2017年江苏省高考数学预测卷(1)
江苏省普通高等学校2017年高三数学招生考试模拟测试试题(一)
江苏省普通高等学校招生考试高三模拟测试卷(一)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分.1. 设集合A ={x|-1≤x≤2},B ={x|0≤x≤4},则A∩B=____________.2. 函数y =ln(x 2-x -2)的定义域是____________.3. 已知sin α=14,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=____________. 4. 定义在R 上的奇函数f(x),当x >0时,f(x)=2x -x 2,则f(-1)+f(0)+f(3)=____________.5. 函数y =3sinx -cosx -2(x >0)的值域是____________.6. 等差数列{a n }中,前n 项和为S n ,若S 4=8a 1,a 4=4+a 2,则S 10=__________.7. 设函数f(x)=⎩⎪⎨⎪⎧2x -4,x >0,-x -3,x <0,若f(a)>f(1),则实数a 的取值范围是______________.8. 等比数列{a n }的公比大于1,a 5-a 1=15,a 4-a 2=6,则a 3=____________.9. 将函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位后,得到函数f(x)的图象,若函数f(x)是偶函数,则φ的值等于________.10. 已知函数f(x)=ax +b x(a ,b ∈R ,b >0)的图象在点P(1,f(1))处的切线与直线x +2y -1=0垂直,且函数f(x)在区间⎣⎢⎡⎭⎪⎫12,+∞上单调递增,则b 的最大值等于__________. 11. 已知f(m)=(3m -1)a +b -2m ,当m∈[0,1]时,f (m)≤1恒成立,则a +b 的最大值是__________.12. △ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若tanA =2tanB ,a 2-b 2=13c ,则c =____________.13. 已知x +y =1,y >0,x >0,则12x +x y +1的最小值为____________. 14. 设f′(x)和g′(x)分别是函数f(x)和g(x)的导函数,若f′(x)·g′(x)≤0在区间I 上恒成立,则称函数f(x)和g(x)在区间I 上单调性相反.若函数f(x)=13x 3-2ax 与函数g(x)=x 2+2bx 在开区间(a ,b)(a >0)上单调性相反,则b -a 的最大值等于____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)已知函数f(x)=2cos ωx 2⎝⎛⎭⎪⎫3cos ωx 2-sin ωx 2(ω>0)的最小正周期为2π. (1) 求函数f(x)的表达式;(2) 设θ∈⎝⎛⎭⎪⎫0,π2,且f(θ)=3+65,求cos θ的值.16.(本小题满分14分)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,且a 1,a 2+5,a 3成等差数列.(1) 求a 1,a 2的值;(2) 求证:数列{a n +2n }是等比数列,并求数列{a n }的通项公式.17. (本小题满分14分)已知函数f(x)=x 2-2ax +1.(1) 若函数g(x)=log a [f(x)+a](a >0,a ≠1)的定义域是R ,求实数a 的取值范围;(2) 当x >0时,恒有不等式f (x )x>lnx 成立,求实数a 的取值范围.18. (本小题满分16分)如图,在海岸线l一侧C处有一个美丽的小岛,某旅游公司为方便游客,在l上设立了A,B两个报名点,满足A,B,C中任意两点间的距离为10 km.公司拟按以下思路运作:先将A,B两处游客分别乘车集中到AB之间的中转点D处(点D异于A,B两点),然后乘同一艘游轮前往C岛.据统计,每批游客A处需发车2辆,B处需发车4辆,每辆汽车每千米耗费2a元,游轮每千米耗费12a元.(其中a是正常数)设∠CDA=α,每批游客从各自报名点到C岛所需运输成本为S元.(1) 写出S关于α的函数表达式,并指出α的取值范围;(2) 问:中转点D距离A处多远时,S最小?19. (本小题满分16分)设函数f(x)=x|x-1|+m,g(x)=lnx.(1) 当m>1时,求函数y=f(x)在[0,m]上的最大值;(2) 记函数p(x)=f(x)-g(x),若函数p(x)有零点,求实数m的取值范围.20. (本小题满分16分)已知数列{a n}的奇数项是公差为d1的等差数列,偶数项是公差为d2的等差数列,S n是数列{a n}的前n项和,a1=1,a2=2.(1) 若S5=16,a4=a5,求a10;(2) 已知S15=15a8,且对任意n∈N*,有a n<a n+1恒成立,求证:数列{a n}是等差数列;(3) 若d1=3d2(d1≠0),且存在正整数m,n(m≠n),使得a m=a n.求当d1最大时,数列{a n}的通项公式.(一)1. {x|0≤x≤2} 解析:本题主要考查集合的概念与运算等基础知识.本题属于容易题.2. (-∞,-1)∪(2,+∞) 解析:由x 2-x -2>0,则x >2或x<1.本题主要考查对数式中真数大于0,以及一元二次不等式的解法.本题属于容易题.3. -1515 解析:由sin α=14,α∈⎝ ⎛⎭⎪⎫π2,π,得cos α=-154,则tan α=sin αcos α=-1515.本题主要考查同角三角函数关系.本题属于容易题. 4. -2 解析:由函数f(x)在R 上是奇函数,则f(0) =0,又x >0时,f(x)=2x -x 2,则f(3)=-1,f(-1)=-f(1)=-1,则f(-1)+f(0)+f(3)=-2.本题主要考查奇函数的性质.本题属于容易题.5. [-4,0] 解析:由y =3sinx -cosx -2=2sin ⎝⎛⎭⎪⎫x -π6-2,则-4≤y≤0.本题主要考查三角函数的值域,以及和差角公式的逆用.本题属于容易题.6. 120 解析:由S 4=8a 1,a 4=4+a 2得d =2,a 1=3,则S 10=10a 1+45d =120.本题主要考查等差数列通项公式以及求和公式.本题属于容易题.7. a <-1或a >1 解析:由f(1)=-2,则f(a)>-2.当a>0时,有2a -4>-2,则a>1;当a <0时,-x -3>-2,则a <-1.所以实数a 的取值范围是a <-1或a >1. 本题主要考查分段函数,以及简单不等式的解法.本题属于容易题.8. 4 解析:由a 5-a 1=15,a 4-a 2=6(q>1),得q =2,a 1=1,则a 3=4. 本题主要考查等比数列通项公式.本题属于容易题.9. π3 解析:由函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位后,得到函数f(x)=sin(2x +π6-2φ)的图象,函数f(x)是偶函数,π6-2φ=π2+k π,而φ为锐角,则k =-1时φ=π3.本题主要考查三角函数的图象变换,以及三角函数的奇偶性.本题属于容易题.10. 23 解析:函数f(x)=ax +b x(a ,b ∈R ,b >0)的图象在点P(1,f(1))处的切线斜率为2, f ′(1)=2,得a -b =2,由函数f(x)在区间⎣⎢⎡⎭⎪⎫12,+∞上单调递增,f ′(x)≥0在区间⎣⎢⎡⎭⎪⎫12,+∞上恒成立,得a 4≥b ,又a =2+b ,则b≤23.本题主要考查导数的几何意义,导数在单调性中的运用以及恒成立问题.本题属于中等题.11. 73 解析:将已知条件变形f(m)=m(3a -2)+b -a ,当3a -2=0时,即a =23,则有b -a≤1,即b≤a+1,所以a +b≤2a+1=2×23+1=73;当3a -2>0,即a >23时,函数f(m)在[0,1]上单调递增,f(m)max =f(1)=3a -2+b -a =2a +b -2≤1,则b≤3-2a ,所以a +b≤a+3-2a =3-a <73;当3a -2<0,即a <23时,函数f(m)在[0,1]上单调递减,f(m)max =f(0)=b -a≤1,则b≤a+1,所以a +b≤2a+1<73.综上所述,a +b 的最大值为73.本题主要考查在多元变量中如何变换主元以及借助单调性求最值来解决不等式的恒成立问题.本题属于中等题.12. 1 解析:由tanA =2tanB sinA cosA =2sinB cosB ,结合正、余弦定理转化为边的关系,有2abc b 2+c 2-a 2=2×2abc a 2+c 2-b 2,化简有a 2-b 2=13c 2,结合已知条件有c =1.本题主要考查利用正、余弦定理解三角形以及三角函数中遇切化弦.本题属于中等题.13. 54 解析:将x +y =1代入12x +x y +1中,得x +y 2x +x x +2y =12+y 2x +11+2y x,设y x =t >0,则原式=1+t 2+11+2t =2t 2+3t +32(1+2t )=14·(1+2t )2+2t +1+41+2t =14[(1+2t)+41+2t+1]≥14×2(1+2t )·41+2t +14=54,当且仅当t =12时,即x =23,y =13时,取“=”.本题主要考查利用代数式变形,以及利用基本不等式求最值.本题属于难题.14. 12 解析:因为g(x)=x 2+2bx 在区间(a ,b)上为单调增函数,所以f(x)=13x 3-2ax 在区间(a ,b)上单调减,故x ∈(a ,b),f ′(x)=x 2-2a≤0,即a≥b 22,而b >a ,所以b∈(0,2),b -a≤b-b 22=-12(b -1)2+12,当b =1时,b -a 的最大值为12.本题主要考查二次函数的单调性、最值问题和导数在单调性中的运用以及恒成立问题.本题属于难题.15. 解:(1) f(x)=2cos ωx 2⎝ ⎛⎭⎪⎫3cos ωx 2-sin ωx 2=23cos 2ωx 2-2cos ωx 2sin ωx 2=3(1+cos ωx)-sin ωx(2分)=3-2sin ⎝ ⎛⎭⎪⎫ωx -π3.(4分) ∵ 函数f(x)的最小正周期为2π,∴ 2πω=2π,ω=1.(6分) ∴ f(x)=3-2sin ⎝⎛⎭⎪⎫x -π3.(7分) (2) 由f(θ)=3+65,得sin ⎝⎛⎭⎪⎫θ-π3=-35. ∵ θ∈⎝⎛⎭⎪⎫0,π2,∴ θ-π3∈⎝ ⎛⎭⎪⎫-π3,π6, ∴ cos ⎝⎛⎭⎪⎫θ-π3=45.(9分) ∴ cos θ=cos ⎝⎛⎭⎪⎫θ-π3+π3 =cos ⎝ ⎛⎭⎪⎫θ-π3cos π3-sin ⎝⎛⎭⎪⎫θ-π3sin π3(12分) =45×12-⎝ ⎛⎭⎪⎫-35×32=4+3310.(14分) 16. (1) 解:由已知,得2a 1=a 2-3 ①,2(a 1+a 2)=a 3-7 ②.(2分)又a 1,a 2+5,a 3成等差数列,所以a 1+a 3=2a 2+10 ③.(3分)解①②③,得a 1=1,a 2=5.(5分)(2) 证明:由已知,n ∈N *时,2(S n +1-S n )=a n +2-a n +1-2n +2+2n +1,即a n +2=3a n +1+2n +1,即a n +1=3a n +2n (n≥2),(7分)由(1)得,a 2=3a 1+2,∴ a n +1=3a n +2n (n∈N *),(9分)从而有a n +1+2n +1=3a n +2n +2n +1=3a n +3×2n =3(a n +2n ).(11分)又a 1+2>0,∴ a n +2n >0,∴ a n +1+2n +1a n +2n =3, ∴ 数列{a n +2n }是等比数列,且公比为3.(12分)∴ a n +2n =(a 1+2)×3n -1=3n ,即a n =3n -2n .(14分)[注:① 不说明a 2=3a 1+2,就得a n +1=3a n +2n (n∈N *),扣1分;② 仅由a n +1+2n +1=3(a n +2n ),就得到数列{a n +2n }是等比数列,扣1分.]17. 解:(1) 由题意得,对任意x∈R ,恒有f(x)+a >0,即恒有x 2-2ax +1+a >0,(2分)于是Δ=4a 2-4(1+a)<0,(3分)即a 2-a -1<0,解得1-52<a <1+52.(3分) 因为a >0,a ≠1,所以实数a 的取值范围是(0,1)∪⎝⎛⎭⎪⎫1,1+52.(5分) (2) 当x >0时,不等式f (x )x >lnx 等价于x -2a +1x >lnx ,即2a <x +1x-lnx ,(7分)设g(x)=x +1x -lnx ,则g′(x)=1-1x 2-1x =x 2-x -1x2.(9分) 令g′(x)=0,得x =1+52, 当0<x <1+52时,g ′(x)<0,g(x)单调减, 当x >1+52时,g ′(x)>0,g(x)单调增,(11分) 故当x =1+52时,g(x)min =g ⎝ ⎛⎭⎪⎫1+52=5-ln 1+52,(13分) 所以2a <5-ln 1+52, 所以实数a 的取值范围是⎝⎛⎭⎪⎫-∞,52-12ln 1+52.(14分) 18. 解:(1) 由题知在△ACD 中,∠CAD =π3,∠CDA =α,AC =10,∠ACD =2π3-α. 由正弦定理知CD sin π3=AD sin ⎝ ⎛⎭⎪⎫2π3-α=10sin α,(2分) 即CD =53sin α,AD =10sin ⎝ ⎛⎭⎪⎫2π3-αsin α,(3分) 所以S =4aAD +8aBD +12aCD =(12CD -4AD +80)a=⎣⎢⎢⎡⎦⎥⎥⎤603-40sin ⎝ ⎛⎭⎪⎫2π3-αsin αa +80a(5分) =203(3-cos α)·a sin α+60a ⎝ ⎛⎭⎪⎫π3<α<2π3.(6分) (2) S′=203·1-3cos αsin 2α·a ,(8分) 令S′=0得cos α=13,(10分)当cos α>13时,S ′<0;当cos α<13时,S ′>0,(12分) 所以当cos α=13时,S 取得最小值,(13分) 此时sin α=223,AD =53cos α+5sin αsin α=5+564,(15分) 所以中转点D 距A 处20+564km 时,运输成本S 最小.(16分) 19. 解:(1) 当x∈[0,1]时,f(x)=x(1-x)+m =-x 2+x +m =-⎝ ⎛⎭⎪⎫x -122+m +14, 当x =12时,f(x)max =m +14.(2分) 当x∈(1,m]时,f(x)=x(x -1)+m =x 2-x +m =⎝ ⎛⎭⎪⎫x -122+m -14, 因为函数y =f(x)在(1,m]上单调递增,所以f(x)max =f(m)=m 2.(4分)由m 2≥m +14得m 2-m -14≥0,又m >1,所以m≥1+22.(6分) 所以当m≥1+22时,f(x)max =m 2;当1<m <1+22时,f(x)max =m +14.(8分) (2) 函数p(x)有零点,即方程f(x)-g(x)=x|x -1|-lnx +m =0有解,即m =lnx -x|x -1|有解.令h(x)=lnx -x|x -1|,当x∈(0,1]时,h(x)=x 2-x +lnx.