步进电机选型计算实例
步进电机的选型及计算方法

步进电机选型的计算方法步进电机选型表中有部分参数需要计算来得到。
但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。
一、驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。
下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。
●必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。
必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离距离电机旋转一周移动的距离×360 o步进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。
驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。
(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。
自启动运行方式通常在转速较低的时候使用。
同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。
自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒](2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。
其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。
加/减速时间需要根据传送距离、速度和定位时间来计算。
在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。
加/减速运行方式下的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒]二、电机力矩的简单计算示例必要的电机力矩=(负载力矩+加/减速力矩)×安全系数●负载力矩的计算(TL)负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。
步进电机选型计算

样本针单元电机选型分析一、选用电机的基本步骤四、电机选用计算公式1.运行模式选用加减速运行模式。
2.工作脉冲数A【脉冲】计算步进电机步距角/度 1.8同步轮直径r/mm13.37位移l/mm65时间t0/s0.8A=[65/(3.14*13.37)]*(360/1.8)=1.55*200=310脉冲细分脉冲数:A0细分3104细分12408细分248016细分4960附图:3.运行脉冲频率f2【Hz】计算T0=0.8s,得t1=0.8*0.25=0.2s4.加减速常数T R 【ms/kHz】计算(控制器使用,可以忽略)T R =0.2/(512-f1)5.运行脉冲频率f2【Hz 】的运行速度N M 【r/min 】计算6.负载转矩T L计算7.加速转矩Ta【N*m】计算(1)负载转动惯量J L转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母/或J表示。
其量值取决于物体的形状、质量分布及转轴的位置。
该机构做直线往复运动,滑轨与滑块之间存在缝隙,所以,在急停的瞬间会产生转动。
因此,该结构的惯量包括两部分:直线运动惯量和旋转转动惯量。
A.直线运动惯量计算将整个水平探针机构默认为一个整体,1.1Kg。
A m J13.37*3.14/1000=0.042 1.149.2*10-6B.转动惯量计算。
图中指出来的器件是偏心器件,其余按照同轴心计算。
a.电机距+同步轮离同步轮中心线距离是:80mm,电机长宽高42*42*38,M=0.46kg;J1=0.46((42*42+42*42)/3+80*80)/1000000=3484*10-6b.探针组件中心线距离是:62mm,M=0.46kg;J2=0.46((25*25+25*25)/3+62*62)/1000000=1959*10-6 c.滑轨+拖链+同步轮+轴+固定板中心线距离是:64mm,M=0.29kg,;J3=0.29*(55*55+280*280+12*64*64)/12/1000000=3156*10-6d.其他器件其他器件默认为偏心12mm,质量0.29Kg。
步进电机选型计算V1.1

丝杠垂直运动选型计算表格机械结构参数:速度:Vl=30m/min滑动部分质量M=25kg丝杠部分长度L B= 1.2m丝杠直径D B=0.016m丝杠导程P B=0.01m连轴器质量M C0.5kg连轴器直径D C0.055m摩擦系数μ=0.1移动距离L=0.3m机械效率η=0.9定位时间t=3s加减速时间比A=25%外力F A=0N移动方向与水平轴夹角a =90°1)速度曲线加速时间t0=t*A=0.75s 2)电机转速N M =V l/P B=3000rpm 3)负荷转矩计算轴向负载=244.99991Nm 负载转矩=0.433253951Nm 4)直线运动平台与负载惯量J L6.33254E-05kgm2T L =滚珠丝杠惯量J B=6.09943E-05kgm 2连轴器惯量J C=0.000189063kgm 2总负荷惯量J L =J L +J B +J C=0.000313382kgm 2启动转矩T S ==0.15011915Nm5)必须转矩必须转矩T M =(T L +T S )*S=1.166746201Nm6)电机选择根据计算,初步确定电机型号,然后输入转子惯量,确认T M7)负荷与电机惯量比I 1= 6.9640496288)负荷与减速机惯量比当负荷与电机惯量比>5时,考虑采用减速装置,提高惯量匹配I 2= 6.964049628运动选型计算表格*其他常数*G=9.8m/s*pi= 3.1416*丝杠密度ρ=7900kg/m3*******安全系数S=2电机惯量J M=0.000045kgm2减速机减速比i=1。
步进电机选择详细计算过程

