Alkaline Activation of Metakaolin_ Effect of Calcium Hydroxide in the Products of Reaction

合集下载

粉煤灰地聚合物材料性能及应用的研究进展

粉煤灰地聚合物材料性能及应用的研究进展

粉煤灰地聚合物材料性能及应用的研究进展俞华栋【摘要】粉煤灰地聚合物在微观结构上与传统偏高岭土基地聚合物相似,但制备成本大幅降低,且某些性能甚至还会超越偏高岭土基地聚合物,因此受到国内外学者的高度关注.针对粉煤灰基地聚合物反应机理,着重介绍了粉煤灰特性、激发剂及水组分含量对所得地聚合物性能的影响,阐述了粉煤灰地聚合物在处置利用固废中的应用.【期刊名称】《山西建筑》【年(卷),期】2018(044)016【总页数】3页(P81-83)【关键词】粉煤灰;地聚合物;性能【作者】俞华栋【作者单位】浙江天地环保科技有限公司,浙江杭州 310018【正文语种】中文【中图分类】TU502地质聚合物(Geopolymer,简称地聚物)是一类新型的无机胶凝材料,主要通过含铝硅酸盐的矿物在碱性环境中反应生成无机聚合物[1]。

地聚合物拥有无规则的三维网状结构,其主体由硅氧四面体、铝氧四面体构成,空隙中填充了碱金属离子。

其链接结构以离子键和共价键为主,范德华力、氢键为辅,同时具有高分子材料、水泥及陶瓷材料的结构特点。

因此地聚物可呈现出良好的力学性能、耐久性、耐化学腐蚀、耐高温和环境友好等优点[2],在耐火隔热材料、建筑材料、重金属固化和核废料固封等方面得到广泛的应用[3,4]。

与传统的胶凝材料相比,可以用于制备地聚合物的原料包容度高。

富含硅铝成分的矿物、固废、尾矿,如粉煤灰、矿渣和煅烧高岭土等均用作制备地聚合物的原材料。

此外,其制备工艺简单,制备过程的能耗低。

在常压条件下,通过使用一些激发剂还可促使其强度快速发展,整个环节的碳排放量仅为传统硅酸盐水泥的10%~20%,因此,地聚物是一类优秀的绿色建筑材料[2]。

1 地聚合物制备出于绿色环保的考虑,现阶段制备地聚合物的原料为多种含铝硅酸盐矿物和工业固体废弃物。

在碱激发条件下,一些典型矿物的活性顺序按以下顺序依次增大:高岭土、火山灰、粉煤灰、炉渣、沸石、偏高岭土[5]。

由于粉煤灰(含有SiO2和Al2O3)与天然铝硅原材料在组成及结构上的相似性,其成为制备地聚合物一种原材料。

β2受体激动剂激活 na-k-atp酶分子机制

β2受体激动剂激活 na-k-atp酶分子机制

β2受体激动剂激活na-k-atp酶分子机制
β2受体激动剂是一类能够激活β2肾上腺素受体的药物,这些受体广泛分布于人体多个组织和器官,包括肺部、心脏和血管。

β2肾上腺素受体属于G蛋白偶联受体(GPCRs)家族,当β2受体被激动剂激活时,会触发一系列细胞内信号传导过程。

在激活β2受体后,G蛋白的α亚单位会交换结合的GDP为GTP,导致G蛋白的α和βγ亚单位解离。

G蛋白的α亚单位(Gαs)随后激活腺苷酸环化酶(adenylyl cyclase, AC),后者将细胞质中的ATP转化为环磷酸腺苷(cAMP)。

cAMP作为二级信使,会与细胞内的蛋白激酶A(protein kinase A, PKA)结合,导致PKA的活性增加。

激活的PKA 可以磷酸化多种靶蛋白,其中就包括细胞膜上的Na+-K+-ATP酶(也称为钠钾泵)。

Na+-K+-ATP酶的功能是利用ATP水解产生的能量,将细胞内的钠离子(Na+)泵出细胞外,同时将细胞外的钾离子(K+)泵入细胞内,维持细胞内外离子的浓度梯度。

PKA 对Na+-K+-ATP酶的磷酸化通常发生在酶的α亚单位上,这种磷酸化可以增加Na+-K+-ATP酶的活性,从而促进更多的钠离子排出和钾离子摄入。

总结来说,β2受体激动剂通过激活β2肾上腺素受体,
触发G蛋白偶联受体的信号传导途径,最终通过增加cAMP 的水平激活蛋白激酶A,导致Na+-K+-ATP酶的磷酸化和活性增强。

这一过程对于调节细胞内钠和钾离子的平衡以及维持细胞功能至关重要。

天然药物化学二级结构汇总

天然药物化学二级结构汇总

天然药物化学二级结构汇总
以下是一些常见的天然药物化合物的二级结构:
1. 阿司匹林(aspirin):它是一种非处方药,常用于缓解疼痛、发热和消炎。

阿司匹林的二级结构中包含苯环和乙酰基基团。

2. 奎宁(quinine):它是一种从树皮提取的天然产物,用于治疗疟疾和肌肉痉挛。

奎宁的二级结构中包含喹啉环和甲氧基基团。

3. 阿托伐他汀(atorvastatin):它是一种用于降低胆固醇的处
方药,常用于治疗高胆固醇和心血管疾病。

阿托伐他汀的二级结构中包含吡唑环和苄酸基团。

4. 紫杉醇(paclitaxel):它是一种从紫杉树提取的天然产物,用于治疗多种癌症,如乳腺癌和卵巢癌。

紫杉醇的二级结构中包含环丙孕烷环和酪氨酸基团。

5. 可卡因(cocaine):它是一种来源于古柯植物的兴奋剂和
局部麻醉剂。

可卡因的二级结构中包含苯环和甲基基团。

以上只是一些常见的天然药物化合物的二级结构示例,还有很多其他天然药物也具有特定的二级结构,具体的结构可以通过化学分析和研究获得。

水泥水化反应与混凝土自收缩的动力学模型_阎培渝

水泥水化反应与混凝土自收缩的动力学模型_阎培渝

水泥水化反应与混凝土自收缩的动力学模型①阎培渝,郑 峰(清华大学土木工程系,北京100084)摘 要:基于水泥的多组分和多尺度水化反应的原理,分别建立了水泥的水化反应和混凝土自收缩的动力学模型。

这2个模型均采用两阶段的经验公式,分别用于模拟水化反应和自收缩的快速发展阶段与平稳变化阶段。

实测数据检验结果表明,这2个模型可以用于模拟硅酸盐水泥的等温水化放热曲线,以及用硅酸盐水泥配制的混凝土的自收缩发展过程。

关键词:动力学模型;自收缩;水化反应;水泥;混凝土中图分类号:T U528 文献标识码:A 文章编号:1672-7029(2006)01-0056-04Dynamic models of hydration reaction of Portland cement andautogenous shrinkage of concreteY AN Pei2yu ZHE NG Feng(Department of Civil Engineering,Tsinghua University,Beijing100084,China)Abstract:The dynamic m odels of hydration reaction of cement and autogenous shrinkage of concrete were constructed respectively based on the multi-com position and multi-scale hydration reaction of cement1In both m odels tw o-step regressive equations are adopted to simulate the step of quick development and the step of even change of hydration re2 action and autogenous shrinkage1The experimental results show that these m odels can express precisely the is otherm hydration heat emission curve of P ortland cement and the autogenous shrinkage process of concrete prepared with P ort2 land cement1K ey w ords:dynamic m odel;autogenous shrinkage;hydration reaction;cement;concrete 高强高性能混凝土在现代土木工程中的应用越来越广泛。

神经科学热门产品6:钾离子通道活化剂

神经科学热门产品6:钾离子通道活化剂
SKA-31
M-215
Synthetic
Kir3.2, Kir3.4 channels
VU0529331
<a href="/search.html?keyword=V-155" data-sheets-hyperlink="{" hyperlinktype":null} data-sheet-href="/search.html?keyword=V-155" style="box-sizing: border-box; background: transparent; -webkit-tap-highlight-color: transparent; color: rgb(53, 152, 219);">V-155
电压门控离子通道活化剂
靶点通道
品名
货号
来源
KCNQ Channel
2,5-dimethylcelecoxib
I-130
synthetic
KV11.1 and KCNQ2 K+ Channels
NS-1643
N-190
synthetic
KCNQ Channels
QO-40
R-100
synthetic
KV7.2,KV7.3, KV7.4 KCNQ K+ channels
Synthetic
神经科学热门产品6:钾离子通道活化剂
钾离子通道是四聚体的整合膜蛋白,形成水孔,K+可以通过水孔流动,并在许多生物体中发现。在神经元中,K+通道参与维持静息电位、动作电位后的膜复极、控制重复放电的时间。K+通道是生物体内最广泛的离子转运分子,在人类体内有70多个基因编码不同的K+通道。

自噬的抑制

自噬的抑制

自噬的抑制2009-06-07 18:33:44 来源:未知根据自噬形成的过程,自噬的抑制也分为不同的阶段,包括自噬的起始阶段,自噬泡和溶酶体融合阶段,以及溶酶体内的降解阶段。

目前常用的一些抑制药物如下:(1)对自噬体形成的抑制:主要是PI3K通路的抑制剂(如3-MA, Wortmannin,LY294002等),这些药物均可干扰或阻断自噬体形成。

3-甲基腺嘌呤(3-Methyladenine, 3-MA)是磷脂酰肌醇3激酶的抑制剂,可特异性阻断Autophagy中自噬体的形成,被广泛用作Autophagy的抑制剂。