因为h′(x)=2x +1x-1≥22-1>0,(10分) 所以函数h(x)在(0,1]上是增函数,所以h(x)≤h(1)=0.(11分)当x∈(1,+∞)时,h(x)=-x 2+x +lnx.因为h′(x)=-2x +1x +1=-2x 2+x +1x=-(x -1)(2x +1)x<0,(12分) 所以函数h(x)在(1,+∞)上是减函数,所以h(x)<h(1)=0.(14分)所以方程m =lnx -x|x -1|有解时m≤0.即函数p(x)有零点时实数m 的取值范围是(-∞,0].(16分)20. (1) 解:由题意,得a 1=1,a 2=2,a 3=a 1+d 1=1+d 1,a 4=a 2+d 2=2+d 2,a 5=a 3+d 1=1+2d 1.(2分)因为S 5=16,a 4=a 5,所以a 1+a 2+a 3+a 4+a 5=7+3d 1+d 2=16,2+d 2=1+2d 1.所以d 1=2,d 2=3,(4分)所以a 10=2+4d 2=14.(5分)(2) 证明:当n 为偶数时,因为a n <a n +1恒成立, 即2+⎝ ⎛⎭⎪⎫n 2-1d 2<1+n 2d 1,n 2(d 2-d 1)+1-d 2<0恒成立,所以d 2-d 1≤0且d 2>1.(7分) 当n 为奇数时,因为a n <a n +1恒成立,即1+n -12d 1<2+⎝ ⎛⎭⎪⎫n +12-1d 2,(1-n)(d 1-d 2)+2>0恒成立,所以d 1-d 2≤0,于是有d 1=d 2.(9分) 因为S 15=15a 8,所以8+8×72d 1+14+7×62d 2=30+45d 2,所以d 1=d 2=2,a n =n ,所以数列{a n }是等差数列.(11分)(3) 解:若d 1=3d 2(d 1≠0),且存在正整数m ,n (m≠n),使得a m =a n ,由题意得,在m ,n 中必然一个是奇数,一个是偶数,不妨设m 为奇数,n 为偶数.因为a m =a n ,所以1+m -12d 1=2+⎝ ⎛⎭⎪⎫n 2-1d 2.(13分) 因为d 1=3d 2,所以d 1=63m -n -1. 因为m 为奇数,n 为偶数,所以3m -n -1的最小正值为2,此时d 1=3,d 2=1.(15分)所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧32n -12,n 为奇数,12n +1,n 为偶数.(16分)。
2017年江苏省高考数学试卷(真题详细解析).docx
2017 年江苏省高考数学试卷一 .填空题1(.5 分)已知集合 A={ 1,2} ,B={ a,a2+3} .若 A∩B={ 1} ,则实数 a 的值为.2.(5 分)已知复数 z=( 1+i)(1+2i),其中 i 是虚数单位,则 z 的模是.3.(5 分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取件.4.( 5 分)如图是一个算法流程图:若输入 x 的值为,则输出 y 的值是.5.(5 分)若 tan(α﹣)=.则tanα=.6.( 5 分)如图,在圆柱 O1 O2内有一个球 O,该球与圆柱的上、下底面及母线均相切,记圆柱 O1 2 的体积为1,球O 的体积为2,则的值是.O V V7.( 5 分)记函数 f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则 x∈ D 的概率是.8.(5 分)在平面直角坐标系xOy 中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P, Q,其焦点是 F1,F2,则四边形 F1PF2Q 的面积是.9.( 5 分)等比数列 { a n} 的各项均为实数,其前n 项和为 S n,已知S3=,S6=,则 a8=.10.(5 分)某公司一年购买某种货物600 吨,每次购买 x 吨,运费为 6 万元 / 次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数 f(x)=x3﹣2x+e x﹣,其中 e 是自然对数的底数.若 f(a﹣ 1) +f(2a2)≤ 0.则实数 a 的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且 tan α=7,与的夹角为 45°.若 =m +n( m,n∈ R),则 m+n=.13.( 5 分)在平面直角坐标系xOy 中, A(﹣ 12,0), B( 0, 6),点 P 在圆 O:x2+y2=50 上.若≤20,则点P的横坐标的取值范围是.14.( 5 分)设 f(x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f(x)=,其中集合 D={ x| x=, n∈ N* } ,则方程 f(x)﹣ lgx=0 的解的个数是.二 .解答题15.( 14 分)如图,在三棱锥 A﹣ BCD中, AB⊥AD, BC⊥ BD,平面 ABD⊥求证:(1)EF∥平面 ABC;(2) AD⊥AC.16.( 14 分)已知向量 =(cosx,sinx), =(3,﹣),x∈[ 0,π].( 1)若,求x的值;( 2)记 f (x)=,求f(x)的最大值和最小值以及对应的x 的值.17.( 14 分)如图,在平面直角坐标系xOy 中,椭圆 E:=1( a> b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点 P 在椭圆E 上,且位于第一象限,过点 F1作直线 PF1的垂线 l1,过点 F2作直线 PF2的垂线l2.(1)求椭圆 E 的标准方程;(2)若直线 l1,l2的交点 Q 在椭圆 E 上,求点 P 的坐标.18.( 16 分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm,容器Ⅰ的底面对角线 AC的长为 10 cm,容器Ⅱ的两底面对角线EG, E1G1的长分别为 14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm.现有一根玻璃棒 l,其长度为 40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将 l 放在容器Ⅰ中, l 的一端置于点 A ,另一端置于棱 CC1上,求 l 没入水中部分的度;(2)将 l 放在容器Ⅱ中, l 的一端置于点 E ,另一端置于棱 GG1上,求 l 没入水中部分的度.19.(16 分)于定的正整数k,若数列 { a n} 足:a n﹣k+a n﹣k+1+⋯+a n﹣1+a n+1+⋯+a n+k+a n+k=2ka n 任意正整数n(n>k)成立,称数列{ a n}是“P(k)数列”.( 1)明:等﹣1差数列 { a n } 是“P(3)数列”;( 2)若数列 { a n} 既是“P(2)数列”,又是“P(3)数列”,明:{ a n} 是等差数列.20.( 16 分)已知函数f( x) =x3+ax2+bx+1(a>0,b∈R)有极,且函数 f ′( x)的极点是 f(x)的零点.(Ⅰ)求 b 关于 a 的函数关系式,并写出定域;(Ⅱ)明: b2> 3a;(Ⅲ)若 f( x),f ′(x)两个函数的所有极之和不小于,求数a的取范.二 .非,附加( 21-24 做)【修 4-1:几何明】(本小分0分)21.如, AB 半 O 的直径,直 PC切半 O 于点 C,AP⊥PC,P 垂足.求:(1)∠PAC=∠CAB;(2) AC2 =AP?AB.[ 修 4-2:矩与 ]22.已知矩 A=,B=.(1)求 AB;( 2)若曲 C1:=1在矩AB的作用下得到另一曲2,求CC2的方程.[ 修 4-4:坐系与参数方程 ]23.在平面直角坐系xOy 中,已知直 l 的参数方程(t参数),曲 C 的参数方程(s参数).P曲C上的点,求点P 到直 l 的距离的最小.[修 4-5:不等式]24.已知 a,b,c, d 数,且 a2+b2=4,c2+d2=16,明 ac+bd≤ 8.【必做】25.如,在平行六面体ABCD A1B1C1D1中, AA1⊥平面 ABCD,且 AB=AD=2,AA1=,∠ BAD=120°.(1)求异面直 A1B 与 AC1所成角的余弦;(2)求二面角 B A1D A 的正弦.26.已知一个口袋有 m 个白球, n 个黑球( m,n∈N*,n≥2),些球除色外全部相同.将口袋中的球随机的逐个取出,并放入如所示的号1,2,3,⋯,m+n 的抽内,其中第 k 次取出的球放入号k 的抽( k=1,2,3,⋯,m+n).123⋯m+n( 1)求号 2 的抽内放的是黑球的概率p;( 2)随机量 x 表示最后一个取出的黑球所在抽号的倒数,E( X)是 X 的数学期望,明E( X)<.2017 年江苏省高考数学试卷参考答案与试题解析一 .填空题2+3} .若 A∩B={ 1} ,则实数 a 的值为 1 ..(分)已知集合1 5A={ 1,2} ,B={ a,a【分析】利用交集定义直接求解.【解答】解:∵集合 A={ 1,2} ,B={ a,a2+3} .A∩B={ 1} ,∴a=1 或 a2+3=1,当a=1 时, A={ 1,1} , B={ 1, 4} ,成立;a2+3=1 无解.综上, a=1.故答案为: 1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5 分)已知复数 z=( 1+i)(1+2i),其中 i 是虚数单位,则 z 的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数 z=( 1+i)(1+2i) =1﹣2+3i=﹣ 1+3i,∴ | z| ==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5 分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000 件,而抽取60 件进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18 件,故答案为: 18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.( 5 分)如图是一个算法流程图:若输入 x 的值为,则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值 x=,不满足x≥1,所以 y=2+log2=2﹣=﹣ 2,故答案为:﹣ 2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5 分)若 tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵ tan(α﹣)===∴6tan α﹣6=tan α+1,解得 tan α=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.( 5 分)如图,在圆柱 O1 O2内有一个球 O,该球与圆柱的上、下底面及母线均相切,记圆柱 O1 2 的体积为1,球O 的体积为2,则的值是.O V V【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,23.圆柱的体积为:πR?2R=2πR则 == .故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.( 5 分)记函数 f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则 x∈ D 的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由 6+x﹣x2≥0 得 x2﹣x﹣6≤0,得﹣ 2≤ x≤ 3,则 D=[ ﹣2,3] ,则在区间 [ ﹣ 4, 5] 上随机取一个数 x,则 x∈ D 的概率 P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5 分)在平面直角坐标系xOy 中,双曲线﹣ y2=1 的右准线与它的两条渐近线分别交于点 P, Q,其焦点是 F1,2,则四边形 1 2.F F PF Q 的面积是【分析】求出双曲线的准线方程和渐近线方程,得到 P,Q 坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣ y2=1的右准线:x=,双曲线渐近线方程为:±x,y=所以 P(,),Q(,﹣),F1(﹣,). 2(,).20 F 2 0则四边形 F1PF2Q 的面积是:=2.故答案为: 2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.( 5 分)等比数列 { a n} 的各项均为实数,其前n 项和为 S n,已知S3=,S6=,则a8= 32 .【分析】设等比数列 { a n的公比为≠, 3, 6,可得=,}q 1 S =S = =,联立解出即可得出.【解答】解:设等比数列 { a n} 的公比为 q≠ 1,∵ S3, 6,∴,,解得 a1=,q=2.则 a8==32.故答案为: 32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5 分)某公司一年购买某种货物600 吨,每次购买 x 吨,运费为 6 万元 / 次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4× 2×=240(万元).当且仅当 x=30 时取等号.故答案为: 30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题..(分)已知函数3﹣2x+e x﹣,其中 e 是自然对数的底数.若 f(a 11 5f(x)=x﹣ 1) +f(2a2)≤ 0.则实数 a 的取值范围是[ ﹣ 1, ] .【分析】求出 f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在 R 上递增;再由奇偶性的定义,可得 f(x)为奇函数,原不等式即为2a2≤ 1﹣ a,运用二次不等式的解法即可得到所求范围.【解答】解:函数 f (x) =x3﹣ 2x+e x﹣的导数为:f ′(x)=3x2﹣2+e x+ ≥﹣ 2+2=0,可得 f (x)在 R 上递增;3+2x+e ﹣x x 3x又 f(﹣ x) +f (x)=(﹣ x)﹣e +x﹣2x+e ﹣ =0,可得 f (x)为奇函数,则f( a﹣ 1) +f (2a2)≤ 0,即有 f (2a2)≤﹣ f(a﹣1)由 f(﹣( a﹣1))=﹣ f( a﹣1),f(2a2)≤ f(1﹣a),即有 2a2≤1﹣a,解得﹣ 1≤a≤,故答案为: [ ﹣1,] .【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5 分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且 tan α=7,与的夹角为45°.若=m +n(m,n∈ R),则 m+n= 3.【分析】如图所示,建立直角坐标系. A(1,0).由与的夹角为α,且tanα=7.可得 cosα=, sin α= . C.可得°°cos(α+45 ) =. sin(α+45 )=.B.