步进电机选择的详细计算过程2011-07-25 00:13:59| 分类:默认分类|举报|字号订阅1,如何正确选择伺服电机和步进电机?主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。
供电电源是直流还是交流电源,或电池供电,电压范围。
据此以确定电机和配用驱动器或控制器的型号。
2,选择步进电机还是伺服电机系统?其实,选择什么样的电机应根据具体应用情况而定,各有其特点。
请见下表,自然明白。
3,如何配用步进电机驱动器?根据电机的电流,配用大于或等于此电流的驱动器。
如果需要低振动或高精度时,可配用细分型驱动器。
对于大转矩电机,尽可能用高电压型驱动器,以获得良好的高速性能。
4,2相和5相步进电机有何区别,如何选择?2相电机成本低,但在低速时的震动较大,高速时的力矩下降快。
5相电机则振动较小,高速性能好,比2相电机的速度高30~50%,可在部分场合取代伺服电机。
5,何时选用直流伺服系统,它和交流伺服有何区别?直流伺服电机分为有刷和无刷电机。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。
因此它可以用于对成本敏感的普通工业和民用场合。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。
控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。
电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。
大惯量,最高转动速度低,且随着功率增大而快速降低。
因而适合做低速平稳运行的应用。
6,使用电机时要注意的问题?上电运行前要作如下检查:1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大);2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线);3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。
步进电机的选型及计算方法

步进电机选型的计算方法步进电机选型表中有部分参数需要计算来得到。
但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。
一、驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。
下列图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。
●必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供应步进电机的脉冲数。
必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离距离电机旋转一周移动的距离×360 o步进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。
驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。
〔1〕自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。
自启动运行方式通常在转速较低的时候使用。
同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。
自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒]〔2〕加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后到达正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。
其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。
加/减速时间需要根据传送距离、速度和定位时间来计算。
在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。
加/减速运行方式下的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒]二、电机力矩的简单计算例如必要的电机力矩=〔负载力矩+加/减速力矩〕×安全系数●负载力矩的计算〔TL〕负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。
步进电机选择的详细计算过程

步进电机选择的详细计算过程步进电机选择的详细计算过程2011-07-25 00:13:59| 分类:默认分类|举报|字号订阅1,如何正确选择伺服电机和步进电机?主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。
供电电源是直流还是交流电源,或电池供电,电压范围。
据此以确定电机和配用驱动器或控制器的型号。
2,选择步进电机还是伺服电机系统?其实,选择什么样的电机应根据具体应用情况而定,各有其特点。
请见下表,自然明白。
可用于各种环境。
交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。
大惯量,最高转动速度低,且随着功率增大而快速降低。
因而适合做低速平稳运行的应用。
6,使用电机时要注意的问题?上电运行前要作如下检查:1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大);2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线);3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。
4)一定要搞清楚接地方法,还是采用浮空不接。
5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。
7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题?一般要考虑以下方面作检查:1)电机力矩是否足够大,能否带动负载,因此我们一般推荐用户选型时要选用力矩比实际需要大50%~100%的电机,因为步进电机不能过负载运行,哪怕是瞬间,都会造成失步,严重时停转或不规则原地反复动。
2)上位控制器来的输入走步脉冲的电流是否够大(一般要>10mA),以使光耦稳定导通,输入的频率是否过高,导致接收不到,如果上位控制器的输出电路是CMOS电路,则也要选用CMOS输入型的驱动器。
步进电机的选型及计算方法