另外,渥曼青霉素(Wortmannin)、LY294002 也可用作Autophagy的抑制剂。

(2)对自噬体与溶酶体融合的抑制:对自噬体与溶酶体融合过程进行阻断也能起着抑制自噬的作用,这些药物有巴伐洛霉素A1、长春碱、诺考达唑等。

巴伐洛霉素A1(Bafilomycin A1)是一种来源于灰色链霉菌的大环内酯类抗生素,分子式C35H58O9,是空泡型H+-ATP酶的特异性抑制剂,具有抗菌、抗真菌、抗肿瘤等作用。

当突触小泡经历胞外分泌时,巴伐洛霉素A1可以避免小泡重新酸化。

有研究表明,在已发生自噬的肿瘤细胞中加入巴伐洛霉素A1,可使蛋白降解被抑制,自噬体增多而自噬溶酶体数目减少,并且自噬体中的酸性磷酸酶的活性也明显降低,从而证明其阻断了自噬体与溶酶体的融合过程。

这种阻断是可逆的,在去除了药物作用后,自噬体仍可以与溶酶体融合形成自噬溶酶体,继续自噬进程。

(3)对溶酶体降解的抑制: 自噬体与溶酶体融合后最终被溶酶体中的水解酶水解,它首先经过囊泡酸化,达到所需的PH值后经多种蛋白酶作用使囊内容物降解,降解产物在细胞内再循环利用。

