f (x )=k 有两个不同的实根, 则实数k 的取值范围是________.3.曲线y =e -2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23D .1 4.函数f (x )=x 3-3x 2+1在x =________处取得极小值.5.下面四个图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( ).A.13 B .-13C.73D .-13 或536.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( ).A .1 B.12 C.52 D.227.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( ).A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝ ⎛⎭⎪⎫32,+∞C.⎝⎛⎦⎥⎤-∞,32D.⎝⎛⎭⎪⎫-∞,328.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于( ). A .1 B .2 C .0 D. 29.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则( ). A .a >-3 B . a <-3 C .a >-13D .a <-1310.已知函数f (x )=13x 3-a +12x 2+bx +a .(a ,b ∈R )的导函数f ′(x )的图象过原点.(1)当a =1时,求函数f (x )的图象在x =3处的切线方程; (2)若存在x <0,使得f ′(x )=-9,求a 的最大值.C 档(跨越导练)1.函数xe x xf )3()(-=的单调递增区间是( )A. )2,(-∞B.(0,3)C.(1,4)D. ),2(+∞2. 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为 ( ) A.1 B. 2 C.-1 D.-23.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是( )A.21y x =-B.y x =C.32y x =-D.23y x =-+ 4.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( )A .1-或25-64 B .1-或214 C .74-或25-64 D .74-或7 5.设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A .4B .14-C .2D .12- 6.曲线21xy x =-在点()1,1处的切线方程为( )A. 20x y --=B. 20x y +-=C.450x y +-=D. 450x y --= 7.若函数()y f x =的导函数...在区间[,]a b 上是增函数, 则函数()y f x =在区间[,]a b 上的图象可能是( )ab ab aA .B .C .D .8.若1x 满足2x+2x=5, 2x 满足2x+22log (x -1)=5, 1x +2x = ( )A.52 B.3 C.72D.4 9.设函数1()ln (0),3f x x x x =->则()y f x =( )A 在区间1(,1),(1,)e e 内均有零点。
天津市高考数学一轮复习 数列的综合应用问题导学案-人教版高三全册数学学案
数列的综合问题知识梳理教学重、难点作业完成情况典题探究例1.设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数.(I ) 求1a 及n a ;(II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值.例2.设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值. (Ⅰ)若11,23p q ==-,求3b ;(Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p 和q 的取值范围;如果不存在,请说明理由.例3.等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值; (11)当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T例4.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .演练方阵A 档(巩固专练)1 .已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = ( ) A. 21B. 22C. 2D.22.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项, 832S =,则10S 等于 ( ) (( 9A. 18B. 24C. 60D. 903.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 634.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于 ( ) A .1 B53C.- 2 D 3 5.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d = ( ) A.-2 B.-12 C.12D.2 6.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是 ( )A. 90B. 100C. 145D. 1907.等差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =A.38B.20C.10D.98.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744n n +B .2533n n +C .2324n n+ D .2n n +9. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 10.设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = .B 档(提升精练)1.若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a = ;前8项的和8S = .(用数字作答)2.设等比数列{n a }的前n 项和为n s 。
2021届高考数学一轮复习教学案数列地综合应用(含解析汇报)
