2.3.3、4线面、面面垂直的性质

合集下载

学案11:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质

学案11:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质

2.3.3直线与平面垂直的性质~2.3.4平面与平面垂直的性质【知识导图】【学法指导】1.线面垂直、面面垂直的性质定理揭示了“平行”与“垂直”之间的内在联系,提供了它们之间相互转化的依据.因此,在应用时要善于运用转化的思想.2.利用面面垂直的性质定理时,找准两平面的交线是解题的关键.3.学习线面垂直的性质定理时,要注意区分与其相似的几个结论.【自主预习】知识点一直线与平面垂直的性质文字语言垂直于同一个平面的两条直线符号语言}a⊥αb⊥α⇒图形语言①线面垂直⇒线线平行;作用②作平行线1.直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.2.定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.知识点二平面与平面垂直的性质文字语言两个平面垂直,则垂直于的直线与另一个平面α⊥βα∩β=l⇒a⊥β符号语言}图形语言①面面垂直⇒垂直;作用②作面的垂线对面面垂直的性质定理的理解1.定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直.2.已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.[小试身手]1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是()A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β2.已知△ABC和两条不同的直线l,m,l⊥AB,l⊥AC,m⊥AC,m⊥BC,则直线l,m的位置关系是()A.平行B.异面C.相交D.垂直3.如图,BC是Rt△BAC的斜边,P A⊥平面ABC,PD⊥BC于点D,则图中直角三角形的个数是()A.3 B.5C.6 D.84.如果三棱锥的三个侧面两两相互垂直,则顶点在底面的正投影是底面三角形的______心.【课堂探究】类型一线面垂直的性质定理的应用例1在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,EF⊥A1D,EF⊥AC,求证:EF∥BD1.方法归纳线面垂直的性质定理是证明两直线平行的重要依据,证明两直线平行的常用方法:(1)a∥b,b∥c⇒a∥c.(2)a∥α,a⊂β,β∩α=b⇒a∥b.(3)α∥β,γ∩α=a,γ∩β=b⇒a∥b.(4)a⊥α,b⊥α⇒a∥b.跟踪训练1如图,在△ABC中,AB=AC,E为BC的中点,AD⊥平面ABC,D为FG的中点,且AF=AG,EF=EG.求证:BC∥FG.类型二面面垂直的性质定理的应用例2如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE =EF=1,求证:CF⊥平面BDE.方法归纳(1)两个平面垂直的性质定理可作为判定线面垂直的依据.当已知两个平面垂直时,可在一个平面内作交线的垂线,即是另一平面的垂线.(2)证明线面垂直的常用方法:①线面垂直的判定定理;②面面垂直的性质定理;③a∥b,b⊥α⇒a⊥α.跟踪训练2在三棱锥P-ABC中,P A⊥平面ABC,平面P AB⊥平面PBC.求证:BC⊥AB.类型三垂直关系的综合应用例3如图,在几何体ABCDPE中,底面ABCD是边长为4的正方形,P A⊥平面ABCD,P A∥EB,且P A=2EB=4 2.(1)证明:BD∥平面PEC;(2)若G为BC上的动点,求证:AE⊥PG.方法归纳空间线线垂直、线面垂直、面面垂直是重点考查的位置关系,证明时一般是已知垂直关系考虑性质定理,求证垂直关系考虑判定定理.跟踪训练3如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC= 2.等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.【参考答案】【自主预习】知识点一 直线与平面垂直的性质平行 a ∥b知识点二 平面与平面垂直的性质一个平面内交线 垂直 a ⊂α a ⊥l线面[小试身手]1.解析:⎭⎪⎬⎪⎫m ∥n n ⊥β⇒m ⊥β,故选B. 答案:B2.解析:因为直线l ⊥AB ,l ⊥AC ,所以直线l ⊥平面ABC ,同理直线m ⊥平面ABC ,根据线面垂直的性质定理得l ∥m .答案:A3.解析:由P A ⊥平面ABC ,知△P AC ,△P AD ,△P AB 均为直角三角形,又PD ⊥BC ,P A ⊥BC ,P A ∩PD =P ,∴BC ⊥平面P AD .∴AD ⊥BC ,易知△ADC ,△ADB ,△PDC ,△PDB 均为 直角三角形.又△BAC 为直角三角形,所以共有8个直角三角形,故选D.答案:D4.解析:三棱锥的三个侧面两两相互垂直,则三条交线两两互相垂直,易证投影是底面三角形的垂心.答案:垂【课堂探究】类型一 线面垂直的性质定理的应用例1【证明】 如图所示,连接A 1C 1,C 1D ,B 1D 1,BD .∵AC ∥A 1C 1,EF ⊥AC ,∴EF ⊥A 1C 1.又EF⊥A1D,A1D∩A1C1=A1,∴EF⊥平面A1C1D①.∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1.∵四边形A1B1C1D1为正方形,∴A1C1⊥B1D1,又B1D1∩BB1=B1,∴A1C1⊥平面BB1D1D,而BD1⊂平面BB1D1D,∴A1C1⊥BD1.同理DC1⊥BD1.又DC1∩A1C1=C1,∴BD1⊥平面A1C1D②.由①②可知EF∥BD1.跟踪训练1证明:连接DE,AE,因为AD⊥平面ABC,所以AD⊥BC.因为AB=AC,E为BC的中点,所以AE⊥BC,又AD∩AE=A,所以BC⊥平面ADE.因为AF=AG,D为FG的中点,所以AD⊥FG,同理ED⊥FG,又ED∩AD=D,所以FG⊥平面ADE,所以BC∥FG.类型二面面垂直的性质定理的应用例2【证明】如图,设AC∩BD=G,连接EG,FG.由AB=2易知CG=1,则EF=CG=CE.又EF∥CG,所以四边形CEFG为菱形,所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF,CF⊂平面ACEF,所以BD⊥CF.又BD ∩EG =G ,所以CF ⊥平面BDE .跟踪训练2证明:如图所示,在平面P AB 内作AD ⊥PB 于点D .∵平面P AB ⊥平面PBC ,且平面P AB ∩平面PBC =PB ,∴AD ⊥平面PBC .又BC ⊂平面PBC ,∴AD ⊥BC .∵P A ⊥平面ABC ,BC ⊂平面ABC ,∴P A ⊥BC .∵P A ∩AD =A ,∴BC ⊥平面P AB .又AB ⊂平面P AB ,∴BC ⊥AB .类型三 垂直关系的综合应用例3【证明】 (1)如图,连接AC 交BD 于点O ,取PC 的中点F ,连接OF ,EF .∵四边形ABCD 为正方形,∴O 为AC 的中点,∴OF ∥P A ,且OF =12P A . ∵EB ∥P A ,且EB =12P A ,∴EB ∥OF ,且EB =OF , ∴四边形EBOF 为平行四边形,∴EF ∥BD .又EF ⊂平面PEC ,BD ⊄平面PEC ,∴BD ∥平面PEC .(2)如图,连接PB ,∵EB AB =BA P A =12,∠EBA =∠BAP =90°,∴△EBA ∽△BAP , ∴∠PBA =∠BEA ,∴∠PBA +∠BAE =∠BEA +∠BAE =90°,∴PB ⊥AE . ∵P A ⊥平面ABCD ,P A ⊂平面APEB ,∴平面ABCD ⊥平面APEB .∵BC ⊥AB ,平面ABCD ∩平面APEB =AB ,BC ⊂平面ABCD ,∴BC ⊥平面APEB ,∴BC ⊥AE .又BC∩PB=B,BC⊂平面PBC,PB⊂平面PBC,∴AE⊥平面PBC.∵G为BC上的动点,∴PG⊂平面PBC,∴AE⊥PG.跟踪训练3解:(1)如图所示,取AB的中点E,连接DE,CE.因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,CE⊂平面ABC可知DE⊥CE.由已知可得DE=3,EC=1.在Rt△DEC中,CD=DE2+EC2=2.(2)当△ADB以AB为轴转动时,总有AB⊥CD.证明:①当D在平面ABC内时,因为AC=BC,AD=BD,所以C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由(1)知AB⊥DE.又因AC=BC,所以AB⊥CE.又DE∩CE=E,所以AB⊥平面CDE.又CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.。