利用=m +n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴ cosα=,sinα=.∴ C.°( cosα﹣sin α)=.cos(α+45) =sin(α+45°(sin α+cosα)=.)=∴ B.∵=m +n (m, n∈ R),∴ =m﹣ n, =0+ n,解得 n=,m=.则m+n=3.故答案为: 3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.( 5 分)在平面直角坐标系xOy 中, A(﹣ 12,0), B( 0, 6),点 P 在圆 O:x2+y2=50 上.若≤20,则点P的横坐标的取值范围是[ ﹣5,1].【分析】根据题意,设 P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线 2x+y+5≤ 0 以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设 P(x0, y0),则有 x02+y02=50,=(﹣ 12﹣ x0,﹣ y0)?(﹣ x0,6﹣y0)=( 12+x0)x0﹣ y(0 6﹣ y0)=12x0+6y+x02+y02≤20,化为: 12x0﹣6y0+30≤0,即 2x0﹣y0+5≤ 0,表示直线 2x﹣ y+5=0 以及直线上方的区域,联立,解可得 x0﹣或0 ,= 5x =1结合图形分析可得:点P 的横坐标 x0的取值范围是 [ ﹣5,1] ,故答案为: [ ﹣5 ,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于 x0、y0的关系式.14.( 5 分)设 f(x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f(x)=,其中集合 D={ x| x=,n∈ N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中 f( x)是定义在 R 上且周期为 1 的函数,在区间 [ 0,1)上, f ( x)=,其中集合D={ x| x=,n∈ N*},分析f(x)的图象与y=lgx 图象交点的个数,进而可得答案.【解答】解:∵在区间 [ 0,1)上, f(x)=,第一段函数上的点的横纵坐标均为有理数,又 f( x)是定义在 R 上且周期为 1 的函数,∴在区间 [ 1,2)上, f(x)=,此时f(x)的图象与y=lgx 有且只有一个交点;同理:区间 [ 2, 3)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 3, 4)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 4, 5)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 5, 6)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 6, 7)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 7, 8)上, f( x)的图象与 y=lgx 有且只有一个交点;区间 [ 8, 9)上, f( x)的图象与 y=lgx 有且只有一个交点;在区间 [ 9,+∞)上, f(x)的图象与 y=lgx 无交点;故f( x)的图象与 y=lgx 有 8 个交点;即方程 f(x)﹣ lgx=0 的解的个数是 8,故答案为: 8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二 .解答题15.( 14 分)如图,在三棱锥 A﹣ BCD中, AB⊥AD, BC⊥ BD,平面 ABD⊥平面BCD,点 E、F(E 与 A、D 不重合)分别在棱 AD,BD 上,且 EF⊥ AD.求证:(1)EF∥平面 ABC;(2) AD⊥AC.【分析】(1)利用 AB∥EF及线面平行判定定理可得结论;(2)通过取线段 CD上点 G,连结 FG、EG使得 FG∥ BC,则 EG∥ AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为 AB⊥ AD, EF⊥AD,且 A、B、E、F 四点共面,所以 AB∥EF,又因为 EF?平面 ABC,AB? 平面 ABC,所以由线面平行判定定理可知:EF∥平面 ABC;(2)在线段 CD上取点 G,连结 FG、 EG使得 FG∥BC,则 EG∥AC,因为 BC⊥BD, FG∥ BC,所以 FG⊥BD,又因为平面 ABD⊥平面 BCD,所以 FG⊥平面 ABD,所以 FG⊥AD,又因为 AD⊥EF,且 EF∩FG=F,所以 AD⊥平面 EFG,所以 AD⊥EG,故 AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.( 14 分)已知向量 =(cosx,sinx), =(3,﹣),x∈[ 0,π].( 1)若,求x的值;( 2)记 f (x)=,求f(x)的最大值和最小值以及对应的x 的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,( 2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵ =(cosx, sinx), =(3,﹣),∥,∴﹣cosx=3sinx,∴ tanx=﹣,∵ x ∈[ 0,π] ,∴ x=,( 2) f (x )==3cosx ﹣ sinx=2(cosx ﹣ sinx )=2 cos (x+),∵ x ∈[ 0,π] ,∴ x+ ∈[, ] ,∴﹣ 1≤cos (x+ )≤,当 x=0 时, f (x )有最大值,最大值 3,当 x=时, f (x )有最小值,最小值﹣ 2 .【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.( 14 分)如图,在平面直角坐标系 xOy 中,椭圆 E :=1( a > b >0)的左、右焦点分别为 F 1, 2 ,离心率为 ,两准线之间的距离为 8 .点 P 在椭圆FE 上,且位于第一象限,过点F 作直线 PF 的垂线 l ,过点 F 作直线 PF 的垂线1 112 2 l 2.( 1)求椭圆 E 的标准方程;( 2)若直线 l 1,l 2 的交点 Q 在椭圆 E 上,求点 P 的坐标.【分析】(1)由椭圆的离心率公式求得 a=2c ,由椭圆的准线方程 x=±,则 2×=8,即可求得 a 和 c 的值,则 b 2=a 2﹣ c 2 =3,即可求得椭圆方程;( 2)设 P 点坐标,分别求得直线 PF 2 的斜率及直线 P F 1 的斜率,则即可求得 l 2及l1的斜率及方程,联立求得 Q 点坐标,由 Q 在椭圆方程,求得 y02=x02﹣1,联立即可求得 P 点坐标;方法二:设 P(m, n),当 m≠1时,=,=,求得直线l1及l1的方程,联立求得 Q 点坐标,根据对称性可得=± n2,联立椭圆方程,即可求得 P 点坐标.【解答】解:(1)由题意可知:椭圆的离心率e== ,则 a=2c,①椭圆的准线方程 x=±,由 2×=8,②由①②解得: a=2,c=1,则 b2 2﹣c2,=a=3∴椭圆的标准方程:;( 2)方法一:设 P(x0,0),则直线 2 的斜率=,y PF则直线 l2的斜率 2 ﹣,直线l 2的方程﹣(﹣),k =y=x 1直线 PF1的斜率=,则直线 l2的斜率1﹣,直线l 1 的方程﹣(),k =y=x+1联立,解得:,则Q(﹣x0,),由 P,Q 在椭圆上, P, Q 的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣ 1,则,解得:,则,又 P 在第一象限,所以P 的坐标为:P(,).方法二:设 P(m, n),由 P 在第一象限,则 m> 0, n> 0,当 m=1 时,不存在,解得: Q 与 F1重合,不满足题意,当 m≠1 时,=,=,由 l1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线 l1的方程 y=﹣( x+1),①直线 l2的方程 y=﹣(x﹣1),②联立解得: x=﹣m,则 Q(﹣ m,),由 Q 在椭圆方程,由对称性可得:=±n2,即m2﹣ n2=1,或 m2+n2=1,由 P(m,n),在椭圆方程,,解得:,或,无解,又 P 在第一象限,所以P 的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.( 16 分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm,容器Ⅰ的底面对角线 AC的长为 10 cm,容器Ⅱ的两底面对角线EG, E1G1的长分别为 14cm 和 62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm.现有一根玻璃棒 l,其长度为 40cm.(容器厚度、玻璃棒粗细均忽略不计)( 1)将 l 放在容器Ⅰ中, l 的一端置于点 A 处,另一端置于侧棱 CC1上,求 l 没入水中部分的长度;( 2)将 l 放在容器Ⅱ中, l 的一端置于点 E 处,另一端置于侧棱 GG1上,求 l 没入水中部分的长度.【分析】(1)设玻璃棒在 CC1上的点为 M,玻璃棒与水面的交点为 N,过 N 作NP∥MC,交 AC于点 P,推导出 CC1⊥平面 ABCD,CC1⊥ AC,NP⊥ AC,求出MC=30cm,推导出△ ANP∽△ AMC,由此能出玻璃棒 l 没入水中部分的长度.(2)设玻璃棒在 GG1上的点为 M,玻璃棒与水面的交点为 N,过点 N 作 NP⊥ EG,交 EG于点 P,过点 E 作 EQ⊥E1G1,交 E1G1于点 Q,推导出 EE1G1G 为等腰梯形,求出 E1Q=24cm,E1E=40cm,由正弦定理求出 sin∠GEM= ,由此能求出玻璃棒 l没入水中部分的长度.【解答】解:(1)设玻璃棒在 CC1上的点为 M ,玻璃棒与水面的交点为 N,在平面 ACM 中,过 N 作 NP∥MC,交 AC于点 P,∵ABCD﹣A1B1C1D1为正四棱柱,∴ CC1⊥平面 ABCD,又∵ AC? 平面 ABCD,∴ CC1⊥AC,∴ NP⊥AC,∴NP=12cm,且 AM2=AC2+MC2,解得 MC=30cm,∵ NP∥MC,∴△ ANP∽△ AMC,∴= ,,得AN=16cm.∴玻璃棒 l 没入水中部分的长度为16cm.(2)设玻璃棒在 GG1上的点为 M ,玻璃棒与水面的交点为 N,在平面 E1EGG1中,过点 N 作 NP⊥EG,交 EG于点 P,过点 E 作 EQ⊥ E1G1,交 E1G1于点 Q,∵ EFGH﹣ E1F1G1H1为正四棱台,∴ EE1=GG1, EG∥E1G1,EG≠E1G1,∴EE1G1G 为等腰梯形,画出平面 E1EGG1的平面图,∵ E1G1=62cm,EG=14cm,EQ=32cm, NP=12cm,∴E1Q=24cm,由勾股定理得: E1E=40cm,∴sin∠EE1G1= ,sin∠EGM=sin∠EE1G1= ,cos∠EGM=﹣,根据正弦定理得:=,∴ sin∠EMG=,cos∠EMG=,∴sin∠GEM=sin(∠ EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠ EMG= ,∴ EN===20cm.∴玻璃棒 l 没入水中部分的长度为20cm.【点】本考玻璃棒 l 没入水中部分的度的求法,考空中、面、面面的位置关系等基知,考推理能力、运算求解能力、空想象能力,考数形合思想、化与化思想,是中档.19.(16 分)于定的正整数k,若数列 { a n} 足:a n﹣k+a n﹣k+1+⋯+a n﹣1+a n+1+⋯+a n+k+a n+k=2ka n 任意正整数n(n>k)成立,称数列{ a n}是“P(k)数列”.( 1)明:等﹣1差数列 { a n } 是“P(3)数列”;( 2)若数列 { a n} 既是“P(2)数列”,又是“P(3)数列”,明:{ a n} 是等差数列.【分析】(1)由意可知根据等差数列的性, a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=( a n+a n+3)+(a n﹣ 2+a n+2)+(a n﹣ 1+a n+1)═2×3a n,根据“P(k)数列”的定,可得﹣3数列 { a n} 是“P(3)数列”;( 2)由已知条件合( 1)中的,可得到 { a n} 从第 3 起等差数列,再通判断 a2与 a3的关系和 a1与 a2的关系,可知 { a n} 等差数列.【解答】解:( 1)明:等差数列 { a n} 首 a1,公差 d, a n =a1+(n 1)d,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n +2a n+2a n,=2×3a n,∴等差数列 { a n} 是“P(3)数列”;( 2 )明:当n ≥ 4 ,因数列{ a n} 是 P( 3 )数列,a n﹣3+a n﹣2+a n﹣1+a n +1+a n+2+a n +3=6a n,①因数列 { a n} 是“P( 2)数列”,所以 a n﹣2+a n﹣1+a n+1+a n+2=4a n,②则a n﹣1+a n+a n+2+a n+3=4a n+1,③,②+③﹣①,得 2a n=4a n﹣1+4a n+1﹣6a n,即 2a n=a n﹣1+a n+1,( n≥ 4),因此 n≥4 从第 3 项起为等差数列,设公差为d,注意到 a2+a3+a5+a6=4a4,所以 a2=4a4﹣a3﹣a5﹣ a6=4(a3+d)﹣ a3﹣( a3+2d)﹣( a3+3d) =a3﹣ d,因为 a1+a2+a4+a5=4a3,所以 a1 =4a3﹣a2﹣ a4﹣a5=4(a2+d)﹣ a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前 3 项满足等差数列的通项公式,所以 { a n} 为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.( 16 分)已知函数 f( x) =x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f ′(x)的极值点是 f(x)的零点.(Ⅰ)求 b 关于 a 的函数关系式,并写出定义域;(Ⅱ)证明: b2> 3a;(Ⅲ)若 f( x),f ′(x)这两个函数的所有极值之和不小于﹣,求实数a的取值范围.【分析】(Ⅰ )通过对 f(x) =x3+ax2+bx+1 求导可知 g( x) =f (′x)=3x2+2ax+b,进而再求导可知 g′(x)=6x+2a,通过令 g′( x) =0 进而可知 f ′(x)的极小值点为 x=﹣,从而 f(﹣)=0,整理可知 b=+ ( a>0),结合 f(x)=x3+ax2+bx+1( a> 0,b∈ R)有极值可知 f ′(x)=0 有两个不等的实根,进而可知 a>3.(Ⅱ)通过( 1)构造函数 h(a)=b2﹣3a=﹣+ =(4a3﹣27)( a3﹣ 27),结合 a> 3 可知 h( a)> 0,从而可得结论;(Ⅲ)通过( 1)可知 f ′(x)的极小值为 f (′﹣)=b﹣,利用韦达定理及完全平方关系可知 y=f( x)的两个极值之和为﹣+2,进而问题转化为解不等式 b﹣ +﹣+2= ﹣≥﹣,因式分解即得结论.