步进电机的选型及计算方法步进电机选型的计算方法步进电机选型表中有部分参数需要计算来得到。
但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。
一、驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。
下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。
● 必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。
必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离 距离电机旋转× 360 o步一周移动的距离进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。
驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。
(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。
自启动运行方式通常在转速较低的时候使用。
同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。
自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒](2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。
其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。
加/减速时间需要根据传送距离、速度和定位时间来计算。
在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。
加/减速运行方式下的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]=必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒]二、电机力矩的简单计算示例必要的电机力矩=(负载力矩+加/减速力矩)×安全系数●负载力矩的计算(TL)负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。
步进电机选型的三种方法

电机选型—丝杆步进电机选型、电机插件使用方法目的:熟悉丝杆电机使用模型,掌握3种计算方式,并对其中原理进行分析,掌握电机基本参数和公式并且利用电机选型软件验证课程内容:已知:总负载m=20kg,速度V=0.1m/s,1610导程P=10mm,导轨摩擦系数为μ=0.11、扭矩匹配的三种方法方法一:J(惯量)=M(P/2π)^2=20kg*0.00000254=0.0000507kgm^2=0.507丝杆惯量J=1/8MD²=0.256总惯量=旋转惯量+直动惯量=0.507+0.256=0.8加速时间0.2sω=2πN/60=6.28*600/60=62.8rad/s角加速度β=ω/t=62.8rad/s/0.2s=314rad/s^2T加速=j*β=0.00008kgm^2*314rad/s^2=0.025NMf=μmg=0.1*20kg*10N/kg=20NT(匀速)=F*Pb/2π=20N*0.01M/2/3.14=0.032NMT(总)=T(匀速)+T(加速)=0.032NM+0.025NM=0.06NM 方法二:方法三:f=μmg=0.1*20kg*10N/kg=20NT(匀速)=F*Pb/2π=20N*0.01M/2/3.14=0.032NM T加速=5*T=0.16NM2、转速匹配转速N=V*60*1000/Pb=0.1m/s*60*1000/10mm=600r/min200-600rpm3、电机惯量匹配电机惯量J=0.00008kgm^2/20=0.000004kgm^2=0.04*10^-4课后作业:已知:总负载m=100kg,速度V=0.2m/s,导程Pb=?,计算所需步进电机参数。
步进电机选择的详细计算过程

步进电机选择的详细计算过程步进电机是一种简单易用的电机,广泛应用于各种自动化设备中,如打印机、数控机床等。
在选择步进电机时,需要考虑到一系列参数和计算过程,下面详细介绍步进电机的选择计算过程。
一、确定所需的步进电机参数:1. 负载参数:确定需要驱动的负载的最大转矩(T_load_max)和转动惯量(J_load);2.运动参数:确定需要的转速(N)和加速度(α);3. 系统参数:确定驱动系统的滞后比(Kd)和系统的惯量(J_sys)。
二、计算步进电机的额定参数:1. 额定转矩(T_rated):根据负载的最大转矩(T_load_max)和滞后比(Kd),计算得到额定转矩:T_rated = T_load_max / Kd2. 额定电流(I_rated):根据额定转矩(T_rated)和驱动系统的惯性(J_sys),计算得到额定电流:I_rated = (T_rated * α) / (J_sys * N)3. 电枢电阻(R_phase):根据额定电流(I_rated)和驱动电压(V_drive),计算得到电枢电阻:R_phase = V_drive / I_rated4. 惯性比(K_sys):根据转动惯量(J_load)和驱动系统的惯性(J_sys),计算得到惯性比:K_sys = J_load / J_sys5. 山形系数(K_dimp):根据滞后比(Kd)和惯性比(K_sys),计算得到山形系数:K_dimp = sqrt(1 + K_sys * Kd) / sqrt((K_sys^2 + 1) * (Kd^2 + 1))6. 开环支持的最大转速(N_max_open):根据驱动电压(V_drive)、电枢电阻(R_phase)和步进电机的电感(L_phase),计算得到开环支持的最大转速:N_max_open = V_drive / (2π * R_phase * L_phase)三、选择适合的步进电机:1. 步进角(θ_step):根据所需的转速(N)和步进电机的步进角(θ_step),选择合适的步进电机型号。
步进电机的选型及计算方法