对溶酶体的降解进行抑制,使得被降解的囊泡内容物大量蓄积于溶酶体内,而不能释放出来进入细胞内再循环利用,这也同样起着抑制自噬的作用。

因此,蛋白酶抑制剂,如E64d、Pepstatin A等,在抑制溶酶体降解的过程中发挥着自噬抑制剂的作用。

碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能

碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能

第42卷第6期2023年6月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETYVol.42㊀No.6June,2023碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能刘㊀刚1,2,丁明巍1,2,刘金军2,万惠文1,薛永杰1,蹇守卫1,2(1.武汉理工大学硅酸盐建筑材料国家重点实验室,武汉㊀430070;2.武汉理工大学材料科学与工程学院,武汉㊀430070)摘要:通过改变矿粉㊁粉煤灰㊁偏高岭土的配合比,用复配后的水玻璃进行碱激发,制备三元地聚物,测试了三元地聚物凝结时间以及抗折㊁抗压强度㊂利用XRD㊁SEM㊁EDS及DTG研究硬化浆体中水化产物的形貌和成分,并对水化过程进行分析㊂结果表明,该三元地聚物是由原材料在碱激发水化作用下生成的以水化硅酸钙(C-S-H)㊁水化硅铝酸钙(C-A-S-H)和水化硅铝酸钠(N-A-S-H)凝胶为主的复合胶凝材料㊂矿粉掺量越高,新拌浆体凝结时间越短,水化产物中钙系凝胶越多,试件强度越高㊂矿粉含量为10%㊁30%㊁50%㊁70%㊁90%(质量分数)的5组试件3d抗压强度分别为2.1㊁14.1㊁24.2㊁29.7㊁37.9MPa㊂养护龄期越长,反应越完全,水化产物越多,试件抗压强度越高㊂当矿粉含量为50%时,三元地聚物1㊁3㊁7㊁28d抗压强度分别为12.3㊁24.2㊁27.3㊁36.8MPa㊂当矿粉含量为90%㊁养护龄期为28d时,试件抗折㊁抗压强度最高,分别为12.0㊁52.0MPa㊂该体系较短的凝结时间使其在道路修补材料及3D打印等领域有着较为广阔的应用前景㊂关键词:矿粉;粉煤灰;地聚物;强度;微观形貌;水化过程中图分类号:TU528㊀㊀文献标志码:A㊀㊀文章编号:1001-1625(2023)06-2106-09 Hydration Behavior and Mechanical Properties ofAlkaline Excited Slag-Fly Ash-Metakaolin GeopolymerLIU Gang1,2,DING Mingwei1,2,LIU Jinjun2,WAN Huiwen1,XUE Yongjie1,JIAN Shouwei1,2(1.State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan430070,China;2.School of Materials Science and Engineering,Wuhan University of Technology,Wuhan430070,China) Abstract:By changing the ratio of slag,fly ash and metakaolin,the ternary geopolymer was prepared by alkali excitation with the compound sodium silicate.The setting time,flexural and compressive strength of ternary geopolymer were tested. XRD,SEM,EDS and DTG were used to study the morphology and composition of hydration products in the hardened paste,and the hydration process was analyzed.The results show that the ternary geopolymer is composed of calcium silicate hydrate(C-S-H),calcium aluminate silicate hydrate(C-A-S-H)and sodium aluminate silicate hydrate(N-A-S-H)gels. The higher the slag content is,the shorter the setting time of newly mixed slurry is,the more calcium gel in the hydration products is,and the higher the strength of specimen is.The3d compressive strength of5groups of specimens with slag content of10%,30%,50%,70%,90%(mass fraction)is2.1,14.1,24.2,29.7,37.9MPa,respectively.The longer the curing period is,the more complete the reaction is,the more hydration products are,and the higher the strength of specimen is.When the slag content is50%,the compressive strength of ternary geopolymer at1,3,7,28d is12.3, 24.2,27.3,36.8MPa,respectively.When the slag content is90%and the curing age is28d,the flexural and compressive strength of specimen are the highest,which are12.0,52.0MPa,respectively.The short setting time of the system makes it have a broad application prospect in the field of road repair materials and3D printing.Key words:slag;fly ash;geopolymer;strength;microstructure;hydration process收稿日期:2023-02-19;修订日期:2023-03-27基金项目:海南省科技计划三亚崖州湾科技城联合项目(520LH016);湖北省科学技术厅重点研发计划(2021BCA126)作者简介:刘㊀刚(1981 ),男,教授㊂主要从事道路新材料研发㊁固废循环利用方面的研究㊂E-mail:liug@㊀第6期刘㊀刚等:碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能2107 0㊀引㊀言随着国家基础建设不断发展,如今水泥混凝土行业需要向绿色环保方向发展,解决由生产成本所带来的自然资源枯竭㊁能源消耗㊁温室气体排放等各种问题,以实现可循环发展目标[1]㊂相对于水泥基复合材料,完全由工业固废组成的复合材料更有望实现可持续发展,而地聚物被认为是替代水泥基复合材料的最佳选择㊂地聚物是一种由硅铝原料(如赤泥㊁粉煤灰㊁偏高岭土㊁炉渣㊁稻壳和玻璃废料)通过碱㊁酸或盐类激发而得的无机聚合物㊂与水泥相比,地聚物生产所需能耗更低,产生二氧化碳更少,并且可以减少自然资源的使用[2]㊂由于地聚物具有材料价格低廉㊁耐久性优异㊁机械性能好㊁耐酸性强㊁耐高温好等优点,近年来对于地聚物的研究越来越多㊂Barbhuiya等[3]发现由70%(质量分数)粉煤灰和30%(质量分数)偏高岭土组成的地聚物比仅由粉煤灰组成的地聚物具有更高的抗压强度,且增加碱激发剂的模数可以使粉煤灰反应更完全,地聚物微观结构孔隙更少㊂Kim等[4]探究了不同Si/Al摩尔比对粉煤灰地聚物强度的影响,发现了一种通过原料中无定形物质含量和碱激发剂掺量推导地聚物抗压强度发展趋势的方法㊂Yuan等[5]探究了3D打印矿粉-粉煤灰地聚物的影响因素,发现提高砂胶比㊁降低粉煤灰/矿粉比或使用低模数的碱激发剂均会降低地聚物的可挤出性和可建造性㊂Wan等[6]通过加入硅粉改变Si/Al摩尔比,探究了不同Si/Al摩尔比偏高岭土地聚物聚合过程中Al和Si的溶解速率,结果显示,溶解速率随着Si/Al摩尔比增加而增加,说明可溶性硅酸盐可以加速铝酸盐单体聚合,在Si/Al摩尔比为2ʒ1时,聚合速率达到最大㊂目前对二元地聚物体系研究较多,多为不同因素对地聚物力学性能影响的研究,以及地聚物其他基本性能的探究,但对多元地聚物体系的水化机理尚未厘清㊂所以本文结合矿粉-粉煤灰地聚物体系与粉煤灰-偏高岭土地聚物体系,以矿粉-粉煤灰-偏高岭土三元地聚物体系作为研究对象,通过矿粉水化提供早期强度,用粉煤灰来改善体系的流动度,利用偏高岭土的无钙特点来中和由矿粉钙含量过高导致的凝结时间过短和后期开裂问题㊂分析不同配合比及养护龄期对三元地聚物性能的影响,探究具有更高性能的地聚物的配合比,并结合微观形貌探究其水化过程,研究结果可为地聚物应用于3D打印或道路修补材料领域提供理论依据㊂1㊀实㊀验1.1㊀原材料原材料:S95级矿粉㊁偏高岭土粉㊁粉煤灰㊁氢氧化钠粉末(分析纯)㊁液体硅酸钠(模数为2.23)㊂矿粉㊁偏高岭土㊁粉煤灰均来自河南恒源新材料有限公司,其化学成分如表1所示㊂选用聚羧酸高效减水剂(SPC)㊁流变剂羟丙基甲基纤维素(HPMC)作为掺合料㊂水玻璃模数为1.5,由模数为2.23的硅酸钠溶液和氢氧化钠粉末配制而成㊂表1㊀原材料的化学成分Table1㊀Chemical composition of raw materialsMaterial Mass fraction/%SiO2Al2O3Fe2O3CaO MgO SO3TiO2Loss Slag32.915.4 37.010.50.1 0.8 Fly ash45.124.2 5.6 2.1 2.8 Metakaolin55.742.50.8 1.01.2㊀配合比设计通过调整矿粉㊁偏高岭土㊁粉煤灰的比例,加入SPC和HPMC,采用碱性激发剂激发并制备不同配合比的地聚物砂浆㊂地聚物砂浆配合比如表2所示㊂按表2所示配合比将各原材料混合均匀,然后将新拌浆体装入40mmˑ40mmˑ160mm的铸铁模具中,放入标准养护箱中养护24h后,取出模具并脱模,将成型的试件放入标准养护箱内继续养护至相应龄期,取1㊁3㊁7㊁28d龄期的试件进行力学性能测试㊂2108㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷表2㊀地聚物砂浆配合比Table 2㊀Mix proportion of geopolymer mortarGroup Slag mass fraction /%Fly ash-metakaolin (1ʒ1)mass fraction /%Alkali dosage (Na 2O mass fraction)/%Water-binder ratio Admixture mass fraction /%HPMC SPC Sand-binder ratio K1109040.336111K2307040.332111K3505040.332111K4703040.316111K5901040.3121111.3㊀测试方法按照‘建筑砂浆基本性能试验方法标准“(JGJ /T 70 2009),采用JJ-5型水泥胶砂搅拌机进行搅拌,然后测试新拌浆体的凝结时间㊂按照‘水泥胶砂强度检验方法(ISO 法)“(GB /T 17671 2021),采用万能压力试验机进行力学性能测试㊂采用X 射线衍射仪对样品进行物相分析,采用扫描电子显微镜观察样品微观形貌,采用能谱仪测定样品的元素及含量,使用热重分析仪进行热重测试㊂2㊀结果与讨论2.1㊀新拌浆体凝结时间图1㊀地聚物砂浆的凝结时间Fig.1㊀Setting time of geopolymer mortar 地聚物砂浆的凝结时间如图1所示,由图1可以清晰地看出,由K1至K5,随着矿粉含量提升,粉煤灰㊁偏高岭土掺量减少,地聚物砂浆的凝结时间呈下降趋势,分别为63㊁44㊁38㊁30㊁24min,这与其他学者[7]的研究结论一致㊂矿粉中的CaO 可以与拌合水反应放热,使反应环境温度升高,同时水量减少会引起环境碱度升高㊂艾纯志等[8]指出提高体系碱度和温度均会对碱激发胶凝材料的反应起到促进作用㊂王红等[9]指出掺入矿粉会使浆体流动性降低,掺入的粉煤灰含量大于矿粉含量时会使浆体流动性提高㊂而本文中,随着矿粉含量增加,粉煤灰含量降低,浆体流动度下降,凝结时间变短,与上述文献结果一致㊂K1~K4的凝结时间位于30~65min,适合应用于3D 打印或道路修补㊂由于K5的凝结时间较短,低于30min,在工程实际中应用难度较大㊂2.2㊀力学性能地聚物试件抗折㊁抗压强度与养护龄期之间的关系分别如图2㊁图3所示㊂图2㊀地聚物试件抗折强度与养护龄期的关系Fig.2㊀Relationship