【解答】(Ⅰ )解:因为 f (x)=x3+ax2 +bx+1,所以 g(x)=f ′( x) =3x2 +2ax+b,g′(x)=6x+2a,令 g′(x)=0,解得 x=﹣.由于当 x>﹣时g′(x)>0,g(x)=f(′x)单调递增;当x<﹣时g′(x)<0,g(x)=f (′x)单调递减;所以 f ′(x)的极小值点为x=﹣,由于导函数 f ′(x)的极值点是原函数f( x)的零点,所以 f (﹣)=0,即﹣+﹣+1=0,所以 b=+(a>0).因为 f (x) =x3+ax2 +bx+1(a>0,b∈R)有极值,所以 f ′(x)=3x2+2ax+b=0 的实根,所以 4a2﹣12b≥ 0,即 a2﹣+≥0,解得a≥3,所以 b=+(a>3).(Ⅱ)证明:由( 1)可知 h(a)=b2﹣3a=﹣+ =(4a3﹣27)( a3﹣ 27),由于 a>3,所以 h(a)> 0,即 b2>3a;(Ⅲ)解:由( 1)可知 f ′(x)的极小值为 f ′(﹣)=b﹣,设 x1, 2 是y=f ()的两个极值点,则 1 2, 1 2,x x x +x =x x =所以 f (x1)+f ( 2)= +(+)+b( 1 2)+2 x+a x +x=(x1+x2)[ (x1+x2)2﹣3x1x2]+ a[ ( x1 +x2)2﹣2x1 x2]+ b(x1+x2)+2 =﹣+2,又因为 f(x), f ′(x)这两个函数的所有极值之和不小于﹣,所以 b﹣+﹣+2=﹣≥﹣,因为 a>3,所以 2a3﹣63a﹣54≤0,所以 2a(a2﹣36)+9( a﹣6)≤ 0,所以( a﹣6)( 2a2+12a+9)≤ 0,由于 a>3 时 2a2+12a+9>0,所以 a﹣6≤0,解得 a≤6,所以 a 的取值范围是( 3,6] .【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二 .非选择题,附加题( 21-24 选做题)【选修 4-1:几何证明选讲】(本小题满分0分)21.如图, AB 为半圆 O 的直径,直线 PC切半圆 O 于点 C,AP⊥PC,P 为垂足.求证:(1)∠ PAC=∠CAB;(2) AC2 =AP?AB.【分析】( 1 )利用弦切角定理可得:∠ ACP=∠ ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.( 2)由( 1)可得:△ APC∽△ ACB,即可证明.【解答】证明:(1)∵直线 PC切半圆 O 于点 C,∴∠ ACP=∠ABC.∵AB为半圆 O 的直径,∴∠ ACB=90°.∵AP⊥PC,∴∠ APC=90°.∴∠ PAC=90°﹣∠ ACP,∠ CAB=90°﹣∠ ABC,∴∠ PAC=∠CAB.(2)由( 1)可得:△ APC∽△ ACB,∴ = .∴2AC =AP?AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[ 选修 4-2:矩阵与变换 ]22.已知矩阵 A=,B=.(1)求 AB;( 2)若曲线 C1:=1在矩阵AB对应的变换作用下得到另一曲线2,求CC2的方程.【分析】(1)按矩阵乘法规律计算;( 2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点 P( x,y)为曲线 C1的任意一点,点P 在矩阵 AB 的变换下得到点 P′( x0,y0),则=,即x0, 0 ,=2y y =x∴x=y0,y= ,∴,即 x02+y02=8,∴曲线 C2的方程为 x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[ 选修 4-4:坐标系与参数方程 ]23.在平面直角坐标系 xOy 中,已知直线 l 的参数方程为(t 为参数),曲线 C 的参数方程为(s为参数).设P为曲线C上的动点,求点P 到直线 l 的距离的最小值.【分析】求出直线 l 的直角坐标方程,代入距离公式化简得出距离 d 关于参数 s的函数,从而得出最短距离.【解答】解:直线 l 的直角坐标方程为x﹣2y+8=0,∴ P 到直线 l 的距离 d==,∴当 s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修 4-5:不等式选讲]24.已知 a,b,c, d 为实数,且 a2+b2=4,c2+d2=16,证明 ac+bd≤ 8.【分析】a2+b2=4,c2+d2=16,令 a=2cos α,b=2sin α,c=4cos β,d=4sin β代入. ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:( ac+bd )2≤( a2+b2)( c2+d2),即可得出.【解答】证明:∵ a2+b2=4,c2+d2=16,令a=2cosα, b=2sin α,c=4cosβ,d=4sin β.∴ ac+bd=8( cosαcos+sinβ αsin)β=8cos(α﹣β)≤ 8.当且仅当cos(α﹣β) =1时取等号.因此 ac+bd≤ 8.另解:由柯西不等式可得:( ac+bd)2≤( a2+b2)(c2+d2)=4× 16=64,当且仅当时取等号.∴﹣ 8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】第27页(共 31页)AA1=,∠ BAD=120°.(1)求异面直线 A1B 与 AC1所成角的余弦值;(2)求二面角 B﹣A1D﹣ A 的正弦值.【分析】在平面 ABCD内,过 A 作 Ax⊥ AD,由 AA1⊥平面 ABCD,可得 AA1⊥ Ax,AA1⊥ AD,以 A 为坐标原点,分别以Ax、AD、 AA1所在直线为 x、 y、 z 轴建立空间直角坐标系.结合已知求出A, B, C, D,A1,1的坐标,进一步求出,C,,的坐标.( 1)直接利用两法向量所成角的余弦值可得异面直线A1B 与1所成角的余弦AC值;(2)求出平面 BA1D 与平面 A1AD 的一个法向量,再由两法向量所成角的余弦值求得二面角 B﹣A1D﹣ A 的余弦值,进一步得到正弦值.【解答】解:在平面 ABCD内,过 A 作 Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax? 平面ABCD,∴ AA1⊥Ax, AA1⊥ AD,以 A 为坐标原点,分别以 Ax、AD、AA1所在直线为 x、y、z 轴建立空间直角坐标系.∵AB=AD=2,AA1= ,∠ BAD=120°,∴ A( 0, 0, 0),B(), C(, 1, 0),D(0,2,0),A ( 0, 0,),C ().11= (),= (),,.( 1)∵ cos<>==.∴异面直 A1B 与 1 所成角的余弦;AC( 2)平面 BA1D 的一个法向量,由,得,取 x=,得;取平面 A1 AD 的一个法向量.∴ cos<>==.∴二面角 B A1A 的余弦,二面角B1A的正弦D A D.【点】本考异面直所成的角与二面角,了利用空向量求空角,是中档.26.已知一个口袋有 m 个白球, n 个黑球( m,n∈N*,n≥2),些球除色外全部相同.将口袋中的球随机的逐个取出,并放入如所示的号1,2,3,⋯,m+n 的抽内,其中第 k 次取出的球放入号k 的抽( k=1,2,3,⋯,m+n).123⋯m+n( 1)求号 2 的抽内放的是黑球的概率 p;( 2)随机量 x 表示最后一个取出的黑球所在抽号的倒数,E( X)是 X 的数学期望,明 E( X)<.【分析】(1)法一:事件 A i表示号i 的抽里放的是黑球,( 2)p=p A=P(A 2| A1)P(A1)+P(A2 |)P(),由此能求出号 2 的抽内放的是黑球的概率.法二:按照同种模型的方法,黑球共有m+n 个位置,故排法有种,除去第二个位置放的黑球,剩下n+m 1 个位置,由此能求出号 2 的抽内放的是黑球的概率.( 2)X 的所有可能取,⋯,,P(x=)=,k=n,n+1,n+2,⋯,n+m,从而(E X)=()=,由此能明(EX)<.【解答】解:(1)解法一:事件A i表示号 i 的抽里放的是黑球,p=p(A2)=P(A2| A1)P( A1)+P(A2|)P()===.解法二:按照同种模型的方法,黑球共有m+n 个位置,故排法有种,除去第二个位置放的黑球,剩下n+m 1 个位置,∴ 号 2 的抽内放的是黑球的概率p==.明:(2)∵ X 的所有可能取,⋯,,P(x=)=,k=n,n+1,n+2,⋯,n+m,∴ E( X) =()==<==?()第30页(共 31页)==,∴ E( X)<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.第31页(共 31页)。
2017年江苏高考原创押题预测卷
2017年江苏高考原创押题预测卷一、填空题(本大题共14小题,每小题5分,共计70分.1. 已知集合}3,2,1{},2,1,0,1{=-=B A ,则集合B A 中所有元素之和是 .2. 已知复数z 满足i z i =+)21(,其中i 为虚数单位,则复数z 的虚部为 .3. 已知点)1,3(--M ,若函数x y 4tanπ=))2,2((-∈x 的图像与直线1=y 交于点A ,则=||MA .4. 某人5次上班途中所花的时间(单位:分钟)分别为9,11,10,8,12,则这组数据的标准差为 .5. 执行如图所示的算法流程图,则输出的结果S 的值为 .6.在区间]2,1[-内随机取一个实数a ,则关于x 的方程05422=++-a a ax x 有解的概率是 .7. 已知四边形ABCD ,若2,3==BD AC ,则)()(+⋅+值为 . 8. 如图,在直三棱柱111C B A ABC -中,若四边形C C AA 11是边长为4的正方形,且M BC AB ,5,3==是1AA 的中点,则三棱锥11MBC A-的体积为 .1C9. 已知函数|2|)(-=x x x f ,则不等式)3())1ln(2(f x f >+-的解集为 .10.曲线()ln f x x x =在点(1,0)P 处的切线l 与两坐标轴围成的三角形的面积是 .11.设向量)0)(1,2cos 21(),1,2sin4(>-==ωωωx x ,若函数1)(+⋅=x f 在区间⎥⎦⎤⎢⎣⎡-4,5ππ上单调递增,则实数ω的取值范围为 .12.设函数)1,0(,cos )(∈+=x x x x f ,则满足不等式)12()(2->t f t f 的实数t 的取值范围是 .13.已知双曲线2222:1x y C a b-=(0,0)a b >>的右焦点为F ,抛物线y x E 4:2=的焦点B是双曲线虚轴上的一个顶点,若线段BF 与双曲线C 的右支交于点A ,且3=,则双曲线C 的离心率为 .14.已知,,,a b c d∈R 且满足123ln 3=-=+cd b a a ,则22)()(d b c a -+-的最小值为 .二、解答题(本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤).15.(本小题满分14分)在ABC ∆中,已知三内角,,A B C 成等差数列,且11sin()214A π+=. (Ⅰ)求A tan 及角B 的值;(Ⅱ)设角C B A ,,所对的边分别为c b a ,,,且5=a ,求c b ,的值.16.(本小题满分14分)如图,四棱锥ABCD P -的底面是矩形,⊥PA 平面FE ABCD ,,分别是PD AB ,的中点,且AD PA =. (Ⅰ)求证://AF 平面PEC ; (Ⅱ)求证:平面⊥PEC 平面PCD .17.(本小题满分14分)如图所示的矩形是长为100码,宽为80码的足球比赛场地.其中PH是足球场地边线所在的直线,AB 是球门,且8=AB 码.从理论研究及经验表明:当足球运动员带球沿着边线奔跑时,当运动员(运动员看做点P )所对AB 的张角越大时,踢球进球的可能性就越大.(1)若20=PH ,求APB ∠tan 的值;(2)如图,当某运动员P 沿着边线带球行进时,何时(距离AB 所在直线的距离)开始射门进球的可能性会最大?P18.(本小题满分16分)在平面直角坐标系xOy 中,直线01=+-y x 被圆O 截得的弦长为6.(Ⅰ)求圆O 的方程;(Ⅱ)若直线l 与圆O 切于第一象限,且与坐标轴交于E D ,点,当DE 长最小时,求直线l 的方程;(Ⅲ)设P M ,是圆O 上任意两点,点M 关于x 轴的对称点为N ,若直线NP MP ,分别交x 轴于点)0,(m 和)0,(n ,问mn 是否为定值?若是,请求出定值;若不是,请说明理由.19.(本小题满分16分)已知函数)(ln )(R a x a x f ∈=.(Ⅰ)若函数)(2)(x f x x g +=的最小值为0,求a 的值;(Ⅱ)设x a ax x f x h )2()()(22+++=,求函数)(x h 的单调区间; (Ⅲ)设函数)(x f y =与函数xxx u 21)(-=的图像的一个公共点为P ,若过点P 有且仅有一条公切线,求点P 的坐标及实数a 的值.20.(本小题满分16分)已知数列}{},{n n b a 的首项111==b a ,且满足||||,4)(121n n n n b q b a a ==-++,其中*n ∈N .设数列}{},{n n b a 的前n 项和分别为,n n S T .(Ⅰ)若不等式n n a a >+1对一切*n ∈N 恒成立,求n S ; (Ⅱ)若常数1q >且对任意的*n ∈N ,恒有114n kn k bb +=≤∑,求q 的值;(Ⅲ)在(2)的条件下且同时满足以下两个条件: (ⅰ)若存在唯一正整数p 的值满足1p p a a -<;(ⅱ) 0>m T 恒成立.试问:是否存在正整数m ,使得m m b S 41=+,若存在,求m 的值;若不存在,请说明理由.。
2017年高考数学原创押题预测卷 03(江苏卷)(参考答案)
20.【解析】(Ⅰ)因为 an an2 2an1,a1 a2 1 ,所以 a3 2a2 -a1+ 1,
数学 第 3 页(共 8 页)
同理, a4 2a3-a2 + 3 1, a5 2a4 -a3+ 6 1,-----------------------(2 分) 又因为 a4 a1 3 , a5 a4 3 ,----------------------------------------------------(3 分) 所以 a4 a1 a5 a4 ,故 a1 , a4 , a5 成等差数列.---------------------------------(4 分)
(Ⅰ) PC (2,1, 2), BD (2, 2,0), 则 cos PC, BD (2,1, 2) (2, 2,0) 2 , ---------(2 分) | (2,1, 2) | | (2, 2,0) | 6
因此异面直线 PC 与 BD 所成角的余弦值为 2 .------------------------------------(4 分) 6
1. 3 .
2. 2 . 2
8. (1, 2) . 3
3. (, 2] . 4. 50 .
5. 1 . 4
6. 1 . 2
7. 1 . 3
9. 2 . 10. (x 1)2 ( y 1)2 1 .11. 7 5 . 12. 322 . 13. 2 或 2 3 .