步进电机的选型及计算方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March步进电机选型的计算方法步进电机选型表中有部分参数需要计算来得到。
但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。
一、驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。
下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。
●必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。
必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离距离电机旋转一周移动的距离×360 o步进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。
驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。
(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。
自启动运行方式通常在转速较低的时候使用。
同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。
自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]=必要脉冲数[脉冲]定位时间[秒](2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。
其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。
加/减速时间需要根据传送距离、速度和定位时间来计算。
在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。
加/减速运行方式下的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]=必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒]定位时间[秒]-加/减速时间[秒]二、电机力矩的简单计算示例必要的电机力矩=(负载力矩+加/减速力矩)×安全系数●负载力矩的计算(TL)负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。
步进电机选型的计算示例

步进电机选型的计算示例一、必要脉冲数和驱动脉冲数速度计算的示例下面给出的是一个3相步进电机必要脉冲数和驱动脉冲速度的计算示例。
这是一个实际应用例子,可以更好的理解电机选型的计算方法。
1.1 驱动滚轴丝杆如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟,则必要脉冲数和驱动脉冲速度的计算方法如下:必要脉冲数=10010×360°1.2°=3000[脉冲]如果采用自启动方式驱动1秒钟,则驱动脉冲速度应该这样计算:3000[Pulse]/1[sec]=3[kHz]但是,自启动速度不可能是5kHz,应该采用加/减速运行方式来驱动。
如果加/减速时间设置为定位时间的25%,启动脉冲速度为500[Hz],则计算方法如下:驱动脉冲速度[Hz]=3000[脉冲]-500[Hz]×0.25[秒]1[秒]-0.25[秒]=3.8 [kHz]如图所示:1.2驱动传动带如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟。
驱动轮的周长即旋转一圈移动的距离大约为50[mm]。
因此,所需要的必要脉冲数为:必要脉冲数=110050×360°1.2°=6600 [脉冲]所需参数同上例驱动滚轴丝杆,采用加/减速运行模式,则驱动脉冲速度为:驱动脉冲速度[Hz]=6600[脉冲]-500[Hz]×0.25[秒]1[秒]-0.25[秒]=8.7 [kHz]如图所示:二、负载力矩的计算示例(T L)下面给出的是一个3相步进电机负载力矩的计算示例。
这是一个实际应用例子,其中的数字公式有助于更好的理解电机选型的应用。
2.1滚轴丝杆驱动水平负载如下图,滚轴丝杆驱动水平负载,效率为90%,负载重量为40千克,则负载力矩的计算方法如下:T L=m·P B2πη×1i[kgf·cm]T L=40[kg]×1[cm]2π×0.9×11=7.07 [kgf·cm]2.2传送带驱动水平负载传送带驱动水平负载,效率为90%,驱动轮直径16毫米,负载重量是9千克,则负载力矩的计算方法如下:T L=D2×m ×1η×1i[kgf·cm]T L=1.6 [cm]2×9 [kg] ×10.9×11=8 [kgf·cm]2.3滚轴丝杆和减速器驱动水平负载如下图,滚轴丝杆螺距为5毫米,效率为90%,负载重量为250千克,则负载力矩的计算方法如下:T L=m·P B2πη×1i[kgf·cm]T L=250[kg]×0.5[cm]2π×0.9×110=2.21 [kgf·cm]这是水平方向负载的计算结果,如果是垂直方向的负载,则力矩应该是此结果的2倍,而且此结果仅包括负载力矩,电机的总负载还应该包括加/减速力矩,但是,计算中很难得到准确的负载惯性惯量,因此,为了解决这个问题,在实际计算负载力矩的时候,特别是自启动或需要迅速加/减速的情况,我们应该在此基础上再乘以一个安全系数。
步进电机选型方法

