2017-2018学年(下)厦门市七年级质量检测数学参考答案及评分标准
20172018学年人教版七年级下数学前三章综合检测卷含答案
前三章综合检测卷一、选择题(共10小题,每题3分,共30分)1.如图所示,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为()°° C .100°°【答案】D.2.已知:如图,l1∥l2,∠1=50°, 则∠2的度数是()A.120°B.50°C.40°D.130°【答案】D.【解析】试题分析:∵l1∥l2,∴∠1=∠3,∵∠1=50°,∴∠3=50°,∵∠2+∠3=180°,∴∠2=130°,故选D.3.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°【答案】C.4.下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风筝在空中随风飘动D.急刹车时,汽车在地面上的滑动【答案】D5.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N 【答案】C 【解析】试题分析:∵15 3.87≈,3<15<4,∴15对应的点是M. 6.下列实数,2,π,227,…,327中,有理数有( )个. 【答案】C 【解析】试题分析:有理数共有,227,327三个. 故选C. 7.五个数中:-227,-1,0,12,2,是无理数的有( ) A .0个 B .1个 C .2个 D .3个 【答案】B .8.在平面直角坐标系中,将点(2,1)P -向右平移4个单位长度,再向上平移3个单位长度得到 点'P 的坐标是( ).A .(2,4)B .(1,5) C.(1,3)- D .(5,5)-[来源:] 【答案】A 【解析】试题分析:左右平移改变点的横坐标,上下平移改变点的纵坐标.将点P (-2,1)向右平移4个单位长度后,此时点坐标为(2,1),再向上平移3个单位长度,故点P ‘的坐标是(2,4). 9.如图,小手盖住的点的坐标可能为( ).A .(46)--,B .(63)-,C . (52),D .(34)-, 【答案】A 【解析】O y x试题分析:图中小手在第三象限,横纵坐标均为负数,只有选项A符合.故选A.10.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)【答案】D.二、填空题(共10小题,每题3分,共30分)11.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.【答案】70°.12.如图,两直线a.b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a.b的位置关系是____________ .【答案】a∥b.13.如图,直线a、b被直线c所截,若满足,则a、b平行.【答案】∠1=∠2或∠3=∠2或∠3+∠4=1800【解析】试题分析:∵∠1=∠2(以此为例),∴a∥b(同位角相等两直线平行),14.如图所示,已知AB ∥CD ∥EF , 则∠x 、∠y 、∠z 三者之间的关系是 .【答案】∠x+∠y-∠z=180°. 【解析】试题分析:如图,∵CD ∥EF ,∴∠y+∠1=180°,∴∠1=180°-∠y,.∵AB ∥EF ,∴∠x=∠AEF=∠z+∠1=∠z+180°-∠y,∴∠x+∠y-∠z=180°.15.如图,在直角坐标系中,已知点A(31)--,,点B(21)-,,平移线段AB ,使点A 落在1A (01)-,,点B 落在点B 1.,则点B 1.的坐标为 .【答案】(1,1).16.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b=b a b a -+,如3※2=52323=-+,那么6※3= . 【答案】1. 【解析】 试题分析:6※6333+==1. 17.比较大小:9.5- 6.【答案】>. 【解析】试题分析:因为5.9<6,所以 5.9<6,所以9.5->6-.18.16的算术平方根是 ,-8的立方根是 . 【答案】2,-2.19.在平面直角坐标系中,已知点A ()4,3-、()0,2B ,现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 . 【答案】(4,-1) 【解析】试题分析:点A 向右平移4个单位,向下平移3个单位与原点重合,故点A 也如此平移,平移后为(4,-1). 20.如图,长方形ABOC 在直角坐标系中,点A 的坐标为(–2,1),则长方形的面积等于 ﹒【答案】2. 【解析】试题分析:点A 的坐标为(﹣2,1),则点A 到y 轴,x 轴的距离分别为2,1,∴长方形的面积=2×1=2. 三、解答题(共60分) 21.(10分)计算:(1)22327(6)(5)-+-+ (2)2(3)1612----【答案】(1)8;(2)2-.22.(8分)在如图所示的平面直角坐标系中描出下面各点:A (0,3);B (1,-3);C (3,-5); D (-3,-5);E (3,5);F (5,7);G (5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点 重合. (2)连接CE ,则直线CE 与y 轴是什么关系?(3)顺次连接D 、E 、G 、C 、D 得到四边形DEGC ,求四边形DEGC 的面积. 【答案】(1)D .(2)直线CE 与y 轴平行.(3)40A BC O【解析】试题分析:(1)易知C向x负半轴移动6个单位,即往左边移动6个单位,与D重叠.[来源:学科网] (2)连接CE,因为两点坐标x值相等,故CE垂直于x轴交于H点,平行于y轴(3)四边形DEGC面积=S三角形EDC+S三角形GEC=1111DC610102 2222EC EC GH⋅+⋅=⨯⨯+⨯⨯=4023.(6分)如图,直线AB、CD、EF相交于点O,OG平分∠COF,∠1=30°,∠2=45°.求∠3的度数.【答案】∠3 =°.24.(7分)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF 127分)已知∠1=∠2,∠D=∠C 求证:∠A=∠F【解析】试题分析:根据平行线判定推出BD∥CE,求出∠D+∠CBD=180°,推出AC∥DF,根据平行线性质推出即可.试题解析:∵∠1=∠2,∴BD∥CE,∴∠C+∠CBD=180°,∵∠C=∠D,∴∠D+∠CBD=180°,∴AC∥DF,∴∠A=∠F.27.(8分)在平面直角坐标系中,已知点A(-4,3)、B(-2,-3)(1)描出A、B两点的位置,并连结AB、AO、BO.(2)三角形AOB的面积是__________.把三角形AOB向右平移4个单位,再向上平移2个单位,画出平移后的三角形A′B′C′,并写出各点的坐标.试题解析:(1)A、B两点的位置如图所示:(2)三角形AOB的面积=4×6-12×2×6-12×2×3-12×3×4=24-6-3-6=24-15=9;(3)三角形A′B′C′如图所示,A′(0,5),B′(2,-1),C′(4,2).考点:作图-平移变换.28.(7分)如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.【解析】试题分析:(1)以火车站向左2个单位,向下1个单位为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系写出体育场、市场、超市的坐标即可.试题解析:(1)建立平面直角坐标系如图所示;(2)体育场(﹣2,4),市场(6,4),超市(4,﹣2).。
2017—2018学年(上)厦门市九年级质量检测及答案
2017—2018学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列算式中,计算结果是负数的是( )A .(-2)+7B .-1C .3×(-2)D .(-1)22.对于一元二次方程x 2-2x +1=0,根的判别式b 2-4ac 中的b 表示的数是( ) A .-2 B .2 C .-1 D .13.如图1,四边形ABCD 的对角线AC ,BD 交于点O ,E 是BC 边上的一点,连接AE ,OE , 则下列角中是△AEO 的外角的是( ) A .∠AEB B .∠AOD C .∠OEC D .∠EOC4.已知⊙O 的半径是3,A ,B ,C 三点在⊙O 上,∠ACB =60°, 则︵AB 的长是( )A .2πB .πC .32πD .12π5.某区25位学生参加魔方速拧比赛,比赛成绩如图2所示, 则这25个成绩的中位数是( ) A .11 B .10.5 C .10 D .66.随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是( )A .年平均下降率为80% ,符合题意B .年平均下降率为18% ,符合题意C .年平均下降率为1.8% ,不符合题意 D.年平均下降率为180% ,不符合题意 7.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该 二次函数的解析式可以是( ) A .y =2(x +1)2 B .y =2(x -1)2 C .y =-2(x +1)2D .y =-2(x -1)28.如图3,已知A ,B ,C ,D 是圆上的点,︵AD =︵BC ,AC ,BD 交于点E ,则下列结论正确的是( )A .AB =AD B .BE =CDC .AC =BD D .BE =AD 9.我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断 增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先一千多年.依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A .2.9B .3C .3.1D .3.1410.点M (n ,-n )在第二象限,过点M 的直线y =kx +b (0<k <1)分别交x 轴,y 轴于点A ,B .过点M 作MN ⊥x 轴于点N ,则下列点在线段AN 上的是( )A .((k -1)n ,0)B . ((k +3)n ,0) C . ((k +2)n ,0) D .((k +1)n ,0)ABDCE EODCBA图1图2学生数正确速 拧个数图3二、填空题(本大题有6小题,每小题4分,共24分)11.已知x =1是方程x 2-a =0的根,则a = .12.一个不透明盒子里装有4个除颜色外无其他任何差别的球,从盒子中随机摸出一个球,若 P (摸出红球)=14,则盒子里有 个红球.13.如图4,已知AB =3,AC =1,∠D =90°,△DEC 与△ABC 关于点C 成中心对称,则AE 的长是 .14.某二次函数的几组对应值如下表所示.若x 1<x 2<x 3<x 4<x 5, 则该函数图象的开口方向是 .15.P 是直线l 上的任意一点,点A 在⊙O 上.设OP 的最小值为m ,若直线l 过点A ,则m 与OA 的大小关系是 .16.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元.演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 . 三、解答题(本大题有9小题,共86分)17.(本题满分8分) 解方程x 2-4x =1.18.(本题满分8分)如图5,已知△ABC 和△DEF 的边AC ,DF 在一条直线上, AB ∥DE ,AB =DE ,AD =CF ,证明BC ∥EF .19.(本题满分8分)如图6,已知二次函数图象的顶点为P ,且与y 轴交于点A . (1)在图中再确定该函数图象上的一个点B 并画出; (2)若P (1,3),A (0,2),求该函数的解析式.如图7,在四边形ABCD 中,AB =BC ,∠ABC =60°,E 是CD 边上一点,连接BE ,以BE 为一边作等边三角形BEF .请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.21.(本题满分8分)某市一家园林公司培育出新品种树苗,为考察这种树苗的移植成活率,公司进行了统计, 结果如下表所示.现该市实施绿化工程,需移植一批这种树苗,若这批树苗移植后要有28.5万棵成活,则需一次性移植多少棵树苗较为合适?请说明理由.22.(本题满分10分)已知直线l 1:y =kx +b 经过点A (-12,0)与点B (2,5).(1)求直线l 1与y 轴的交点坐标;(2)若点C (a ,a +2)与点D 在直线l 1上,过点D 的直线l 2与x 轴的正半轴交于点E ,当AC =CD =CE 时,求DE 的长. F A B C D E 图7阅读下列材料:我们可以通过下列步骤估计方程2x 2+x -2=0的根所在的范围.第一步:画出函数y =2x 2+x -2的图象,发现函数图象是一条连续不断的曲线,且与x 轴的一个交点的横坐标在0,1之间.第二步:因为当x =0时,y =-2<0;当x =1时,y =1>0,所以可确定方程2x 2+x -2=0的一个根x 1所在的范围是0<x 1<1.第三步:通过取0和1的平均数缩小x 1所在的范围:取x =0+12=12,因为当x =12时,y <0,又因为当x =1时,y >0, 所以12<x 1<1.(1)请仿照第二步,通过运算,验证方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1;(2)在-2<x 2<-1的基础上,重复应用第三步中取平均数的方法,将x 2所在的范围缩小至m <x 2<n ,使得n -m ≤14.24.