2
2
22
5
3
14. 5 . 4
(Ⅱ)由题设
f
(x)
有两个零点,显然 a
0
,故
(完整版)2017年江苏省高考数学试卷
精心整理2017年江苏省高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a 的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F (E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f (x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2=AP?AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E (X)<.2017年江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2017?江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【考点】1E:交集及其运算.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.2.(5分)(2017?江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.3.(5分)(2017?江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【考点】B3:分层抽样方法.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:184.(5分)(2017?江苏)如图是一个算法流程图:若输入x的值为,则输出y的值是﹣2.【考点】EF:程序框图.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.5.(5分)(2017?江苏)若tan(α﹣)=.则tanα=.【考点】GR:两角和与差的正切函数.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.6.(5分)(2017?江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【考点】L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积;LG:球的体积和表面积.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2?2R=2πR3.则==.故答案为:.7.(5分)(2017?江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【考点】CF:几何概型.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:8.(5分)(2017?江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【考点】KC:双曲线的简单性质.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.9.(5分)(2017?江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8= 32.【考点】88:等比数列的通项公式.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.10.(5分)(2017?江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.【考点】7F:基本不等式.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.11.(5分)(2017?江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,].【考点】6B:利用导数研究函数的单调性.【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].12.(5分)(2017?江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=3.【考点】9R:平面向量数量积的运算.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n (m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.13.(5分)(2017?江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1].【考点】9R:平面向量数量积的运算;7B:二元一次不等式(组)与平面区域.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)?(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].14.(5分)(2017?江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【考点】54:根的存在性及根的个数判断.【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8二.解答题15.(14分)(2017?江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【考点】LS:直线与平面平行的判定;LO:空间中直线与直线之间的位置关系.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF?平面ABC,AB?平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.16.(14分)(2017?江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【考点】GL:三角函数中的恒等变换应用;9R:平面向量数量积的运算.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最大值﹣2.17.(14分)(2017?江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【考点】KL:直线与椭圆的位置关系.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l 1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k1=﹣,直线l1的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F 1重合,不满足题意,当m≠1时,=,=,由l 1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线l1的方程y=﹣(x+1),①直线l2的方程y=﹣(x﹣1),②联立解得:x=﹣m,则Q(﹣m,),由Q在椭圆方程,由对称性可得:=±n2,即m2﹣n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).18.(16分)(2017?江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【考点】LF:棱柱、棱锥、棱台的体积.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC 于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC?平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,根据正弦定理得:=,∴sin,cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.19.(16分)(2017?江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k +a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.﹣1(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【考点】8B:数列的应用.【分析】(1)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;﹣1(2)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.【解答】解:(1)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.20.(16分)(2017?江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【考点】6D:利用导数研究函数的极值.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f (x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2017?江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2=AP?AB.【考点】NC:与圆有关的比例线段.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2=AP?AB.[选修4-2:矩阵与变换]22.(2017?江苏)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【考点】OE:矩阵与矩阵的乘法的意义.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.[选修4-4:坐标系与参数方程]23.(2017?江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【考点】QH:参数方程化成普通方程.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.[选修4-5:不等式选讲]24.(2017?江苏)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【考点】7F:基本不等式;R6:不等式的证明.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.【必做题】25.(2017?江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【考点】MT:二面角的平面角及求法;LM:异面直线及其所成的角.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax?平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.26.(2017?江苏)已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E (X)<.【考点】CH:离散型随机变量的期望与方差.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A1)+P (A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E(X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==?()==,∴E(X)<.参与本试卷答题和审题的老师有:zlzhan;沂蒙松;whgcn;cst;qiss;maths;双曲线;danbo7801;豫汝王世崇;铭灏2016;zhczcb;sxs123(排名不分先后)菁优网2017年6月11日。
2017高考江苏卷数学试卷(解析版)
绝密★启用前2017年普通高等学校招生全国统一考试(江苏卷)数学I参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.球体积公式34π3R V =,其中R 是球的半径.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =I 则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.2. 已知复数(1i)(12i),z =++其中i 是虚数单位,则z 的模是 ▲ .【解析】(1)(12)112z i i i i =++=++==3. 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 ▲ 件.【答案】18【解析】所求人数为300601810000⨯=,故答案为18.4. 右图是一个算法流程图,若输入x 的值为116,则输出的y 的值是 ▲ .【答案】2-【解析】由题意212log 216y =+=-,故答案为-2. 5. 若π1tan(),46α-= 则tan α= ▲ .【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ππαππααππα+-+=-+===---.故答案为75.6. 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 ▲ .【答案】32【解析】设球半径为r ,则213223423V r r V r ππ⨯==.故答案为32. 7.记函数()f x D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是 ▲ .【答案】59【解析】由260x x +-≥,即260x x --≤,得23x -≤≤,根据几何概型的概率计算公式得x D ∈的概率是3(2)55(4)9--=--.8. 在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .【答案】【解析】右准线方程为x ==,渐近线为y =,则P,Q,1(F,2F,则S ==9. 等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 10. 某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 ▲ .【答案】30 【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.11.已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 ▲ .【答案】1[1,]2-【解析】因为31()2e ()ex x f x x f x x -=-++-=-, 因为22()32e e 322e e 0x x x x f 'x x x --=-++≥-+⋅≥,所以数()f x 在R 上单调递增,221a a ≤-,即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 12. 如图,在同一个平面内,向量OA u u u r ,OB u u u r ,OC u u u r 的模分别为1,1,2,OA u u u r 与OC u u u r的夹角为α,且tan α=7,OB u u u r 与OC u u u r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R , 则m n += ▲ .【答案】313. 在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅u u u r u u u r ≤则点P 的横坐标的取值范围是 ▲ .【答案】[52,1]-α A CB(第12题)【解析】设(,)P x y ,由20PA PB ⋅≤u u u r u u u r ,易得250x y -+≤,由2225050x y x y -+=⎧⎨+=⎩,可得5:5x A y =-⎧⎨=-⎩或1:7x B y =⎧⎨=⎩,由250x y -+≤得P 点在圆左边弧»AB 上,结合限制条件5252x -≤≤ ,可得点P 横坐标的取值范围为[52,1]-.14. 设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,学#科网则方程()lg 0f x x -=的解的个数是 ▲ .【答案】8二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分14分)如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥. 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD I 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.16.(本小题满分14分)已知向量(cos ,sin ),(3,3),[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =(2)0x =时,取得最大值,为3; 5π6x =时,取得最小值,为23-.(2)π(cos ,sin )(3,3)3cos 3sin 23cos(())6f x x x x x x =⋅=⋅-=-=+a b . 因为,所以ππ7π[,]666x +∈, 从而π31cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最大值3; 当π6x +=π,即5π6x =时,取到最小值23-.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F , 2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2) 【解析】解:(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b =因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解.因此点P的坐标为4737(,).18.(本小题满分16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为107cm,容器Ⅱ的两底面对角线EG,11E G的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱1CC上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱1GG上,求l没入水中部分的长度.【答案】(1)16(2)20答:玻璃棒l 没入水中部分的长度为16cm.( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面 EFGH , 所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面 E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G ,K 为垂足, 则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠.记EN 与水面的交点为P 2,过 P 2作P 2Q 2⊥EG ,Q 2为垂足,则 P 2Q 2⊥平面 EFGH ,故P 2Q 2=12,从而 EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm) 19.(本小题满分16分)对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++L L 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“()3P 数列”.(2)数列{}n a 既是“()P 2数列”,又是“()3P 数列”,因此, 当3n ≥时,n n n n n a a a a a --+++++=21124,①当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.20.(本小题满分16分)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)3a >(2)见解析(3)36a <≤【解析】解:(1)由32()1f x x ax bx =+++,得222()323()33a a f x x axb x b '=++=++-.当3ax =-时,()f x '有极小值23a b -.因为()f x '的极值点是()f x 的零点.所以33()1032793a a a ab f -=-+-+=,又0a >,故2239a b a=+. 因为()f x 有极值,故()=0f x '有实根,从而231(27a )039a b a-=-≤,即3a ≥. 3a =时,()>0(1)f x x '≠-,故()f x 在R 上是增函数,()f x 没有极值;3a >时,()=0f x '有两个相异的实根1=3a x --,2=3a x -+列表如下故()f x 的极值点是12,x x . 从而3a >,因此2239a b a=+,定义域为(3,)+∞.(3)由(1)知,()f x 的极值点是12,x x ,且1223x x a +=-,22212469a b x x -+=.从而323212111222()()11f x f x x ax bx x ax bx +=+++++++2222121122121212(32)(32)()()23333x x x ax b x ax b a x x b x x =++++++++++ 346420279a ab ab -=-+=记()f x ,()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a -=-+,所以213()=9h a a a-+,3a >. 因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减. 因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(36],.数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作...........