线面垂直面面垂直的判定定理和性质定理

线面垂直面面垂直的判定定理和性质定理

线面垂直面面垂直的判定定理和性质定理
线面垂直面面垂直的判定定理是指两个射线有一定的关系即垂直面是垂直的,其中一个起点在另一个终点上。

简单来说就是两线垂直于一个面,则这两条线的垂直的面也是垂直的。

由线面垂直面面垂直的判定定理可以得出线面垂直面面垂直的性质定理,这是建立在线面垂直面面的判断定理的基础之上的定理。

线面垂直面面垂直的性质定理:若两个射线分别与两个平面成垂直,则它们两个平面所成的平面也是垂直的。

该定理也可以用图形来表示,如下图所示:
从图中可以看出,射线AB和CD都是垂直于两个平面m、n,其中AB与m,CD与n成垂直。

而平面m和n又组成一个新平面mn,根据线面垂直面面垂直的性质定理可以知道AB与mn也是垂直的,同样CD也与mn是垂直的。

线面垂直面面垂直的定理主要应用在几何中,它可以用来证明两个平面的面积计算方法是正确的,也可以用来证明两个球面的夹角是垂直的。

同时,它同样可以应用在工程技术中,例如对于地面上的建筑物,我们可以用它来判断其是否与地面垂直。

由此可以看出,线面垂直面面垂直的判定定理和性质定理对于各类几何计算和工程技术应用具有十分重要的意义。

它能有效地帮助人们判断两面之间是否是垂直的关系,从而实现各种几何计算和工程技术应用。

课件4: 2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质

课件4: 2.3.3  直线与平面垂直的性质~2.3.4  平面与平面垂直的性质

跟踪训练2 如图所示,在四棱锥P-ABCD中,底面 ABCD为矩形,PA⊥平面ABCD,点E在线段PC上, PC⊥平面BDE. (1)证明:BD⊥平面PAC (2)若PA=1,AD=2,求二面角B-PC -A的正切值
(1)证明 ∵PA⊥平面ABCD, ∴PA⊥BD. ∵PC⊥平面BDE,∴PC⊥BD. 又∵PA PC=P,BD 平面PAD. ∴BD⊥平面PAC. (2)解 设AC与BD交于点O,连接OE, ∵PC⊥平面BDE,∴PC⊥OE. 又∵BO⊥平面PAC,∴PC⊥BO. ∴PC⊥平面BOE.∴PC⊥BE.
所以Rt△AEB≌Rt△BEP,
所以△AEB、△PEB、△CEB都是等腰直角三角形.
由已知PC=4,得AE=BE=2,△AEB的面积S=2.
因为PC⊥平面AEB,
1
8
所以三棱锥P–ABC的体积V= 3 ·S·PC= 3 .
自测自评
1.若直线a⊥直线b,且a⊥平面α,则有( D )
A.b∥α
B.b⊂α
A.AC
B.BD
C.A1D
D.A1D1
解析 ∵BD⊥AC,BD⊥CC1,AC∩CC1=C, ∴BD⊥平面A1ACC1, ∴BD⊥CE.
谢 谢!
跟踪训练1 已知,如图,直线a⊥α,直线b⊥β,且 AB⊥a,AB⊥b,平面α∩β=c.求证:AB∥c. 证明 过点B引直线a′∥a, a′与b确定的平面设为γ, ∵a′∥a,AB⊥a,∴AB⊥a′, 又AB⊥b,a′∩b=B,∴AB⊥γ. ∵b⊥β,c⊂β,∴b⊥c① ∵a⊥α,c⊂α,∴a⊥c. 又a′∥a,∴a′⊥c② 由①②可得c⊥γ,又AB⊥γ,∴AB∥c.
如图,取AB中点D,连接PD、CD,
则PD⊥AB,CD⊥AB,又因为PD∩CD=D,

第二章 2.3 2.3.3 & 2.3.4 直线与平面垂直的性质 平面与平面垂直的性质

第二章 2.3 2.3.3 & 2.3.4 直线与平面垂直的性质 平面与平面垂直的性质

已知:α,β,γ是三个不同平面,l为直线,α⊥γ,β⊥γ, α∩β=l,求证:l⊥γ.
[证明]
法一:在l上任取一点P,过P作γ的垂线l′,
则l′⊂α,l′⊂β, ∴l′是α与β的交线. 又α∩β=l,∴l′与l重合. 又l′⊥γ,∴l⊥γ.
法二:设α∩γ=a,β∩γ=b, 在γ内任取一点P, 过P在γ内
[例1]
如图在正方体ABCD-A1B1C1D1中,点E,F

分别在A1D,AC上,且EF⊥A1D,EF⊥AC.
求证:EF∥BD1.
[自主解答]
如图所示,连接AB1、B1C、BD、B1D1.
∵DD1⊥平面ABCD,AC⊂平面ABCD, ∴DD1⊥AC. 又∵AC⊥BD,
且BD∩DD1=D,
∴AC⊥平面BDD1B1. ∵BD1⊂平面BDD1B1, ∴BD1⊥AC.
且BF⊥平面ACE.
(1)求证:AE⊥平面BCE; (2)求二面角B-AC-E的余弦值.
解:(1)证明:∵BF⊥平面ACE,AE⊂平面ACE, ∴BF⊥AE. ∵二面角D-AB-E是直二面角,且CB⊥AB, ∴CB⊥平面ABE,∴CB⊥AE.
又CB与BF交于点B,
∴AE⊥平面BCE.
(2)连接BD交AC于点G,连接FG. ∵正方形ABCD的边长为2. ∴BG⊥AC,BG= 2. ∵BF⊥平面ACE,∴BF⊥AC. 又BG∩BF=B, ∴AC⊥平面BFG,AC⊥FG. ∴∠BGF是二面角B-AC-E的平面角.
由(1)知,AE⊥平面BCE,得AE⊥EB. ∵AE=EB,∴BE= 2. 又∵△EBC为直角三角形,∴EC= BE2+BC2= 6, BC· BE 2× 2 2 3 BF= EC = = 3 . 6 6 ∴在Rt△BFG中,FG= BG -BF = 3 .

2.3.3-2.3.4线面垂直,面面垂直的性质定理-悠

2.3.3-2.3.4线面垂直,面面垂直的性质定理-悠

已知正方形ABCD和矩形 和矩形ACEF所在的平面互相垂 练 已知正方形 和矩形 所在的平面互相垂 直,AB= 2 ,AF=1,M是线段 的中点。 , 是线段EF的中点。 是线段 的中点 平面BDE; (1)求证 )求证AM//平面 平面 ; 的大小; (2)求二面角 −DF−B的大小; )求二面角A− − 的大小 上确定一点P,使得PF与 所成的 (3)试在线段 上确定一点 ,使得 与BC所成的 )试在线段AC上确定一点 E 角是60° 角是 °。
注1:① α :
⊥ β ,α I β = l, a ⊂ α , a ⊥ b ⇒ a ⊥ β
证明: 在平面 内过B点作 ⊥ l, 证明: 在平面β内过 点作 内过 点作BE⊥ , 又∵AB⊥ l, ⊥ , ∴∠ABE就是二面角 -l -β的平面角 就是二面角α∴∠ 就是二面角 的平面角 ∴∠ABE=90 ,即AB⊥BE ∴∠ ⊥ 又∵l∩BE=B, , ∴AB⊥β ⊥
如图, 于点A, 于点B, 例 如图,已知 α I β = l, CA ⊥ α于点 ,CB ⊥ β于点 , 求证: a ⊂ α, a ⊥ AB, 求证:a // l .
注意:空间内,垂直于同一条直线的两直线平行的结论不成立 注意:空间内,垂直于同一条直线的两直线平行的结论不成立.
C β B α l A a

α
a
A
l
B E
β
面面垂直⇒ 面垂直” ②该定理作用:“面面垂直⇒线面垂直”,是判定线面垂 该定理作用: 面面垂直 直的依据,可以帮助我们快速找到面的垂线——平面内垂 直的依据,可以帮助我们快速找到面的垂线 平面内垂 直于两平面的交线的直线. 直于两平面的交线的直线
例 判断下列命题的真假 1.若α⊥β,那么 内的所有直线都垂直于 内的所有直线都垂直于β. 若 ⊥ ,那么α内的所有直线都垂直于

高中数学2.3.3线面垂直_面面垂直的性质定理优秀课件

高中数学2.3.3线面垂直_面面垂直的性质定理优秀课件
【答案】 B
4.设两个平面互相垂直,则( ) A.一个平面内的任何一条直线垂直于另一个平面 B.过交线上一点垂直于一个平面的直线必在另一平 面内 C.过交线上一点垂直于交线的直线,必垂直于另一 个平面 D.分别在两个平面内的两条直线互相垂直
【答案】 B
C
D
B
A
思考:如果直线a,b都垂直于平面α,
由观察可知a//b,从理论上如何证明这 个结论?
a b b’
c
α
O
直线与平面垂直的性质定理
垂直于同一个平面的两条直线平行。
ab
用符号表示?
α
作用: ①证明线线平行 ②作平行线
2.直线与平面垂直的其他性质: (1)如果一条直线垂直于一个平面,那么这条直线垂直 于这个平面内的任意一条直线. (2)垂直于同一条直线的两个平面互相平行. (3)两条平行直线中的一条垂直于一个平面,另一条也 垂直于这个平面.
练习一
❖ 1.判断以下命题正确的选项是_______ ❖ (1)垂直于同一条直线的两个平面互相平行 ❖ (2)垂直于同一个平面的两条直线互相平行 ❖ (3)一条直线在平面内,另一条直线与这个平面垂直,那
么这两条直线互相垂直.
2 .已知 a ,b 和 直 平 ,且 线 a 面 ba, ,则 b 与 的
AB ?⊥
在内引直线BE⊥ CD, 垂足为B,
则∠ ABE是二面角-CD- 的
平面角, 由 ⊥ 知,
AB⊥ BE,又BE与CD
是 内的两条
相交直线.
C
E
D
BA
平面与平面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的直线与 另一个平面垂直
简记为:面面垂直,那么线面垂直.