(本题满分11分)已知AB 是半圆O 的直径,M ,N 是半圆上不与A ,B 重合的两点,且点N 在︵MB 上. (1)如图8,MA =6,MB =8,∠NOB =60°,求NB 的长;(2)如图9,过点M 作MC ⊥AB 于点C ,P 是MN 的中点,连接MB ,NA ,PC ,试探究∠MCP ,∠NAB ,∠MBA 之间的数量关系,并证明.N MA B 图8在平面直角坐标系xOy 中,已知点A 在抛物线y =x 2+bx +c (b >0)上,且A (1,-1), (1)若b -c =4,求b ,c 的值;(2)若该抛物线与y 轴交于点B ,其对称轴与x 轴交于点C ,则命题“对于任意的一个k (0<k <1),都存在b ,使得OC =k ·OB .”是否正确?若正确,请证明;若不 正确,请举反例;(3)将该抛物线平移,平移后的抛物线仍经过(1,-1),点A 的对应点A 1为(1-m ,2b -1).当m ≥-32时,求平移后抛物线的顶点所能达到的最高点的坐标.2017—2018学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10选项 C A D A A D B C B D二、填空题(本大题共6小题,每题4分,共24分)11. 1. 12. 1.13.13.14.向下.15. m≤OA.16. 252<x≤368(x为整数)或253≤x≤368(x为整数)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:x2-4x+4=5.………………4分(x-2)2=5.由此可得x-2=±5.………………6分x1=5+2,x2=-5+2.………………8分18.(本题满分8分)证明:如图1,∵AB∥DE,∴∠BAC=∠EDF. ………………2分∵AD=CF,∴AD+DC=CF+DC.即AC=DF. ………………4分又∵AB=DE,∴△ABC≌△DEF.………………6分∴∠BCA=∠EFD.∴BC∥EF. ………………8分19.(本题满分8分)解:(1)如图2,点B即为所求. ………………3分(2)由二次函数图象顶点为P(1,3),可设解析式为y=a(x-1)2+3. ………………6分把A(0,2)代入,得a+3=2.解得a=-1. ………………7分所以函数的解析式为y=-(x-1)2+3. ………………8分图1F ABCDEA··P图2·B20.(本题满分8分)解:如图3,连接AF . ………………3分 将△CBE 绕点B 逆时针旋转60°,可与△ABF 重合. …………8分 21.(本题满分8分)解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定.当移植总数为10000时, 成活率为0.950,于是可以估计树苗移植成活率为0.950. ………………3分 则该市需要购买的树苗数量约为28.5÷0.950=30(万棵).答:该市需向这家园林公司购买30万棵树苗较为合适. ………………8分22.(本题满分10分)(1)(本小题满分5分)解:把A (-12,0),B (2,5)分别代入y =kx +b ,可得解析式为y =2x +1. ……………… 3分 当x =0时,y =1.所以直线l 1与y 轴的交点坐标为(0,1). ……………… 5分(2)(本小题满分5分)解:如图4,把C (a ,a +2)代入y =2x +1,可得a =1. ……………… 6分 则点C 的坐标为(1,3).∵ AC =CD =CE ,又∵ 点D 在直线AC 上,∴ 点E 在以线段AD 为直径的圆上.∴ ∠DEA =90°. ……………… 8分过点C 作CF ⊥x 轴于点F ,则 CF =y C =3. ……………… 9分 ∵ AC =CE , ∴ AF =EF 又∵ AC =CD ,∴ CF 是△DEA 的中位线.∴ DE =2CF =6. ……………… 10分 23.(本题满分11分) (1)(本小题满分4分)解:因为当x =-2时,y >0;当x =-1时,y <0,所以方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1. ……………… 4分(2)(本小题满分7分)解:取x =(-2)+(-1)2=-32,因为当x =-32时,y >0,又因为当x =-1时,y =-1<0,所以-32<x 2<-1. ……………… 7分F A B CDE 图3取x =(-32)+(-1)2=-54,因为当x =-54时,y <0,又因为当x =-32时,y >0,所以-32<x 2<-54. ……………… 10分又因为-54-(-32)=14,所以-32<x 2<-54即为所求x 2 的范围. ……………… 11分24.(本题满分11分)(1)(本小题满分5分)解:如图5,∵ AB 是半圆O 的直径,∴ ∠M =90°. ………………1分在Rt △AMB 中,AB =MA 2+MB 2 ………………2分 ∴ AB =10.∴ OB =5. ………………3分 ∵ OB =ON ,又∵ ∠NOB =60°,∴ △NOB 是等边三角形. ………………4分 ∴ NB =OB =5. ………………5分 (2)(本小题满分6分) 证明:方法一:如图6,画⊙O ,延长MC 交⊙O 于点Q ,连接NQ ,NB . ∵ MC ⊥AB , 又∵ OM =OQ ,∴ MC =CQ . ………………6分 即 C 是MN 的中点 又∵ P 是MQ 的中点,∴ CP 是△MQN 的中位线. ………………8分 ∴ CP ∥QN .∴ ∠MCP =∠MQN .∵ ∠MQN =12∠MON ,∠MBN =12∠MON ,∴ ∠MQN =∠MBN .∴ ∠MCP =∠MBN . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠MBN +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分图5∵ P 是MN 中点, 又∵ OM =ON ,∴ OP ⊥MN , ………………6分 且 ∠MOP =12∠MON .∵ MC ⊥AB ,∴ ∠MCO =∠MPO =90°. ∴ 设OM 的中点为Q , 则 QM =QO =QC =QP .∴ 点C ,P 在以OM 为直径的圆上. ………………8分 在该圆中,∠MCP =∠MOP =12∠MQP .又∵ ∠MOP =12∠MON ,∴ ∠MCP =12∠MON .在半圆O 中,∠NBM =12∠MON .∴ ∠MCP =∠NBM . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠NBM +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分25.(本题满分14分) (1)(本小题满分3分)解:把(1,-1)代入y =x 2+bx +c ,可得b +c =-2, ………………1分 又因为b -c =4,可得b =1,c =-3. ………………3分 (2)(本小题满分4分)解:由b +c =-2,得c =-2-b . 对于y =x 2+bx +c ,当x =0时,y =c =-2-b .抛物线的对称轴为直线x =-b2.所以B (0,-2-b ),C (-b2,0).因为b >0,所以OC =b2,OB =2+b . ………………5分当k =34时,由OC =34OB 得b 2=34(2+b ),此时b =-6<0不合题意.所以对于任意的0<k <1,不一定存在b ,使得OC =k ·OB . ………………7分(3)(本小题满分7分)图7方法一:由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.(1+b 2+m )2=b 24-b +1.(1+b 2+m )2=(b2-1)2.所以1+b 2+m =±(b2-1).当1+b 2+m =b2-1时,m =-2(不合题意,舍去);当1+b 2+m =-(b2-1)时,m =-b . ………………10分因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分方法二:因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b . 则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分 即y =(x +b 2+m )2-b 24-2+b . 把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1. 可得(m +2)(m +b )=0.所以m =-2(不合题意,舍去)或m =-b . ………………10分因为m ≥-32,所以b ≤32. 所以0<b ≤32. ………………11分 所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b . 即顶点为(b 2,-b 24-2+b ). ………………12分 设p =-b 24-2+b ,即p =-14(b -2)2-1. 因为-14<0,所以当b <2时,p 随b 的增大而增大. 因为0<b ≤32, 所以当b =32时,p 取最大值为-1716. ………………13分 此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分。
人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案
2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
2017-2018学年度七年级(下)期中数学试卷(有答案和解析)
2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。
2017-2018学年度第二学期期末考试初一数学试题及答案
2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2、从80减少到50,减少了()%;从50增加到80,增加了()%。
3、某班有60人,缺席6人,出勤率是()%。
4、如果3a=5b(a、b≠0),那么a:b=()。
5、一个圆锥的体积12dm3 ,高3dm,底面积是()。
6、甲、乙两数的比是5:8,甲数是150,乙数是()。
7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。
照这样的折扣,原价800元的西装,现价()元。
9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。
10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。
桶重()千克,油重()千克。
11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。
12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。
如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。
13、找出规律,填一填。
3,11,20,30,(),53,()。
二、判断题:对的在括号打√,错的打×。
(每小题1分共5分)1、0是负数。
()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。
()3、时间一定,路程和速度成正比例。
()4、栽120棵树,都成活了,成活率是120%。
()5、圆柱的体积大于与它等底等高的圆锥的体积。
()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
2018年厦门初三质检数学试卷+答案
………………1 分
又因为 b-c=4,可得 b=1,c=-3.
………………3 分
(2)(本小题满分 4 分)
解:由 b+c=-2,得 c=-2-b.
对于 y=x2+bx+c,
当 x=0 时,y=c=-2-b.
抛物线的对称轴为直线 x=-b2.
所以 B(0,-2-b),C(-b2,0). 因为 b>0,
由平移前的抛物线 y=x2+bx+c,可得
y=(x+b2)2-b42+c,即 y=(x+b2)2-b42-2-b.
因为平移后 A(1,-1)的对应点为 A1(1-m,2b-1) 可知,抛物线向左平移 m 个单位长度,向上平移 2b 个单位长度.
则平移后的抛物线解析式为 y=(x+b2+m)2-b42-2-b+2b.
解:如图 4,把 C(a,a+2)代入 y=2x+1,可得 a=1. ……………… 6 分
则点 C 的坐标为(1,3).
x C
∵ AC=CD=CE,
yD
又∵ 点 D 在直线 AC 上,
y
∴ 点 E 在以线段 AD 为直径的圆上.
B
∴ ∠DEA=90°.
……………… 8 分
过点 C 作 CF⊥x 轴于点 F,
(1)(本小题满分 5 分) 解:如图 5,∵ AB 是半圆 O 的直径,
M N
∴ ∠M=90°.
………………1 分
在 Rt△AMB 中,AB= MA2+MB2 ………………2 分
∴ AB=10.
∴ OB=5.
………………3 分
A
O
B
图5
∵ OB=ON,
又∵ ∠NOB=60°,
∴ △NOB 是等边三角形.