答.,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A. [选修4—1:几何证明选讲](本小题满分10分)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1);PAC CAB∠=∠(2)2AC AP AB=⋅.【答案】见解析【解析】证明:(1)因为PC切半圆O于点C,所以PCA CBA=∠∠,因为AB为半圆O的直径,所以90ACB=︒∠,因为AP⊥PC,所以90APC=︒∠,所以PAC CAB∠=∠.(2)由(1)知APC ACB△∽△,故AP ACAC AB=,所以2·AC AP AB=B. [选修4—2:矩阵与变换](本小题满分10分)已知矩阵0110,.1002B⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A=,B=.(1)求AB;(2)若曲线221:182x yC+=在矩阵AB对应的变换作用下得到另一曲线2C,求2C的方程. 【答案】(1)(2)228x y+=【解析】解:(1)因为A=0110⎡⎤⎢⎥⎣⎦,B=1002⎡⎤⎢⎥⎣⎦,所以AB=0110⎡⎤⎢⎥⎣⎦1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦.C. [选修4-4:坐标系与参数方程](本小题满分10分)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22,22x s y s⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值. 45【解析】解:直线l 的普通方程为280x y -+=. 因为点P 在曲线C 上,设2(2,22)P s s , 从而点P 到直线l 的的距离2222422)5(1)(2)s d ==-+-当2s =min 45d =因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l 的距离取到最小值45.D.[选修4-5:不等式选讲](本小题满分10分)已知,,,a b c d 为实数,且22224,16,a b c d +=+=证明8.ac bd +≤ 【答案】见解析【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +≤++, 因为22224,16,a b c d +=+= 所以2()64ac bd +≤, 因此8ac bd +≤.【必做题】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内...........作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图, 在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3, 120BAD ∠=︒.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.【答案】(1)17(2)7(1) 11(3,1,3),(3,13)A B AC =--=u u u r u u u u r,则111111(3,1,3)(3,1,3)1 cos,77||||A B ACA B ACA B AC⋅--⋅===-u u u r u u u u ru u u r u u u u ru u u r u u u u r. 因此异面直线A1B与AC1所成角的余弦值为17.从而(3,0,0)(3,3,2)3cos,4||||34AEAEAE⋅⋅===⨯u u u ru u u ru u u r mmm,设二面角B-A1D-A的大小为θ,则3|cos|4θ=.因为[0,]θ∈π,所以27sin1cosθθ=-=.因此二面角B-A1D-A的正弦值为74.23.(本小题满分10分)已知一个口袋有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,,m n +L 的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)k m n =+L .(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)nE X m n n <+-【答案】(1)nm n+(2)见解析 【解析】解:(1) 编号为2的抽屉内放的是黑球的概率p 为: 11C C n m n n m n n p m n-+-+==+. (2) 随机变量 X 的概率分布为:随机变量 X 的期望为:11C 111(1)!()C C (1)!()!n m nm nk n nk n k nm nm n k E X k k n k n -++-==++-=⋅=⋅--∑∑. 所以1(2)!1(2)!()C (1)!()!(1)C (2)!()!m nm nn n k n k n m nm nk k E X n k n n n k n ++==++--<=-----∑∑ 222121(1C C C )(1)C n n n n n m n nm nn ----+-+=++++-L 12221121(C C C C )(1)C n n n n n n n m n nm nn ------+-+=++++-L 12221(C C C )(1)C n n n n n m n nm nn ---+-+=+++-L 12221(C C )(1)C n n m n m n nm nn --+-+-+==+-L11C (1)C ()(1)n m n nm n n n m n n -+-+==-+- ()()(1)nE X m n n <+-.。
2017年高考江苏数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2017年江苏,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =,则实数a 的值为_______.【答案】1【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =,∴1a =或231a +=,解得1a =.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.(2)【2017年江苏,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴()221310z =-+=.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年江苏,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为6061000100=,则应从丙 种型号的产品中抽取630018100⨯=件.【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.(4)【2017年江苏,4,5分】如图是一个算法流程图:若输入x 的值为116,则输出y 的值是_______.【答案】2-【解析】初始值116x =,不满足1x ≥,所以41216222log 2log 2y =+=-=-. 【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.(5)【2017年江苏,5,5分】若1tan 46πα⎛⎫-= ⎪⎝⎭.则tan α=_______.【答案】75【解析】tan tantan 114tan 4tan 161tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+,∴6tan 6tan 1αα-=+,解得7tan 5α=. 【点评】本题考查了两角差的正切公式,属于基础题. (6)【2017年江苏,6,5分】如如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12VV 的值是________.【答案】32【解析】设球的半径为R ,则球的体积为:343R π,圆柱的体积为:2322R R R ππ⋅=.则313223423V R R V ππ==.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.(7)【2017年江苏,7,5分】记函数2()6f x x x =+- 的定义域为D .在区间[45]-,上随机取一个数x ,则x ∈D 的概率是________.【答案】59【解析】由260x x +-≥得260x x --≤,得23x -≤≤,则2[]3D =-,,则在区间[45]-,上随机取一个数x ,则x ∈D 的概率()()325549P --==--. 【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D ,以及利用几何概型的概率公式是解决本题的关键.(8)【2017年江苏,8,5分】在平面直角坐标系xoy 中 ,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是_______. 【答案】23【解析】双曲线2213x y -=的右准线:32x =,双曲线渐近线方程为:33y x =,所以33,22P ⎛⎫ ⎪ ⎪⎝⎭,33,22Q ⎛⎫- ⎪ ⎪⎝⎭, ()12,0F -.()22,0F .则四边形12F PF Q 的面积是:143232⨯⨯=.【点评】本题考查双曲线的简单性质的应用,考查计算能力.(9)【2017年江苏,9,5分】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a =________. 【答案】32【解析】设等比数列{}n a 的公比为1q ≠,∵374S =,6634S =,∴()311714a q q -=-,()6116314a q q -=-, 解得114a =,2q =.则7812324a =⨯=.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题. (10)【2017年江苏,10,5分】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是________. 【答案】30【解析】由题意可得:一年的总运费与总存储费用之和=6009006442240x x x x⨯+≥⨯⨯⋅=(万元). 当且仅当30x =时取等号.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.(11)【2017年江苏,11,5分】已知函数()312x x f x x x e e=-+-,其中e 是自然数对数的底数,若()()2120f a f a -+≤,则实数a 的取值范围是________.【答案】11,2⎡⎤-⎢⎥⎣⎦【解析】函数()312x xf x x x e e =-+-的导数为:()21132220x xxx f x x e e e e '=-++≥-+⋅=,可得()f x 在R 上 递增;又()()()331220x x x x f x f x x x e e x x e e--+=-++-+-+-=,可得()f x 为奇函数,则()()2120f a f a -+≤,即有()()()2211f a f a f a ≤--=-,即有221a a ≤-,解得112a -≤≤.【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.(12)【2017年江苏,12,5分】如图,在同一个平面内,向量OA ,OB ,OC ,的模分别为1,1,2,OA 与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45︒。
2017年江苏省高考数学试卷(真题详细解析)
2017年江苏省高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项和为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x 的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.19.(16分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.20.(16分)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f′(x )的极值点是f (x )的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域;(Ⅱ)证明:b 2>3a ;(Ⅲ)若f (x ),f′(x )这两个函数的所有极值之和不小于﹣,求实数a 的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB 为半圆O 的直径,直线PC 切半圆O 于点C ,AP ⊥PC ,P 为垂足. 求证:(1)∠PAC=∠CAB ;(2)AC 2 =AP•AB .[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,当a=1时,A={1,1},B={1,4},成立;a2+3=1无解.综上,a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60件进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=±x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.9.(5分)等比数列{a n}的各项均为实数,其前n项和为S n,已知S3=,S6=,则a8=32.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,] .【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R 上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)由f(﹣(a﹣1))=﹣f(a﹣1),f(2a2)≤f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=3.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1] .【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f (x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx 图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊄平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l 1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k1=﹣,直线l1的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F 1重合,不满足题意,当m≠1时,=,=,由l 1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线l1的方程y=﹣(x+1),①直线l2的方程y=﹣(x﹣1),②联立解得:x=﹣m,则Q(﹣m,),由Q在椭圆方程,由对称性可得:=±n2,即m2﹣n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l 没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos∠EGM=﹣,根据正弦定理得:=,∴sin∠EMG=,cos∠EMG=,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l 没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列. 【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1), =2a n +2a n +2a n , =2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①因为数列{a n }是“P (2)数列”,所以a n ﹣2+a n ﹣1+a n +1+a n +2=4a n ,②则a n﹣1+a n+a n+2+a n+3=4a n+1,③,②+③﹣①,得2a n=4a n﹣1+4a n+1﹣6a n,即2a n=a n﹣1+a n+1,(n≥4),因此n≥4从第3项起为等差数列,设公差为d,注意到a2+a3+a5+a6=4a4,所以a2=4a4﹣a3﹣a5﹣a6=4(a3+d)﹣a3﹣(a3+2d)﹣(a3+3d)=a3﹣d,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求实数a的取值范围.【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,所以b=+(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似的判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s 的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA 1D的一个法向量为,由,得,取x=,得;取平面A 1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的余弦值为,则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.【分析】(1)法一:设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A 2|A1)P(A1)+P(A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.法二:按照同种模型的方法,对黑球共有m+n个位置,故总排法有种,除去第二个位置放的黑球,还剩下n+m﹣1个位置,由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E(X)<.【解答】解:(1)解法一:设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.解法二:按照同种模型的方法,对黑球共有m+n个位置,故总排法有种,除去第二个位置放的黑球,还剩下n+m﹣1个位置,∴编号为2的抽屉内放的是黑球的概率p==.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X )<.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.第31页(共31页)。
2017届高考押题金卷(全国卷Ⅰ)数学(理)试卷(含答案)
绝密★启封前2017高考押题金卷(全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分.考试时间为120分钟 注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.若集合2{|0},{|(0,1)},xM x x x N y y a a a R =-<==>≠表示实数集,则下列选项错误的是 A .M N M =I B .M N R =U C .R M C N ϕ=I D .R C M N R =U 2.复数12,z z 在复平面内对应的点关于直线y x =对称,且132z i =+,则12z z =() A .1251313i + B .1251313i -+ C .1251313i -- D .1251313i - 3.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P (A|B )是( )A. B. C. D.4.曲线y =sin x ,y =cos x 与直线x =0,x =π2所围成的平面区域的面积为( )A .⎠⎜⎛0π2 (sin x -cos x )d x B .2⎠⎜⎛0π4 (sin x -cos x )d xC .⎠⎜⎛0π2 (cos x -sin x)d x D .2⎠⎜⎛0π4 (cos x -sin x)d x5.按右图所示的程序框图,若输入110011a =,则输出的b =( )A. 45B. 47C. 49D. 516.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该锲体的三视图如图所示,则该锲体的体积为 A .10000立方尺 B .1 1000立方尺 C .12000立方尺D .13000立方尺7.设n S 是等差数列{a n }的前n 项和,若3184=S S ,则168S S 等于A.91B.103 C.31 D.81 8.已知O 是ABC △所在平面内一点,D 为BC 边中点,且02=++OC OB OA ,那么(A ) AO OD =u u u r u u u r (B ) 2AO OD =u u u r u u u r (C ) 3AO OD =u u u r u u u r D 2AO OD =u u u r u u u r把a 的右数第i 位数字赋给t是 否输入6?i >1i i =+输出b0b =1i =12i b b t -=+⋅9.已知点P (x,y)满足41x y y xx +≤⎧⎪≥⎨⎪≥⎩,过点P 的直线与圆2214x y +=相交于A 、B 两点,则||AB 的最小值为( )A .2B .26C .25D .410.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若212||||8PF PF a ⋅=,且12PF F ∆的最小内角为30o ,则双曲线C 的离心率是A.2B.2C.3D. 311数列{a n }的通项公式为an=11(1)n n++,关于{a n }有如下命题:P1:{a n }为先减后增数列;P2:{a n }为递减数列; P3:*,n n N a e ∀∈>P4:*,n n N a e ∃∈<其中正确的是A. P1,P3B. P1,P4C. P2,P3D. P2,P412.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥. 已知同底的两个正三棱锥内接于同一个球. 已知两个正三棱锥的底面边长为a ,球的半径为R . 设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan()αβ+的值是()AB.C.D.第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题—21题为必考题,每个试题考生都必须作答,第22题—23题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上) 13. (4y x的展开式中33x y 的系数为。