between flexural strength of geopolymer specimens and curingage 图3㊀地聚物试件抗压强度与养护龄期的关系Fig.3㊀Relationship between compressive strength of geopolymer specimens and curing age第6期刘㊀刚等:碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能2109㊀由图2可知,5组不同配合比地聚物试件的抗折强度随养护龄期延长在整体上呈不断增大的趋势,不同配合比试件早期(1㊁3d)抗折强度增长较低,但后期抗折强度增长较高,K1~K5组试件28d 抗折强度相对于7d 分别增长了113.0%㊁75.2%㊁58.4%㊁47.8%㊁31.9%㊂这是由于粉煤灰和偏高岭土水化速度较慢[10],28d 时试件抗折强度达到最大,分别为3.3㊁8.3㊁10.8㊁11.8㊁12.0MPa㊂观察不同配合比试件抗折强度可知,地聚物试件的抗折强度随着矿粉含量的逐渐增加而增大㊂由图3可知,5组不同配合比地聚物试件的抗压强度随养护龄期延长在整体上呈不断增大的趋势,K1~K5组试件养护3d 时抗压强度分别为2.1㊁14.1㊁24.2㊁29.7㊁37.9MPa;28d 时抗压强度达到最大,分别为7.3㊁28.2㊁36.8㊁44.6㊁52.0MPa㊂K3组试件1㊁3㊁7㊁28d 抗压强度分别为12.3㊁24.2㊁27.3㊁36.8MPa㊂与矿粉-粉煤灰二元体系[7]和粉煤灰-偏高岭土二元体系[11]相比,本三元体系7d 抗压强度更高㊂这是由于:与矿粉-粉煤灰二元体系相比,本三元体系中偏高岭土对地聚物早期强度影响不大,但是可以填充孔隙以及延长凝结时间,改善矿粉速凝开裂导致强度锐减的情况;与粉煤灰-偏高岭土二元体系相比,本三元体系中矿粉水化速度更快,早期即可生成大量Ca 系凝胶,使试件强度快速提高[12]㊂在同一养护龄期内,随着矿粉含量逐渐增加,地聚物试件的抗压强度逐渐增大,且总体增长趋势较为平稳㊂K1组试件抗压强度总体都比较低,28d 抗压强度仅为7.3MPa,这是因为K1组试件矿粉掺量较低,而体系主要的Ca 源是由矿粉提供的,所以K1组试件Ca 含量低,生成的水化硅酸钙(C-S-H)㊁水化硅铝酸钙(C-A-S-H)凝胶少,不能提供足够强度㊂K2~K4组试件由于矿粉含量逐渐增加,Ca 含量逐渐增加,生成的C-S-H㊁C-A-S-H 凝胶逐渐增多,试件的抗压强度增大㊂2.3㊀物相组成分析图4为K3组地聚物样品在养护龄期为1㊁3㊁7和28d 时的XRD 谱㊂由图4可以看出,不同养护龄期的地聚物样品XRD 谱大致一样㊂地聚物样品在20ʎ~30ʎ处有一个较明显的弥散 馒头 状宽峰,据资料显示这些无定形 馒头 峰为生成的C-S-H㊁C-A-S-H 和水化硅铝酸钠(N-A-S-H)凝胶的特征峰㊂随着养护龄期延长,衍射峰出现小角度偏移的现象,这表明碱激发地聚物反应程度在不断提高㊂这些无定形凝胶能够明显提高试件的抗折㊁抗压强度,表明地聚物体系中发生了较高程度的聚合反应[10],与抗折㊁抗压强度的测试结果相吻合㊂同时从图4中可以看出,K3组3㊁7d 样品XRD 谱中在55ʎ附近有一个明显的C-S-H 凝胶特征峰,但K3组28d 样品XRD 谱中该特征峰消失㊂这是由于矿粉活性高,水化速度快,在水化前中期大量矿粉与水玻璃发生碱激发反应,生成了大量C-S-H 和C-A-S-H 凝胶,在水化后期粉煤灰和偏高岭土开始水化,为地聚物体系中提供了大量Si 和Al,这些Al 在扩散作用下将水化产物C-S-H 凝胶中部分Si 置换出来,形成了C-A-S-H 凝胶㊂同时水玻璃中的Na 也可以与C-A-S-H 凝胶中的Ca 发生置换反应,生成N-A-S-H 凝胶㊂因此,K3组样品在55ʎ附近的C-S-H 凝胶特征峰随养护龄期延长逐渐降低,至28d 时该特征峰消失㊂图4㊀不同养护龄期K3组地聚物样品的XRD 谱Fig.4㊀XRD patterns of K3geopolymer samples at different curingages 图5㊀不同配合比地聚物样品养护7d 的XRD 谱Fig.5㊀XRD patterns of geopolymer samples with different mix proportion curing for 7d㊀㊀图5为不同配合比地聚物样品在7d 养护龄期下的XRD 谱㊂由图5可以看出,随着矿粉含量增多,粉煤灰和偏高岭土含量减少,样品中的Ca 含量上升,样品在29ʎ处的C-S-H 凝胶特征峰逐渐升高,逐渐增多的2110㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷C-S-H凝胶紧密堆积,填补了试件中的空隙和裂纹,使试件的有害孔体积下降,无害孔增多,试件孔结构情况改善,对地聚物砂浆试件的抗折㊁抗压强度起到正面影响,与强度测试结果相符合㊂同时,在各配合比下均没有新的晶体相生成,水化产物主要为无定形的C-S-H㊁C-A-S-H和N-A-S-H凝胶,说明改变配合比并不影响反应的整体路线㊂2.4㊀微观形貌分析养护龄期为3d时,不同配合比(K1~K5)地聚物样品的SEM照片如图6(a1)~(a5)所示㊂如图6(a1)所示,K1组样品3d的水化产物主要以团簇状的凝胶形式存在,可见未反应的粉煤灰颗粒与矿粉颗粒㊂K1组样品水化程度较低,结构松散,空隙㊁裂纹较多,导致其抗折㊁抗压强度较低㊂如图6(a2)所示,K2组样品3d的水化产物主要以无定形的凝胶形式存在㊂相比于K1组,其结构相对致密,抗折㊁抗压强度得到提升㊂如图6(a3)所示,K3组样品3d的水化产物主要以无定形的凝胶形式存在,将正在反应的粉煤灰颗粒紧密连接并逐渐包裹㊂区域1~3的元素占比如表3所示,区域1是粉煤灰水化形成的N-A-S-H凝胶,区域2是大量C-A-S-H㊁C-S-H凝胶和少量N-A-S-H凝胶相互交织混杂形成的无定形凝胶结构,区域3主要是团簇状N-A-S-H凝胶㊂这些凝胶填充了试样孔隙,将未反应原材料紧密相连,进一步提高了试件的抗折㊁抗压强度㊂如图6(a4)所示,K4组样品3d的水化产物主要以C-A-S-H㊁C-S-H和N-A-S-H交织的致密无定形凝胶以及大量团簇状N-A-S-H凝胶形式存在,N-A-S-H凝胶位于C-A-S-H㊁C-S-H和N-A-S-H交织的致密无定形㊂凝胶上,数量多,分布广㊂试件的抗折㊁抗压强度进一步提高第6期刘㊀刚等:碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能2111㊀图6㊀养护3㊁7和28d 时地聚物样品的SEM 照片Fig.6㊀SEM images of geopolymer samples curing for 3,7and 28d ㊀㊀如图6(a 5)所示,K5组样品3d 的水化产物主要以片状以及无定形的凝胶形式存在㊂区域4~5的元素占比如表3所示,区域4的片状凝胶主要是由C-A-S-H 凝胶和少量N-A-S-H 凝胶构成,片状结构充当了骨架结构,使水化产物紧密堆积,形成致密三维结构,试件的抗折㊁抗压强度达到最大㊂区域5的无定形凝胶也是由C-A-S-H 和N-A-S-H 构成,但区域5的Na /Ca 比较区域4更高㊂表3㊀SEM 照片区域1至5中的元素占比Table 3㊀Element proportion in area 1to 5of SEM imagesElementAtom fraction /%Area 1Area 2Area 3Area 4Area 5O 63.0959.3863.3362.1571.45Na3.49 5.09 1.81 1.09 1.42Mg 0.280.670.170.330.58Al 11.297.9719.05 6.73 5.77Si 21.4616.8814.6727.9519.46Ca0.3910.020.98 1.75 1.31养护龄期为28d 时,不同配合比(K1~K5)地聚物样品的SEM 照片如图6(c 1)~(c 5)所示㊂观察SEM照片可以看出:K5组样品较前几组样品的粉煤灰颗粒数量大幅度下降,且基本被水化生成的凝胶所包裹;生2112㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷成的C-A-S-H㊁C-S-H 和N-A-S-H 凝胶数量更多,但凝胶形貌并非内部结构疏松的团簇状而是结构十分致密的形貌㊂随着矿粉含量增加,大部分原材料已经水化或正在水化中,填补了试件中的裂痕和孔隙,微观结构更致密,试件的抗折㊁抗压强度更高㊂对比3和28d 的SEM 照片发现,随着养护时间增加,原材料水化程度进一步提高,未反应的粉煤灰数量进一步减少,水化产物种类依旧是C-A-S-H㊁C-S-H 和N-A-S-H 凝胶,未出现新物相,但是致密程度均有提高,表面团簇状的无定形凝胶减少,取而代之的是均匀而致密的三维结构,试件总体抗折㊁抗压强度更高㊂分析比较不同龄期(3㊁7㊁28d)K3组样品的SEM 照片,如图6(a 3)㊁(b 1)㊁(c 3)所示,K3组样品7d 的水化产物主要以C-A-S-H㊁C-S-H 和N-A-S-H 交织的致密无定形凝胶以及大量团簇状N-A-S-H 凝胶形式存在㊂随着养护时间由3d 延长到7㊁28d,样品中生成的C-A-S-H㊁C-S-H 和N-A-S-H 凝胶数量逐渐增加,开始在原材料周围生成,随后逐渐反应将原材料包裹㊂粉煤灰等原材料反应程度更完全,样品裂纹更少,凝胶更致密㊂由以上分析可知:本文所用原材料中有大量Ca㊁Al㊁Si 的氧化物,在反应前期,由于水玻璃作为碱激发剂加入,为体系引入大量的OH -,原材料中的Si O 键和Al O 键发生断裂,[SiO 4]4-和[AlO 4]5-被大量溶出,形成了以Si O Si 和Si O Al 为主体的低聚物,[SiO 4]4-与矿粉中的Ca 2+结合生成C-S-H 凝胶㊂与此同时,原材料中Si㊁Al 的氧化物在碱激发剂提供的强碱环境下开始溶解,[SiO 4]4-和[AlO 4]5-四面体发生缩聚反应,生成以 Si O Al O 为骨架的三维网络结构的无机高分子地聚物,成型硬化后形成早期强度[13]㊂随着养护时间的增加,地聚物试件中Ca㊁Al㊁Si 的氧化物被充分溶解,随着解聚-缩聚反应的进行,试件内部生成了大量的C-A-S-H㊁C-S-H 和N-A-S-H 凝胶,这些凝胶相互堆积形成致密的三维网状结构,使试件的抗折㊁抗压强度达到最大㊂2.5㊀TG-DTG分析图7㊀养护3㊁7和28d 时K3组地聚物试件的TG-DTG 曲线Fig.7㊀TG-DTG curves of K3geopolymer specimens curing for 3,7and 28d K3组地聚物试件在养护龄期3㊁7㊁28d 下的热重曲线如图7所示㊂TG 曲线可以直观反映出试件质量随温度变化的过程,将TG 曲线对温度求一阶微分即可得到DTG 曲线㊂由图7可以看出,在0~200ħ和200~600ħ有两个明显的吸热失重特征峰,第一个失重峰对应过程为试件中自由水以及水化产物C-S-H㊁C-A-S-H 和N-A-S-H 凝胶部分吸附水的蒸发[14-16],第二个失重峰的产生是温度升高,C-S-H㊁C-A-S-H 和N-A-S-H 凝胶脱去 羟基水 所导致的[17-18]㊂结合XRD 和EDS 分析,碱激发矿粉-粉煤灰-偏高岭土三元地聚物体系的水化产物主要为C-S-H㊁C-A-S-H 和N-A-S-H 凝胶㊂对比试件3㊁7㊁28d 的DTG 曲线可以发现:试件3d 的DTG 曲线第一个失重峰面积最大,推测是由于水化时间最短,试件中剩余自由水㊁吸附水较多;试件3㊁7d 的DTG 曲线第二个失重峰变化较小,是由于粉煤灰的水化速度较慢,而试件28d 的DTG 曲线第二个失重峰面积最大,说明试件28d 损失质量最多,生成水化凝胶最多,与SEM 结果相吻合㊂结合材料宏观力学强度分析可知,试件强度与水化生成凝胶产物脱水的失重率成正比,试件强度随着失重率的增大而增大,即生成的C-S-H㊁C-A-S-H 和N-A-S-H 凝胶越多,强度越高㊂3㊀碱激发矿粉地聚物水化过程水化初期,原材料在碱性环境中开始溶解,Ca 相中的Ca O 键㊁Si-Al 相中的Si O Si 键和Al O Al 键开始发生断裂,并释放出Ca 2+㊁硅氧四面体单体和铝氧四面体单体,由于Ca O 键㊁Si O Si 键和Al O Al 键具有不同的稳定性,Ca 2+㊁硅氧四面体单体和铝氧四面体单体溶出的先后顺序会有所不同㊂由于Ca O 键的键能最低,Ca O 键会首先断裂,然后是铝氧四面体单体,最后是硅氧四面体单体[19]㊂液相㊀第6期刘㊀刚等:碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能2113中一部分Ca2+会与环境中硅氧四面体单体反应生成C-S-H凝胶㊂随着水化时间增加,在碱激发剂作用下,液相中硅氧四面体单体和铝氧四面体单体浓度迅速增加,碱激发剂中的Na+和OH-分别与硅氧四面体单体和铝氧四面体单体形成大量 Si O