………………9 分
2017-2018学年度下学期七年级(下)期中数学试卷(有答案和解析)
2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A.7×10﹣6B.0.7×10﹣6C.7×10﹣7D.70×10﹣82.下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.D.2a3•3a2=6a53.16m÷4n÷2等于()A.2m﹣n﹣1B.22m﹣n﹣2C.23m﹣2n﹣1D.24m﹣2n﹣14.若9x2+ax+16是完全平方式,则a应是()A.12B.﹣12C.±12D.±245.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)6.下列三条线段能构成三角形的是()A.1,2,3B.3,4,5C.7,10,18D.4,12,77.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0D.q+2p=08.下列分解因式正确的是()A.a﹣16a3=(1+4a)(a﹣4a2)B.3x﹣6y+3=3(x﹣2y)C.x2﹣x﹣2=(x+2)(x﹣1)D.﹣x2+2x﹣1=﹣(x﹣1)29.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°10.如图,有下列判定,其中正确的有()①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+∠4=180°,则AD∥BC.A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分)11.五边形的内角和是°.12.计算﹣a3•(﹣a)2=.13.(x﹣1)0=1成立的条件是.14.若x+3y﹣2=0,则2x•8y=.15.如果,那么a,b,c的大小关系为.16.若(x﹣3)(x+m)=x2+nx﹣15,则n=.17.已知x﹣y=5,(x+y)2=49,则x2+y2的值等于.18.如图a是长方形纸带,∠DEF=22°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是.三、解答题(共9小题,满分64分)19.(12分)计算(1)2a(a﹣2a3)﹣(﹣3a2)2;(2)(﹣1)2017+(π﹣3.14)0﹣()﹣2;(3)(x﹣3)(x+2)﹣(x+1)220.(8分)分解因式(1)4a2x2+16ax2y+16x2y2;(2)a2(a﹣3)﹣a+3.21.(5分)若33×9m+4÷272m﹣1的值为729,求m的值.22.(5分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.23.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.24.(6分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.25.(6分)如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=70°,则∠ABC+∠BCD=°;∠E=°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F,所添加的条件为.26.(8分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.27.(8分)已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故选:C.【点评】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】分别利用完全平方公式以及同底数幂的乘法和积的乘方计算分析得出即可.【解答】解:A、(﹣2a3)2=4a6,故此选项错误;B、(a﹣b)2=a2+b2﹣2ab,故此选项错误;C、=2a+,故此选项错误;D、2a3•3a2=6a5,此选项正确.故选:D.【点评】此题主要考查了完全平方公式的应用以及同底数幂的乘法和积的乘方等知识,熟练掌握完全平方公式的形式是解题关键.3.【分析】先转化为底数为2的幂的除法,再利用同底数幂相除,底数不变指数相减计算即可.【解答】解:16m÷4n÷2,=24m÷22n÷2,=24m﹣2n﹣1.故选:D.【点评】本题考查同底数幂的除法,转化为同底数幂的除法是解题的关键.4.【分析】利用完全平方公式的结构特征判断即可得到a的值.【解答】解:∵9x2+ax+16是完全平方式,∴a=±24.故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点评】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.6.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,不符合题意;B、3+4>5,能够组成三角形,符合题意;C、7+10<18,不能够组成三角形,不符合题意;D、4+7<12,不能够组成三角形,不符合题意.故选:B.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.8.【分析】分别利用提取公因式法以及公式法和十字相乘法分解因式进而得出答案.【解答】解:A、a﹣16a3=a(1+4a)(1﹣4a),故A错误;B、3x﹣6y+3=3(x﹣2y+1),故B错误;C、x2﹣x﹣2=(x﹣2)(x+1),故C错误;D、﹣x2+2x﹣1=﹣(x﹣1)2,故D正确.故选:D.【点评】此题主要考查了提取公因式法以及十字相乘法和公式法分解因式,熟练应用公式法分解因式是解题关键.9.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB,根据平行线的性质求出∠ABD+∠EDB,即可求出答案.【解答】解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=180°﹣∠ABC+180°﹣∠EDC=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故选:D.【点评】本题考查了平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.10.【分析】根据等角对等边,平行线的性质与判定对各小题分析判断即可得解.【解答】解:①若∠1=∠3,则AB=AD,故本小题错误;②若AD∥BC,则∠2=∠3,故本小题错误;③若∠1=∠3,AD∥BC,则∠1=∠2,正确;④若∠C+∠3+∠4=180°,则AD∥BC正确;综上所述,正确的有③④共2个.故选:B.【点评】本题考查了平行线的判定与性质,是基础题,准确识图并熟记平行线的判定方法与性质是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分)11.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.12.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:﹣a3•(﹣a)2=﹣a3•a2=﹣a5.故答案为:﹣a5.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.13.【分析】根据零指数幂:a0=1(a≠0),求解即可.【解答】解:由题意得,x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】本题考查了零指数幂,解答本题的关键是掌握a0=1(a≠0).14.【分析】原式利用幂的乘方及积的乘方运算法则变形,将已知等式变形后代入计算即可求出值.【解答】解:∵x+3y﹣2=0,即x+3y=2,∴原式=2x+3y=22=4.故答案为:4【点评】此题考查了幂的乘方与积的乘方,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.15.【分析】先依据零指数幂的性质和负整数指数幂的性质求得a,b,c的值,然后在比较大小即可.【解答】解:∵a=(﹣0.1)0=1,b=(﹣0.1)﹣1=﹣=﹣10,c=(﹣)2=,∴a>c>b.故答案为:a>c>b.【点评】本题主要考查的是零指数幂的性质和负整数指数幂的性质,掌握相关性质是解题的关键.16.【分析】首先利用多项式乘以多项式计算出(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x ﹣3m,进而可得x2+(m﹣3)x﹣3m=x2+nx﹣15,从而可得m﹣3=n,﹣3m=﹣15,再解即可.【解答】解:(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x﹣3m,∵(x﹣3)(x+m)=x2+nx﹣15,∴x2+(m﹣3)x﹣3m=x2+nx﹣15,∴m﹣3=n,﹣3m=﹣15,解得:m=5,n=2,故答案为:2.【点评】此题主要考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17.【分析】首先得出x2+y2﹣2xy=25①,进而得出x2+y2+2xy=49②,求出x2+y2的值即可.【解答】解:∵x﹣y=5,∴x2+y2﹣2xy=25①,∵(x+y)2=49,∴x2+y2+2xy=49②,∴①+②得:2(x2+y2)=74,∴x2+y2=37.故答案为:37.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.18.【分析】根据两直线平行,内错角相等可得∠EFB=∠DEF,再根据翻折的性质,图c中∠EFB 处重叠了3层,然后根据根据∠CFE=180°﹣3∠EFB代入数据进行计算即可得解.【解答】解:∵∠DEF=22°,长方形ABCD的对边AD∥BC,∴∠EFB=∠DEF=22°,由折叠,∠EFB处重叠了3层,∴∠CFE=180°﹣3∠EFB=180°﹣3×22°=114°.故答案为:114°.【点评】本题考查了翻折变换,平行线的性质,观察图形判断出图c中∠EFB处重叠了3层是解题的关键.三、解答题(共9小题,满分64分)19.【分析】(1)先计算乘法和乘方,再合并同类项即可得;(2)先计算乘方、零指数幂和负整数指数幂,再计算加减可得;(3)先计算乘法和完全平方式,再去括号、合并同类项即可得.【解答】解:(1)原式=2a2﹣4a4﹣9a4=2a2﹣13a4;(2)原式=﹣1+1﹣9=﹣9;(3)原式=x2+2x﹣3x﹣6﹣(x2+2x+1)=x2+2x﹣3x﹣6﹣x2﹣2x﹣1=﹣3x﹣7.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.20.【分析】(1)首先提取公因式4x2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式(a﹣3),再利用平方差公式分解因式即可.【解答】解:(1)4a2x2+16ax2y+16x2y2;=4x2(a2+4ay+4y2)=4x2(a+2y)2;(2)a2(a﹣3)﹣a+3=(a﹣3)(a2﹣1)=(a﹣3)(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得:m=2.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.22.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=6,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.23.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.24.【分析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.【解答】解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.25.【分析】(1)先根据三角形内角和定理求出∠FBC+∠BCF=180°﹣∠F=110°,再由角平分线定义得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.由角平分线定义得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,然后根据三角形内角和定理求出∠E =180°﹣(∠DAE+∠ADE)=110°;(2)由四边形ABCD的内角和为360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根据三角形内角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.【解答】解:(1)∵∠F=70,∴∠FBC+∠BCF=180°﹣∠F=110°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,∴∠E=180°﹣(∠DAE+∠ADE)=110°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为220°;110°;AB∥CD.【点评】本题考查了三角形、四边形内角和定理,角平分线定义,平行线的判定,等式的性质,利用数形结合,理清角度之间的关系是解题的关键.26.【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=﹣2.【点评】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.27.【分析】(1)①利用角平分线的性质求出∠ABO的度数;②利用角平分线的性质和平行线的性质求得∠OAC=60°;(2)需要分类讨论:当点D在线段OB上和点D在射线BE上两种情况.【解答】解:(1)①∵∠MON=80°,OE平分∠MON.∴∠AOB=∠BON=40°,∵AB∥ON,∴∠ABO=40°故答案是:40°;②如答图1,∵∠MON=80°,且OE平分∠MON,∴∠1=∠2=40°,又∵AB∥ON,∴∠3=∠1=40°,∵∠BAD=∠ABD,∴∠BAD=40°∴∠4=80°,∴∠OAC=60°,即x=60°.(2)存在这样的x,①如答图2,当点D在线段OB上时,若∠BAD=∠ABD,则x=40°;若∠BAD=∠BDA,则x=25°;若∠ADB=∠ABD,则x=10°.②如答图3,当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=115°,C不在ON上,舍去;综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=10°、25°、40°.【点评】本题考查的是平行线的性质,三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.。
2017-2018学年七年级数学湘教版下册单元测试题5.解题技巧专题:整式乘法及乘法公式中公式的巧用(带答案)