步进电机选型方法步进电机简介及选型方法如何选择合适的步进电机1. 负载分类:(1)Tf力矩负载:Tf = GrG 重物重量r 半径(2)TJ惯性负载:J = M(R12+R22)/ 32 (Kgcm)M:质量R1:外径R2:内径TJ = Jdw/dt dw/dt 为角加速度2.力矩曲线图的说明力矩曲线图是步进电机输出特性的重要表现,以下是我们对其中关键词语的解释。
步进电机简介及选型方法说明:1. 工作频率点:表示步进电机在该点的转速值。
单位:Hzn=Θ*Hz / (360*D)n 转/秒Hz 该点的频率值D 电路的细分值,Θ步进电机的步距角例:1.8步进电机,在1/2细分驱动的情况下(即每步0.9)500Hz 时,其速度是1.25转/秒2. 起动区域:步进电机可以直接起动或停止的区域。
3. 运行区域:在这个区域里,电机不能直接运行,必须先要在起动区域内起动,然后通过加速的方式,才能到达该工作区域内。
同样,在该区域内,电机也不能直接制动,否则就会造成失步,必须通过减速的方式到起动区域内,在进行制动。
4. 最大起动频率点:步进电机在空载情况下,最大的直接起动速度点。
5. 最大运行频率点:步进电机在空载情况下,可以达到的最大的运行速度点。
6. 起动力矩:步进电机在特定的工作频率点下,直接起动可带动的最大力矩负载值。
7. 运行力矩:步进电机在特定的工作频率点下,运行中可带动的最大力矩负载值。
由于运动惯性的原因,所以,运行力矩要比起动力矩大。
3 加速和减速运动的控制当一个系统的工作频率点在力矩曲线图的运行区域内时,如何在最短的时间内加速,减速就成了关键。
如下图示,步进电机的动态力矩特性一般在低速时为水平直线状,在高速时,由于电感的影响,很快下滑。
步进电机简介及选型方法(1)直线加速运动已知电机负载为TL,要从F0 在最短时间tr内加速到F1,求tr 和加速脉频率F(t)A.确定TJ,一般TJ =70% Tm。
步进电机选型的计算示例

步进电机选型的计算示例步进电机是一种将电脉冲转化为机械角度的装置,广泛应用于工业自动化领域。
选型步进电机时,需要考虑以下几个方面的因素:1.载荷特性:首先需要确定所需驱动的载荷特性,包括转动惯量、负载扭矩和转速等。
这些参数会决定步进电机的尺寸大小、型号和驱动电流等。
2.加速度和减速度:根据需要的加速度和减速度来选择步进电机。
通常情况下,较大的转动惯量需要更大的电机和更高的驱动电流,以实现较快的加速和减速。
3.驱动方式:根据具体应用的要求来选择驱动方式,主要有全步进驱动和微步进驱动两种。
全步进驱动具有较大的转动角度,而微步进驱动可以实现更精细的位置调整。
4.电磁噪声:步进电机在工作时会产生电磁噪声,需要考虑噪声水平是否符合所需应用的要求。
下面以一个实际应用的计算示例来说明步进电机的选型过程。
假设需要选型的应用为驱动一个转动惯量为0.5 kg·m²的载荷,要求达到最大转速为300 RPM,加速度为5000 RPM/s,减速度为8000RPM/s。
根据这些参数,我们可以按照以下步骤进行步进电机的选型计算:1. 确定负载扭矩:载荷的转动惯量可以根据实际情况或者相关设计手册得到。
假设转动惯量为0.5 kg·m²,可根据公式T=Jα 计算所需的平均扭矩。
其中,T为负载扭矩,J为转动惯量,α为加速度。
根据给定的加速度为5000 RPM/s,可得到平均扭矩T=Jα=0.5kg·m²×5000RPM/s=2500 N·m。
2.确定最大扭矩:最大扭矩一般是平均扭矩的2-3倍,以确保电机在加速和减速时能够提供足够的动力。
假设最大扭矩为平均扭矩的2倍,即最大扭矩为5000N·m。
3.确定转速范围:根据要求的最大转速为300RPM,可以根据实际情况选择合适的步进电机型号。
一般来说,步进电机的最大转速会在数据手册中给出。
4.确定驱动电流:驱动电流的大小与所需的扭矩和转速有关。
步进电机选择的详细计算过程