Na㊁Al(OH)-4㊁Al(OH)2-5和Al(OH)3-6等硅铝酸盐低聚体[20]㊂水化中期,由于生成的低聚体结构稳定性较差,这些硅氧四面体单体和铝氧四面体单体之间会发生聚合反应,生成网状的N-A-S-H和C-A-S-H凝胶,但此时网状结构的聚合度还很低㊂随着反应继续进行,更多硅氧四面体单体和铝氧四面体单体被溶出,聚合度提高,形成N-A-S-H和C-A-S-H凝胶相互交织的三维网络结构㊂由于此时地聚物浆体已经达到初凝点,浆体中各种单体和低聚体的流动性已经很小,体系中各种聚合反应主要由扩散作用主导[19]㊂此时地聚物的水化产物主要为相互交织的C-S-H㊁C-A-S-H与N-A-S-H凝胶㊂由于体系中Ca2+和Al3+含量较高,Ca2+会取代N-A-S-H凝胶中的部分Na+,Al3+会取代C-S-H凝胶中的部分Si4+,生成相互交织的三维(N,C)-(A)-S-H凝胶结构[21]㊂水化后期,体系中的C-S-H㊁C-A-S-H和N-A-S-H凝胶随着养护时间的增加逐渐脱水,固结硬化成地聚物块,填充地聚物空隙,使有害孔减少,无害孔增加,有效改善了地聚物的孔结构,使地聚物整体更加致密,抗折㊁抗压强度提高[22]㊂4㊀结㊀论1)矿粉-粉煤灰-偏高岭土地聚物抗折㊁抗压强度随着矿粉含量增大呈增大的趋势,因为矿粉含量越高,生成的C-S-H㊁C-A-S-H凝胶越多㊂当矿粉含量为90%(质量分数)且养护龄期为28d时地聚物的抗折㊁抗压强度最高,分别为12.0㊁52.0MPa㊂2)矿粉-粉煤灰-偏高岭土地聚物的抗折㊁抗压强度随着养护龄期延长呈增大的趋势,当矿粉掺量为50% (质量分数)时,地聚物1㊁3㊁7㊁28d抗压强度分别为12.3㊁24.2㊁27.3㊁36.8MPa㊂反应初期(3d),虽然体系中OH-含量高,但粉煤灰㊁偏高岭土水化速度慢,生成凝胶较少,地聚物强度较低;待水化到28d后,原材料水化充分,生成的C-S-H㊁C-A-S-H和N-A-S-H凝胶填充了孔隙和裂纹,地聚物整体强度提高㊂3)矿粉-粉煤灰-偏高岭土地聚物的水化机理主要为原材料在碱性激发剂作用下溶出Ca2+㊁[SiO4]4-单体和[AlO4]5-单体,通过解聚-缩聚反应以及离子取代反应生成C-S-H㊁C-A-S-H和N-A-S-H凝胶并填充在孔隙中,使地聚物的强度大幅度提升㊂4)当矿粉掺量为30%㊁50%㊁70%(质量分数)时,矿粉-粉煤灰-偏高岭土地聚物凝结时间分别为44㊁38㊁30min,3d抗压强度分别为14.1㊁24.2㊁29.7MPa,符合3D打印或道路修补对材料最基本的工作性能要求㊂参考文献[1]㊀VAN DEVENTER J S J,PROVIS J L,DUXSON P,et al.Chemical research and climate change as drivers in the commercial adoption of alkaliactivated materials[J].Waste and Biomass Valorization,2010,1(1):145-155.[2]㊀CHEN S K,RUAN S Q,ZENG Q,et al.Pore structure of geopolymer materials and its correlations to engineering properties:a review[J].Construction and Building Materials,2022,328:127064.[3]㊀BARBHUIYA S,PANG E.Strength and microstructure of geopolymer based on fly ash and metakaolin[J].Materials(Basel,Switzerland),2022,15(10):3732.[4]㊀LEE B,KIM G,KIM R,et al.Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash[J].Construction and Building Materials,2017,151:512-519.[5]㊀YUAN Q,GAO C,HUANG T J,et al.Factors influencing the properties of extrusion-based3D-printed alkali-activated fly ash-slag mortar[J].Materials,2022,15(5):1969.[6]㊀WAN Q,RAO F,SONG S X,et al.Geopolymerization reaction,microstructure and simulation of metakaolin-based geopolymers at extendedSi/Al ratios[J].Cement and Concrete Composites,2017,79:45-52.[7]㊀刘梦珠,卞立波,王㊀琴,等.碱激发矿渣/粉煤灰胶凝材料力学性能研究[J].粉煤灰综合利用,2019,32(5):49-54.LIU M Z,BIAN L B,WANG Q,et al.Study on mechanical properties of alkali-activated slag/fly ash cementitious material[J].Fly Ash Comprehensive Utilization,2019,32(5):49-54(in Chinese).[8]㊀艾纯志,林㊀军.碱激发粉煤灰混凝土微观性能试验研究[J].混凝土,2022(4):78-80+85.AI C Z,LIN J.Experimental study on microcosmic properties of alkali activation fly ash concrete[J].Concrete,2022(4):78-80+85(in Chinese).2114㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷[9]㊀王㊀红,董双快,郭㊀爽,等.基于响应面法的水泥-粉煤灰-矿粉浆体流变分析[J].建筑结构,2022,52(增刊1):1576-1581.WANG H,DONG S K,GUO S,et al.Rheological analysis of cement-fly ash-ore slurry based on response surface method[J].Building Structure,2022,52(supplement1):1576-1581(in Chinese).[10]㊀孙双月.利用矿渣和粉煤灰制备地聚物胶凝材料的正交试验研究[J].中国矿业,2019,28(11):118-122+127.SUN S Y.Orthogonal experiment research on geopolymer synthesis by utilizing slag and fly ash as raw material[J].China Mining Magazine, 2019,28(11):118-122+127(in Chinese).[11]㊀王顺风,马㊀雪,张祖华,等.粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J].材料导报,2018,32(16):2757-2762.WANG S F,MA X,ZHANG Z H,et al.Pore structure and compressive strength of fly ash-metakaolin based geopolymer[J].Materials Review, 2018,32(16):2757-2762(in Chinese).[12]㊀荆㊀锐,刘㊀宇,张慧杰,等.偏高岭土和粉煤灰对碱-矿渣复合胶凝材料的凝结时间及早期力学性能的影响[J].硅酸盐通报,2020,39(10):3237-3243.JING R,LIU Y,ZHANG H J,et al.Influences of metakaolin and fly ash on setting time and early age mechanical properties of alkali-activated slag composite cementitious materials[J].Bulletin of the Chinese Ceramic Society,2020,39(10):3237-3243(in Chinese). [13]㊀童国庆,张吾渝,季港澳,等.粉煤灰地聚物强度特性及微观机理研究[J].硅酸盐通报,2020,39(6):1835-1841.TONG G Q,ZHANG W Y,JI G A,et al.Study on strength characteristics and microscopic mechanism of fly ash geopolymer[J].Bulletin of the Chinese Ceramic Society,2020,39(6):1835-1841(in Chinese).[14]㊀DUXSON P,LUKEY G C,VAN DEVENTER J S J.Thermal evolution of metakaolin geopolymers:part1-physical evolution[J].Journal of Non-Crystalline Solids,2006,352(52/53/54):5541-5555.[15]㊀王东星,王宏伟,邹维列,等.碱激发粉煤灰固化淤泥微观机制研究[J].岩石力学与工程学报,2019,38(增刊1):3197-3205.WANG D X,WANG H W,ZOU W L,et al.Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(supplement1):3197-3205(in Chinese).[16]㊀黄丽萍,马倩敏,郭荣鑫,等.碱矿渣胶凝材料水化产物的试验研究[J].硅酸盐通报,2020,39(4):1194-1200.HUANG L P,MA Q M,GUO R X,et al.Experimental study on hydration products of alkali-activated slag[J].Bulletin of the Chinese Ceramic Society,2020,39(4):1194-1200(in Chinese).[17]㊀ZHANG Y S,SUN W,LI Z J.Hydration process of potassium polysialate(K-PSDS)geopolymer cement[J].Advances in Cement Research,2005,17(1):23-28.[18]㊀刘淑贤,苏㊀严,杨㊀敏,等.钢渣:矿渣复合胶凝材料的制备及胶凝活性激发试验研究[J].金属矿山,2022(11):252-258.LIU S X,SU Y,YANG M,et al.Experimental study on preparation of the steel slag and slag composite cementitious material and its gelling activity inspiration[J].Metal Mine,2022(11):252-258(in Chinese).[19]㊀郭晓潞,施惠生,夏㊀明.不同钙源对地聚合物反应机制的影响研究[J].材料研究学报,2016,30(5):348-354.GUO X L,SHI H S,XIA M.Effect of different calcium resouces on reaction mechanism of geopolymer[J].Chinese Journal of Materials Research,2016,30(5):348-354(in Chinese).[20]㊀ZHOU X X,SHEN J M.Micromorphology and microstructure of coal fly ash and furnace bottom slag based light-weight geopolymer[J].Construction and Building Materials,2020,242:118168.[21]㊀王㊀磊,李金丞,张晓伟,等.地质聚合物激发剂及其激发原理[J].无机盐工业,2022,54(2):16-20.WANG L,LI J C,ZHANG X W,et al.Geopolymer activator and its excitation principle[J].Inorganic Chemicals Industry,2022,54(2):16-20(in Chinese).[22]㊀余春松,张玲玲,郑大伟,等.固废基地质聚合物的研究及其应用进展[J].中国科学:技术科学,2022,52(4):529-546.YU C S,ZHANG L L,ZHENG D W,et al.Research progress of geopolymer materials prepared from solid waste and their applications[J].Scientia Sinica(Technologica),2022,52(4):529-546(in Chinese).。