解题技巧专题:整式乘法及乘法公式中公式的巧用◆类型一利用公式求值一、逆用幂的相关公式求值1.已知5x=3,5y=4,则5x+y的结果为【方法7①】( )A.7 B.12 C.13 D.142.如果(9n)2=312,则n的值是( )A.4 B.3 C.2 D.13.若x2n=3,则x6n=________.4.(湘潭期末)已知a x=3,a y=2,求a x+2y的值.5.计算:-82015×(-0.125)2016+0.253×26.【方法7③】二、多项式乘法中求字母系数的值6.如果(x +m)(x -3)中不含x 的项,则m 的值是( )A .2B .-2C .3D .-37.(邵阳县期中)若(x -5)(2x -n)=2x 2+mx -15,则m ,n 的值分别是 ( )A .m =-7,n =3B .m =7,n =-3C .m =7,n =3D .m =-7,n =-38.已知6x 2-7xy -3y 2+14x +y +a =(2x -3y +b)(3x +y +c),试确定a ,b ,c 的值.三、逆用乘法公式求值9.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4C .32D .1210.已知a +b =3,则a 2-b 2+6b 的值为( )A .6B .9C .12D .1511.(衡阳中考)已知a +b =3,a -b =-1,则a 2-b 2的值为9.【方法9①】 12.已知x +y =3,x 2-y 2=21,求x 3+12y 3的值.四、利用整体思想求值13.若x +y =m ,xy =-3,则化简(x -3)(y -3)的结果是( )A .12B .3m +6C .-3m -12D .-3m +614.先化简,再求值:(1)(菏泽中考)已知4x =3y ,求代数式(x -2y)2-(x -y)(x +y)-2y 2的值;(2)已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值.◆类型二利用乘法公式进行简便运算15.计算2672-266×268得( )A.2008 B.1 C.2006 D.-116.已知a=7202,b=719×721,则( )A.a=b B.a>bC.a<b D.a≤b17.计算:(1)99.8×100.2; (2)1022;(3)5012+4992; (4)19992-1992×2008.◆类型三 利用乘法公式的变形公式进行化简求值 18.如果x +y =-5,x 2+y 2=13,则xy 的值是( ) A .1 B .17 C .6 D .2519.若a +b =-4,ab =12,则a 2+b 2=________.20.(永州模拟)已知a =2005x +2004,b =2005x +2005,c =2005x +2006,则多项式a 2+b 2+c 2-ab -bc -ac 的值为________.21.已知(x +y)2=5,(x -y)2=3,求3xy -1的值.◆类型四整式乘法中的拼图问题22.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是( )A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b223.如图,边长为(m+2)的正方形纸片剪出一个边长为m的正方形之后余下部分又剪开拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,其面积是( )A.2m+4 B.4m+4 C.m+4 D.2m+224.★如图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中阴影部分的正方形的边长是多少?(2)请你用两种不同的方法求图②中阴影部分的面积;(3)观察图②,你能写出下列三个代数式(m+n)2,(m-n)2,mn之间的等量关系吗?(4)根据(3)中的结论,解决下列问题:若a+b=9,a-b=7,求ab的值.参考答案与解析1.B2.B 解析:∵(9n )2=[(32)n ]2=34n ,∴34n =312,∴4n =12,∴n =3.故选B. 3.274.解:∵a x =3,a y =2,∴a x +2y =a x ·a 2y =3×22=12.5.解:原式=-82015×(-0.125)2015×(-0.125)+(0.25)3×23×23=-[8×(-0.125)]2015×(-0.125)+(0.25×2×2)3=1×(-0.125)+1=0.875.6.C 7.D8.解:∵(2x -3y +b )(3x +y +c )=6x 2-7xy -3y 2+(2c +3b )x +(b -3c )y +bc =6x 2-7xy -3y 2+14x +y +a ,∴2c +3b =14,b -3c =1,bc =a .联立以上三式,可得a =4,b =4,c =1.9.B10.B 解析:a 2-b 2+6b =(a +b )(a -b )+6b =3(a -b )+6b =3a +3b =3(a +b )=9.故选B. 11.-312.解:∵x +y =3,x 2-y 2=21,∴x -y =21÷3=7.联立方程组得⎩⎪⎨⎪⎧x +y =3,x -y =7,解得⎩⎪⎨⎪⎧x =5,y =-2.当x =5,y =-2时,x 3+12y 3=53+12×(-2)3=125-96=29.13.D14.解:(1)(x -2y )2-(x -y )(x +y )-2y 2=x 2-4xy +4y 2-(x 2-y 2)-2y 2=-4xy +3y 2.∵4x =3y ,∴原式=-3y ·y +3y 2=0.(2)∵2a 2+3a -6=0,即2a 2+3a =6,∴3a (2a +1)-(2a +1)(2a -1)=6a 2+3a -4a 2+1=2a 2+3a +1=6+1=7.15.B 解析:2672-266×268=2672-(267-1)(267+1)=2672-2672+1=1.故选B. 16.B17.解:(1)原式=(100-0.2)(100+0.2)=1002-0.22=9999.96. (2)原式=(100+2)2=10000+4+400=10404.(3)原式=(500+1)2+(500-1)2=5002+2×500×1+12+5002-2×500×1+12=2×5002+2=500002. (4)原式=(2000-1)2-(2000-8)(2000+8)=20002-2×2000×1+1-(20002-82)=-4000+1+64=-3935.18.C 19.1520.3 解析:由题意知b -a =1,c -b =1,c -a =2.∵a 2+b 2+c 2-ab -bc -ac =12(a 2-2ab +b 2+a 2-2ac +c 2+b 2-2bc +c 2)=12[(b -a )2+(c -a )2+(c -b )2]=12×(1+4+1)=3.21.解:∵(x +y )2-(x -y )2=4xy =2,即xy =12,∴3xy -1=3×12-1=12.22.D23.B 解析:依题意得剩余部分的面积为(m +2)2-m 2=m 2+4m +4-m 2=4m +4.故选B. 24.解:(1)m -n .(2)方法一:(m -n )2=m 2-2mn +n 2; 方法二:(m +n )2-4mn =m 2-2mn +n 2. (3)(m +n )2-4mn =(m -n )2.(4)∵(a +b )2-(a -b )2=4ab ,∴4ab =32,∴ab =8.。
新人教版2017-2018学年五校七年级(下)期中质量调研数学试卷附答案
2017-2018学年五校七年级(下)期中质量调研数学试卷一.选择题(4*10=40分)1.(4分)下列语句是命题的是()A.画线段AB B.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等2.(4分)在下列所给出坐标的点中,在第二象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(4分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(4分)在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个5.(4分)下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动6.(4分)若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为()A.(3,3)B.(﹣3,3)C.(﹣3,﹣3)D.(3,﹣3)7.(4分)估计的值在哪两个整数之间()A.75和77 B.6和7 C.7和8 D.8和98.(4分)在一次献爱心活动中,某学校捐给山区一学校初一年级一批图书,如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本,设这批图书共有y本,该年级共有x名学生,列出方程组为()A.B.C.D.9.(4分)如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.4810.(4分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2018的坐标为()A.(3,1)B.(0,4)C.(﹣3,1)D.(0,﹣2)二.填空题(4*6=24分)11.(4分)的平方根是.12.(4分)已知3x+2y=1,用含x的代数式表示y:.13.(4分)已知,则ab=.14.(4分)∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.15.(4分)已知是二元一次方程ax﹣by+3=0的解,则6a﹣4b+8的值为.16.(4分)如图,一个面积为40cm2的正方形与另一个小正方形并排放在一起,则△ABC 的面积是cm2.三.解答题(共86分)17.(8分)计算:(1)+(2)|﹣2|﹣18.(10分)解方程(组):(1)9x2=16(2)19.(8分)将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.20.(8分)如图,已知AB∥CD,试再添加一个条件使∠1=∠2成立.(要求:不能添加新线或新字母,请写出至少两个满足∠1=∠2的条件并选择其中一种情况加以证明)21.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF又∵∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB∥EC()∴∠=∠DBA()又∵∠C=∠D∴∠DBA=∠D()∴DF∥()∴∠A=∠F().22.(8分)已知+2的小数部分为a,8﹣的小数部分为b,求a+b的平方根.23.(10分)已知:如图,∠DEF:∠EFH=3:2,∠1=∠B,∠2+∠3=180°,求∠DEF 的度数.24.(12分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮助算算,用哪种方式购票更省钱?25.(14分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点建立一个平面直角坐标系,并用t表示出在处在不同线段上P点的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在请求出P点坐标.若不存在请说明理由.参考答案一.选择题(4*10=40分)DBBCB CDDDB11.±.12.y=.13.﹣4.14.15°或115°.15.2.16.20cm2.17.解:(1)原式=10+(﹣2 )=8;(2)原式=2﹣﹣2=﹣.18.解:(1)∵9x2=16,∴x2=,则;(2),①×2得:4x﹣2y=16 ③,②+③得:7x=21,x=3,把x=3代入①得:y=﹣2,∴原方程组的解为:.19.解:(1)如图.(2)△A′B′C′的面积是:7×8﹣×3×7﹣×5×2﹣×8×5=20.5.20.解:可添加的条件有:①CF和BE分别是∠DCB、∠ABC角平分线;②CF∥EB;③∠FCB=∠FEB;④∠E=∠F;选择:添加CF∥BE.证明:∵CF∥BE,∴∠FCB=∠EBC,∵AB∥CD,∴∠DCB=∠ABC,∴∠DCB﹣∠FCB=∠ABC﹣∠BEF,∴∠1=∠2.21.证明:∵∠AGB=∠EHF,∠AGB=∠DGF(对顶角相等),∴∠EHF=∠DGF,∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),又∵∠C=∠D,∴∠DBA=∠D,(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).22.解:∵,∴,,∴,∴a+b=1∴a+b的平方根为±123.解:∵∠1=∠B,∴FG∥BC,∴∠AFG=∠C,∵∠2+∠3=180°,∠CDE+∠3=180°,∴∠2=∠CDE,∵∠CFH=180°﹣∠AFG﹣∠2,∠CED=180°﹣∠C﹣∠CDE,∴∠CFH=∠CED,∴DE∥FH,∴∠DEF+∠EFH=180°,∵∠DEF:∠EFH=3:2,∴∠DEF=×180°=108°.24.解:(1)设去了x个成人,则去了(12﹣x)个学生,依题意得40x+20(12﹣x)=400,解得:x=8,12﹣x=4;答:他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400,∴按团体票购票更省钱.25.解:(1)正确画出直角坐标系;当0<t≤4时P1(2t,0)当4<t≤7时P2(8,2t﹣8)当7<t≤10时P3(22﹣2t,6)(2)存在①如图1,当0<t≤4时,S△APE=×2t×6=20,解得t=(s);∴p(,0)②如图2,当4<t≤7时,S△APE=48﹣S△ADE﹣S△ABP﹣S△PCE,20=48﹣×6×2﹣×8×(2t﹣8)﹣×6×(14﹣2t)解得:t=6(s);∴p(8,4)③如图3,当7<t≤10时,S△APE=×6×(20﹣2t)=20,解得t=(s)<7,∴t=(应舍去综上所述:当p(,0)或p(8,4)时,△APE的面积等于20cm2。
2017-2018学年湘教版七年级数学下册下期中试卷含答案
2017-2018学年湘教版七年级数学下册下期中试卷含答案2017-2018学年七年级(下)期中数学试卷一、选择题1.下列方程中,是二元一次方程的是()A.3x+2y=4 B.xy=5C.x2﹣y=3 D.8x﹣2x=12.下列运算中正确的是()A.3a+2a=5a2B.(2a+b)(2a﹣b)=4a2﹣b2C.2a2•a3=2a6D.(2a+b)2=4a2+b23.计算(﹣a+b)(a﹣b)等于()A.a2﹣b2B.﹣a2+b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b24.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1B.1C.﹣2D.25.如果3a7xby+7和﹣7a2﹣4yb2x是同类项,则x,y的值是()A.x=﹣3,y=2B.x=2,y=﹣3C.x=﹣2,y=3D.x=3,y=﹣26.若方程组A.4的解x与y相等.则a的值即是()B.10C.11D.127.若a﹣b=1,ab=2,则(a+b)2的值为()A.﹣9B.98.C.±9D.3的解,则a﹣b的值为()是二元一次方程组C.2D.3A.﹣1B.19.某班有36人参加义务植树劳动,他们分为植树和挑水两组,要求挑水人数是植树人数的2倍,设有x人挑水,y人植树,则下列方程组中正确的是()A.B.C.D.10.把多项式m2(a﹣2)+m(2﹣a)分解因式即是()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)二、填空题(本大题共10小题,每小题4分,共40分)第1页(共15页)D.m(a﹣2)(m+1)11.方程2x+y﹣4=0,用含x的代数式透露表现y为:y=.12.若方程3xm+2﹣5y3﹣n=0是关于x、y的二元一次方程,则m+n=.13.是方程2x+ay=5的解,则a=.14.计算:a•a3•a5=;(b3)4=;(x2y)3=.15.0.•=1.16.计算(2x+1)(2x﹣1)=.17.若x2+mx+4是完整平体式格局,则m=.18.计算:(﹣2x3y2)•(3x2y)=.19.a+=3,则a2+的值是.20.已知|4x+3y﹣5|与|x﹣3y﹣4|互为相反数,则x+y=.三、解答题(共70分)21.解方程组:(1)(2).22.(1)因式分解:2x2﹣8(2)计算:﹣2013×4028+.23.解方程:(x﹣1)(1+x)﹣(x+2)(x﹣3)=2x﹣5.24.利用因式分解计算:.25.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.26.文化乐园门票价格如下表所示:购票人数每人门票价格1人﹣﹣50人13元51人﹣﹣100人11元100人以上9元某校七年级甲、乙两个班共101人去乐园春游,其中甲班人数较少,不到50人,乙班人数较多,有50多人,经估算如果两个班都以班为单位分别购票,则一共应该付1203元.(1)请计较两个班各有几何逻辑学生?(2)你以为他们若何购票比较合算?并计较比以班为单位划分购票体式格局可节省几何第2页(共15页)元?参考答案与试题解析1、挑选题1.以下方程中,是二元一次方程的是()A.3x+2y=4 B.xy=5C.x2﹣y=3 D.8x﹣2x=1【考点】二元一次方程的定义.【分析】按照二元一次方程的定义:含有两个未知数,而且含有未知数的项的次数都是1,像如许的方程叫做二元一次方程可得答案.【解答】解:只有3x+2y=4是二元一次方程。