2017年江苏省高考数学卷及答案解析
2017年普通高等学校招生全国统一考试(江苏卷)数学I考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试 时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作 答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
一、填空题:本大题共14小题,每小题5分,共计70分。
1.(5分)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为 . 2.(5分)已知复数z =(1+i )(1+2i ),其中i 是虚数单位,则z 的模是 . 3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件. 4.(5分)如图是一个算法流程图,若输入x 的值为161,则输出y 的值是 .(第4题) (第6题) (第12题) 5.(5分)若tan (α﹣4 )=61.则tan α= .6.(5分)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则21V V 的值是 . 7.(5分)记函数f (x )=26x x -+定义域为D .在区间[﹣4,5]上随机取一个数x ,则x ∈D 的概率是 .8.(5分)在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是 . 9.(5分)等比数列{a n }的各项均为实数,其前n 项为S n ,已知S 3=47,S 6=463,则a 8= . 10.(5分)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 11.(5分)已知函数x xee x x xf 12)(3-+-=,其中e 是自然对数的底数.若)2()1(2a f a f +-≤0.则实数a 的取值范围是 .12.(5分)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC =m OA +n OB (m ,n ∈R ),则m +n = .13.(5分)在平面直角坐标系xOy 中,A (﹣12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若PB PA ⋅≤20,则点P 的横坐标的取值范围是 .14.(5分)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,⎩⎨⎧∉∈=Dx x D x x x f ,,)(2,其中集合⎭⎬⎫⎩⎨⎧∈-==*,1|N n n n x x D ,则方程0lg )(=-x x f 的解的个数是 . 二、解答题:本大题共6小题,共计90分。
2017年高考数学原创押题预测卷 03(江苏卷)(原卷版)
数学Ⅰ(文理公共)一、填空题(本大题共14个小题,每小题5分,共70分,将答案填在答题纸上)1.已知函数()2sin()(0)6f x x πωω=+>的最小正周期为23T π=,则ω= .2.已知复数a 满足(13)2i z i -=+,其中i 为虚数单位,则复数a 的模为 . 3.已知集合(3,1),{|20}M N x x a =--=+≤,若MN M =,则实数a 的取值范围是 .4.某校100名学生期中考试数学成绩做成的频率分布直方图如图所示,则结合图形可得数学成绩在[70,90]之间的学生人数为 .5.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为12,,,n x x x ⋅⋅⋅(单位:吨).根据如图所示的程序框图,若2n =,且12,x x 分别为1,2,则输出的结果s 为 .6.在区间(0,1)内随机取两个不同实数,a b ,则函数22y a x =与2by x=的图像有两个不同交点的概率是 .7.如图,在ABC ∆中,AH BC ⊥于1,,3H M AH AM AH ∈=,若AM xAB y AC =+,则x y +的值为 .8.设函数()y f x =在是定义在R 上的周期为3T =的奇函数,若23(1)1,(2)1a f f a ->=+,则实数a 的取值范围为 .9.已知角ϕ的终边经过点(1,1)P ,函数()sin()(0,0)2f x x πωϕωϕ=+><<图像的相邻两条对称轴之间的距离等于3π,则()6f π的值为 . 10.曲线()ln f x x x =在点(1,0)P 处的切线l 与坐标轴围成的三角形的外接圆的标准方程是 . 11.在ABC ∆中,D 、E 为边BC 上的点,若,,:2:32BAD DAE EAC B BD DE π∠=∠=∠∠==,则tan BAC ∠的值为 .12.设数列{}n a 满足:12211,,1n n n n a a n a a a +==-=+,则数列{}n a 中的第2017项是 .13.经过双曲线2222:1x y C a b-=(0,0)a b >>的左焦点F 与圆222:O x y a +=相切的直线,交双曲线的两条渐近线于,A B 两点,若||3AB a =,则双曲线C 的离心率为 .14.设0,0a b >>,点(,)P a b 在过点(1,1),(2,3)A B --的直线上,则224S a b =+的最大值为 .二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分14分)已知在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且cos cos 3cos c B b C a B +=. (Ⅰ)求sin()3B π-的值;(Ⅱ)若2BA BC ⋅=,求b 的最小值.16.(本小题满分14分)如图,在四棱锥中P ABCD -,底面ABCD 是平行四边形,AC 交BD 于点O ,PA ⊥平面,ABCD E 是棱PB 的中点.B C(Ⅰ)求证://EO 平面PCD ;(Ⅱ)若AB AD =,求证:平面PBD ⊥平面PAC .17.(本小题满分14分)某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区.已知,//,24AB BC OA BC AB BC AO km ⊥===,曲线段OC 是以点O 为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在,AB BC 上,且一个顶点落在曲线段OC 上,问应如何规划才能使矩形工业园区的用地面积最大?并求出最大用地面积.C18.(本小题满分16分)在平面直角坐标系xOy 中,设经过点(1,0)C -的直线l 交椭圆22221(0)x y a b a b+=>>于,A B两点,且满足CA BC λ=,若椭圆的离心率e =.(Ⅰ)设2λ=,直线l 的斜率为(0)k k ≠,求椭圆的长轴长(用(0)k k ≠表示);(Ⅱ)设2λ=,记AOB ∆的面积()y S k =,求()y S k =的解析表达式及其最大值,并求()y S k =取得最大值时椭圆的方程.19.(本小题满分16分)设()ln (,)f x x a x a x R =-∈. (Ⅰ) 求函数()y f x =的单调区间;(Ⅱ) 若函数()f x 有两个零点12,x x ,且12x x <,求实数a 的取值范围; (Ⅲ) 若函数()f x 有两个零点12,x x ,且12x x <,证明:221x x e ⋅>.20.(本小题满分16分)在数列{}n a 中,已知12211,2,,n n n a a a a a n N λλ*++==+=+∈为常数. (Ⅰ)证明:145,,a a a 成等差数列;(Ⅱ)设22n n a a n c +-=,求数列{}n c 的前n 项和;(Ⅲ)当0λ≠时,数列{1}n a -中是否存在三项1111,1,1s t p a a a +++---成等比数列,且,,s t p 也成等比数列?若存在,求出,,s t p 的值;若不存在,说明理由.附加题部分21.【选做题】(本题包括A 、B 、C 、D 四小题,请选定其....中两题...,并在相应的答题区域内作答.............若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.)A .【选修4—1几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交BA 的延长线于点C .若DB DC =,求证:CA AO =.B .【选修4—2:矩阵与变换】(本小题满分10分)已知点(,)P a b ,先对它作矩阵M 132312⎡⎢⎥=⎥⎥⎦对应的变换,再作N 2002⎡⎤=⎢⎥⎣⎦对应的变换,得到的点的坐标为(8,43),求实数,a b 的值. C .【选修4—4:坐标系与参数方程】(本小题满分10分)在极坐标系中,设直线l 经过点2(3,),(3,)32A B ππ,且直线l 与曲线:sin (0)C a a ρθ=>有且只有一个公共点,求实数a 的值. D .【选修4—5:不等式选讲】(本小题满分10分)已知函数()|21|f x x =-. (Ⅰ)若不等式1()21(0)2f x m m +≥+>的解集为(][),22,-∞-+∞,求实数m 的值;(Ⅱ)若不等式()2|23|2y yaf x x ≤+++,对任意的实数,x y ∈R 恒成立,求实数a 的最小值. 【必做题】(第22题、第23题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤) 22.在四棱锥P ABCD -中,直线,,AP AB AD 两两垂直,且//,AD BC 2AP AB AD BC ===.(Ⅰ)求异面直线PC 与BD 所成角的余弦值; (Ⅱ)求钝二面角B PC D --的大小.23.设,()m F m ∈N 表示2log m 的整数部分.(Ⅰ)求(1),(2),(3)F F F ; (Ⅱ)求满足()3F m =的m 的值;(Ⅲ)求证:(1)(2)(3)(2)(2)22n n F F F F n n +++⋅⋅⋅+=-⋅++.A PB CD。
2017年高考数学原创押题预测卷02(江苏卷)(参考答案)
1.5.2.51. 3.52. 4.2. 5.1-. 6.31. 7.5 8.4.9.)11,1(--e . 10.21. 11.(0,2]. 12.)1,21(. .13.317. 14.e 9ln 59.16.【解析】证明:(1)取PC 的中点G ,连EG GF ,则CD FG GC PG FD PF 21//⇒⎭⎬⎫==,------(2分) 又CD AE 21//,所以FG AE //,所以四边形AEGF 是平行四边形,----------------(3分) 则////AF PEC EG PEC AF EGAF ⇒⎪⎭⎪⎬⎫⊂⊄平面平面平面PEC .------------------(6分) (2)因⊂⊥⇒⎪⎭⎪⎬⎫=⊥⊥⇒⎭⎬⎫⊂⊥AF PAD CD A PA AD AD CD CD PA ABCD CD ABCD PA ,平面平面平面 ,平面PAD ,故AF CD ⊥---(8分)又因为D CD PD PD AF FD PF AP AD =⊥⇒⎭⎬⎫== ,,故⊥AF 平面PCD ;------------(10分)因为AF EG //,所以⊥EG 平面PCD ,----------------------------------(12分)又⊂EG 平面PEC ,所以平面⊥PCD 平面PEC .------------------------(14分)DB答:当运动员在边线上,且距离AB 所在直线的距离为1112码时,此时射门进球的可能性最大.(14分)B AHP(Ⅱ)设),(),,(0011y x P y x M ,由题意),(11y x N -,则1010x x y y k MP --=,直线)(:010100x x x x y y y y MP ---=-,----------------(10分)令0=y ,解之得0010001100010010010101()y x x x y x y x y x y x y x y x x y y y y y y ----+-=+==---,∴100101x y x y m y y -=-;------(12分)又因为则1010x x y y k NP -+=,直线)(:010100x x x x y y y y NP --+=-,--------------(13分) 令0=y 可得0010001001001100010101()y x x x y x y x y x y x y x y x x y y y y y y --+-++=+==+++,∴011001x y x y n y y +=+------(14分)212021202021100110101001y y y x y x y y y x y x y y y x y x mn --=++⋅--=,--------------(15分) 由于202021212,2y x y x -=-=,故22222)2()2(212021202120212021202120212021202021=--=-+--=----=y y y y y y y y y y y y y y y y y y mn ,∴mn 为定值2.-----(16分)学科*网(Ⅱ)因x a ax x a x h )2(ln )(22+++=(0x >),故xax a x x a x a ax a ax x a x h )1)(2()2(2)2(2)(222/++=+++=+++=----------(5分) ①若0≥a ,则0)(/>x h ,函数)(x h 在),0(+∞上单调递增;--------(6分)②若0<a ,则当aa 12->-,即22>a ,也即2-<a 时,在1(0,)x a ∈-时,0)(/<x h ,函数)(x h 单调递减;在)2,1(a a x --∈时,0)(/>x h ,函数)(x h 单调递增;在),2(+∞-∈a x 时,0)(/<x h ,函数)(x h 单调递减;------------------------------------------------------(8分) 当aa 12-<-,即22<a ,也即02<<-a 时,在(0,)2ax ∈-时,0)(/<x h ,函数)(x h 单调递减;在)1,2(a a x --∈时,0)(/>x h ,函数)(x h 单调递增;在),1(+∞-∈ax 时,0)(/<x h ,函数)(x h 单调递减.---------------------------------------------------(10分) 综上:当0≥a ,函数)(x h 的单调递增区间是),0(+∞;当02<<-a 时,函数)(x h 的单调增区间是)1,2(a a --,单调减区间是(0,)2a-和),1(+∞-a当2-=a 时,函数)(x h 的单调递减区间是),0(+∞; 当2-<a 时,函数)(x h 的单调递增区间是)2,1(a a --;单调递减区间是1(0,)a -和),2(+∞-a .--------(11分)20.【解析】(Ⅰ)由题设数列}{n a 的首项11=a ,公差为2=d , 则2(1)22n n n S n n -=+=,-------------------------(3分) (Ⅱ)因为1n n b q b +=,11b =,所以1n n b q -=,11111n n k k q b q ++=-=-∑,故11141n n q q q +--≤-, 又因为1q >,得12(2)1n qq --≤,所以211(2)()n q q--≤,因为1q >,所以11()0n q-→,所以2(2)0q -≤,故2q =,------------------(6分)(Ⅲ)因为1||2m m b -=,所以12m m b -=或者12m m b -=-, 若12m m b -=-时,12112(1242)21012m m m m m T b ----≤+++++=-+=-<-舍去 若12m m b -=时,12112(1242)221012m m m m m m T b ----≥-++++=-=->-, 故12m m b -= ,-------------------------------------------------------------------(9分),而2113(21)(1)m S m m +≤++++=+,因为14m m S b +=,所以122(1)m m +≤+,令122(1)m m d m +=+,则21221(1)m m d m d m +=≤+,解之得2,3m =, 故满足122(1)m m +≤+的m 值为1,2,3,------------------------ ---------------------------(12分)所以存在正整数m ,使得14m m S b +=, 此时35m p =⎧⎨≥⎩,或者13m p =⎧⎨≥⎩. -----------------------(16分)学科*网21.【答案】A .【解析】如图,连ON ,因为PN 是切线,所以090=∠ONP ,即090=∠+∠PNM ONM , 又因为AC OB ⊥,所以090=∠+∠OMB OBM ,注意到OBM ONM ∠=∠,因此OMB PNM ∠=∠---(4分)PCB又因为OMB PMN ∠=∠,所以PNM PMN ∠=∠,则有PN PM =,---------------------(6分)由切割线定理可得:PC PA PN ⋅=2,即PC PA PM ⋅=2.-------------------(10分)21.【答案】B . 【解析】因为⎢⎣⎡=b MN 1⎢⎣⎡⎥⎦⎤21c a ⎢⎣⎡++=⎥⎦⎤-221bc a c d ⎥⎦⎤+-+-d b ad 1,-------------(4分) 故由题设可得⎪⎪⎩⎪⎪⎨⎧=+--=+=+-=+0224122d b bc ad a c -----------(6分),解之可得3,34,3,35=-===d c b a .--------(10分)21. 【答案】C.21. 【答案】D .【解析】因为c b a ,,均为正数,所以ab b a 222≥+且02>c ,则22222)(abc b a c ≥+--------(2分),同理c ab c a b 22222)(≥+--------(4分);bc a c b a 22222)(≥+--------(6分), 将以上三式两边相加可得bc a c ab abc a c c b b a 222222222222)(2++≥++--------(8分),即)(222222c b a abc a c c b b a ++≥++,也即abc cb a ac c b b a ≥++++222222.------------(10分)学科*网22.【解析】解:(Ⅰ)35=m ,-----------------------(1分)2.2905.0552.04525.03522.02518.0151.05=⨯+⨯+⨯+⨯+⨯+⨯=x --------------(3分)(Ⅱ)样本中玩电脑游戏时长在]60,50[内的学生为510005.0=⨯人,---------------------(4分)其中男生3人,女生2人,则ξ 的可能取值为3,2,1,则,103)1(352213===C C C P ξ,53106)2(351223====C C C P ξ101)3(3533===C C P ξ--------------(7分) ξ的分布列为---------------------------------------------(8分) 所以5910135321031)(=⨯+⨯+⨯=x E .----------------(10分) 23.【解析】下用数学归纳法证明该不等式成立:(1)显然当1=n 时,不等式(*)恒成立;----------------------------------(6分) (2)假设当k n =时不等式(*)也成立,即不等式)313131(1)311()311)(311(22kk +⋅⋅⋅++-≥-⋅⋅⋅--成立,那么当1+=k n 时,]311)][313131(1[)311)(311()311)(311(1212++-+⋅⋅⋅++-≥--⋅⋅⋅--k k k k , 即)313131(3131)313131(1)311()311)(311(211212kk k k k +⋅⋅⋅+++-+⋅⋅⋅++-≥-⋅⋅⋅--+++, 注意到0)313131(3121>+⋅⋅⋅+++k k ,所以)31313131(1)311()311)(311(1212++++⋅⋅⋅++-≥-⋅⋅⋅--k k k , 这说明当1+=k n 时,不等式不等式(*)也成立.----------------------------------------(9分)因此由数学归纳法可知:不等式(*)对一切非零自然数都成立;即21)313131(1)311()311)(311(22>+⋅⋅⋅++-≥-⋅⋅⋅--n n 恒成立,故欲证不等式!221n a a a n ⋅<⋅⋅⋅⋅对一切非零自然数都成立.-----------------------------(10分)学科*网数学第11页(共11页)。
2017年高考数学原创押题预测卷02(江苏卷)(解析版)
【答案】 2 【 解 析 】 因 为 这 组 数 据 的 平 均 数 是 x 12 8 10 11 9 10 , 所 以 其 方 差
5
数学 第 1 页(共 19 页)
s2 (12 10)2 (8 10)2 (10 10)2 (11 10)2 (9 10)2 2 ,故所求这组数据的标准差 s 2 . 5
【解析】因
AB
AC
CB ,故 (AB
DC) (AC
BD)
( AC
DB) (AC
BD)
2
AC
2
BD
5.
8.如图,在直三棱柱 ABC A1B1C1 中,若四边形 AA1C1C 是边长为 4 的正方形,且 AB 3, BC 5, M 是
AA1 的中点,则三棱锥 A1 MBC1 的体积为
7.已知四边形 ABCD ,若 AC 3, BD 2 ,则 (AB DC) (AC BD) 值为 _______.
【命题意图】本题考查平面向量的几何形式的运算及数量积公式的灵活运用等基础知识,意在考查学生的
运算求解能力及运用所学知识分析问题解决问题的能力.学科*网
【答案】 5
数学 第 2 页(共 19 页)
的中点,且 PA AD . (Ⅰ)求证: AF // 平面 PEC ;
数学 第 6 页(共 19 页)
(Ⅱ)求证:平面 PEC 平面 PCD .
P
P
A E
F
F
G