课件11:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质

课件11:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质
【答案】MN⊥AB
要点阐释 1.直线与平面垂直的其他性质 (1)如果一条直线和一个平面垂直,则这条直线和这个平面内任
一条直线垂直. (2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于
这个平面.
(3)若 l⊥α 于 A,AP⊥l,则 AP⊂α. (4)垂直于同一条直线的两个平面平行. (5)如果一条直线垂直于两个平行平面中的一个,则它必垂直于 另一个平面.
2.平面与平面垂直的性质 (1)性质定理可简述为:面面垂直,则线面垂直. (2)性质定理是作线面垂直的依据和方法,在解决二面角问题 中作二面角的平面角经常用到.这种线面垂直与面面垂直间的相互 转化,是我们立体几何中求解(证)问题的重要思想方法. (3)平面与平面垂直性质定理的推论 如果两个平面互相垂直,那么经过第一个平面内的一点垂直于 第二个平面的直线,在第一个平面内.
求证:B C ⊥AB .
证明: 在平面 PAB 内,作 AD⊥PB 于 D. ∵平面 PAB⊥平面 PBC 且平面 PAB∩平面 PBC=PB, ∴AD⊥平面 PBC.又 BC⊂平面 PBC,∴AD⊥BC. ∵PA⊥平面 ABC,BC⊂平面 ABC, ∴PA⊥BC.又 PA∩AD=A,∴BC⊥平面 PAB. 又 AB⊂平面 PAB, ∴BC⊥AB.
PAD⊥底面 ABCD,PA⊥AD,E 和 F 分别是 CD 和 PC 的中点,求证: (1)PA⊥底面 ABCD; (2)BE∥平面 PAD; (3)平面 BEF⊥平面 PCD.
证明:
(1)因为平面 PAD⊥平面 ABCD 且 PA 垂直于两个平面的交线 AD, 所以 PA⊥底面 ABCD.
(2)因为 AB∥CD,CD=2AB,E 为 CD 的中点,所以 AB∥DE 且 AB=DE.所以 ABED 为平行四边形.所以 BE∥AD

2.3.3-2.3.4 直线、平面的垂直性质

2.3.3-2.3.4 直线、平面的垂直性质

必修2 选修1-2 选修4-5
必修3 选修2-1 数学全集
必修4 选修2-2
必修5 选修2-3
点击题目,即可下载对应的资料
高中数学 高中物理 高考专题
更多精彩资料,请下载点击下方文字/图案 更多资料
更多精彩内容,weixingongzhonghao:学霸兔
β
l α
线面垂直
面面垂直
课堂小结
2. 两个平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线的直线垂直于
另一个平面.
m
l
m
m l
面面垂直
m
l
线面垂直
作业: P73练习:1,2.(做书上) P73习题2.3A组:2. P74习题2.3B组:3.
必修1 选修1-1 选修4-4
已知: , P , P b,b .求证: b .
P
ab
l
思路:设α∩β=l,过P作a⊥l, 则a⊥β,a 因为a∩b=P,b⊥β, 所以 b
总结
本题的证法采用的是同一法.同一法的一般过程: ① 不从已知条件入手,而另作图形使它具有求证的结论中 所提的特性; ② 证明所作用的图形特性,与已知条件符合; ③ 因为已知条件和求证的结论所指的事物都是唯一的,从 而推出所作的图形与已知条件来求的是同一个东西,由此 断定原命题成立.
练习 如图已知平面α、β,α⊥β,α∩β =AB,直线a⊥β,
a ,试判断直线a与平面α的位置关系.
思路:过平面α内一点线作直线b⊥AB,
则b⊥β,
∵ a⊥β,
∵a∥b,
∴ a∥α.
B
Aa
b
课堂小结
1. 两个平面垂直的判定定理:
如果一个平面经过了另一个平面的一条垂线,那么这两

线面垂直、面面垂直的性质

线面垂直、面面垂直的性质
2.3.3-2.3.4直线与平面、 平面与平面垂直的性质
精选课件
1
复习引入
问题:若一条直线与一个平面垂直, 则可得到什么结论?若两条直线与 同一个平面垂直呢?
精选课件
2
已知:a⊥平面,b⊥平面,
求证:a∥b.
a b b'
(反证法)
cO
定理 垂直于同一个平面的两条直线平行.
精选课件
3
理论迁移
例 1: 请在下面的横线上填上适当的条 件,使结论成立。
求证:△ABC是直角三角形。
P
B
精选课件
C
A
9
例2
已 知 , l, C A 且 C A l于 A
D B 且 D B l于 B ,
1)若AC=3,BD=12,AB=4,求CD
2)若CD与, 所成角分别为45゜和
30゜,求CD与AB的长度比。
α
C
A
B
β
精选课件
D
10
练习一:
1 已知平面,β,⊥β,直线a满足a⊥β, a,试判断直线a与平面的位置关系.
证法1:设 n, m,
在α内作直线a ⊥n
在β内作直线b⊥m
n
a
a n
a
同理b
bl aα
β
n γm
b// a a
b
b //
b
l
b // l b
lb
线面平行判定 精选课件
线面平行性质13
思考:还可以怎样作辅助线?
证法2:设 n, m,
2 已知直线a,b和平面 ,且a丄b,a丄,求 b和平面的 位置关系?
3 设平面 ⊥β, AB,直线a//,

21-22版:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质(创新设计)

21-22版:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质(创新设计)

@《创新设计》
10
课前预习
课堂互动
课堂反馈
规律方法 证明线线平行常用的方法 (1)利用线线平行定义:证共面且无公共点. (2)利用三线平行公理:证两线同时平行于第三条直线. (3)利用线面平行的性质定理:把证线线平行转化为证线面平行. (4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直. (5)利用面面平行的性质定理:把证线线平行转化为证面面平行.
@《创新设计》
14
课前预习
课堂互动
课堂反馈
@《创新设计》
(1)证明 ∵O,M分别为AB,VA的中点,∴OM∥VB. ∵VB⊄平面MOC,OM⊂平面MOC, ∴VB∥平面MOC. (2)证明 ∵AC=BC,O为AB的中点,∴OC⊥AB. 又∵平面VAB⊥平面ABC,且平面VAB∩平面ABC=AB,OC⊂平面ABC,∴OC⊥平面 VAB. ∵OC⊂平面MOC,∴平面MOC⊥平面VAB.
∴DD1⊥AC. 又AC⊥BD,DD1∩BD=D,DD1,BD⊂平面BDD1B1, ∴AC⊥平面BDD1B1, 又BD1⊂平面BDD1B1,
@《创新设计》
9
课前预习
课堂互动
课堂反馈
∴AC⊥BD1. 同理可证BD1⊥B1C, 又AC∩B1C=C,AC,B1C⊂平面AB1C, ∴BD1⊥平面AB1C. ∵EF⊥A1D,A1D∥B1C,∴EF⊥B1C. 又∵EF⊥AC,AC∩B1C=C,AC,B1C⊂平面AB1C, ∴EF⊥平面AB1C,∴EF∥BD1.
【训练3】 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为 CD的中点. (1)求证:BD⊥平面PAC; (2)若∠ABC=60°,求证:平面PAB⊥平面PAE. (1)证明 因为PA⊥平面ABCD,BD⊂平面ABCD, 所以PA⊥BD. 因为底面ABCD为菱形,所以BD⊥AC. 又PA∩AC=A,所以BD⊥平面PAC.