2017---2018学年度第二学期期末考试七年级数学试卷含答案
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
七年级下学期期末考试数学试题及答案
2017—2018学年度第二学期期末调研测试七年级数学试卷参考答案一、选择题(每小题3分)CDACA BACDB二、填空题(每小题3分)11、2500cm 212、136013、-214、-315、4311≥x 16、27三、解答题17、解:(1)∵AB 与CD 相交于点O ,OE ⊥AB∴∠DOE+∠DOB=90°∠DOB=∠AOC∴∠AOC=∠DOB=90°-∠DOE=90°-20°=70°……3分(2)∵∠AOC ∶∠BOC=1∶2,∠AOC+∠BOC=180°∴∠AOC=∠DOB=31×180°=60°∴∠EOD=90°-∠DOB=90°-60°=30°………………6分18、证明:∵AD ⊥BC ,EF ⊥BC∴AD ∥EF∴∠BEF=∠BAD (两直线平行,同位角相等)……………3分又∠BEF=∠ADG∴∠ADG=∠BAD∴AB ∥DG (内错角相等,两直线平行)…………………7分19、解:原式=1315.2125.0|21|2--+--……………………………3分=1315.28121--+-=1312583--+=2437………………………………………………………7分20、解:去括号得:⎩⎨⎧=+--=--1223233444y x y y x ∴方程组可变形为⎩⎨⎧=+-=122354y x x y ��………………3分把①代入②得12)54(23=-+x x 解方程得:2=x ………………………………………6分∴把2=x 代入①得3=y ∴原方程组的解是⎩⎨⎧==32y x ……………………………8分21、解:解不等式组⎪⎩⎪⎨⎧-≤-->+x x x x 237121)1(315解不等式①得:2->x ………………………………………………3分解不等式②得:4≤x ∴原不等式组的解集是:42≤<-x …………………………………6分∴把原不等式组的解集在数轴上表示出来:……8分22、解:(1)300人……2分(2)m =120……4分,n =30%…………6分(3)补全频数分布直方图………………8分23、解:设长方形地砖的长为x ,宽为y ,列方程组⎩⎨⎧+==+yx x y x 3260��………………………………3分由②得:yx 3=③把③代入①得603=+y y 解这个方程得:y =15………………………………6分①②把y=15代入③得x=45答:这个长方形地砖的长为45cm,宽为15cm.……8分。
2017-2018学年沪科版七年级下册期末数学试卷含答案解析
2017-2018学年沪科版七年级下册期末数学试卷含答案解析2017-2018学年七年级(下)期末数学试卷一、选择题1.在实数0.1,0.2,√2,0.中,无理数的个数是()A。
2个 B。
1个 C。
3个 D。
4个2.下列图形中,不能通过其中一个四边形平移得到的是()A。
B。
C。
D。
3.下列运算正确的是()A。
(2a^2)^3=8a^6 B。
-a^2b^2×3ab^3=-3a^3b^5C。
a^2+=-1 D。
a^2•=-14.某种计算机完成一次基本运算的时间约为0.xxxxxxxx3秒,把数据0.xxxxxxxx3用科学记数法表示为()A。
0.3×10^-8 B。
0.3×10^-9 C。
3×10^-8 D。
3×10^-95.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为()A。
20x/12+20(x/5)=1200 B。
20x/12+2(x/5)=1200C。
20x/15+20(x/5)=1200 D。
20x/15+2(x/5)=12006.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A。
∠1=∠3 B。
∠5=∠4 C。
∠5+∠3=180° D。
∠4+∠2=180°7.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为()A。
26cm B。
52cm C。
78cm D。
104cm8.如图,长方形ABCD的周长为16,以长方形四条边为边长向外作四个正方形,若四个正方形面积之和为68,则长方形ABCD的面积为()A。
12 B。
15 C。
18 D。
209.观察下列等式:a1=n,a2=1-n,a3=1-n,a4=1-n,…根据其蕴含的规律可得()A。
七年级下学期数学期末试卷(含答案)
七年级下学期数学期末试卷(含答案)2017-2018学年度下学期期末学业水平检测七年级数学试题一、单项选择题(每小题2分,共12分)1.在数2,π,3-8,0.3333.中,其中无理数有()A。
1个B。
2个C。
3个D。
4个2.已知:点P(x,y)且xy=0,则点P的位置在()A。
原点B。
x轴上C。
y轴上D。
x轴上或y轴上3.不等式组2x-1>1。
4-2x≤的解集在数轴上表示为()4.下列说法中,正确的是()A。
图形的平移是指把图形沿水平方向移动B。
“相等的角是对顶角”是一个真命题C。
平移前后图形的形状和大小都没有发生改变D。
“直角都相等”是一个假命题5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A。
1500B。
1000C。
150D。
5006.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2②∠3=∠4③∠A=∠XXX④∠D+∠ABD=180°A。
①③④B。
①②③C。
①②④D。
②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标。
8.-364的绝对值等于______。
9.不等式组{x-2≤x-1>的整数解是______。
10.如图,a∥b,∠1=55°,∠2=40°,则∠3的度数是______。
11.五女峰森林公园门票价格:成人票每张50元,学生票每张10元。
某旅游团买30张门票花了1250元,设其中有x 张成人票,y张学生票,根据题意列方程组是______。
12.数学活动中,XXX和XXX向老师说明他们的位置(单位:m): XXX:我这里的坐标是(-200,300);XXX:我这里的坐标是(300,300)。
则老师知道XXX与XXX之间的距离是______。
13.比较大小: 5-1/2______1(填“<”或“>”或“=”)。
2017-2018学年第二学期七年级数学期末试题(含答案)
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
2017-2018学年人教版七年级数学下册1-6单元测试(含答案)
单元测试(一)相交线与平行线(时间:40分钟满分:100分)一、选择题(题号12345678910答案1.下列各组角中,∠1与∠2互为对顶角的是()2.如图,OB⊥OD,OC⊥OA,∠BOC=32°,那么∠AOD等于()A.148°B.132°C.128°D.90°3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=()A.110°B.70°C.60°D.50°4.下面的每组图形中,左图平移后可以得到右图的是()5.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.56°D.66°6.如图,描述同位角、内错角、同旁内角关系不正确的是()A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角7.如图,下列条件,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠1=∠4C.∠2+∠3=180°D.∠3=∠58.下列命题中,真命题的个数是()①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.3 B.2 C.1 D.09.如图所示,下列说法中错误的是()A.∵∠A+∠ADC=180°,∴AB∥CD B.∵AB∥CD,∴∠ABC+∠C=180°C.∵AD∥BC,∴∠3=∠4 D.∵∠1=∠2,∴AD∥BC10.如图,把一张长方形纸片ABCD沿EG折叠后,点A,B分别落在A′,B′的位置上,EA′与BC交于点F.已知∠1=130°,则∠2的度数是()A.50°B.80°C.65°D.40°二、填空题(本大题共6小题,每小题4分,共24分)11.命题“同旁内角互补,两直线平行”写成“如果……那么……”的形式是________________________.它是________命题(填“真”或“假”).12.自来水公司为某小区A改造供水系统,如图,沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是____________.13.如图,直线AB,CD,EF相交于点O,∠AOF=3∠BOF,∠AOC=90°,那么∠COE =____________.14.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=____________.15.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B 两岛的视角∠ACB=____________.16.如图,a∥b,PA⊥PB,∠1=35°,则∠2的度数是____________.三、解答题(共46分)17.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF =∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(________________________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(________________________________).∴∠A=∠EDF(________________________).18.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.19.(8分)(1)如图,点M是三角形ABC中AB的中点,经平移后,点M落在M′处.请在正方形网格中画出三角形ABC平移后的图形三角形A′B′C′;(2)若图中每个小网格的边长为1,则三角形ABC的面积为________.20.(10分)如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)求证:AB∥CD;(2)求∠KOH的度数.21.(12分)(1)如图1,已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图1,求证:三角形ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(3)如图2,求证:∠AGF=∠AEF+∠F;(4)如图3,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F的度数.单元测试(二) 实数(时间:40分钟 满分:100分)一、选择题(题号 1 2 3 4 5 6 7 8 9 10 答案1.9的平方根是()A .±3B .-3C .3D .± 32.下列说法不正确的是()A .8的立方根是2B .-8的立方根是-2C .0的立方根是0D .125的立方根是±5 3.下列运算中,正确的是()A .252-1=24B .914=312C .81=±9D .-(-13)2=-134.在实数3.141 59,364,2,1.010 010 001,4.21··,π,227中,无理数有()A .1个B .2个C .3个D .4个5.如图,点P 在数轴上表示的数可能是()A .-2.3B .- 3C . 3D .- 56.有下列说法:①-3是81的平方根;②-7是(-7)2的算术平方根;③25的平方根是±5;④-9的平方根是±3;⑤0没有算术平方根.其中,正确的有()A .0个B .1个C .2个D .3个 7.下列结论正确的是()A .数轴上任一点都表示唯一的有理数B .数轴上任一点都表示唯一的无理数C .两个无理数之和一定是无理数D .数轴上任意两点之间还有无数个点8.在0到20的自然数中,立方根是有理数的共有()A .1个B .2个C .3个D .4个 9.如果m =7-1,那么m 的取值范围是() A .0<m<1 B .1<m<2 C .2<m<3 D .3<m<410.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定[-10+1]的值为()A .-4B .-3C .-2D .1 二、填空题(本大题共6小题,每小题4分,共24分)11.19的算术平方根是________. 12.下列四个实数:-5,0,π,3中,最大的是________.13.3-2的相反数是________,绝对值是________.14.小红做了一个棱长为5 cm 的正方体盒子,小明说:“我做的盒子的体积比你的大218 cm 3.”则小明做的盒子的棱长为________cm . 15.比较大小:5-12________58. 16.如图,已知直径为1个单位长度的圆形纸片上的点A 与数轴上表示-1的点重合.若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A 与数轴上的点A′重合,则点A′表示的数为____________.三、解答题(共46分)17.(6分)求下列各式的值:(1)-1625; (2)±0.016 9; (3)0.09-3-8.18.(6分)将下列各数填入相应的集合内. -7,0.32,12,0,8,12,-364,π,0.303 003…. (1)有理数集合:{ …}; (2)无理数集合:{ …}; (3)负实数集合:{ …}. 19.(12分)计算:(1)|-2|+(-3)2-4;(2)2+32-52;(3)6(16-6);(4)||3-2+||3-2-||2-1.20.(10分)已知一个正方体的体积是1 000 cm 3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm 3,问截得的每个小正方体的棱长是多少?21.(12分)借助于计算器计算下列各题:(1)11-2; (2) 1 111-22;(3)111 111-222; (4)11 111 111-2 222. 仔细观察上面几道题及其计算结果,你能发现什么规律?并用发现的这一规律直接写出下面的结果:=__________________.单元测试(三)平面直角坐标系(时间:40分钟满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.在平面直角坐标系中,点(-5,0.1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,在平面直角坐标系中,点M的坐标为()A.(3,-2) B.(-2,3) C.(-3,2) D.(2,-3)3.在平面直角坐标系中,第四象限的点M到横轴的距离为28,到纵轴的距离为6,则点M 的坐标为()A.