乙酰胆碱受体

乙酰胆碱受体
这个最著名的例子并不是唯 一。
Loewi的精巧实验也源于梦。
1921年复活节星期天之前的那个夜晚,奥 地利生物学家洛伊(Otto Loewi)从梦中醒 来,打开灯,抓过一张纸迷迷糊糊地写了 些东西,倒下去又睡着了。早上6点钟,他 突然想到,自己昨夜记下了一些极其重要 的东西,赶紧把那张纸拿来看,却怎么也 看不明白自己写的是些什么鬼画符。幸运 的是,第二天凌晨3点,逃走的新思想又回 来了。
神经冲动 的化学传 递就这样 被发现了, 它开启了 一个全新 的研究领 域,并使 洛伊获得 1936年诺 贝尔生理 学或医学
奖。
1937 David Nachmansohn:发现 nAChR的超级储存库(EO)
1937年,正当梭尔邦(Sorbonne)大学 的神经生理学家David Nachmansohn参 观巴黎世界博览会时,他注意到有几只 具发电器官(electric organ, EO)的鳐 正在表演节目。这些鳐的EO能够发出 40~60V的电压,杀死水中的潜在食物。
他把这一传递物称为化学递质,并认为化学递质 通过与肌细胞表面的受体物质结合而传导信号, 就是在此位点结合了nicotine与curare。这些论断 在后来被证明是很有远见的。
Langley的刺激通过神经释放化学物质传递到 肌肉的假说在1921年被奥地利生理学家Otto Loewi的一个设计精巧的实验证明。
1906 John Langley:化学递质假说
Langley 当时正在研究另一种植物提取物烟碱 (nicotine)的特性。他发现nicotine 能刺激蛙的 离体骨骼肌的收缩,但curare 会使nicotine 失效。
在1906年,Langley提出:冲动从神经传递到肌 肉,并不是借助于物理方法,就像电流在两根电 线之间流过一样,而是一种特殊物质从神经末稍 释放的结果。