《2.3.3 直线与平面垂直的性质》和《2.3.4 平面与平面垂直的性质》教学设计

《2.3.3 直线与平面垂直的性质》和《2.3.4 平面与平面垂直的性质》教学设计

《空间中直线、平面的垂直关系》教学设计一、教材内容解析本节课的内容是探究空间直线与平面、平面与平面垂直的性质,选自人教A 版教材《2.3.3 直线与平面垂直的性质》和《2.3.4 平面与平面垂直的性质》。

空间中直线、平面的垂直关系是一种非常重要的的位置关系,它不仅应用广泛,而且是空间问题平面化的典范。

这类问题求解的关键是根据线面、面面之间的互化关系,借助创设辅助线和面,找出符号语言和图形语言之间的关系。

通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。

本节内容是学习了线面垂直和面面垂直判定之后的进一步探究,进一步巩固“观察模型——直观感知——操作确认——推理证明——拓展应用”定理学习模式,培养学生空间概念,空间想象能力以及逻辑推理能力。

二、教学目标设置根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,确定以下教学目标:(1)知识与技能目标:①让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识;②会证明性质定理,并能运用性质定理解决一些简单问题。

(2)过程与方法目标:①通过“直观感知、操作确认,推理证明”,培养学生逻辑推理能力;②了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握转化思想在解决问题中的运用;③通过类比空间中直线与平面的平行关系、平面与平面的平行关系的学习方法来探究本节课中的垂直关系。

(3)情感态度与价值观目标:①让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣;②提高学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新精神;③进一步体会几何中的公理化体系,提升学生的科学素养。

教学重点:学生经历“观察模型——直观感知——操作确认——推理证明——拓展应用”定理学习过程,培养空间想象能力和逻辑推理能力,感悟数学中的“转化”的思想,并能类比此方法用于其它数学命题的学习,解决更多的生活中的实际问题,所以性质定理的发现及证明是本节课的重点。

2.3.3-2.3.4线面垂直与面面垂直性质定理

2.3.3-2.3.4线面垂直与面面垂直性质定理

)
解析:①②显然正确;③中b可能在α内;④中b与α关系不确定.故
选A,
1.已知平面α ⊥平面β ,则下列命题正确的个数是( C ①α 内的直线必垂直于β 内的无数条直线
)
②在β 内垂直于α 与β 的交线的直线必垂直于α 内的任意一条直线 ③α 内的任何一条直线必垂直于β
④过β 内的任意一点作α 与β 交线的垂线,则这条直线必垂直于α
线面、面面垂直的综合问题
【例3】 (2013年高考北京卷)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD, CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点,求证:
(1)PA⊥底面ABCD;
(2)BE∥平面PAD; (3)平面BEF⊥平面PCD.
导引: (1)对题中的条件“平面PAD⊥底面ABCD”怎样进行转化?(利 用性质定理,由PA⊥AD,AD为交线,可得PA⊥底面ABCD) (2)BE与平面PAD内哪条直线平行?(与直线AD平行) (3)能在平面PCD内找到与平面BEF垂直的直线吗?(能.CD⊥平面BEF)
【例】 如图所示,A、B、C、D 为空间四点.在△ABC 中,AB=2, AC=BC= 2 ,等边三角形 ADB 以 AB 为轴运动.
(1)当平面ADB⊥平面ABC时,求CD的长;
(2)当△ADB以AB为轴转动时,是否总有AB⊥CD?证明你的结论.
解: (1)取AB的中点E,连接DE,CE, 因为△ADB是等边三角形, 所以DE⊥AB. 当平面ADB⊥平面ABC时,
2.3.3 直线与平面垂直的性质
2.3.4 平面与平面垂直的性质
1.直线与平面垂直的性质定理
文字语言 符号语言 垂直于同一个平面的两条直线平行

人教版高中数学必修二2.3.3-2.3.4线面垂直、面面垂直的性质定理公开课教学课件

人教版高中数学必修二2.3.3-2.3.4线面垂直、面面垂直的性质定理公开课教学课件

β
a
l
α
A
问题4:面面垂直性质定理用途? 面面垂直线面垂直 问题5:什么情况下用?
符号语言:
a
l
a
a l
已知面面垂直时.
平面与平面垂直的性质定理: 问题6:体现了什么数学思想? 转化
三、例题讲解 例1:PA⊥平面ABC,面PAB⊥面PBC,求证:BC⊥AB
P 问题7:要证BC垂直于AB,要会选择,选择BC垂直于AB,还是AB垂直于
已知:
, A ,C B D ,C A D .求B 证: CD
发展条件 α
转化结论
C
B
D
E
β
A
证明:
在平面β内过D作直线 DE ⊥AB
则 CD 是 E二面 -A B 角 的平面角
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D 所以直线CD⊥平面β
平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
线面垂直的性质定理:
垂直于同一个平面的两条直线平行
符号语言?
a ,b a//b
简述: 如何证明?
线面垂直
线线平行
知识探究: 问题2:面α与面β垂直,线L在面α内,线L与面β的关系有哪几种?(讨论一下)
α L
β 平行
问题3:怎样才能垂直?
α L
β 相交
α
L β
线在面内
思考3: 如何找地面的垂线?
注:若l ,b
则l b.
l
A
αb
2.直线与平面垂直的判定定理? 直线与面内的两条相交直线都垂直,则该线与面垂直
图形表示
a
m

学案13:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质

学案13:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质

2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质学习目标1.理解直线和平面垂直、平面与平面垂直的性质定理,并能用文字、符号和图形语言描述定理.(重点)2.能应用线面垂直、面面垂直的性质定理证明相关问题.(重点、难点)3.理解“平行”与“垂直”之间的相互转化.(易错点)基础·初探教材整理1直线与平面垂直的性质定理预习自测1.判断(正确的打“√”,错误的打“×”)(1)垂直于同一条直线的两个平面互相平行.()(2)垂直于同一平面的两条直线互相平行.()(3)一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直.()教材整理2平面与平面垂直的性质定理2.在长方体ABCD­A1B1C1D1的棱AB上任取一点E,作EF⊥A1B1于F,则EF与平面A1B1C1D1的关系是()A.平行B.EF⊂平面A1B1C1D1C.相交但不垂直D.相交且垂直合作学习类型1 线面垂直性质定理的应用例1如图所示,在正方体ABCD­A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:(1)MN∥AD1;(2)M是AB的中点.名师指津1.直线与平面垂直的性质定理是线线、线面垂直以及线面、面面平行的相互转化的桥梁,因此必须熟练掌握这些定理,并能灵活地运用它们.2.当题中垂直条件很多,但又需证平行关系时,就要考虑垂直的性质定理,从而完成垂直向平行的转化.跟踪训练1.如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB.求证:a∥l.类型2 面面垂直性质定理的应用例2如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是边长为a的菱形且∠DAB=60°,侧面P AD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD的中点,求证:BG⊥平面P AD;(2)求证:AD⊥PB.名师指津1.证明或判定线面垂直的常用方法(1)线面垂直的判定定理;(2)面面垂直的性质定理;(3)若a∥b,a⊥α,则b⊥α(a、b为直线,α为平面);(4)若a⊥α,α∥β,则a⊥β(a为直线,α,β为平面).2.两平面垂直的性质定理告诉我们要将面面垂直转化为线面垂直,方法是在其中一个面内作(找)与交线垂直的直线.跟踪训练2.如图,四棱锥V­ABCD的底面是矩形,侧面VAB⊥底面ABCD,又VB⊥平面VAD.求证:平面VBC⊥平面VAC.探究共研型探究点垂直关系的综合应用探究1如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=2,等边△ADB以AB为轴转动.当平面ADB⊥平面ABC时,能否求CD的长度?探究2在上述问题中,当△ADB转动时,是否总有AB⊥CD?证明你的结论.探究3试总结线线垂直、线面垂直、面面垂直之间的转化关系.例3如图,在四棱锥P­ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD,E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.名师指津1.证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.本题已知面面垂直,故可考虑面面垂直的性质定理.2.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.跟踪训练3.如图,在三棱锥P­ABC中,E,F分别为AC,BC的中点.(1)求证:EF∥平面P AB;(2)若平面P AC⊥平面ABC,且P A=PC,∠ABC=90°.求证:平面PEF⊥平面PBC.课堂检测1.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β2.已知长方体ABCD­A1B1C1D1,在平面AB1上任取一点M,作ME⊥AB于E,则() A.ME⊥平面ACB.ME⊂平面ACC.ME∥平面ACD.以上都有可能3.如图,▱ADEF的边AF⊥平面ABCD,且AF=2,CD=3,则CE=________.4.如图,空间四边形ABCD中,平面ABD⊥平面BCD,∠BAD=90°,且AB=AD,则AD 与平面BCD所成的角是________.5.如图,在四棱锥P­ABCD中,底面ABCD是矩形,平面PCD⊥平面ABCD.求证:AD⊥平面PCD.参考答案基础·初探教材整理1直线与平面垂直的性质定理平行a∥b预习自测1. 【答案】(1)√(2)√(3)√【解析】由线面垂直的定义和性质可知(1)、(2)、(3)均正确. 教材整理2 平面与平面垂直的性质定理 一个平面内 交线 垂直 a ⊂α a ⊥l 预习自测 2. 【答案】D【解析】在长方体ABCD ­A 1B 1C 1D 1中,平面A 1ABB 1⊥平面A 1B 1C 1D 1且平面A 1ABB 1∩平面A 1B 1C 1D 1=A 1B 1,又EF ⊂面A 1ABB 1,EF ⊥A 1B 1,∴EF ⊥平面A 1B 1C 1D 1,答案D 正确.合作学习例1 证明:(1)∵ADD 1A 1为正方形,∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1. ∴CD ⊥AD 1.∵A 1D ∩CD =D ,∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC ,∴MN ∥AD 1. (2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC . ∴ON12DC 12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形,∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点.跟踪训练1.证明:因为EA ⊥α,α∩β=l ,即l ⊂α,所以l ⊥EA . 同理l ⊥EB .又EA ∩EB =E ,所以l ⊥平面EAB . 因为EB ⊥β,a ⊂β,所以EB ⊥a , 又a ⊥AB ,EB ∩AB =B ,所以a⊥平面EAB.由线面垂直的性质定理,得a∥l.例2证明:(1)如图,在菱形ABCD中,连接BD,由已知∠DAB=60°,∴△ABD为正三角形,∵G是AD的中点,∴BG⊥AD.∵平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,∴BG⊥平面P AD.(2)如图,连接PG.∵△P AD是正三角形,G是AD的中点,∴PG⊥AD,由(1)知BG⊥AD.又∵PG∩BG=G.∴AD⊥平面PBG.而PB⊂平面PBG.∴AD⊥PB.跟踪训练2.证明:∵平面VAB⊥底面ABCD,且BC⊥AB.∴BC⊥平面VAB,∴BC⊥VA,又VB⊥平面VAD,∴VB⊥VA,又VB∩BC=B,∴VA⊥平面VBC,∵VA⊂平面VAC.∴平面VBC⊥平面VAC.探究1解:取AB的中点E,连接DE,CE,因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,可知DE ⊥CE,由已知可得DE=3,EC=1,在Rt△DEC中,CD=DE2+EC2=2.探究2证明:①当D在平面ABC内时,因为AC=BC,AD=BD,所以C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由探究1知AB⊥DE.又因AC=BC,所以AB⊥CE.又DE,CE为相交直线,所以AB⊥平面CDE,由CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.探究3【答案】垂直问题转化关系如下所示:例3证明:(1)因为平面P AD⊥底面ABCD,且P A⊥AD,所以P A⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以四边形ABED为平行四边形.所以BE∥AD.又因为BE⊄平面P AD,AD⊂平面P AD,所以BE∥平面P AD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD,所以P A⊥CD.又AD∩P A=A,所以CD⊥平面P AD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF.又EF∩BE=E,所以CD⊥平面BEF.又CD⊂平面PCD,所以平面BEF⊥平面PCD.跟踪训练3.证明:(1)∵E,F分别为AC,BC的中点,∴EF∥AB.又EF⊄平面P AB,AB⊂平面P AB,∴EF∥平面P AB.(2)∵P A=PC,E为AC的中点,∴PE⊥AC.又∵平面P AC⊥平面ABC,∴PE⊥平面ABC,∴PE⊥BC.又∵F为BC的中点,∴EF∥AB.∵∠ABC=90°,∴BC⊥EF.∵EF∩PE=E,∴BC⊥平面PEF.又∵BC⊂平面PBC,∴平面PBC⊥平面PEF.课堂检测1.【答案】D【解析】如果平面α⊥平面β,那么平面α内垂直于交线的直线都垂直于平面β,其他与交线不垂直的直线均不与平面β垂直,故D项叙述是错误的.2.【答案】A【解析】由于ME⊂平面AB1,平面AB1∩平面AC=AB,且平面AB1⊥平面AC,ME⊥AB,则ME⊥平面AC.3.【答案】13【解析】因为AF⊥平面ABCD,所以ED⊥平面ABCD,所以△EDC为直角三角形,CE=ED2+CD2=13.4.【答案】45°【解析】过A作AO⊥BD于O点,∵平面ABD⊥平面BCD,∴AO⊥平面BCD,则∠ADO即为AD与平面BCD所成的角.∵∠BAD=90°,AB=AD.∴∠ADO=45°.5.证明:在矩形ABCD中,AD⊥CD,因为平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AD⊂平面ABCD,所以AD⊥平面PCD.。