2021届高考数学一轮复习教学案数列地综合应用(含解析汇报)实用文档数列的综合应用[知识能否忆起]1.数列在实际生活中有着广泛的应用,其解题的基本步骤,可用图表示如下:2.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是an与an+1的递推关系,还是前n项和Sn与Sn+1之间的递推关系.[小题能否全取]1.某学校高一、高二、高三共计2 460名学生,三个年级的学生人数刚好成等差数列,则该校高二年级的人数是( )A.800 B.820 C.840D.860解析:选B 由题意可设高一、高二、高三三个年级的人数分别为a-d,a,a+d. 2 460则a-d+a+a+d=2 460,解得a==820.3故高二年级共有820人.2.(教材习题改编)有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒(假设病毒不繁殖),问细菌将病毒全部杀死至少需要( )A.6秒钟 C.8秒钟B.7秒钟 D.9秒钟-解析:选B 设至少需n秒钟,则1+21+22+…+2n1≥100,文案大全实用文档1-2n即≥100,解得n≥7. 1-23.数列{an}是各项均为正数的等比数列,{bn}是等差数列,且a6=b7,则有( ) A.a3+a9≤b4+b10 C.a3+a9≠b4+b10B.a3+a9≥b4+b10D.a3+a9与b4+b10的大小不确定2解析:选B a3+a9≥2a3a9=2a6=2a6=2b7=b4+b10,当且仅当a3=a9时,不等式取等号.2ππ4.一个凸多边形的内角成等差数列,其中最小的内角为,公差为,则这个多边形336的边数为________.解析:由于凸n边形的内角和为(n-2)π, 2πn?n-1?π故n+×=(n-2)π. 3236化简得n2-25n+144=0.解得n=9或n=16(舍去).答案:95.设曲线y=xn1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,xn=________,+令an=lg xn,则a1+a2+…+a99的值为________.解析:∵y=xn1,∴y′=(n+1)xn,+它在点(1,1)处的切线方程为y-1=(n+1)(x-1),与x轴交点的横坐标为xn=1-1n=, n+1n+1由an=lg xn得an=lg n-lg(n+1),于是a1+a2+…+a99=lg 1-lg 2+lg 2-lg3+…+lg 99-lg 100=lg 1-lg 100=0-2=-2. 答案:n-2 n+11.对等差、等比数列的概念、性质要有深刻的理解,有些数列题目条件已指明是等差(或等比)数列,有的数列并没有指明,但可以通过分析构造,转化为等差数列或等比数列,然后应用等差、等比数列的相关知识解决问题.2.数列是一种特殊的函数,故数列有着许多函数的性质.等差数列和等比数列是两种最基本、最常见的数列,它们是研究数列性质的基础,与函数、方程、不等式、三角等内容有着广泛的联系,在实际生活中也有着广泛的应用,随着高考对能力要求的进一步提高,这一部分内容也将受到越来越多的关注.文案大全实用文档典题导入[例1] 在等比数列{an}(n∈N*)中,a1>1,公比q>0,设bn=log2an,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{bn}是等差数列; (2)求{bn}的前n项和Sn及{an}的通项an. [自主解答] (1)证明:∵bn=log2an, an+1∴bn+1-bn=log2=log2q为常数,an∴数列{bn}为等差数列且公差d=log2q. (2)∵b1+b3+b5=6,∴b3=2,∵a1>1,∴b1=log2a1>0. ∵b1b3b5=0,∴b5=0.???b1+2d=2,?b1=4,∴?解得? ?b1+4d=0,???d=-1,等差数列与等比数列的综合问题n?n-1?9n-n2∴Sn=4n+×(-1)=. 22??log2q=-1,?q=,?∵?∴?2??log2a1=4,?1?a1=16,∴an=25n(n∈N*).-试比较(2)求出的Sn与an的大小.解:∵an=25n>0,-n?9-n?当n≥9时,Sn=≤0,2∴n≥9时,an>Sn.∵a1=16,a2=8,a3=4,a4=2,a5=1, 111a6=,a7=,a8=, 248感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四课时 综合应用
一.知识要点
1. 集合间的关系与集合的运算
2. 命题及其关系,逻辑联结词与量词
3. 集合与逻辑语言之间的关系
二.基础练习
1.集合{}
Z x x x x A ∈-<+=,3512的子集的个数是 。
2.“m=2
1”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0 相互垂直”的 条件。
3.已知全集,R U =集合{}0232≤+-=x x x A ,且
R A C B U =)( ,{}3210)(<<<<=x x x A C B U 或 ,则集合B= .
4.已知函数12)(22-+-=a ax x x f 的
A,若2A ∉,则a 的取值范围是 。
5.已知{}N n n x x A ∈+==,15,{}N n n x x B ∈+==,25,{}N n n x x C ∈+==,35,{}N n n x x D ∈+==,45,若B A ∈∈βα, ,D C ∈∈γθ,,则∈2α ,∈2β ,∈2θ ,∈2γ 。
6.若命题p 的否命题是q ,命题p 的逆否命题是r,则q 与r 的关系是 。
三.典型例题
例1.已知集合{}042=+=x x x A ,{}
01)1(222=-+++=a x a x x B ,当A B A = 时,求实数a 的取值范围。
例2.已知R m ∈,设335:2≥--m m p 不等式;q:函数
()+∞∞-++++=,6)3
4()(23在x m mx x x f 上有极值。
求使p 正确且q 正确的m 的取值范围。
例3.设{},2a x x A ≤≤-={}A x x y y B ∈+==,32,{}
A x x z z C ∈==,2 ,求使
B
C ⊆的充要条件。
例4.若关于x 的方程12)1(2+=+a x 和ax x 2)2(2=+中至少有一个方程具有两个不等的实根,求实数a 的取值范围。
四.课后作业
1.已知集合{}⎭
⎬⎫⎩⎨⎧
>+==∈++==0,22,,642x x x y y M R x x x y y P ,则M P = 。
2.已知集合⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧≥==1,log 21x y y A x ,{}0,2>==x y y B x ,则)()(B C A C R R = 。
3.命题"1,"-=∈∃x e R x x 的否定是 。
4.已知集合{}{}1,1≥=+≤<=x x B a x a x A ,全集R I =,则当A B C A I =)( 时,则实数a 的取值范围是 。
5.命题“若a>-1,则a>-2”以及它的逆命题,否命题,逆否命题这四个命题中,真命题的个数为 。
6.若命题“01)1(,2<+-+∈∃x a x R x 使”是假命题,则实数a 的取值范围是 。
7.已知命题[]"0ln 2
1,2,1:"2≥--∈∀a x x x p 与命题"0682,:"2=--+∈∃a ax x R x q 都是真命题,则实数a 的取值范围是 。
8.若不等式n a n n
1
)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是 。
9.已知不等式组
{03408622<+-<+-x x x x 的解集是不等式0922<+-a x x 的解集的子集,则实数a 的取值范围
是 。
10.若下列三个方程,03442=+-+a ax x 0)1(22=+-+a x a x ,0222=-+a ax x 中至少有一
个方程有实根,求实数a 的取值范围。
11.若{}0232<+-=x x x B ,是否存在实数a,使{}
0)(322<++-=a x a a x x A 且A B A = ?请说明理由。
12.已知12
1≠>a a 且,条件x a x f p )12(log )(:-=函数在其定义域上是减函数,条件
x
x
x
g
q函数的定义域为R,如果“p或q”为真命题,求实数a的取值范围。
=a
+
)
(
:-
-
2。