过氧化物酶体增殖物激活受体

过氧化物酶体增殖物激活受体

过氧化物酶体增殖物激活受体(PPAR) 是一类由配体激活的核转录因子,属Ⅱ型核受体超家族成员, 存在3种亚型,即PPARα、PPARδ、PPARγ,这三种亚型在结构上有一定的相似性,均含DNA结合区和配体结合区等。

PPAR与配体结合后被激活,与9-顺视黄酸类受体形成异二聚体,然后与靶基因的启动子上游的过氧化物酶体增殖物反应元件(peroxisome proliferator response element,PPRE)结合而发挥转录调控作用。

PPRE 由含相隔一个或两个核苷酸的重复序列AGGTCA组成。

与配体结合后,PPAR在DNA结合区发生变构,进而影响PPAR刺激靶基因转录的能力。

PPARδ几乎在所有组织中表达,浓度低于PPARα及PPARγ,直至最近以前尚未找到此一核受体的选择性配基。

PPARδ是代谢综合征(肥胖、胰岛素抵抗、高血压是与脂质紊乱有关的共同的病态表现)的一个新靶点。

有不少的研究表明:GW501516可作为PPARδ的特异激动剂用于研究。

参考网址:/cjh/2003/shownews.asp?id=156/conference/preview.php?kind_id=03&cat_name=ADA2001&title_id=59219 Regulation of Muscle Fiber Type and Running Endurance by PPARδplos biology,Volume 2 | Issue 10 | October 2004/plosonline/?request=get-document&doi=10.1371%2Fjournal.pbio.0020294NF-KB通路中的抑制剂好像有1.PDTC(pyrrolidine dithiocarbamate),是一种抗氧化剂,主要作用于IκB降解的上游环节(IκBα的磷酸化或IKK的活性水平),2.Gliotoxin 是一种免疫抑制剂,机制可能从多个环节阻断NF-KB的激活,如IκB的降解,NF-KB的核移位和与DNA的结合。