2.3 2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质

2.3 2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质

2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质问题导学预习教材P70-P72的内容,思考以下问题: 1.直线与平面垂直的性质定理是什么? 2.平面与平面垂直的性质定理是什么?1.直线与平面垂直的性质定理(1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.(2)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.2.平面与平面垂直的性质定理对面面垂直的性质定理的理解(1)定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直. (2)已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.判断正误(正确的打“√”,错误的打“×”)(1)若直线a ∥平面α,直线b ⊥平面α,则直线b ⊥直线a .( )(2)若直线a ⊥平面α,直线a ⊥直线b ,则直线b ∥平面α.( )(3)如果两个平面垂直,那么一个平面内的直线一定垂直于另一个平面.( ) (4)如果两个平面垂直,那么垂直于交线的直线必垂直于其中一个平面.( ) 答案:(1)√ (2)× (3)× (4)× 下列命题:①垂直于同一条直线的两个平面互相平行; ②垂直于同一个平面的两条直线互相平行;③一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直. 其中正确的个数是( ) A .0 B .1 C .2 D .3答案:D若两直线a 与b 异面,则过a 且与b 垂直的平面( ) A .有且只有一个 B .可能存在也可能不存在 C .有无数多个 D .一定不存在解析:选B .当a ⊥b 时,这样的平面存在,当a 和b 不垂直时,这样的平面不存在.若平面α⊥平面β,平面β⊥平面γ,则()A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能解析:选D.由题意知,α与γ可能平行,也可能相交.如图,α与δ平行,α与γ相交.已知平面α⊥平面β,直线a∥α,以下三个结论:①a⊥β;②a∥β;③a与β相交.其中可能正确的序号为______.解析:因为a∥α,平面α⊥平面β,所以直线a与β垂直、相交、平行都有可能.答案:①②③线面垂直的性质定理的应用如图,已知正方体A1C.(1)求证:A1C⊥B1D1;(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C.【证明】(1)如图,连接A1C1.因为CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,所以CC1⊥B1D1.因为四边形A1B1C1D1是正方形,所以A1C1⊥B1D1.又因为CC1∩A1C1=C1,所以B1D1⊥平面A1C1C.又因为A1C⊂平面A1C1C,所以B1D1⊥A1C.(2)如图,连接B1A,AD1.因为B1C1═∥AD,所以四边形ADC1B1为平行四边形,所以C1D∥AB1,因为MN⊥C1D,所以MN⊥AB1.又因为MN⊥B1D1,AB1∩B1D1=B1,所以MN⊥平面AB1D1.由(1)知A1C⊥B1D1.同理可得A1C⊥AB1.又因为AB1∩B1D1=B1,所以A1C⊥平面AB1D1.所以A1C∥MN.(1)若已知一条直线和某个平面垂直,证明这条直线和另一条直线平行,可考虑利用线面垂直的性质定理,证明另一条直线和这个平面垂直,证明时注意利用正方形、平行四边形及三角形中位线的有关性质.(2)直线与平面垂直的其他性质①如果一条直线和一个平面垂直,则这条直线和这个平面内任一条直线垂直;②若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;③若l⊥α于A,AP⊥l,则AP⊂α;④垂直于同一条直线的两个平面平行;⑤如果一条直线垂直于两个平行平面中的一个,则它必垂直于另一个平面.如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:(1)MN∥AD1;(2)M是AB的中点.证明:(1)因为四边形ADD 1A 1为正方形,所以AD 1⊥A 1D . 又因为CD ⊥平面ADD 1A 1, 所以CD ⊥AD 1.因为A 1D ∩CD =D , 所以AD 1⊥平面A 1DC .又因为MN ⊥平面A 1DC ,所以MN ∥AD 1.(2)如图,连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC , 所以ON ═∥12CD . 因为CD ═∥AB , 所以ON ∥AM . 又因为MN ∥OA ,所以四边形AMNO 为平行四边形. 所以ON =AM . 因为ON =12AB ,所以AM =12AB .所以M 是AB 的中点.面面垂直的性质定理的应用已知P 是△ABC 所在平面外的一点,且P A ⊥平面ABC ,平面P AC ⊥平面PBC ,求证:BC ⊥AC .【证明】 如图,在平面P AC 内作AD ⊥PC 于点D ,因为平面P AC ⊥平面PBC ,平面P AC ∩平面PBC =PC ,AD ⊂平面P AC ,且AD ⊥PC , 所以AD ⊥平面PBC ,又BC ⊂平面PBC ,所以AD ⊥BC .因为P A⊥平面ABC,BC⊂平面ABC,所以P A⊥BC,因为AD∩P A=A,所以BC⊥平面P AC,又AC⊂平面P AC,所以BC⊥AC.利用面面垂直的性质定理应注意的问题若所给题目中有面面垂直的条件,一般要利用面面垂直的性质定理将其转化为线面垂直、线线垂直.应用面面垂直的性质定理,应注意三点:①两个平面垂直是前提条件;②直线必须在其中一个平面内;③直线必须垂直于它们的交线.如图,△ABC是正三角形,若AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,求证:AE∥平面BCD.证明:如图,取BC的中点M,连接DM,AM,因为BD=CD,所以DM⊥BC.又因为平面BCD⊥平面ABC,DM⊂平面BCD,两平面交线为BC,所以DM⊥平面ABC,又AE⊥平面ABC,所以AE∥DM.又因为AE⊄平面BCD,DM⊂平面BCD,所以AE∥平面BCD.垂直关系的综合问题如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA ; (3)平面DEA ⊥平面ECA .【证明】 (1)如图,取EC 的中点F ,连接DF . 因为EC ⊥平面ABC ,BC ⊂平面ABC , 所以EC ⊥BC . 同理可得BD ⊥AB ,易知DF ∥BC ,所以DF ⊥EC . 在Rt △EFD 和Rt △DBA 中, 因为EF =12EC ,EC =2BD ,所以EF =BD . 又FD =BC =AB ,所以Rt △EFD ≌Rt △DBA ,故DE =DA . (2)取CA 的中点N ,连接MN ,BN , 则MN ∥EC ,且MN =12EC .因为EC ∥BD ,BD =12EC ,所以MN ═∥BD , 所以N 点在平面BDM 内. 因为EC ⊥平面ABC , 所以EC ⊥BN .又CA ⊥BN ,EC ∩CA =C ,所以BN ⊥平面ECA . 因为BN 在平面MNBD 内, 所以平面MNBD ⊥平面ECA , 即平面BDM ⊥平面ECA .(3)由(2)易知DM ∥BN ,BN ⊥平面ECA ,所以DM⊥平面ECA.又DM⊂平面DEA,所以平面DEA⊥平面ECA.垂直关系的转化在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一种垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如下:如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD,E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.证明:(1)因为平面P AD⊥底面ABCD,且P A垂直于这两个平面的交线AD,所以P A⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以四边形ABED为平行四边形.所以BE∥AD.又因为BE⊄平面P AD,AD⊂平面P AD,所以BE∥平面P AD.(3)因为AB⊥AD,而且四边形ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD,所以P A⊥CD.又P A∩AD=A,所以CD⊥平面P AD.所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点, 所以PD ∥EF .所以CD ⊥EF . 又因为CD ⊥BE ,EF ∩BE =E , 所以CD ⊥平面BEF . 因为CD ⊂平面PCD , 所以平面BEF ⊥平面PCD .1.下列说法中正确的是( )①过平面外一点有且只有一条直线和已知平面垂直; ②过直线外一点有且只有一个平面和已知直线垂直; ③过平面外一点可作无数条直线与已知平面平行; ④过直线外一点只可作一条直线与已知直线垂直. A .①②③ B .①②③④ C .②③D .②③④解析:选A .由线面垂直的性质及线面平行的性质知①②③正确;④错,过直线外一点作平面与直线垂直,则平面内过这一点的所有直线都与该直线垂直.2.下列命题正确的是( ) ①⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α; ②⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b ; ③⎭⎪⎬⎪⎫a ⊥αa ⊥b ⇒b ∥α; ④⎭⎪⎬⎪⎫a ∥αa ⊥b ⇒b ⊥α. A .①② B .①②③ C .②③④D .