D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年江苏省高考数学预测卷(1)一.填空题:1.已知全集U={1,2,3,4,5,6},A={1,3,5},B={1,2,3,5},则∁U (A ∩B )= .2.“1x >”是“11x <”的 条件.(填:充分不必要、必要不充分、充要、既不充分又不必要) 3.如图所示,该伪代码运行的结果为 .4. 已知一组数据为8,12,10,11,9.则这组数据方差为____________.5. 已知实数x,y 满足条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,i yi x z (+=为虚数单位),则|45|z i -+的最小值等于 .6.已知向量夹角为45°,且,则= .7.函数3()f x x ax =+在(1,2)处的切线方程为 .8.在区间[5,5]-内随机地取出一个数a ,则恰好使1是关于x 的不等式2220x ax a +-<的一个解的概率大小为_____ __.9.已知正四棱锥的体积是48cm 3,高为4cm ,则该四棱锥的侧面积是 cm 2. 10.若错误!未找到引用源。
,则错误!未找到引用源。
的最大值为__________ ____.11.由直线3-=x y 上的点向圆1)3()2(22=-++y x 引切线,则切线长的最小值S←0 p ←1While S≤15 S←S+p p ←p+2 End While Print p第3题图为 .12.直角ABC ∆的三边c b a ,,满足9853≤≤≤≤≤≤c b a ,则ABC ∆面积的最大值是. 13.设数列{}n a 满足831=a ,且对任意的*N n ∈,满足n n n n n n a a a a 310,342⨯≥-≤-++ 则2017a =____________ __.14.如图,直角梯形ABCD 中, AB ∥,CD AB AD ⊥,222AB CD AD ===.在等腰直角三角形CDE 中, 090C ∠=,点,M N 分别为线段,BC CE 上的动点,若52AM AN ⋅= ,则MD DN ⋅ 的取值范围是 _____________.二、解答题(本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤).15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,△ABC 的面积为S,.(1)求角A 的大小; (2)若,,求b +c 的值.16.在正三棱柱ABC ﹣A 1B 1C 1中,AA 1=2AB ,点D 是BC 的中点,点M 在CC 1上,且.(1)求证:A 1C ∥平面AB 1D ; (2)求证:平面AB 1D ⊥平面ABM .DCABE17.由于渤海海域水污染严重,为了获得第一手的水文资料,潜水员需要潜入水深为60米的水底进行作业,根据经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间消耗氧气(升),在水底作业10个单位时间,每单位时间消耗氧气0.9(升),返回水面的平均速度为(米/单位时间),每单位时间消耗氧气1.5(升),记该潜水员完成此次任务的消耗氧气总量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,消耗氧气的总量最少.18.已知过点且离心率为的椭圆C 的中心在原点,焦点在x 轴上.(1)求椭圆C 的方程;(2)设点P 是椭圆的左准线与x 轴的交点,过点P 的直线l 与椭圆C 相交于M ,N 两点,记椭圆C 的左,右焦点分别为F 1,F 2,上下两个顶点分别为B 2,B 1.当线段MN 的中点落在四边形F 1B 1F 2B 2内(包括边界)时,求直线l 斜率的取值范围.19.已知数列{a n }的前n 项和为S n ,∀n ∈N *满足,且a 1=1,正项数列{b n }满足b n +12﹣b n +1=b n 2+b n (n ∈N *),其前7项和为42. (1)求数列{a n }和{b n }的通项公式;(2)令c n =,数列{c n }的前n 项和为T n ,若对任意正整数n ,都有T n ≥2n +a ,求实数a 的取值范围;(3)将数列{a n },{b n }的项按照“当n 为奇数时,a n 放在前面;当n 为偶数时,b n 放在前面”的要求进行排列,得到一个新的数列:a 1,b 1,b 2,a 2,a 3,b 3,b 4,a4,a5,b5,b6,…,求这个新数列的前n项和P n.20.已知函数f(x)=.(1)求曲线y=f(x)与直线2x+y=0垂直的切线方程;(2)求f(x)的单调递减区间;(3)若存在x0∈[e,+∞),使函数g(x)=aelnx+•lnx•f(x)≤a成立,求实数a的取值范围.数学Ⅱ(理科加试)[选做题]本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.如图,A,B,E是⊙O上的点,过E点的⊙O的切线与直线AB交于点P,∠APE的平分线和AE,BE分别交于点C,D.求证:(1)DE=CE;(2).B.[选修4-2:矩阵与变换](本小题满分0分)22.已知二阶矩阵M有特征值λ=8及对应的一个特征向量=,并且矩阵M 将点(﹣1,3)变换为(4,16),求矩阵M.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l的参数方程是(t为参数),曲线C的极坐标方程是ρcos2θ=4sinθ.(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,点M为AB的中点,点P的极坐标为,求|PM|的值.D.[选修4-5:不等式选讲](本小题满分0分)24.若实数x,y,z满足4x+3y+12z=1,求x2+y2+z2的最小值.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.25.底面是正方形的四棱锥中P﹣ABCD中,侧面PAD⊥底面ABCD,且△PAD 是等腰直角三角形,其中PA=PD,E,F分别为线段PC,DB的中点,问在线段AB上是否存在点G,使得二面角C﹣PD﹣G的余弦值为,若存在,请求出点G的位置;若不存在,请说明理由.26.设i为虚数单位,n为正整数,θ∈[0,2π).(1)用数学归纳法证明:(cosθ+isinθ)n=cosnθ+isinnθ;(2)已知,试利用(1)的结论计算z10.2017年江苏省高考数学预测卷(1)参考答案与试题解析一.填空题:1.{2,4,6};2. 充分不必要;3. 9 ; 4 .2; 5 5 ;6. 3; 7. 42y x =-; 8. 0.7 ; 9. 60; 10. 92-11.31; 12. 145; 13. 83201714. 22512⎡⎤--⎢⎥⎣⎦,;13. 【提示】:由n n n a a 32≤-+得n n n a a +≤+32,所以()n n n n n n a a a ++≤+≤++++3332224,即n n n a a +⨯≤+3104; 由n n n a a 3104⨯≥-+得n n n a a 3104⨯+≥+;所以可以得到n n n n n a a a +⨯≤≤⨯++3103104即n n n a a +⨯=+3104,再累加. 14.【提示】以直线DC 为x 轴, CE 为y 轴建立平面直角坐标系,如图,则()1,1A --, ()1,1B -, ()0,1E ,()1,0D -,设()0,N b , (),M a a -, ()01,01a b ≤≤≤≤, 则()()()()51,11,11112AM AN a a b a a b ⋅=+-+⋅+=++-++=,12b ab -=,()121b a =-,由01b ≤≤知1112a≤-≤,二、解答题(本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤).15.在△ABC中,角A,B,C所对的边分别为a,b,c,△ABC的面积为S,.(1)求角A的大小;(2)若,,求b+c的值.【考点】HT:三角形中的几何计算.【分析】(1)利用正弦定理化简已知条件,通过三角形内角求解A的大小即可.(2)由三角形的面积公式求出ab=2,再根据余弦定理即可求出b+c的值.【解答】解:(1)asinB=bcosA,由正弦定理可得sinAsinB=sinBcosA,∵B是三角形内角,∴sinB≠0,∴tanA=,A是三角形内角,∴A=.(2)∵S=bcsinA=,∴bc=2,由余弦定理a2=b2+c2﹣2bccosA,可得3=b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣6,∴b+c=3.16.在正三棱柱ABC﹣A1B1C1中,AA1=2AB,点D是BC的中点,点M在CC1上,且.(1)求证:A1C∥平面AB1D;(2)求证:平面AB1D⊥平面ABM.【考点】L Y:平面与平面垂直的判定;LS:直线与平面平行的判定.【分析】如图以A为原点,以AC,AA1为y、z轴建立空间直角坐标系.设AB=4,则AA1=8,CM=1.则A(0,0,0),B(2,2,0),C(0,4,0).A(0,0,8),B1(2,2,8),C1(0,4,8),D(,3,0),M(0,4,11),利用向量法求解.【解答】解:如图以A为原点,以AC,AA1为y、z轴建立空间直角坐标系.设AB=4,则AA1=8,CM=1.则A(0,0,0),B(2,2,0),C(0,4,0).A(0,0,8),B1(2,2,8),C1(0,4,8),D(,3,0),M(0,4,11)(1)设面AB1D的法向量为由可取,,则∵A1C⊄面AB1D,∴A1C∥平面AB1D(2)设面ABNM的法向量为,由,可取由(1)得面AB1D的法向量为,=+(﹣1)×(﹣3)+12×=0∴,∴平面AB1D⊥平面ABM17.由于渤海海域水污染严重,为了获得第一手的水文资料,潜水员需要潜入水深为60米的水底进行作业,根据经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间消耗氧气(升),在水底作业10个单位时间,每单位时间消耗氧气0.9(升),返回水面的平均速度为(米/单位时间),每单位时间消耗氧气1.5(升),记该潜水员完成此次任务的消耗氧气总量为y(升).(1)求y关于v的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v取什么值时,消耗氧气的总量最少.【考点】36:函数解析式的求解及常用方法.【分析】(1)分别计算潜入水底用时用氧量,水底作业时用氧量和返回水面用时用氧量,即可得到总用氧量的函数y;(2)求导数y′,判断函数y的单调性,讨论c的取值,求出下潜速度v取什么值时消耗氧气的总量最少.【解答】解:(1)由题意,下潜用时单位时间,用氧量为[+1]×=+(升),水底作业时的用氧量为10×0.9=9(升),返回水面用时=单位时间,用氧量为×1.5=(升),∴总用氧量为y=++9(v>0);(2)求导数y′=﹣=,令y'=0,解得v=10,在0<v<10时,y'<0,函数y单调递减,在v>10时,y'>0,函数y单调递增;∴当c<10时,函数y在(0,10)上递减,在(10,15)上递增,此时v=10时用氧量最少;当c≥10时,函数y在[c,15]上递增,此时v=c时,总用氧量最少.18.已知过点且离心率为的椭圆C的中心在原点,焦点在x轴上.(1)求椭圆C的方程;(2)设点P是椭圆的左准线与x轴的交点,过点P的直线l与椭圆C相交于M,N两点,记椭圆C的左,右焦点分别为F1,F2,上下两个顶点分别为B2,B1.当线段MN的中点落在四边形F1B1F2B2内(包括边界)时,求直线l斜率的取值范围.【考点】KL:直线与椭圆的位置关系.【分析】(1)由过点且离心率为的椭圆C的中心在原点,焦点在x轴上,列出方程组,求出a=2,b=4,由此能求出椭圆C的方程.(2)设出直线的方程,将直线的方程与椭圆方程联立,利用二次方程的韦达定理得到弦中点的坐标,根据中点在正方形的内部,得到中点的坐标满足的不等关系,求出k的范围.【解答】解:(1)∵过点且离心率为的椭圆C 的中心在原点,焦点在x 轴上. ∴设椭圆方程为=1(a >b >0), 则,解得a=2,b=4, ∴椭圆C 的方程为=1.(2)椭圆C 的左准线方程为x=﹣4,所以点P 的坐标为(﹣4,0), 由题意知直线l 的斜率存在,所以设直线l 的方程为y=k (x +4)如图,设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),线段MN 的中点为G (x 0,y 0)由,得(1+2k 2)x 2+16k 2x +32k 2﹣8=0.①由△=(16k 2)2﹣4(1+2k 2)(32k 2﹣8)>0,解得﹣<k <.② 因为x 1,x 2是方程①的两根,所以x 1+x 2=﹣,于是x 0==﹣,y 0=k (x 0+4)=. 因为x 0=﹣≤0,所以点G 不可能在y 轴的右边, 又直线F 1B 2,F 1B 1方程分别为y=x +2,y=﹣x ﹣2 所以点G 在正方形Q 内(包括边界)的充要条件为, 即,即, 解得≤k ≤, 由②得:≤k ≤.故直线l 斜率的取值范围是[,].19.已知数列{a n }的前n 项和为S n ,∀n ∈N *满足,且a 1=1,正项数列{b n }满足b n +12﹣b n +1=b n 2+b n (n ∈N *),其前7项和为42. (1)求数列{a n }和{b n }的通项公式;(2)令c n =,数列{c n }的前n 项和为T n ,若对任意正整数n ,都有T n ≥2n +a ,求实数a 的取值范围;(3)将数列{a n },{b n }的项按照“当n 为奇数时,a n 放在前面;当n 为偶数时,b n 放在前面”的要求进行排列,得到一个新的数列:a 1,b 1,b 2,a 2,a 3,b 3,b 4,a 4,a 5,b 5,b 6,…,求这个新数列的前n 项和P n . 【考点】8E :数列的求和;8H :数列递推式.【分析】(1)数列{a n }的前n 项和为S n ,∀n ∈N *满足,且a 1=1,可得数列是等差数列,首项为1,公差为.利用通项公式可得S n .利用递推关系即可得出a n .正项数列{b n }满足b n +12﹣b n +1=b n 2+b n (n ∈N *),化为:(b n +1+b n )(b n +1﹣b n )=b n +1+b n ,可得b n +1﹣b n =1.再利用等差数列的求和公式即可得出.(2)c n ==2+2,利用裂项求和方法、数列的单调性即可得出.(3)n=2k 时,P n =P 2k =(a 1+a 2+…+a k )+(b 1+b 2+…+b k ).n=2k ﹣1时,2k 被2整除而不能被4整除时,P n =P 2k ﹣b k .2k 被4整除时,P n =P 2k ﹣a k .【解答】解:(1)数列{a n }的前n 项和为S n ,∀n ∈N *满足,且a 1=1,∴数列是等差数列,首项为1,公差为.∴=1+(n ﹣1),解得S n =.∴n ≥2时,a n =S n ﹣S n ﹣1=﹣=n ,n=1时也成立.∴a n =n .正项数列{b n }满足b n +12﹣b n +1=b n 2+b n (n ∈N *),化为:(b n +1+b n )(b n +1﹣b n )=b n +1+b n , ∴b n +1﹣b n =1.∴数列{b n }是等差数列,公差为1.∵其前7项和为42,∴7b 1+×1=42,解得b 1=3.∴b n =3+n ﹣1=n +2.(2)c n ==2+2, ∴数列{c n }的前n项和T n =2n +2+…++=2n +2=2n +2,T n≥2n+a,化为:2≥a,∴a≤.∴实数a的取值范围是.(3)n=2k时,P n=P2k=(a1+a2+…+a k)+(b1+b2+…+b k)=+=k2+3k=+3×=.n=2k﹣1时,2k被2整除而不能被4整除时,P n=P2k﹣b k=﹣(k+2)=k2+2k﹣2.2k被4整除时,P n=P2k﹣a k=﹣k=k2+2k.20.已知函数f(x)=.(1)求曲线y=f(x)与直线2x+y=0垂直的切线方程;(2)求f(x)的单调递减区间;(3)若存在x0∈[e,+∞),使函数g(x)=aelnx+•lnx•f(x)≤a成立,求实数a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程.【分析】(1)设出切点坐标,求出切线方程即可;(2)求出函数的导数,由f′(x)<0得0<x<1或1<x<e,即可求出单调递减区间;(3)由已知,若存在x0∈[e,+∞),使函数g(x)≤a成立,则只需满足当x ∈[e,+∞),g(x)min≤a即可.【解答】解:(1)f(x)=,f′(x)=,设出切点坐标(a,),而曲线y=f(x)与直线2x+y=0垂直的切线的斜率k=,故=,解得:a=e2,故切点坐标是:(e2,e2),故切线方程是:y﹣e2=(x﹣e2),即x﹣y+e2=0;(2)f′(x)=,由f′(x)<0,得0<x<1或1<x<e,所以函数f(x)的单调递减区间为(0,1)和(1,e);(3)因为g(x)=aelnx+x2﹣(a+e)x,由已知,若存在x0∈[e,+∞),使函数g(x)=aelnx+x2﹣•lnx•f(x)≤a 成立,则只需满足当x∈[e,+∞),g(x)min≤a即可,又g(x)=aelnx+x2﹣(a+e)x,则g′(x)=,a≤e,则g′(x)≥0在x∈[e,+∞)上恒成立,∴g(x)在[e,+∞)上单调递增,∴g(x)min=g(e)=﹣,∴a≥﹣,∵a≤e,∴﹣≤a≤e,a>e,则g(x)在[e,a)上单调递减,在[a,+∞)上单调递增,∴g(x)在[e,+∞)上的最小值是g(a),∵g(a)<g(e),a>e,∴满足题意,综上所述,a≥﹣.数学Ⅱ(理科加试)[选做题]本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.如图,A,B,E是⊙O上的点,过E点的⊙O的切线与直线AB交于点P,∠APE的平分线和AE,BE分别交于点C,D.求证:(1)DE=CE;(2).【考点】NC:与圆有关的比例线段.【分析】(1)证明∠PEB=∠PAC,∠EPC=∠CPA,可得∠ECD=∠EDC,即可证明结论;(2)证明△EPB∽△APE,得=,PC是∠APE的平分线,得=,即可证明结论.【解答】证明:(1)∵PE是⊙O的切线,∴∠PEB=∠PAC,∵PC是∠APE的平分线,∴∠EPC=∠CPA,∴∠PEB+∠EPC=∠PAC+∠CPA,∴∠ECD=∠EDC,∴DE=CE;(2)∵∠PEB=∠PAC,∠EPB=∠APE,∴△EPB∽△APE,∴=,∵PC是∠APE的平分线,∴=,∴.B.[选修4-2:矩阵与变换](本小题满分0分)22.已知二阶矩阵M有特征值λ=8及对应的一个特征向量=,并且矩阵M 将点(﹣1,3)变换为(4,16),求矩阵M.【考点】OV:特征值与特征向量的计算.【分析】设出矩阵,利用特征向量的定义,即二阶变换矩阵的概念,建立方程组,即可得到结论.【解答】解:设,∵特征值λ=8及对应的一个特征向量=,矩阵M将点(﹣1,3)变换为(4,16),∴,解得,∴M=…C.[选修4-4:坐标系与参数方程](本小题满分0分)23.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l的参数方程是(t为参数),曲线C的极坐标方程是ρcos2θ=4sinθ.(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,点M为AB的中点,点P的极坐标为,求|PM|的值.【考点】Q4:简单曲线的极坐标方程.【分析】(1)消去参数t得直线l的普通方程,利用极坐标与直角坐标互化方法求曲线C的直角坐标方程;(2)求出M,P的直角坐标,即可求|PM|的值.【解答】解:(1)已知直线l的参数方程是(t为参数),普通方程为y=+3,曲线C的极坐标方程是ρcos2θ=4sinθ,化为ρ2cos2θ=4ρsinθ,∴x2=4y.…(2)由直线与抛物线方程,消去y得x2﹣4x﹣12=0…设A(x1,y1),B(x2,y2),则AB的中点M(2,9)…又点P的直角坐标为(2,6),…所以|PM|=3…D.[选修4-5:不等式选讲](本小题满分0分)24.若实数x,y,z满足4x+3y+12z=1,求x2+y2+z2的最小值.【考点】RA:二维形式的柯西不等式.【分析】利用条件x+2y+3z=1,构造柯西不等式(4x+3y+12z)2≤(x2+y2+z2)(42+32+122),变形即可得答案.【解答】解:根据题意,实数x,y,z满足4x+3y+12z=1,则有(4x+3y+12z)2≤(x2+y2+z2)(42+32+122),即1≤169(x2+y2+z2),即有x2+y2+z2≥;即x2+y2+z2的最小值为;故答案为:.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.25.底面是正方形的四棱锥中P﹣ABCD中,侧面PAD⊥底面ABCD,且△PAD 是等腰直角三角形,其中PA=PD,E,F分别为线段PC,DB的中点,问在线段AB上是否存在点G,使得二面角C﹣PD﹣G的余弦值为,若存在,请求出点G的位置;若不存在,请说明理由.【考点】MT:二面角的平面角及求法.【分析】取AD中点O,连结PO,以O为原点,OA为x轴,在平面ABCD中过O作AD的垂线为y轴,以OP为z轴,建立空间直角坐标系,利用向量法求出在线段AB上存在点G,使得二面角C﹣PD﹣G的余弦值为,且AG=.【解答】解:假设在线段AB上存在点G,使得二面角C﹣PD﹣G的余弦值为.取AD中点O,连结PO,∵底面是正方形的四棱锥中P﹣ABCD中,侧面PAD⊥底面ABCD,且△PAD 是等腰直角三角形,其中PA=PD,∴PO⊥平面ABCD,以O为原点,OA为x轴,在平面ABCD中过O作AD的垂线为y轴,以OP 为z轴,建立空间直角坐标系,设PA=PD=,则G(1,t,0)(0≤t≤2),C(﹣1,2,0),P(0,0,),D(﹣1,0,0),=(﹣1,0,﹣),=(﹣1,2,﹣),=(1,t,﹣),设平面PCD的法向量=(x,y,z),则,取x=,得=(,0,﹣1),设平面PDG的法向量=(a,b,c),则,取a=,得=(,﹣,﹣1),∵二面角C﹣PD﹣G的余弦值为,∴==,解得t=,∴在线段AB 上存在点G ,使得二面角C ﹣PD ﹣G 的余弦值为,且AG=.26.设i 为虚数单位,n 为正整数,θ∈[0,2π). (1)用数学归纳法证明:(cosθ+isinθ)n =cosnθ+isinnθ;(2)已知,试利用(1)的结论计算z 10.【考点】RG :数学归纳法.【分析】(1)利用数学归纳法即可证明,注意和差公式的应用. (2)利用(1)的结论即可得出.【解答】证明:(1)证明:1°当n=1时,左边=右边=cosθ+isinθ,所以命题成立;2°假设当n=k 时,命题成立,即(cosθ+isinθ)k =coskθ+isinkθ, 则当n=k +1时,(cosx +isinθ)k +1=(cosθ+isinθ)k •(cosθ+isinθ) =(coskθ+isinkθ)(cosθ+isinθ)=(coskθcosθ﹣sinkθsinθ)+i (sinkθcosθ+coskθsinθ) =cos (k +1)θ+isin (k +1)θ ∴当n=k +1时,命题成立;综上,由1°和2°可得,(cosθ+isinθ)n =cosnθ+isinnθ.(2)=2(﹣)=2(cos +isin ),∴z 10=210(cos π+isinπ)=210(cos+isin)=210(+i )=512+512i2017年5月24日。