1,如何正确选择伺服电机和步进电机主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。
供电电源是直流还是交流电源,或电池供电,电压范围。
据此以确定电机和配用驱动器或控制器的型号。
2,选择步进电机还是伺服电机系统其实,选择什么样的电机应根据具体应用情况而定,各有其特点。
请见下表,自然明白。
步进电机系统伺服电机系统力矩范围中小力矩(一般在20Nm以下)小中大,全范围速度范围低(一般在2000RPM以下,大力矩电机小于1000RPM)高(可达5000RPM),直流伺服电机更可达1~2万转/分控制方式主要是位置控制多样化智能化的控制方式,位置/转速/转矩方式平滑性低速时有振动(但用细分型驱动器则可明显改善)好,运行平滑精度一般较低,细分型驱动时较高高(具体要看反馈装置的分辨率)矩频特性高速时,力矩下降快力矩特性好,特性较硬过载特性过载时会失步可3~10倍过载(短时)反馈方式大多数为开环控制,也可接编码器,防止失步闭环方式,编码器反馈编码器类型 - 光电型旋转编码器(增量型/绝对值型),旋转变压器型响应速度一般快耐振动好一般(旋转变压器型可耐振动)温升运行温度高一般维护性基本可以免维护较好价格低高3,如何配用步进电机驱动器根据电机的电流,配用大于或等于此电流的驱动器。
如果需要低振动或高精度时,可配用细分型驱动器。
对于大转矩电机,尽可能用高电压型驱动器,以获得良好的高速性能。
4,2相和5相步进电机有何区别,如何选择2相电机成本低,但在低速时的震动较大,高速时的力矩下降快。
5相电机则振动较小,高速性能好,比2相电机的速度高30~50%,可在部分场合取代伺服电机。
5,何时选用直流伺服系统,它和交流伺服有何区别直流伺服电机分为有刷和无刷电机。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。
非标设备设计之步进电机选型计算

4. 步进电动机的机座号:主要有35、39、42、57、86、110等 5. 步进电动机构造:由转子(转子铁芯、永磁体、转轴、滚珠 轴承),定子(绕组、定子铁芯),前后端盖等组成。最典型两相 混合式步进电机的定子有8个大齿,40个小齿,转子有50个小齿; 三相电机的定子有9个大齿,45个小齿,转子有50个小齿。
2. 电机定位精度的选择
机械传动比确定后,可根据控制系统的定位精度选择步进电机 的步距角及驱动器的细分等级。一般选电机的一个步距角对应 于系统定位精度的1/2 或更小。 注意:当细分等级大于1/4后,步距角的精度不能保证。 伺服电机编码器的分辨率选择:分辨率要比定位精度高一个数量
级。
3. 电机力矩选择
电机控制原理图
1. 恒流驱动
恒流控制的基本思想是通过控制主 电路中MOSFET的导通时间,即调节 MOSFET触发信号的脉冲宽度,来达 到控制输出驱动电压进而控制电机 绕组电流的目的。
H桥恒频斩波恒相流驱动电路原理框图
电流PWM细分驱动电路示意图
2. 单极性驱动
单极性驱动原理图
3. 双极性驱动
双极性驱动原理图
的力矩。 ④ 步距角:对应一个脉冲信号,电机转子转过的角位移。 ⑤ 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩。 ⑥ 失步:电机运转时运转的步数,不等于理论上的步数。 ⑦ 失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在
失调角,由失调角产生的误差,采用细分驱动是不能解决的。 ⑧ 运行矩频特性:电机在某种测试条件下测得运行中输出力矩与
步进电动机微步驱动电路基本结构框图
步距角:控制系统每发一个步进脉冲信号,电机所转动的角度。
电机固有步距角 所用驱动器类型及工作状态
步进电机的选型及计算方法