①②④解析:选A .对于命题①,a ⊥α,则a 垂直于平面α内的任意两条相交直线,又因为a ∥b ,所以b 也垂直于平面α内的任意两条相交直线,所以b ⊥α,①正确;由线面垂直的性质定理可知a ∥b ,所以②正确;因为a ⊥α,当a ⊥b 时,则b 可能在平面α内,也可能与平面α平行,所以③错误;当a ∥α,a ⊥b 时,b 与平面α的三种位置都有可能出现,所以④错误.3.在下列关于直线m ,l 和平面α,β的说法中, 正确的是( )A.若l⊂β,且α⊥β,则l⊥αB.若l⊥β,且α∥β,则l⊥αC.若l⊥β,且α⊥β,则l∥αD.若α∩β=m,且l∥m,则l∥α解析:选B.A项中l与α可以平行或斜交,A项错.B项中,l⊥β且α∥β,所以l⊥α正确.C项中,l可在α内,C项错.D项中,l可在α内,D项错.4.已知平面α,β和直线m,l,则下列说法:①若α⊥β,α∩β=m,l⊥m,则l⊥β;②若α∩β=m,l⊂α,l⊥m,则l⊥β;③若α⊥β,l⊂α,则l⊥β;④若α⊥β,α∩β=m,l⊂α,l⊥m,则l⊥β.其中正确的说法序号为__________.解析:对于说法①缺少了条件:l⊂α;说法②缺少了条件:α⊥β;说法③缺少了条件:α∩β=m,l⊥m;说法④具备了面面垂直的性质定理的所有条件.答案:④5.如图,四边形ABCD中,BD=23,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.求证:AB⊥DE.证明:在△ABD中,因为AB=2,AD=4,BD=23,所以AB2+BD2=AD2,所以AB⊥BD.又因为平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.因为DE⊂平面EBD,所以AB⊥DE.[学生用书P115(单独成册)])[A基础达标]1.设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.α⊥β,l∥α,则l⊥β解析:选B.对于选项A,两平面可能平行也可能相交;对于选项C,直线l可能在β内也可能平行于β;对于选项D,直线l可能在β内或平行于β或与β相交.2.在正方体ABCD-A1B1C1D1中,点P是线段BC1上任意一点,则下列结论中正确的是()A.AD1⊥DP B.AP⊥B1CC.AC1⊥DP D.A1P⊥B1C解析:选B.在正方体ABCD-A1B1C1D1中,因为B1C⊥BC1,B1C⊥AB,BC1∩AB=B,所以B1C⊥平面ABC1D1,因为点P是线段BC1上任意一点,所以AP⊥B1C.故选B.3.在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC,AD=CD,则BD与CC1()A.平行B.共面C.垂直D.不垂直解析:选C.如图所示,在四边形ABCD中,因为AB=BC,AD=CD.所以BD⊥AC.因为平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,BD⊂平面ABCD,所以BD⊥平面AA1C1C.又CC1⊂平面AA1C1C,所以BD⊥CC1,故选C.4.如图,设平面α∩平面β=PQ,EG⊥平面α,FH⊥平面α,垂足分别为G,H.为使PQ⊥GH,则需增加的一个条件是()A.EF⊥平面αB.EF⊥平面βC.PQ⊥GED.PQ⊥FH解析:选B.因为EG⊥平面α,PQ⊂平面α,所以EG⊥PQ.若EF⊥平面β,则由PQ ⊂平面β,得EF⊥PQ.又EG与EF为相交直线,所以PQ⊥平面EFHG,所以PQ⊥GH,故选B.5.如图所示,三棱锥P-ABC的底面在平面α内,且AC⊥PC,平面P AC⊥平面PBC,点P,A,B是定点,则动点C的轨迹是()A.一条线段B.一条直线C.一个圆D.一个圆,但要去掉两个点解析:选D.因为平面P AC⊥平面PBC,AC⊥PC,平面P AC∩平面PBC=PC,AC⊂平面P AC,所以AC⊥平面PBC.又因为BC⊂平面PBC,所以AC⊥BC.所以∠ACB=90°.所以动点C的轨迹是以AB为直径的圆,除去A和B两点.6.如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的直线有______条.解析:因为PO⊥平面ABC,AC⊂平面ABC,所以PO⊥AC.又AC⊥BO,PO∩BO=O,所以AC⊥平面PBD,所以PBD内的4条直线PB,PD,PO,BD都与AC垂直,所以图中共有4条直线与AC垂直.答案:47.如图,在三棱锥P-ABC内,侧面P AC⊥底面ABC,且∠P AC=90°,P A=1,AB=2,则PB=________.解析:因为侧面P AC⊥底面ABC,交线为AC,∠P AC=90°(即P A⊥AC),P A⊂平面P AC,所以P A⊥平面ABC,所以P A⊥AB,所以PB=P A2+AB2=1+4= 5.答案: 58.如图,直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD的长为______.解析:如图,连接BC,因为二面角α-l-β为直二面角,AC⊂α,且AC⊥l,所以AC⊥β.又BC⊂β,所以AC⊥BC,所以BC2=AB2-AC2=3,又BD⊥CD,所以CD=BC2-BD2= 2.答案: 29.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明:(1)由题意知,E为B1C的中点,又D为AB1的中点,所以DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1,又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.10.(2018·高考北京卷)如图,在四棱锥P-ABCD中,底面ABCD 为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.证明:(1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD.所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,所以AB⊥平面P AD.所以AB⊥PD.又因为P A⊥PD,所以PD⊥平面P AB.所以平面P AB⊥平面PCD.(3)取PC 中点G ,连接FG ,DG . 因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC .因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC ,所以DE ∥FG ,DE =FG , 所以四边形DEFG 为平行四边形, 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .[B 能力提升]11.如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,则下列说法中正确的是( )①平面ACD ⊥平面ABD ;②AB ⊥CD ;③平面ABC ⊥平面ACD . A .①② B .②③ C .①③D .①②③解析:选D .因为BD ⊥CD ,平面ABD ⊥平面BCD , 所以CD ⊥平面ABD ,因为CD ⊂平面ACD , 所以平面ACD ⊥平面ABD ,故①正确; 因为平面四边形ABCD 中, AB =AD =CD =1,BD =2, 所以AB ⊥AD ,又CD ⊥平面ABD ,所以AB ⊥CD ,又AD ∩CD =D , 所以AB ⊥平面ACD , 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面ACD ,故②③正确.12.如图,平面ABC ⊥平面ABD ,∠ACB =90°,CA =CB ,△ABD 是正三角形,O 为AB 中点,则图中直角三角形的个数为________.解析:因为CA =CB ,O 为AB 的中点,所以CO ⊥AB . 又平面ABC ⊥平面ABD ,交线为AB ,CO ⊂平面ABC , 所以CO ⊥平面ABD .因为OD ⊂平面ABD ,所以CO ⊥OD , 所以△COD 为直角三角形,所以图中的直角三角形有△AOC ,△COB ,△ABC ,△AOD ,△BOD ,△COD 共6个. 答案:613.(2018·高考全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.解:(1)证明:因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°.所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.14.(选做题)如图,在△ABC 中,AC =BC =22AB ,四边形ABED 是边长为a 的正方形,平面ABED ⊥平面ABC ,若G ,F 分别是EC ,BD 的中点.(1)求证:GF ∥平面ABC ; (2)求证:平面EBC ⊥平面ACD ; (3)求几何体A -DEBC 的体积V .解:(1)证明:如图,取BE 的中点H ,连接HF ,GH .因为G ,F 分别是EC 和BD 的中点,所以GH ∥BC ,HF ∥DE .又因为四边形ADEB 为正方形, 所以DE ∥AB ,从而HF ∥AB . 所以HF ∥平面ABC ,GH ∥平面ABC . 又因为GH ∩HF =H , 所以平面HGF ∥平面ABC . 所以GF ∥平面ABC .(2)证明:因为四边形ADEB 为正方形,所以EB ⊥AB . 又因为平面ABED ⊥平面ABC , 所以BE ⊥平面ABC .所以BE ⊥AC .又因为CA 2+CB 2=AB 2, 所以AC ⊥BC .又因为BE ∩BC =B ,所以AC ⊥平面EBC . 又因为AC ⊂平面ACD , 从而平面EBC ⊥平面ACD .(3)取AB 的中点N ,连接CN ,因为AC =BC , 所以CN ⊥AB ,且CN =12AB =12a .又平面ABED ⊥平面ABC , 所以CN ⊥平面ABED . 因为C -ABED 是四棱锥,所以V C -ABED =13S 正方形ABED ·CN =13a 2·12a =16a 3.即几何体A -DEBC 的体积V =16a 3.。