(6,-28) B.(-6,28) C.(28,-6) D.(-28,-6)4.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,则图形与原图形相比()A.向右平移了5个单位长度B.向左平移了5个单位长度C.向上平移了5个单位长度D.向下平移了5个单位长度5.若y轴上的点A到x轴的距离为3,则点A的坐标为()A.(3,0) B.(3,0)或(-3,0) C.(0,3)或(0,-3) D.(0,3)6.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A 的对应点A1的坐标为()A.(4,3) B.(2,4) C.(3,1) D.(2,5)7.如图,小明家相对于学校的位置,下列描述最正确的是()A.在距离学校300米处B.在学校的西北方向C.在西北方向300米处D.在学校西北方向300米处8.如图是天安门周围的景点分布示意图.若以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),则表示博物馆的点的坐标是()A.(1,0) B.(2,0) C.(1,-2) D.(1,-1)9.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是()A.4 B.3 C.2 D.1二、填空题(本大题共6小题,每小题4分,共24分)11.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是____________________.12.在平面直角坐标系中,将点A向右平移了3个单位长度得到点B(-2,1),则点A的坐标为____________.13.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是____________.14.如图,把图1中的圆A经过平移得到圆O(如图2),如果图1中圆A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为____________.15.已知AB∥x轴,A点的坐标为(-3,2),并且AB=4,则B点的坐标为____________.16.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为________.三、解答题(共46分)17.(6分)图中标明了小英家附近的一些地方.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2),(3,-1),(1,-1),(-1,-2),(-3,-1)的路线转了一下,又回到了家里,写出路上她经过的地方.18.(10分)(1)写出如图1所示的平面直角坐标系中A,B,C,D四个点的坐标,并分别指出它们所在的象限;(2)如图2是小明家(图中点O)和学校所在地的简单地图,已知OA=2 cm,OB=2.5 cm,OP=4 cm,C为OP的中点.①请用距离和方位角表示图中商场、学校、公园、停车场分别相对于小明家的位置;②如果学校距离小明家400 m,那么商场和停车场分别距离小明家多少米?图1 图219.(8分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把三角形ABO向下平移3个单位长度,再向右平移2个单位长度后得三角形DEF.(1)直接写出A,B,O三个对应点D,E,F的坐标;(2)求三角形DEF的面积.20.(10分)小明给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?21.(12分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.单元测试(四) 二元一次方程组 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列不属于二元一次方程组的是()A .⎩⎪⎨⎪⎧x +y =3x -y =1B .⎩⎪⎨⎪⎧x =3x -y =1C .⎩⎪⎨⎪⎧x +y =3y =1D .⎩⎪⎨⎪⎧xy =3x -y =12.利用代入消元法解方程组⎩⎪⎨⎪⎧2x +3y =6,①5x -3y =2,②下列做法正确的是()A .由①得x =6+3y2B .由①得y =6-2x3C .由②得y =-2+3x5D .由②得y =5x +233.方程组⎩⎪⎨⎪⎧x -y =2,2x +y =4的解是()A .⎩⎪⎨⎪⎧x =1y =2 B .⎩⎪⎨⎪⎧x =3y =1C .⎩⎪⎨⎪⎧x =0y =-2D .⎩⎪⎨⎪⎧x =2y =04.若-2a m b 4与5a n +2b 2m +n 可以合并成一项,则mn 的值是()A .2B .0C .-1D .15.以二元一次方程组⎩⎪⎨⎪⎧x +3y =7,y -x =1的解为坐标的点(x ,y)在平面直角坐标系的()A .第一象限B .第二象限C .第三象限D .第四象限6.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可写出x 与y 的关系是()A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-47.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A .6种B .7种C .8种D .9种8.小亮解方程组⎩⎪⎨⎪⎧2x +y =●,2x -y =12的解为⎩⎪⎨⎪⎧x =5,y =★,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A .⎩⎪⎨⎪⎧●=8★=2B .⎩⎪⎨⎪⎧●=8★=-2 C .⎩⎪⎨⎪⎧●=-8★=2 D .⎩⎪⎨⎪⎧●=-8★=-29.若方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解x 与y 的和为0,则m 的值为()A .-2B .0C .2D .410.内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是()A .⎩⎨⎧76x +76y =17076x -76y =20B .⎩⎪⎨⎪⎧x -y =2076x +76y =170C .⎩⎪⎨⎪⎧x +y =2076x -76y =170D .⎩⎪⎨⎪⎧x +y =2076x +76y =170二、填空题(本大题共6小题,每小题4分,共24分)11.若一个二元一次方程组的解为⎩⎪⎨⎪⎧x =18,y =-10,则这个方程组可以是______________________.12.用加减消元法解方程组⎩⎪⎨⎪⎧3x +y =-1,①4x +2y =1,②由①×2-②得______________.13.若x 3m -2-2y n -1=5是二元一次方程,则m +n =________.14.在代数式ax 2+bx +c 中,x 分别取0,1,-1时,其值分别为-5,-6,0,则a =________,b =________,c =________.15.若|x -2y +1|+(2x -y -5)2=0,则x +y 的值为________.16.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载乘客的人数为________.三、解答题(共46分)17.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧x -2y =1,3x -5y =8; (2)⎩⎪⎨⎪⎧x 2-y +23=-2,3x +5y =-1.18.(8分)已知⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程3x =y +a 的解,求a(a -1)的值.19.(8分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =5,4ax +5by =-22与⎩⎪⎨⎪⎧2x -y =1,ax -by -8=0有相同的解,求a ,b的值.20.(10分)某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)(2)全部售完500箱矿泉水,该商场共获得利润多少元?21.(12分)为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面如果两所学校分别单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱? (2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.单元测试(五) 不等式与不等式组 (时间:40分钟 满分:100分)一、选择题(1. 1.其中是不等式的有() A .2个 B .3个 C .4个 D .5个 2.不等式3x ≤2(x -1)的解集为()A .x ≤-2B .x ≥-2C .x ≤-1D .x ≥-13.若m>n ,则下列不等式不一定成立的是()A .m +2>n +2B .2m>2nC .m 2>n 2D .m 2>n 24.下列说法中正确的是()A .y =3是不等式y +4<5的解B .y =2是不等式3y ≥6的解C .不等式3y <11的解是y =3D .y =3是不等式3y <11的解集5.不等式组⎩⎪⎨⎪⎧2x -1<3,-x 2≤1的整数解有()A .1个B .2个C .3个D .4个6.若代数式14a 的值不大于12a +1的值,则a 应满足()A .a ≥-4B .a ≤-4C .a >4D .a ≤47.小丽同学准备用自己节省的零花钱购买一部手机,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1 080元,设x 个月后小丽至少有1 080元,则可列计算月数的不等式为()A .30x +750>1 080B .30x -750≥1 080C .30x -750≤1 080D .30x +750≥1 0808.已知点P(2a -1,1-a)在第一象限,则a 的取值范围在数轴上表示正确的是()9.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是()A .a ≤3B .a<3C .a<2D .a ≤210.某种毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,使第一种办法比第二种办法得到的优惠多,最少要购买毛巾()A .7条B .6条C .5条D .4条 二、填空题(本大题共6小题,每小题4分,共24分)11.用不等式表示,比x 的5倍大1的数不小于x 的一半与4的差:________________. 12.数轴上实数b 的对应点的位置如图所示,比较大小:12b +1________0(用“<”或“>”填空).13.不等式组⎩⎪⎨⎪⎧1-x >0,3x >2x -4的非负整数解是____________.14.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元,设这批手表有x 块,则根据题意可列不等式________________.15.如果不等式组⎩⎪⎨⎪⎧x -1>0,x -a <0无解,那么a 的取值范围是____________.16.定义新运算,对于任意实数a ,b 都有:a ⊕b =a(a -b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x <13的解集为____________. 三、解答题(共46分)17.(10分)(1)解不等式:5(x -2)+8<6(x -1)+7;(2)解不等式组⎩⎪⎨⎪⎧x +13>0,①2(x +5)≥6(x -1),②并在数轴上表示其解集.18.(6分)若代数式3(2k +5)2的值不大于代数式5k +1的值,求k 的取值范围.19.(8分)已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,①12(x -2a )+12x<0,②并依据a 的取值情况写出其解集.20.(10分)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.21.(12分)学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?单元测试(六)数据的收集、整理与描述(时间:40分钟满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910答案1.下列调查适合作抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班同学进行调查B.了解某小区居民的防火意识,对你们班同学进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解观众对所看电影的评价情况,对座位号是奇数号的观众进行调查3.某市2018年中考考生约为4万人,从中抽取2 000名考生的数学成绩进行分析.在这个问题中,样本是指()A.2 000 B.2 000名考生的数学成绩C.4万名考生的数学成绩D.2 000名考生4.天籁音乐行出售三种音乐CD,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售量的百分比,应该用()A.扇形统计图B.折线统计图C.条形统计图D.以上都可以5.下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24 ℃C.14:00气温最高D.气温是30 ℃的时刻为16:006.某学校教研组对七年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图.据此统计图估计该校七年级支持“分组合作学习”方式的学生数约为(含非常喜欢和喜欢两种情况)()A.216 B.252 C.288 D.324第6题图7.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.80 B.90 C.144 D.2008.对某班最近一次数学测试成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为A等(80分以上,不含80分)的百分率为()A.24% B.40% C.42% D.50%第8题图9.某校公布了反映该校各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲、乙、丙10.小敏为了了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,以下结论错误的是()A.被抽取的天数为50天B.空气轻微污染的天数所占比例为10%C.扇形统计图中表示“优”的扇形的圆心角度数57.6°D.估计该市这一年(365天)达到优和良的总天数不多于290天二、填空题(本大题共6小题,每小题4分,共24分)11.如果你是班长,想组织一次春游活动,用问卷的形式向全班同学进行调查,你设计的调查内容是(请列举一条)____________________________.12.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是________.13.在一次数学测试中,将某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组占全班总数的20%,则第六组的频数是________.14.学校为七年级学生订制校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:型号身高(x/cm) 频数小号145≤x<155 22中号155≤x<165 45大号165≤x<175 28特大号175≤x<185 5已知该校七年级学生有800名,那么中号校服应订制________套.15.