步进电机的选型及计算方法————————————————————————————————作者:————————————————————————————————日期:步进电机选型的计算方法步进电机选型表中有部分参数需要计算来得到。
但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。
一、驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。
下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。
●必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。
必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离距离电机旋转一周移动的距离×360 o步进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。
驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。
(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。
自启动运行方式通常在转速较低的时候使用。
同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。
自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒](2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。
其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。
加/减速时间需要根据传送距离、速度和定位时间来计算。
在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。
加/减速运行方式下的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒]二、电机力矩的简单计算示例必要的电机力矩=(负载力矩+加/减速力矩)×安全系数●负载力矩的计算(TL)负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。
最全的步进电机选型计算过程

最全的步进电机选型计算过程1.驱动模式的选择:驱动模式是指如何将传送装置的运动转换为步进电机的旋转,下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于此驱动模式图。
2.必要脉冲数的计算:必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。
必要脉冲数按下面公式计算:步距角移动的距离步进电机旋转一周物体物体移动的总距离必要脉冲数︒=360x3.驱动脉冲速度的计算:驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数,驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。
(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。
自启动运行方式通常在转速较低的时候使用,同时由于在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。
[][][]秒定位时间必要脉冲数驱动脉冲速度Hz Hz =(2)加/减速运行方式加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式,其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。
加/减速时间需要根据传送距离、速度和定位时间来计算,在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。
[][][][][]秒减速时间加秒定位时间秒减速时间加起始脉冲速度必要脉冲数驱动脉冲速度/-/x -Hz Hz =4.一般步进电机力矩简单计算:电机力矩=(摩擦负载力矩T L +启动时的惯性负载力矩T a )×安全系数。
步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。
静力矩选择的依据是电机工作的负载,而负载可分为启动时的惯性负载和恒速运行时的摩擦负载两种,自启动运行方式启动(一般指由低速启动)时的启动时的惯性负载力矩和恒速运行时的摩擦负载力矩均要考虑,加速起动时主要考虑启动时的惯性负载力矩,恒速运行进只要考虑摩擦负载力矩。
步进电机选型计算方法

步进电机选型计算方法步进电机选型表中有部分参数需要计算来得到。
但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。
◎驱动模式的选择驱动模式是指如何将传送装置的运动转换为步进电机的旋转。
下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。
●必要脉冲数的计算必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。
必要脉冲数按下面公式计算:必要脉冲数=物体移动的距离距离电机旋转一周移动的距离×360 o步进角●驱动脉冲速度的计算驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。
驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。
(1)自启动运行方式自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。
自启动运行方式通常在转速较低的时候使用。
同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。
自启动运行方式的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒](2)加/减速运行方式步进电机步进电机驱动器无刷电机无刷电机驱动器加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。
其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。
加/减速时间需要根据传送距离、速度和定位时间来计算。
在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。
加/减速运行方式下的驱动脉冲速度计算方法如下:驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒]◎电机力矩的简单计算示例必要的电机力矩=(负载力矩+加/减速力矩)×安全系数●负载力矩的计算(T L)负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。
86系列步进电机的选用计算方法