教学设计7:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质

教学设计7:2.3.3 直线与平面垂直的性质~2.3.4 平面与平面垂直的性质

2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质教学目标1.掌握空间中线面、面面垂直的性质定理.2.能够运用线面、面面垂直的性质定理证明一些简单的问题.3.理解线面垂直、面面垂直的判定定理和性质定理之间的相互联系. 知识梳理知识点一 直线与平面垂直的性质定理文字语言 垂直于同一个平面的两条直线平行符号语言⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b 图形语言知识点二 平面与平面垂直的性质定理文字语言 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直符号语言α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β图形语言教学案例题型一 线面垂直性质定理的应用 例1 如图,已知正方体A 1C .(1)求证:A 1C ⊥B 1D 1;(2)M ,N 分别为B 1D 1与C 1D 上的点,且MN ⊥B 1D 1,MN ⊥C 1D ,求证:MN ∥A 1C . 证明 (1)如图,连接A 1C 1.∵CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,∴CC1⊥B1D1.∵四边形A1B1C1D1是正方形,∴A1C1⊥B1D1.又∵CC1∩A1C1=C1,A1C1,CC1⊂平面A1C1C,∴B1D1⊥平面A1C1C.又∵A1C⊂平面A1C1C,∴B1D1⊥A1C.(2)连接B1A,AD1.∵B1C1∥AD,且B1C1=AD∴四边形ADC1B1为平行四边形,∴C1D∥AB1.∵MN⊥C1D,∴MN⊥AB1.又∵MN⊥B1D1,AB1∩B1D1=B1,AB1,B1D1⊂平面AB1D1,∴MN⊥平面AB1D1.由(1)知A1C⊥B1D1.同理可得A1C⊥AB1.又∵AB1∩B1D1=B1,AB1,B1D1⊂平面AB1D1,∴A1C⊥平面AB1D1.∴A1C∥MN.反思感悟证明线线平行的常用方法(1)利用线线平行定义:证共面且无公共点.(2)利用三线平行公理:证两线同时平行于第三条直线.(3)利用线面平行的性质定理:把证线线平行转化为证线面平行.(4)利用线面垂直的性质定理:把证线线平行转化为证线面垂直.(5)利用面面平行的性质定理:把证线线平行转化为证面面平行.跟踪训练1如图,α∩β=l,P A⊥α,PB⊥β,垂足分别为A,B,a⊂α,a⊥AB.求证:a∥l.证明∵P A⊥α,l⊂α,∴P A⊥l.同理PB⊥l.∵P A∩PB=P,P A,PB⊂平面P AB,∴l⊥平面P AB.又∵P A⊥α,a⊂α,∴P A⊥a.∵a⊥AB,P A∩AB=A,P A,AB⊂平面P AB,∴a⊥平面P AB.∴a∥l.题型二面面垂直性质定理的应用例2如图,在三棱锥P-ABC中,P A⊥平面ABC,平面P AB⊥平面PBC.求证:BC⊥AB.证明如图,在平面P AB内,作AD⊥PB于点D.∵平面P AB⊥平面PBC,且平面P AB∩平面PBC=PB,AD⊂平面P AB,∴AD⊥平面PBC.又BC⊂平面PBC,∴AD⊥BC.又∵P A⊥平面ABC,BC⊂平面ABC,∴P A⊥BC,又∵P A∩AD=A,∴BC⊥平面P AB.又AB⊂平面P AB,∴BC⊥AB.反思感悟证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.本题已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.跟踪训练2如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求直线EC与平面ABE所成角的正切值.(1)证明∵平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,BC⊥AC,∴BC⊥平面ACDE.又AM⊂平面ACDE,∴BC⊥AM.∵四边形ACDE是正方形,∴AM⊥CE.又BC∩CE=C,∴AM⊥平面EBC.(2)解取AB的中点F,连接CF,EF.∵EA⊥AC,平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,∴EA⊥平面ABC,∵CF⊂平面ABC,∴EA⊥CF.又AC=BC,∴CF⊥AB.∵EA∩AB=A,∴CF⊥平面AEB,∴∠CEF即为直线EC与平面ABE所成的角. 在Rt△CFE中,CF=2,FE=6,tan∠CEF=26=33.垂直关系的综合应用典例在四棱锥P-ABCD中,底面ABCD是边长为a的菱形,∠DAB=60°,侧面P AD为等边三角形,其所在平面垂直于底面ABCD.(1)求证:AD⊥PB;(2)若E为BC边上的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.(1)证明设G为AD的中点,连接PG,BG,如图.因为△P AD为等边三角形,所以PG⊥AD.在菱形ABCD中,∠DAB=60°,因为G为AD的中点,所以BG⊥AD.又因为BG∩PG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(2)解当F为PC的中点时,满足平面DEF⊥平面ABCD.设F为PC的中点,则在△PBC中,EF∥PB.在菱形ABCD中,GB∥DE,而PB∩GB=B,EF∩DE=E,所以平面DEF∥平面PGB.由(1)得,PG⊥AD,又平面P AD⊥平面ABCD且平面P AD∩平面ABCD=AD,∴PG⊥平面ABCD,而PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.[素养评析] 以四棱锥为载体,通过对线线、线面、面面垂直关系的论述,使学生掌握推理的基本形式和规则,发现表述论证过程,学会有逻辑地思考问题,提升逻辑推理的数学核心素养. 课堂小结1.线面垂直的性质定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系相互转化的依据.2.面面垂直的性质定理揭示了“面面垂直、线面垂直及线线垂直”间的内在联系,体现了数学中的转化与化归思想,其转化关系如下:达标检测1.在空间中,下列哪些命题是正确的( ) ①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同一个平面的两条直线互相平行. A.①③④ B.①④ C.① D.①②③④ 【答案】B2.下列命题正确的是( )① ⎭⎪⎬⎪⎫a ∥b ,a ⊥α⇒b ⊥α; ② ⎭⎪⎬⎪⎫a ⊥α,a ⊥b ⇒b ∥α; ③⎭⎪⎬⎪⎫a ∥α,a ⊥b ⇒b ⊥α. A.①② B.①③ C.②③ D.① 【答案】D3.已知平面α⊥平面β,则下列命题中真命题的个数是( ) ①α内的任意直线必垂直于β内的无数条直线;②在β内垂直于α与β的交线的直线必垂直于α内的任意一条直线; ③α内的任意一条直线必垂直于β;④过β内的任意一点作α与β交线的垂线,则这条直线必垂直于α. A.4 B.3 C.2 D.1【答案】C【解析】①设α∩β=l,a⊂α,b⊂β,b⊥l,则a⊥b,故β内与b平行的无数条直线均垂直于α内的任意直线,为真命题;②β内垂直于α与β交线的直线垂直于平面α,则它垂直于α内的任意直线,为真命题;③α内不与交线垂直的直线不垂直于β,为假命题;④垂直于交线的直线必须在平面β内才与平面α垂直,否则不垂直,为假命题.4.如图所示,已知AF⊥平面ABCD,DE⊥平面ABCD,且AF=DE,AD=6,则EF=________.【答案】6【解析】∵AF⊥平面ABCD,DE⊥平面ABCD,∴AF∥DE.又AF=DE,∴四边形AFED为平行四边形,故EF=AD=6.5.如图所示,在四棱锥S-ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,求证:平面SDC⊥平面SBC.证明因为底面ABCD是矩形,所以BC⊥CD.又平面SDC⊥平面ABCD,平面SDC∩平面ABCD=CD,BC⊂平面ABCD,所以BC⊥平面SDC.又因为BC⊂平面SBC,所以平面SDC⊥平面SBC.。