某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有________名.16.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频数占被调查学生总人数的百分比之和为90%,最后一组的频数是15,则此次抽样调查的人数为________人.(注:横轴上每组数据包含最小值不包含最大值)三、解答题(共46分)17.(6分)下面这几个抽样调查选取样本的方法是否合适?并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率;(2)电视台为调查正在播出的某电视节目的收视率情况,调查全国各省所有用户.18.(8分)如图,该折线图是反映小明家在某一周内每天的购菜所需费用情况.(1)在星期________购菜金额最小;(2)小明家在这一个星期中平均每天购菜多少元?(精确到1元)19.(10分)2017年8月8日,九寨沟发生了里氏7.0级地震,某中学组织了献爱心捐款活动,该校数学兴趣小组对本校学生献爱心捐款额做了一次随机抽样调查,并绘制了不完整的频数分布表和频数分布直方图(每组含前一个边界值,不含后一个边界值).捐款额(元) 频数百分比5≤x<10 5 10%10≤x<15 a 20%15≤x<20 15 30%20≤x<25 14 b25≤x<30 6 12%总计100%(1)填空:a=________,b=________;(2)补全频数分布直方图;(3)该校共有1 600名学生,估计这次活动中爱心捐款额不低于20元的学生有多少人?20.(10分)我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有________人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是________度;(4)已知该校共有学生3 600人,请根据调查结果估计该校喜欢健美操的学生人数.21.(12分)某教研机构为了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查.依据相关数据绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2 300名,请估计该校“不重视阅读数学教科书”的初中生人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?单元测试(一) 相交线与平行线1.A 2.A 3.B 4.D 5.C 6.D 7.A 8.D 9.C 10.B11.如果同旁内角互补,那么这两条直线平行 真 12.垂线段最短 13.45° 14.46° 15.70° 16.55°17.两直线平行,同旁内角互补 两直线平行,同旁内角互补 同角的补角相等 18.(1)图略.(2)图略.(3)∠PQC =60°.理由如下:∵PQ ∥CD ,∴∠DCB +∠PQC =180°.∵∠DCB =120°,∴∠PQC =60°. 19.(1)略.(2)520.(1)证明:∵∠1+∠2=180°,∴AB ∥CD.(2)∵AB ∥CD ,∠3=100°,∴∠GOD =∠3=100°.∵∠GOD +∠DOH =180°,∴∠DOH =80°.又∵OK 平分∠DOH ,∴∠KOH =12∠DOH =40°.21.(1)证明:∵DE ∥AB ,∴∠DCA =∠A.(2)证明:在三角形ABC 中,∵DE ∥AB ,∴∠A =∠ACD ,∠B =∠BCE(内错角相等).∵∠ACD +∠BCA +∠BCE =180°,∴∠A +∠B +∠ACB =180°,即三角形的内角和为180°.(3)证明:∵∠AGF +∠FGE =180°,由(2)知,∠GEF +∠EFG +∠FGE =180°,∴∠AGF =180°-∠EGF =∠AEF +∠F.(4)∵AB ∥CD ,∠CDE =119°,∴∠DEB =119°,∠AED =61°.∵GF 交∠DEB 的平分线EF 于点F ,∴∠DEF =59.5°.∴∠AEF =120.5°.∵∠AGF =150°,由(3)知,∠AGF =∠AEF +∠F ,∴∠F =150°-120.5°=29.5°.单元测试(二) 实数1.A 2.D 3.D 4.B 5.B 6.C 7.D 8.C 9.B 10.C 11.13 12.π 13.2-3 2-3 14.7 15.< 16.π-1 17.(1)-45.(2)±0.13.(3)2.3.18.(1)-7,0.32,12,0,-364 (2)8,12,π,0.303 003… (3)-7,-364 19.(1)原式=2+9-2=9. (2)原式=(1+3-5)2=- 2.(3)原式=6×16-(6)2=1-6=-5.(4)原式=3-2+2-3-2+1=3-2 2.20.设截得的每个小正方体的棱长为x cm .依题意,得1 000-8x 3=488.∴8x 3=512.∴x =4.答:截得的每个小正方体的棱长是4 cm .21.(1)11-2=3.(2) 1 111-22=33.(3)111 111-222=333;(4)11 111 111-2 222=3 333.用字母表示这些等式的规律:(n 为正整数),即发现规律:根号内被开方数是2n 个数字1和n 个数字2的差,结果为n 个数字3.单元测试(三) 平面直角坐标系1.B 2.C 3.A 4.B 5.C 6.D 7.D 8.D 9.C 10.A 11.3排4号 12.(-5,1) 13.(4,7) 14.(m +2,n -1) 15.(1,2)或(-7,2) 16.49 16.49 17.(1)汽车站(1,1),消防站(2,-2).(2)经过的地方:游乐场,公园,姥姥家,宠物店,邮局.18.(1)A(2,2),在第一象限;B(0,-4),在y 轴上;C(-4,3),在第二象限;D(-3,-4),在第三象限.(2)①商场:北偏西30°,2.5 cm ;学校:北偏东45°,2 cm ;公园:南偏东60°,2 cm ;停车场:南偏东60°,4 cm .②商场距离小明家500米,停车场距离小明家800米.19.(1)D(3,0),E(5,-2),F(2,-3).(2)三角形DEF 的面积=3×3-12×1×3-12×1×3-12×2×2=4. 20.(1)体育场的坐标为(-2,5),文化宫的坐标为(-1,3),超市的坐标为(4,-1),宾馆的坐标为(4,4),市场的坐标为(6,5).(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限.(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.21.(1)A(2,3)与D(-2,-3);B(1,2)与E(-1,-2);C(3,1)与F(-3,-1).对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数.(2)由(1)可得a +3=-2a ,4-b =-(2b -3).解得a =-1,b =-1.单元测试(四) 二元一次方程组1.D 2.B 3.D 4.B 5.A 6.A 7.A 8.B 9.C 10.A11.答案不唯一,如⎩⎪⎨⎪⎧x =18x +y =8 12.2x =-3 13.314.2 -3 -5 15.6 16.9617.(1)⎩⎪⎨⎪⎧x =11,y =5.(2)⎩⎪⎨⎪⎧x =-2,y =1.18.∵⎩⎪⎨⎪⎧x =2,y =-3是关于x ,y 的二元一次方程3x =y +a 的解,∴3×2=-3+a.解得a =9.∴a(a-1)=9×(9-1)=72.19.由题意可将x +y =5与2x -y =1组成方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.解得⎩⎪⎨⎪⎧x =2,y =3.把⎩⎪⎨⎪⎧x =2,y =3代入4ax+5by =-22,得8a +15b =-22.① 把⎩⎪⎨⎪⎧x =2,y =3代入ax -by -8=0,得2a -3b -8=0.② ①与②组成方程组,得⎩⎪⎨⎪⎧8a +15b =-22,2a -3b -8=0.解得⎩⎪⎨⎪⎧a =1,b =-2.20.(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得⎩⎪⎨⎪⎧x +y =500,24x +36y =13 800.解得⎩⎪⎨⎪⎧x =350,y =150.答:商场购进甲种矿泉水350箱,购进乙种矿泉水150箱.(2)350×(33-24)+150×(48-36)=3 150+1 800=4 950(元).答:该商场共获得利润4 950元. 21.(1)5 000-92×40=1 320(元).答:两所学校联合起来购买服装比各自购买服装共可以节省1 320元. (2)设甲、乙两所学校各有x 名、y 名学生准备参加演出,由题意,得⎩⎪⎨⎪⎧x +y =92,50x +60y =5 000.解得⎩⎪⎨⎪⎧x =52,y =40.答:甲、乙两校各有52名、40名学生准备参加演出. (3)∵甲校有10人不能参加演出,∴甲校参加演出的人数为52-10=42(人).若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买服装可以节约(42+40)×60-4 100=820(元). 但如果两校联合购买91套服装,只需40×91=3 640(元), 此时又比联合购买服装可节约4 100-3 640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装.(即比实际人数多购9套)单元测试(五) 不等式与不等式组1.C 2.A 3.D 4.B 5.D 6.A 7.D 8.C 9.B 10.A11.5x +1≥12x -4 12.> 13.0 14.550×60+500(x -60)>55 000 15.a ≤1 16.x >-117.(1)去括号,得5x -10+8<6x -6+7.移项,得5x -6x <10-8-6+7.合并同类项,得-x <3.系数化为1,得x>-3.(2)解不等式①,得x>-1.解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.解集在数轴上表示为:18.由题意,得3(2k +5)2≤5k +1.解得k ≥134.19.解不等式①,得x ≤3.解不等式②,得x<a.∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3;当a<3时,不等式组的解集为x<a.20.(1)设每辆小客车的乘客座位数是x 个,每辆大客车的乘客座位数是y 个,根据题意,得⎩⎪⎨⎪⎧y -x =17,6y +5x =300.解得⎩⎪⎨⎪⎧x =18,y =35.答:每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是35个.(2)设租用a 辆小客车,则由题意得18a +35(11-a)≥300+30,解得a ≤3417.∴符合条件的a 的最大整数值为3.。
2017~2018学年度第一学期期末七年级数学试卷(含答案)
2017~2018学年度第一学期期末中小学学习质量评价·七 年 级 数 学 试 卷·本卷共8大题,计23小题,满分150分,考试时间120分钟.祝你考出好成绩!一、选择题(本题共10小题,每小题4 分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在本大题后的表格内.每一小题,选对得4分,不选、选错或选出的代号超过一个的一律得0分.1.有理数12-的倒数是 A .12B .-2C .2D . 12.计算-2+5的结果是 A .-7B .-3C .3D .73.2016年9月15日22时04分12秒,“天宫二号空间实验室”在酒泉卫星发射中心发射成功。
天宫二号的飞行高度距离地球350千米,350千米用科学记数法表示为( )米.. A .3.5×102 B .3.5×105 C .0.35×104 D .350×1034.下列计算中,正确的是A .235a b ab +=B .--=-+2()2a b a bC .32a a a -+=-D .32a a a -= 5.下列各式结果相等的是 A .2222)--与( B .332233⎛⎫⎪⎝⎭与C .()22----与D .201720171-与(-1)6. 已知x =3是关于x 的方程51312()()x a ---=-的解,则a 的值是 A .2 B .3 C .4D .57.用一副三角板的两块画角,不可能画出的角的度数是 A .15° B .55° C .75° D .135°8.练习本比中芯笔的单价少2元,小刚买了5本练习本和3支中芯笔正好用去14元 如果设中芯笔的单价为x 元,那么下列所列方程正确的是 A.52314()x x -+=B.52314()x x ++=C.53214()x x ++=D.53214()x x +-=相对于点O 的方位可表示为 A .南偏东68°40′方向 B .南偏东69°40′方向 C .南偏东68°20′方向D .南偏东69°10′方向10.如果∠1与∠2互为余角,∠1与∠3互为补角,那么下列结论:①∠3-∠2=90°,②∠3+∠2=270°-2∠1,③∠3-∠1=2∠2,④∠3>∠1+∠2.其中正确的是( ) A. ①②B. ①②③C. ①③④D. ①②③④二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,公园里美丽的草坪上有时出现了一条很不美观的“捷径”,但细想其中也蕴含着一个数学中很重要的“道理”,这个“道理”是; 12.在8:30这一时刻,时钟上时针与分针的夹角为;13.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是 元;14.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻转到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是__________.第11题图第9题图东三、(第15题每小题4分计8分,第16题8分,本大题满分16分)15.计算:(1)112()(7)0.754--+-+; (2)2018231(1)124(2)(1)44-+÷-⨯--⨯-;16.解方程:212136x x ---= .四、(每小题8分,本题满分16分)17.先化简,再求值:222222123()()a b ab a b ab +----,其中2120()a b ++-=.18.如图,已知点M 是线段AB 的中点,点E 将AB 分成AE ∶E B =3∶4的两段,若EM =2cm ,求线段AB 的长度.A B五、(本大题共2小题,每小题10分,满分20分)19.定义一种新运算“☒”,即m ☒n =(m +2)×3-n ,例如2☒3=(2+2)×3-3=9.根据规定解答下列问题:(1)求6☒(-3)的值;(2)通过计算说明6☒(-3)与(-3)☒6的值相等吗?20. 如下图是一组有规律的图案,第1个图案由4个基础图形“ ”组成,第2个图案由7个基础图形组成,……(1(2)试写出第(n 是正整数)个图案是由 个基础图形组成 (3)若第n 个图案共有基础图形2017个,则n 的值是多少? n(1) (2) (3) ……六、(本题满分12分)21.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.七、(本题满分12分)22.如图①,将笔记本活页一角折过去,使角的顶点A落在点A’处,BC为折痕.(1)在图①中,若∠1=30º,求∠A’BD的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA’ 重合,折痕为BE,如图②所示,若∠1=30º,求∠2以及∠CBE的度数;(3)如果在图②中改变∠1的大小,则BA’的位置也随之改变,那么问题(2)中∠CBE的大小是否改变?请说明理由.C八、(本大题题满分14分)23.同学们,我们很熟悉这样的算式:1+2+3+…+n =21n (n +1),其实,数学不仅非常美妙,而且魅力无穷.