步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。
每输入一个脉冲电机转轴步进一个步距角增量。
电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲频率。
步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。
步进电机惯量低、定位精度高、无累积误差、控制简单等特点。
广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。
选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。
而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可*。
在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。
一般地说最大静力矩Mjmax大的电机,负载力矩大。
选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。
在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。
但细分只能改变其分辨率,不改变其精度。
精度是由电机的固有特性所决定。
选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之最高速连续工作频率能满足机床快速移动的需要。
选择步进电机需要进行以下计算:(1)计算齿轮的减速比根据所要求脉冲当量,齿轮减速比i计算如下:i=(φ.S)/(360.Δ) (1-1) 式中φ ---步进电机的步距角(o/脉冲)S ---丝杆螺距(mm)Δ---(mm/脉冲)(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。
Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2] (1-2)式中Jt ---折算至电机轴上的惯量(Kg.cm.s2)J1、J2 ---齿轮惯量(Kg.cm.s2)Js ----丝杆惯量(Kg.cm.s2) W---工作台重量(N)S ---丝杆螺距(cm)(3)计算电机输出的总力矩MM=Ma+Mf+Mt (1-3)Ma=(Jm+Jt).n/T×1.02×10ˉ2 (1-4)式中Ma ---电机启动加速力矩(N.m)Jm、Jt---电机自身惯量与负载惯量(Kg.cm.s2)n---电机所需达到的转速(r/min)T---电机升速时间(s)Mf=(u.W.s)/(2πηi)×10ˉ2 (1-5)Mf---导轨摩擦折算至电机的转矩(N.m)u---摩擦系数η---传递效率Mt=(Pt.s)/(2πηi)×10ˉ2 (1-6)Mt---切削力折算至电机力矩(N.m)Pt---最大切削力(N)(4)负载起动频率估算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
步进电机选型计算实例
在进行步进电机选型计算之前,我们首先需要了解步进电机的相关参
数和应用要求。
步进电机是一种将输入的电脉冲信号转换为角位移的电动机,广泛应用于精确定位控制、传动系统、自动化设备等方面。
步进电机
的选型需要考虑以下几个方面的因素:
1.扭矩需求:根据应用的负载特点和工作条件,需要确定步进电机的
最大持续扭矩和峰值扭矩。
2.步进角和细分精度:步进电机的步进角决定了电机转动一次所需的
脉冲数量,而细分精度则是决定了电机运动的平滑程度和定位精度。
3.载荷转动惯量:根据应用中的转动负载惯量,选择适当的电机惯量
以保证系统的运动平稳性和响应速度。
4.工作环境条件:包括温度、湿度、防护等级等因素,需要选择符合
工作环境要求的电机。
下面以自动化设备上的送料机构为例,进行步进电机选型计算实例。
1.确定扭矩需求:
根据送料机构的负载情况和工作条件,决定了步进电机的最大持续扭
矩为2Nm和峰值扭矩为4Nm。
2.确定步进角和细分精度:
假设步进电机的步进角为1.8°,即每转一圈需要200步。
而细分精
度的选择需根据自动化设备对定位精度的要求,通常选择细分精度为全步、半步或更高。
3.确定载荷转动惯量:
送料机构的负载为一定质量的物料,需根据实际情况计算转动负载的
惯量,并选择合适的电机惯量以保证系统的平稳运动。
4.确定工作环境条件:
对于自动化设备,通常需要在温度范围内工作,因此选用具有工业级
防护等级的电机,并满足相应的温度和湿度要求。
综上所述,以此为例,我们可以根据具体的扭矩需求、步进角和细分
精度、载荷转动惯量以及工作环境条件等因素,结合步进电机的技术规格
参数,进行适合的步进电机选型。
具体的选型和计算过程和方法可以参考
电机选型手册、厂家技术资料和相关计算软件。
步进电机选型的计算方法并不复杂,但对于工程师而言,需要具备一
定的电机知识和工程经验,以确保选用的步进电机能够满足实际应用要求。
在进行步进电机选型计算时,还需要综合考虑功率、效率、可靠性和成本
等因素,以便选出最优的步进电机解决方案。
同时,根据实际需要,可以
选择具有闭环控制、高分辨率编码器和通信接口等功能的智能步进电机,
以提高系统的运动控制能力和精度。
总之,步进电机选型是一个综合性的工程问题,需要结合具体的应用
需求和技术要求进行计算和选择,以确保系统的运动控制和定位精度。
在
实际应用中,还需要考虑步进电机的驱动器和控制系统的匹配,以实现高
效稳定的步进电机驱动。