(精选)面面垂直性质定理

(精选)面面垂直性质定理

(精选)面面垂直性质定理
1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

2、如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。

3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。

4、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。

判定定理:
直线与平面垂直的判定定理(线面垂直定理):一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

推论1:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

推论2:如果两条直线垂直于同一个平面,那么这两条直线平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)∵CF⊥PB,∴只要 PB⊥CE,则有 PB⊥平面 CEF. ∵PA⊥平面 ABC, ∴PA⊥CE,只需 CE⊥AB,
4.如图所示,在三棱锥 P-ABC 中,PA=
则有 CE⊥平面 PAB,可得 PB⊥CE,则 PB⊥平面 CEF, 设 BE=x,∵AC +BC =AB , ∴△ACB 是直角三角形. 9 ∵BC =BE· AB,即 9=5x,∴x= , 5
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
2.3.3 2.3.4
直线与平面垂直的性质 平面与平面垂直的性质
数学 必修2
第二章 点、直线、平面之间的位置关系
知识回顾
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1、直线与平面所成角的定义?
2
AB= 5,AC =42,PB= 34. 2 2
9 故点 E 在 AB 上且到点 B 的距离为 . 5
(1)求证:PA⊥平面 ABC;
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
◎如图所示,四棱锥 P - ABCD 的底面是一 个直角梯形,AB∥CD,BA⊥AD,CD=2AB, PA ⊥底面 ABCD , E 是 PC 的中点,则平面 EBD 能垂直于平面ABCD吗?请说明理由.
例、如图,AB∥α ,AD⊥α , BC⊥α ,垂足为D、C,PA⊥AB,求 证:CD⊥平面PAD.
必修2
自主学习 新知突破 合作探究 课堂互动
数学
第二章 点、直线、平面之间的位置关系
高效测评 知能提升
A
B
D α P
C
数学 必修2
第二章 点、直线、平面之间的位置关系
线面垂直的性质定理的应用
自主学习 新知突破
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
高效测评 知能提升
点击进入WORD链接
谢谢观看!
数学 必修2
第二章 点、直线、平面之间的位置关系
线线、线面、面面垂直的综合问题
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2013· 朝阳高一检测)如图, 在△ABC 中, AC=BC
2 = AB,四边形 ABED 是边长为 a 的正方形,平面 ABED⊥平 2 面 ABC,若 G,F 分别是 EC,BD 的中点. (1)求证:GF∥平面 ABC. (2)求证:平面 EBC⊥平面 ACD.
A α D β C
已知:α⊥β,AB⊂α, AB⊥CD,α∩β=CD, 求证:AB⊥β。
B
E
数学 必修2
第二章 点、直线、平面之间的位置关系
平面与平面垂直的性质
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
文字语言
一个平面内 交线 的直线 两个平面垂直, 则 _____________垂直于_______
第二章 点、直线、平面之间的位置关系
高效测评 知能提升
求证:l

l
m n


a b
P
数学 必修2
第二章 点、直线、平面之间的位置关系
面面垂直的性质的应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
如图,已知 PA ⊥平面 ABC ,平
面PAB⊥平面PBC,求证:BC⊥平面
PAB.
数学 必修2
第二章 点、直线、平面之间的位置关系
知识回顾
α
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
4、平面和平面垂直的判定定理
A
D
β C B
如果二章 点、直线、平面之间的位置关系
直线与平面垂直的性质
自主学习 新知突破
合作探究 课堂互动
ACD,△ACD为等边三角形,AD=DE=2AB,
F为CD的中点.求证:平面BCE⊥平面CDE.
G
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
墙面所在平面与地面所在平面 如果两个平面互相垂直,那么在 垂直,你能否在墙面上画一条直线 第一个平面内垂直于交线的直线,是 与地面垂直? 否垂直于第二个平面呢?
E
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
2.如图所示,P是四边形ABCD所在平面外
的一点,四边形ABCD是边长为a的菱形且 ∠DAB=60°,侧面PAD为正三角形,其所在 平面垂直于底面ABCD. (1)若G为AD的中点, 求证:BG⊥平面PAD; (2)求证:AD⊥PB.
(1)求证:PA⊥平面 ABC; (2)过 C 作 CF⊥PB 交 PB 于 F,在线段 AB 上找一点 E,使 得 PB⊥平面 CEF.
∴PA⊥AC,PA⊥AB,且 AB∩AC=A,
数学 必修2 第二章 点、直线、平面之间的位置关系
∴PA⊥平面 ABC.
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
垂直 与另一个平面_______
α⊥β α∩β=l ⇒a⊥β ______ a⊂α ________ a⊥ l
符号语言
图形语言 作用
线面 垂直;②作面的垂线 ①面面垂直⇒________
数学
必修2
例、 已知 l , , ,
自主学习 新知突破 合作探究 课堂互动
高效测评 知能提升
文字语言 符号语言
垂直于同一个平面的两条直线_____ a⊥α ⇒________ b⊥α
平行
a∥ b
图形语言 作用 ①线面垂直⇒线线平行②作平行线
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
直线与平面垂直的其他性质 (1)如果一条直线垂直于一个平面,那么它就垂直于这个平 面内的任意一条直线. l⊥α ⇒l⊥a. 即 a⊂α (2)垂直于同一条直线的两个平面平行. l⊥α ⇒α∥β. 即 l⊥β
H
a, BD= 3a,AC∩BD=E,将其沿对角线 BD 折成直二面角. 必修2
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数学
第二章 点、直线、平面之间的位置关系
3.如图所示,在平行四边形 ABCD 中,已知 AD=2AB=
2a,BD= 3a,AC∩BD=E,将其沿对角线 BD 折成直二面角.
数学 必修2
第二章 点、直线、平面之间的位置关系
知识回顾
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2、二面角的平面角定义?
A
l
O B
数学 必修2
第二章 点、直线、平面之间的位置关系
知识回顾
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3、直线和平面垂直的判定定理
l

如果一条直线和一个平面内的两 条相交直线都垂直,那么这条直线 垂直于这个平面.
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
【错因】 错误的原因是默认了 A,O,C 三点共线, 而 A, O,C 三点若不共线,则△ABO∽△CDO 不成立.事实上,很 容易证 A,O,C 三点共线,由于 A,O,C 是 PC 上三点 P,E, C 在平面 ABCD 上的投影,故 P,E,C 三点的投影均在直线 AC 上,故 A,O,C 三点共线,补上这点证明就完整了.
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
【正解】 平面 EBD 不能垂直于平面 ABCD.理由如下: 假设平面 EBD 垂直于平面 ABCD, 过 E 作 EO⊥BD 于 O,连接 AO,CO. ∵EO⊂平面 EBD, EO⊥BD, 平面 EBD∩平面 ABCD=BD, ∴EO⊥平面 ABCD. 又∵PA⊥平面 ABCD,∴EO∥PA. ∵A, O, C 是 PC 上三点 P, E, C 在平面 ABCD 上的投影, ∴P,E,C 三点的投影均在直线 AC 上, ∴A,O,C 三点共线.
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
【错解】 平面 EBD 不能垂直于平面 ABCD. 理由如下: 假设平面 EBD 垂直于平面 ABCD, 过 E 作 EO⊥BD 于 O,连接 AO,CO. ∵EO⊂平面 EBD,EO⊥BD, 平面 EBD∩平面 ABCD=BD, ∴EO⊥平面 ABCD.
合作探究 课堂互动
高效测评 知能提升
如图,已知平面α∩平面β=l. EA ⊥ α ,垂足为 A , EB ⊥ β ,垂足为 B ,直 线a⊂β,a⊥AB.求证a∥l.
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
1 .如图,已知 AB ⊥平面 ACD , DE ⊥平面
数学 必修2
第二章 点、直线、平面之间的位置关系
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
(3)两条平行线中的一条垂直于一个平面,另一条也垂直于 这个平面. l∥m ⇒m⊥α. 即 l⊥α (4)如果一条直线垂直于两个平行平面中的一个,则它必垂 直于另一个平面. l⊥α ⇒l⊥β. 即 α∥β
相关文档
最新文档