请你观察、欣赏下列一组等式: ①1×2=13×1×2×3; ②1×2+2×3=13×2×3×4; ③1×2+2×3+3×4=13×3×4×5; ④1×2+2×3+3×4+4×5=13×4×5×6; ……(1)按照上述规律,试写出第⑤个等式的右边:1×2+2×3+3×4+4×5+5×6= ; (2)根据上述规律,写出第n 个等式的右边:1×2+2×3+3×4+…+n ×(n +1)= ; (3)观察类比,并大胆猜想:1×2×3+2×3×4+3×4×5+…+n ×(n +1)×(n +2)= ;(4)根据(2)中的规律计算10×11+11×12+…+98×99(写出计算过程).2017~2018学年度第一学期期末中小学学习质量评价七年级数学参考答案及评分标准一、二、11.两点之间线段最短;12. 75°;13. 320;14. 我.三、15、(1)原式=1312744+-+………………2分=13(127)()44-++………………3分=51+=6………………4分(2)原式=451124(4)()34+⨯⨯--⨯-………………2分=1+64-5…………………3分=60………………………4分说明:方法不唯一,正确即得分.16.解:22126()()x x---=………………3分4226x x--+=………………6分3 x =6x=2……………8分四、17.解:(a2b+2ab2)-2(a2b-1)-2ab2-3= a2b+2ab2-2a2b+2-2ab2-3………………………… 2分=-a2b-1 …………………………4分∵2120()a b++-=,∴21020,()a b+=-=,∴a= -1 ,b=2…………………………6分当a= -1 ,b=2 时,原式= -(-1)2×2-1=―2―1 ……………7分=-3……………………8分18、解:设AB=x cm,则1327,AM x AE x==,…………………………2分由题意得,13227x x-=…………………………4分解得,x=28.所以,A B的长度为28cm. …………………………8分说明:方法不唯一,正确即得分.五、19、解: (1)6☒(-3)=(6+2)×3-(-3)……………………2分=24+3=27……………………5分(2)(-3)☒6=(-3+2)×3-6……………………8分=-9…………………………………….9分所以6☒(-3)与(-3)☒6的值不相等……………………10分20、解:(1)填表格,从左到右依次是:10, 13………………2分(2) (3n+1)…………………………………………………….5分(3)当3n+1=2017时,解得,n=672所以,n的值是672.………………………10分六、21、解:(1)设钢笔的单价为x元,则毛笔的单价为元.由题意得:解得:,则.答:钢笔的单价为21元,毛笔的单价为25元.……………………………..6分设单价为21元的钢笔为y支,所以单价为25元的毛笔则为支.根据题意,得.解得:(钢笔的支数应该是正整数,不符合题意).所以王老师肯定搞错了.……………………………..12分七、22、解:(1)∵∠1=30°,∴∠1=∠ABC=30°,∴∠A’BD=180°-2×30°=120°.……………………………..4分(2)∵∠A’BD=120°,∠2=∠DBE,∴∠2=12∠A’BD=60°,∴∠CBE=∠1+∠2=30°+60°=90°……………………………..8分(3)结论:∠CBE不变.∵∠1=12∠AB A’,∠2=12∠A’BD,∠AB A’+∠A’BD=180°,A B∴∠1+∠2=12∠AB A’+12∠A’BD =12(∠AB A’+∠A’BD )=12×180°=90° 即∠CBE =90°.……………………………..12分 八、 23、解:(1)31×5×6×7 ; ……………………3分 (2)31n (n +1)(n +2) ; ……………………6分 (3)41n (n +1)(n +2)(n +3) ; ……………………10分(4)10×11+11×12+…+98×99=31×98×99×100 - 31×9×10×11 =323070 ……………………14分。
2014---2015学年(上)厦门市七年级质量检测(及评分标准)
2014 - 2015学年(上)厦门市七年级质量检测数学(试卷总分值:150分考试时间:120分钟)准考证号_ 座位号注意事项:l.全卷三大题,27小题,试卷共4页,另有答题卡, 2答案一律写在答题卡上,否则不能得分. 3可直接用2B 铅笔画图‘一、选择题(本大题共10小题,每题4分,共}0分.每题都有四个选项,其中有且只有一 个选项正确) 1一3的相反数是( ) A .3 B. 一3 C.31 D.31- 2.从正面看以下图中的几何体,得到的平面图形是( )3.(一3)2可表示为( )A.(-3)×2 B -3 ×3 C. )3()3(-+- D.)3()3(-⨯- 4.如图1,点A 、O 、D 在同一直线上∠COD=90°,则图中的钝角是( )A.∠AOBB.∠AOCC. ∠AOD=CD.∠B OD 5.以下各组单项式中,属于同类项的是( ) A 23ab -和2ab B . 32a 和 22a b8.在以下图形中,表示“点P 在直线a 上”的是( )7.在以下选项中,能说明等式“a a =”不成立的例子是( )A. a =2 B .a =-2 C. a =0 D. a =0.58.如图2,每个民方体的重量为x 克,每个砝码的重量为10克,每个球的重量为y ( ) A. 1042-=y x B.2y+10 =4x C. x 一10 = 2y D. x =2y+59.在灯塔0处观测轮船A 和B ,测量得到轮船A 位于北偏东35°的方向,轮船B 位于南偏东 55°的方向,那么∠AOB 的度数为( )A . 20° B. 70° C. 90° D. 110°10.某车间原计划13小时完成生产一批零件,后来每小时多生产10个零件,用了12小时不但完 成了任务,而且还多生产60x 个零件,则所列方程正确的选项是( )A .13x=12(x 一10)一60 B. 13x=12(x+10)一60 C.13x=12(x 一10)+60 D.13x=12(x+10)+60 二、填空题(本大题有6小题,每题4分,共24分) 11.化简:7x 一5x= , -3大的有理数_ .13.正在建设的厦门地铁1号线全长约30300米,用科学一记数法表示为_ 米 14.假设x=1是方程4x 一2a =9的解,则a =_ .15.如图3,这排方格中每个方格都有一个数,且每相邻三个数之和为18,则x 的值为_16.如图4,有一个形如正方形的点阵,第一层每边有三个点,第二层每边有五个点,第三 ;第n 层(n 为正整数)的总点数是 (用含n 的代数式表示) 三、解答题(本大题有11小题,共86分) 17.(此题总分值7分)计算;3)15(2112÷-+⨯18.(此题总分值7分)计算:)(5)56(b a b a ++-19.(此题总分值7分)如图5,平面上有四个点A,B,C,D ,根据以下语句画出图形. (1)画直线AB 和射线DB;(2)画线段DC 并延长DC 到E 点,使得CE=DC20.(此题总分值7分)解方程:()273227=-+x x21.(此题总分值7分)某检修小组乘汽车沿一东西向的公路检修线路,约定向东为正.某天他们从A 地出发,收 工时到达B 地,行驶的记录如下(单位:km):+8,-4,-8,+2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017—2018学年(下) 厦门市七年级质量检测
数学参考答案及评分标准
一、选择题(本大题有10小题,每小题4分,共40分)
二、填空题(本大题有6小题,其中第11题每空2分,其余每题4分,共32分) 11.(1)-1 (2)-2 (3)4 (4) (5)-3 (6)
12. x <-1 13. 35° 14. 9
15.(-5,2),(-1,2)(填对一个给2分) 16. 7
三、解答题(本大题9小题,共78分) 17. (本题满分8分)
(1)2x -x =-1+4...........2分 (2) ①+ ②得: 4x =4.................1分
x =3.........4分 x =1 ................2分
把x =1代入②得:y =0. ..................3分
⎩
⎨
⎧==.0,
1y x 所以该方程组的解是..............4分 18. (本题满分8分)
(1)如图,正确画出点P ......1分,
正确画出平行线........3分, 正确标注点E ...........5分;
(2)∠AOD , ∠PEO , ∠CEF ...............................8分
19. (本题满分8分)
解不等式①,得3x ≤...........2分, 解不等式②,得2->x ...............4分,
所以该不等式组解集为32-≤<x ............................................6分, 所以该不等式组的正整数解为:x = 1,2,3.....................8分 20. (本题满分8分)
解:设甲有x 钱,乙有y 钱,依题意有 ⎪⎪⎩⎪⎪⎨⎧=+=+503
2502
y x y x ...........4分
解得⎪⎩⎪⎨⎧
==
25
275y x ..............7分
答:甲有
2
75
钱,乙有25钱。
................................8分 21.(本题满分8分)
解:(1)把y=2代入方程组得⎩⎨
⎧+=++=-m
x m
x 16312....................1分,
解得m=-4...........................3分
(2)①+②得:2x +2y =2+4m.......................................5分,
∴x +y =1+2m......................................6分
x +y >2 ∴1+2m >2............................................7分 ∴2
1
>
m ..........................................................8分 (解法二)由⎩⎨⎧+=++=m y x m 1331y -x 得⎪⎪⎩
⎪⎪⎨⎧=+=2-1
2
5m y m x ............6分
x +y >2 ∴
2)2
(125>-++m
m ...........................7分 ∴2
1
>
m ................................................8分 22. (本题满分9分)
解:(1)401-373=28(万人)...........2分
答:从2013年到2017年厦门市常住人口增加了28万人. (2)401×14.0%≈56(万人).........4分
答:2017年厦门市常住人口中,少儿(0~14岁)人口约为56万人. (3)能超过全市人口的20%...............................................5分
理由如下:
401+28=429(万人).....................................6分
(72-60)÷60×100%=20% ............................7分 72×(1+20%)=86.4(万人).............................8分 429×20%=85.8 因为86.4>85.8
所以能超过全市人口的20%。
.............................9分
23. (本题满分8分)
(1)第三次........................................2分
(2)解:设原价每头大牛x 元,每头小牛y 元, 依题意得: ⎩
⎨
⎧=+=+9000629900
34y x y x ..................3分,
解得,⎩
⎨⎧==900y 8001x ......................4分
8550÷(1800×6+900×7) = 0.5.............................................5分 设李大叔第四次购买大牛m 头,则小牛(10-m )头,依题意有 (1800×0.5)m +(900×0.5)(10-m )≥8100...................................6分 解得 m ≥8
∵小牛至少一头
∴108<≤m ...................................7分
又∵m为正整数
∴m=8,9
当m=8时,10-m=2;当m=9时,10-m=1;
答:共有两种方案,即大牛8头,小牛2头或者大牛9头,小牛1头。
......... 8分
24. (本题满分10分)
(1)证明:
∵∠DCE=∠AEF(已知)
∴AE∥CD (内错角相等,两直线平行).......................1分
∴∠EAD=∠D(两直线平行,内错角相等)..................2分
∵∠B=∠D (已知)
∴∠EAD=∠B (等量代换).............................................3分
∴AD∥BC (同位角相等,两直线平行)....................4分
(2)解:∠MFQ与∠DFC的数量关系是∠DFC=2∠MFQ....................5分
理由如下:
∵AD∥BC (已证)
∴∠FQP=∠AFQ (两直线平行,内错角相等).............................................6分
∵∠FQP=∠QFP (已知)
∴∠AFQ=∠QFP(等量代换)
∵FM平分∠EFP (已知)
∴∠EFM=∠PFM
设∠AFQ=∠QFP= x,∠EFM=∠PFM=y.
∴∠MFQ=∠PFM-∠PFQ= y-x...........................................7分
∠MF A=∠AFP-∠PFM= 2x-y............................................8分
∴∠EF A=∠EFM-∠MF A=y-(2x-y)=2y-2x ..............................9分
∴∠DFC=∠EF A=2(y-x)
∴∠DFC=2∠MFQ ..............10分
25. (本题满分11分)
(1)解:点A不是直线l的“伴侣点”. …………………1分
理由如下:
∵A (-1,a ),直线l 过点M 且平行于y 轴,M (1,0) ∴点A 到直线l 的距离为2. . …………………2分 ∵ 2> 1
∴点A 不是直线l 的“伴侣点”…………………3分 (2)解:点B 是直线l 的“伴侣点”…………………4分 理由如下:
∵点F 刚好落在直线l 上
∴ F (1,a +b),
∵C (2
1
-,a -1)对应点为F (1,a +b),
∴点C 向右平移
2
3
个单位长度,向上平移(b +1)个单位长度得到点F.…………………5分 ∴三角形ABC 也向右平移
2
3
个单位长度,向上平移(b +1)个单位长度 ∴点B (b ,2a )平移得到E (b +2
3
,2a +b +1) ∵点E 落在x 轴上
∴2a +b +1=0…………………6分 ∵点A (-1,a )平移得到D (
2
1
,a +b +1)………………….7分 ∴点D 到直线l 的距离为D h =21
∴121
212121=⋅+=⋅=
b a h MF S D DEF △…………………..8分
当a +b >0时
11()4
12210a b a b ⎧+=⎪⎨⎪++=⎩ ∴43
53a b ⎧=-⎪⎪⎨⎪=⎪⎩
…………………9分 当a +b<0时
11()4
12210a b a b ⎧+=-⎪⎨⎪++=⎩ ∴23
13a b ⎧=-⎪⎪⎨⎪=⎪⎩
…………………10分
∴点B 到直线l 的距离为
3
2. ∴点B 是直线l 的“伴侣点”.…………………11分。