Alkaline activation of metakaolin fly ash mixtures Obtain

Alkaline activation of metakaolin fly ash mixtures  Obtain

Alkaline activation of metakaolin–fly ash mixtures:Obtainof Zeoceramics and ZeocementsA.Ferna´ndez-Jime ´nez a,*,M.Monzo´b ,M.Vicent b ,A.Barba b ,A.Palomo aaInstituto de Ciencias de la Construccio´n Eduardo Torroja (CSIC),28033Madrid,Spain bInstituto de Tecnologı´a Cera ´mica (ITC),Campus Universitario de Riu Sec,12006Castello ´n,Spain Received 22August 2006;received in revised form 26January 2007;accepted 19March 2007Available online 28March 2007AbstractThis study examines the variation in physico-mechanical properties and mineralogical and microstructural characteristics of the alka-line inorganic polymers obtained by alkaline activation,with a mixture of sodium silica solution and sodium hydroxide,of two different starting materials:matrix M (metakaolin)and matrix FM (50%fly ash and 50%metakaolin).The activation process was conducted at different temperatures (85°C,150°C,and 200°C).The highest strength values were obtained for the FM matrix at 150°C.The main reaction product was a sodium aluminosilicate gel in every case.Zeolites formed as by-products.The quantity and type of arising zeolites (sodalite,zeolite A,and faujasite)depended on the nature of the starting material and on the curing conditions used.Ó2007Elsevier Inc.All rights reserved.Keywords:Metakaolin;Fly ash;FTIR;SEM;29Si MAS-NMR;Alkaline activation;Zeolites1.IntroductionAlkaline activation is a chemical process in which a powder material of an aluminosilicate nature,such as metakaolin or fly ash,is mixed with an alkaline activator to produce a paste that is able to set and harden in a short time [1–7].The properties and characteristics (strength,shrinkage,acid and fire resistance,etc.)of the resulting materials depend on the nature of the raw materials and on the process variables (activator,temperature,time,etc.).These materials,frequently termed alkaline inorganic polymers,geopolymers,hydroceramics,etc.,constitute a new family of products which,among other interesting properties,are able to combine qualities peculiar to cements with those of traditional ceramics and zeolites.Because of that authors are now proposing a new generic name to these materials:‘‘Zeoceramic’’or ‘‘Zeocement’’(depending on the main application)Much of the work reported in the literature has beenbased on the study of metakaolin activation [8–15]and,more recently,on the activation of F-type fly ash [16–20].Metakaolin is essentially an anhydrous aluminosilicate produced by the thermal decomposition of kaolin,a natu-rally occurring clay basically containing kaolinite [Al 2Si 2O 5(OH)4]and trace amounts of silica and other min-erals.In kaolinite,the hydroxyl ions are strongly bonded to the aluminosilicate framework structure and can only be eliminated at temperatures above 550°C.During the dehy-droxylation process,considerable atomic rearrangement occurs [10,21,22].The result is a partly ordered structure that cannot rehydrate in the presence of water (or does so very slowly).Owing to its disordered nature (X-ray amorphous),it has a huge reactive potential in the presence of an alkali /alkaline earth-containing solution.Class F fly ash is a finely divided mineral residue result-ing from the combustion of ground or powdered coal (ASTM C 618).Fly ash particles are generally spherical in shape,though they are not necessarily homogeneous.The bulk of the ash is made up of silicon,aluminium,and iron oxides.The amount of crystalline and glassy1387-1811/$-see front matter Ó2007Elsevier Inc.All rights reserved.doi:10.1016/j.micromeso.2007.03.024*Corresponding author.Tel.:+34913020440;fax:+34913026047.E-mail address:anafj@ietcc.csic.es (A.Ferna´ndez-Jime ´nez)/locate/micromesoAvailable online at Microporous and Mesoporous Materials 108(2008)41–49phase depends largely on the combustion and gasification process used at each power plant.When the maximum tem-perature of the combustion process is above 1200°C and the cooling time is short,the ash produced is mostly glassy phase material [23].Previous studies have established the main characteristics that class F fly ash needs to exhibit for being potential Zeocements (liable of alkaline activa-tion)[16].Although the alkaline activation of metakaolin and fly ash yields an alkaline aluminosilicate gel as main reaction product in both cases,differences in the composition and microstructure of the starting material affect the microstruc-ture of the end product.Thus,metakaolin gives rise to a very homogeneous matrix,a gel with a low Si/Al ratio [24],and a high degree of zeolitisation (Zeoceramic),while fly ash gives rise to more heterogeneous matrices (larger percentage of unreacted ash particles),a gel with a higher Si/Al ratio,and a smaller percentage of zeolites (Zeocement)[25,26].However,no thorough study is available on the mixture of these two materials.The present study has been under-taken,therefore,to determine the behaviour of mixtures of fly ash and metakaolin,under alkaline activation,and the effect of curing temperature on the mechanical proper-ties and nature of the resulting reaction products.In this study,the metakaolin matrix has been used as the reference material.2.ExperimentalThe raw materials used in this study were metakaolin (kaolin supplied by CAOBAR,S.A.,calcined at 750°C for 20hours [10,11])and an class F fly ash (ASTM C618)from the power station at Lada (Spain)[16].The chemical composition of both materials (see Table 1)was determined by X-ray fluorescence spectrometry with a PHILIPS PW 2400spectrometer with PW 2540VTC sam-ple changer.The physical characterisation is presented in Table 2.Two matrices were studied:matrix M (metakaolin)and matrix FM (50%fly ash and 50%metakaolin,by weight).The alkaline solution used as activating agent was a mix-ture of sodium silicate and sodium hydroxide,with a molar composition of 7.4%Na 2O,1.5%SiO 2,and 91.1%H 2O,and density of 1.35g/cm 3.The liquid/solid ratio used (matrix M or FM :Activating solution)was determined by the minislump method [27],in order to obtain good paste workability.The ratio was 1.250and 0.875by weight,respectively for the cases of matrices M and FM.Prism-shaped test specimens of 10·10·60mm were made to determine compressive strength.All test specimens were submitted to a preliminary curing regime of three hours at 85°C and 98%relative humidity.The specimens were then demoulded and immediately submitted to a sec-ond curing stage of five hours at different temperatures:T1=85°C,T2=150°C,and T3=200°C.After the cur-ing process,the test pieces were kept for 24hours at room temperature and relative humidity >90%.Their compres-sive strength was then determined.The load rate was 2.4kN/s.Porosity was also determined by mercury intru-sion porosimetry (Micromeritics 9320).The degree of the reaction progress (%)was determined by chemical attack with a 1:20solution of HCl by volume.This solution dissolved the reaction products (inorganic polymer and zeolites),leaving the unreacted material as insoluble residue [28].The following techniques and instruments were used for the mineralogical and microstructural analysis of the hard-ened materials:X-ray diffraction (XRD)with a Philips PW-1730instrument;Fourier transform infrared spectros-copy (FTIR)with an Ati Mattson Genesis Series FTIR instrument,with a scan frequency of 4000–400cm À1;Scan-ning Electron Microscopy (SEM)with a JEOL 5400instru-ment and corresponding energy-dispersive analysis with an OXFORD Instruments LINK-ISIS EDX system and solid state detector;and 29Si MAS-NMR with a MSL-400Bru-ker apparatus.The resonance frequency used in this study was 79.5MHz,with spinning rate of 4kHz.All measure-ments were made at room temperature with TMS (tetra-methylsilane)as external standard.The estimated errors in chemical shift values were lower than 0.5ppm [25,26].3.Resultspressive strength and degree of reaction progress Fig.1displays the compressive strength and the porosity test results.These results show that,independently of the curing process used,the FM matrix gives rise to higherTable 1Chemical analysis of raw materialsOxides,weight (%)SiO 2Al 2O 3Fe 2O 3CaO MgO Na 2O K 2O TiO 2MnO P 2O 5LoI a Metakaolin (MK)57.041.00.480.100.10<0.010.500.24<0.010.050.44Fly ash52.726.47.454.531.930.533.560.960.050.281.6aLoI:loss on ignition,1025°C.Table 2Physical characterization of raw materialsParticle size q real (g/cm 3)S esp (m 2/g)d <45l md <45l m Metakaolin (MK)100%–2.577.7Fly ash78.5%21.5%2.260.842 A.Ferna´ndez-Jime ´nez et al./Microporous and Mesoporous Materials 108(2008)41–49compressive strength values,reaching29MPa at one day of age.In regard to the different curing processes used, T2curing(150°C)leads to higher strength values mainly for FM matrix.These results are in good agreement with porosity data.As it can be observed in Fig.1b metakaolin matrices have,in general,higher porosity than thefly ash matrices.In order to determine the degree of the reaction pro-gress,the whole samples were attacked with1:20HCl by volume,as set out in the previous section.The results obtained are shown in Fig.2.It may be observed that the degree of reaction progress(%)is greater in the M sam-ples than in the FM samples at any of the tested tempera-tures.This is mainly because the metakaolinite reacts almost in its entirety,whereas in thefly ash,only the glassy phase reacts and may not do so fully;the other phases pres-ent in thefly ash(quartz,mullite,etc.)are practically unal-tered at the activation conditions used.As the glassy phase content in the ash used in this study is about76%[16],the maximum attainable degree of reaction for any FM sample lies between about80%and85%.With regard to the curing process used the rise in tem-perature from85to150°C(curing T1and T2)leads to a significant increase in the degree of reaction progress. However,this effect is less remarkable when the tempera-ture is raised from150to200°C.The degree of reaction progress in this case lightly diminishes in FM samples.This behaviour,which is consistent with the mechanical strength development(see Fig.1),is discussed further below.3.2.Mineralogical and microstructural analysisFig.3shows the X-ray diffractograms of the starting materials and the diffractograms of the products resulting from the alkaline activation of these materials in the differ-ent curing conditions.The metakaolin andfly ash(starting raw materials)both exhibit a hump at2h=20°–30°,which is characteristic of structurally disordered compounds,and a set of peaks corresponding to minor crystalline phases: quartz in the case of metakaolin,and quartz and mullite in the case offly ash.After alkaline activation and subsequent thermal curing, the previously described hump shifts to the right,towards 2h angle positions between25°and35°,while simulta-neously decreasing in intensity as curing conditions become harsher.This shift is related to the formation of a reaction compound of an amorphous nature:a sodium aluminosil-icate gel(a zeolitic precursor)which is the main origin of the material’s binding properties.That is the reason for which authors propose to term it as Zeoceramic or Zeocement.The minor crystalline phases detected were quartz(in the M samples),and quartz and mullite(in the FM sam-ples).They were originally present in the starting materials; consequently it indicates that these phases are apparently not attacked during the alkaline activation process.Finally,the reaction process leads to the formation of some crystalline phases of a zeolitic nature(see Fig.3). Zeolites have a three-dimensional framework structure made by joining together[SiO4]4Àand[AlO4]5Àin polyhe-dral coordination.The isomorphous substitution of Al3+ for Si4+into the component polyhedra causes a residual negative charge on the oxygen framework.This negative charge is compensated by the cations within the zeolite structure.In matrix M cured at85°C(M-T1),Hydroxy-sodalite(Na6(AlSiO4)6Æ4H2O)and a small quantity ofDegree of reaction progress determined by attack withvolume).A.Ferna´ndez-Jime´nez et al./Microporous and Mesoporous Materials108(2008)41–4943Zeolite A(Na96Al96Si96O384Æ216H2O)were detected. When the matrix was treated at150°C(M-T2),the forma-tion of faujasite(Na2Al2Si2.4O8.8Æ6.7H2O)and Zeolite A stood out,while at200°C(M-T3)the presence of sodalite syn(Na8Al6Si6O24(OH)22H2O)is detected again.The same zeolites were also observed to form in the FM samples, though their signal intensity was weaker.Fig.4shows the FTIR spectra of the starting materials and of the reaction products after alkaline activation.The starting materials spectra display a band associated with the asymmetric stretch vibration of the T–O(T=Si,Al) bond around1085cmÀ1and another band,around 462cmÀ1,assigned to the deformation vibrations of the same bond.The broad band at798cmÀ1is assigned to the Al–O bonds in Al2O3[22].The spectrum of thefly ash-containing mixture(FM)also displays another small band at547cmÀ1,characteristic of mullite.As a result of the alkaline activation process,the T–O asymmetric stretch band shifts towards lower frequencies(%985cmÀ1for the M samples,and%990cmÀ1for the FM samples),indicat-ing the formation of the already mentioned alkaline alumi-nosilicate gel[29,30].Curing temperature does not seem to affect this shift.The existence is further detected of a group of new bands in the820–500cmÀ1region.This spectrum region contains the vibration bands known as Secondary Building Units(SBUs).SBUs are made up of joined SiO4and AlO4 tetrahedra forming variously membered rings[30,31], which give rise to an over-tetrahedral form of middle-range order.The SBU bands in two-dimensional or three-dimen-sional structures provide information on the number of units that form a ring(4,5,6,etc.),and on whether a sim-ple(S)or double(D)ring is formedThis is the spectrum region(820–500cmÀ1)in which a greater influence of the curing temperature is observed. In general,these bands are stronger and better defined at T2and T3curing temperatures.Thus,for the metakaolin matrices,at T1curing a broad band at705cmÀ1is observed,in addition to another band around565cmÀ1, whereas at T2and T3,the band at565cmÀ1increases in intensity and the one at705cmÀ1splits into three,respec-tively at753,695,and667cmÀ1.According to the litera-ture[22],these three bands could belong to sodalite.A band in the500and650region(565cmÀ1in this case)is related to the presence of double rings(D4R and D6R) in the zeolite A(D4R)and faujasite(D6R)framework structures,both zeolites being detected by XRD.The fauj-asite framework basically consists of sodalite(S6R)cages linked through double6-rings.Figs.5and6show some SEM pictures concerning the microstructure of the M and FM matrices after T2treat-ment.When metakaolin is used as the main working mate-rial,morphological description of the reaction products is much more difficult than withfly ash.As the micrographs in Fig.5a and b show,it is almost impossible to distinguish the original metakaolin from the Zeoceramic(the alkaline aluminosilicate gel that forms in the activation reactions), though this could be done,in principle,by microanalysis. The resulting gel consists of aggregates of2–5l m particles, linked together,with an average atomic ratio of Si/Al= 1.20±0.05and Na/Al=1.03±0.05.Note,furthermore, that the only zeolitic crystals(reaction by-products)found44 A.Ferna´ndez-Jime´nez et al./Microporous and Mesoporous Materials108(2008)41–49through the Scanning Electron Microscope in the case ofmetakaolin activation are very well-defined cubes of zeolite A [Si/Al =1.10;Na/Al =1.10,see Fig.5b].The composition of the fly ash-containing material (Zeocement)exhibits certain morphological differences with respect to the foregoing sample (see Fig.6).In this case,the gel that forms has a more compact appearance and a higher Si/Al ratio (Si/Al =1.40±0.05).However,in these pastes,in addition to the alkaline aluminosilicate gel (the major reaction product and main origin of the material’s cementing properties [7]),the presence of some unreacted or partly attacked fly ash particles may be also observed (see point F in Fig.6a).As indicated above,the fly ash-containing pastes display lower degrees of reaction than pastes containing only metakaolin.Fig.6b,a magni-fication of the Z area in Fig.6a,shows that zeolite forma-tion usually occurs inside the unreacted ash particles or in the pores left by the ash particles after reacting.These zeo-lite crystals are sometimes difficult to locate by SEM obser-vation,probably because the quantity of zeolites is relatively low and also because they have a low degree of crystallinity (lower than the zeolites observed in the M matrices).Finally,Fig.7shows the 29Si MAS-NMR spectra of the starting materials and of the activated samples correspond-ing to T2curing procedure (150°C).Both the fly ashandFig.5.SEM micrographs of matrix M-T2(150°C).A =zeoliteA.Fig.6.SEM micrographs of matrix FM-T2(150°C).Fig.7.29Si MAS-NMR spectra of:(a)raw materials;(b)samples M-T2and FM-T2.A.Ferna ´ndez-Jime ´nez et al./Microporous and Mesoporous Materials 108(2008)41–4945the metakaolin display a broad signal aroundÀ104ppm, indicating the heterogeneity of the matrix as regards Si atom distribution.Previous studies have examined these signals in detail[14,21,25].The changes detected in the spectra in Fig.7b illustrate the chemical and microstruc-tural transformations that occur during alkaline activation of the aluminosilicate materials.Both spectra exhibit three well-defined signals aroundÀ84.6,À89,andÀ94ppm.The assignment of these signals is no simple matter,as evidenced by the work of Engelhardt[32]and Klinowski [33].Sodalite is formed by four-member rings which pres-ent a single intense signal atÀ84.8ppm,associated with Q4(4Al)units in the29Si MAS-NMR spectrum.The zeolite A structure is formed by linking the sodalite cages through double four-membered rings,which present a signal aroundÀ89ppm also associated with the presence of Q4(4Al)units;that is,a material in whose structure each silicon tetrahedron is surrounded by four aluminium tetra-hedra in strict alternation of Si and Al atoms,and hence Si/ Al ratios are equal to1.Finally,the faujasite structure is formed by linking the sodalite cage through double six-membered rings.Depending on the Si/Al ratio,faujasites can display up tofive peaks,atÀ84,À88,À93,À98,and À103±1ppm,respectively assignable to Si atoms surrounded by4,3,2,1,and0atoms of Al[32,33].These data indicate that some zeolites contain two or more types of crystallographical sites,i.e.non-equivalent silicon atoms surrounded by the same number of Al atoms,each corresponding to a distinct value of chemical shift[32,33]. In this case,spectral lines can be overlapped and may not be readily interpretable.4.DiscussionIn the alkali activation process of aluminosilicates, immediately after the alkali solution comes into contact with the raw materials,the high OHÀconcentration of the alkaline medium favours the break of covalent Si–O–Si, Si–O–Al,and Al–O–Al bonds present in the original mate-rial,releasing the silicon and aluminium ions into the solu-tion,where they form species with a high number of Si–OH and Al–OH groups(dissolution stage).During the gelation stage,the ionic species in the solution(monosilicate and monoaluminate units)condense to form Si–O–Al and Si–O–Si bonds,giving rise to a three-dimensional aluminosil-icate gel with alkaline cations compensating the deficit charges associated with Al for Si substitution(zeolitic precursor).The extent of the raw materials dissolution,aluminium release rate,pH of the system,soluble silicon concentra-tion,water demand,etc.,are critical variables controlling this Alkaline Activation process.Thus,since Al–O–Si bonds are more likely to form in aluminosilicate gels than Si–O–Si bonds,the aluminium release rate during starting material dissolution initially controls the aluminosilicate formation rate,as well as the stoichiometry and extent of the reaction.The M samples,containing only metakaolin,have a greater reactive Al content than the FM matrices(the M paste has a molar ratio of Si/Al=1.28,as opposed to the 1.49ratio of the FM paste).In accordance with the litera-ture[26],this would explain the high initial degrees of reac-tion observed in matrices M(see Fig.2).Though it might appear reasonable to assume that greater degrees of reac-tion are associated with greater strength development, comparison of the results in Fig.1a with those in Fig.2 reveals that,at all test temperatures,the FM samples, despite displaying lower degrees of reaction,give rise to the highest compressive strength values,which peak at 29MPa at150°C.On the other hand,the biggest porosity values of samples M might justify,at least partially,the lowest mechanical development achieved by them.How-ever the difference of porosity between samples M and sam-ples FM is not too relevant(see Fig.1b values for curing temperature T2).All theses facts have leaded the authors of the present work to consider that the different mechan-ical behaviour observed depend not only the microstruc-ture but also on the nature and chemical composition of the arising reaction products(aluminosilicate gel and zeolites).From a microstructural point of view,the M samples consist mainly of a gel phase and some zeolite crystals of different nature,whereas FM matrices exhibit a composite structure made up of gel,zeolites,and unreacted ash parti-cles(unreacted particles might serve as microaggregates, improving certain mechanical properties[5])(see Fig.6). Therefore,in the FM samples,the extent of the raw mate-rials dissolution(i.e.release of Si and Al species into the aluminosilicate gel)could increase with time.The microstructural analysis results highlight two important facts,which explain the observed strength.First, the FM matrices have a high aluminosilicate gel content (responsible for the mechanical properties of the material) and a low degree of zeolitisation.In addition,the zeolites that form in the FM matrices often appear in the voids left by the ash that has reacted,filling the pores and,therefore, increasing matrix compactness.Note that,although the arising sodium aluminosilicate gel(zeolitic precursor and primary product)and the crystalline zeolites(by-product) have similar chemical compositions,both products have quite different properties:Zeolites have a well-defined crys-tal structure,whereas the alkaline aluminosilicate gel has a hybrid amorphous–nanocrystalline structure which inferes it excellent bonding and adherent propertiesOn the other hand,the chemical composition of the sodium aluminosilicate gel varies slightly in the different matrices,a fact confirmed by the FTIR,SEM,and NMR data.Thus,FTIR analysis shows that the T–O asymmetric stretch band around1085cmÀ1appears at higher frequency values in the FM samples than in the M samples(see Fig.5),this being associated with compositions that have higher Si/Al ratios[30].In turn,SEM/EDX shows that the gel that forms in the FM-T2pastes has a Si/Al ratio of 1.4,which is higher than that of the M-T2pastes46 A.Ferna´ndez-Jime´nez et al./Microporous and Mesoporous Materials108(2008)41–49(Si/Al=1.2).This is consistent with the assumption that gel(zeolite precursor)chemical composition is closely related to the resulting type of zeolite,and with the fact that the degree of zeolitisation is lower in systems richer in silicon[26].Regarding the29Si MAS-NMR results,as mentioned above,their interpretation is not so simple.According to the literature[32,33],both theÀ84ppm signal(sodalite) and theÀ89ppm signal(zeolite A)can be associated with Q4(4Al)units(see Fig.8a).Sodalite and zeolite A typically have a Si/Al ratio of1,which means that each Si ion in the structure is linked to four Al atoms,and vice versa[32,33]. On the other hand,faujasites can display up tofive peaks, atÀ84,À87,À94,À98,andÀ103±1ppm,assigned to Si atoms surrounded,respectively,by4,3,2,1,and0atoms of Al,whose intensities vary as a function of the Si/Al ratio [30–32](see Fig.8b).Thus,for ratios of Si/Al=1.28,the À87signal predominates together with a low intensity sig-nal atÀ84ppm(the others are hardly detected)(see Fig.8b),while for higher Si/Al ratios(1.87),theÀ87and À94ppm signals predominate[32,33].Fig.8c shows the deconvolution of the NMR spectra of samples M-T2and FM-T2.This deconvolution generates a total of four peaks,atÀ84.6,À87,À89,andÀ94ppm;the FM-T2sample also exhibits an additional low intensity peak atÀ82ppm,assigned to residual silanol groups [26,33].Taking into account the foregoing considerations, theÀ89signal of these spectra is equally assignable to the formation of zeolite A or of a precursor with a similar composition,while theÀ84.6,À87,andÀ94signals are assignable to Si units surrounded by4,3,and2alumini-ums,respectively,though the high intensity of theÀ84.6 signal could be interpreted by assuming that sodalite also contributes to this signal.When the intensity of these sig-nals is compared in terms of type of matrix(see Fig.8d), the intensity of the signals indicating a larger Si content (À87andÀ94ppm)is greater in sample FM-T2than in sample M-T2.This suggests the possible formation,in the case of the FM matrices,of zeolite precursors or crys-talline zeolites richer in Si than in the case of M samples.These data indicate that,though the degree of reaction achieved by alkaline activation of FM matrices is slightly lower than in the M samples.In other words,a more poly-merised gel(i.e.with a higher Si/Al ratio)and a smaller percentage of zeolites form in the FM samples than in the M samples.This would explain the highermechanical Fig.8.29Si MAS-NMR spectra of:(a)sodalite and zeolita A from the literature[26,27];(b)faujasites with different Si/Al ratios from the literature[26,27];(c)deconvolution of the29Si spectra of samples M-T2and FM-T2;(d)percentage of different signals in the working materials.A.Ferna´ndez-Jime´nez et al./Microporous and Mesoporous Materials108(2008)41–4947strengths reached for the FM samples,since gels with a high Si/Al ratio provide high strength[9,13,15,34,35]. According to Palomo and Fernandez-Jimenez[25,26,30] gels with Si/Al ratios around1can be considered a S4R-type intermediate reaction compound;that is,Al-rich gels, which develops low strength(Gel1).However,gels with a high Si/Al ratio,Gel2,are D6R-type structures[26,30] providing the materials high mechanical strengths.Finally,with respect to the curing conditions it should be remarked that temperature is observed to play an important role in determining the structure and properties of the reaction products.This is consistent with previous studies,which have demonstrated that time and tempera-ture are key factors in the development of mechanical per-formance of these type of systems[25,34,35].Thus, strength increases with the curing temperature.However, strength is observed to peak at a certain temperature, beyond which it decreases.In the present case,strength peaks at temperatures between150°and200°C(see Fig.1).This is because when the temperature is raised excessively,as in the T3curing procedure(200°C),the structure is weakened,probably owing to loss of part of the combined[36]water.This suggests that it is necessary to keep small amounts of structural water in order to reduce crack formation and maintain the structural integ-rity of the material.5.ConclusionsAlkaline activation,with a mixture of sodium silicate solution and sodium hydroxide,of two different starting materials:Metakaolin(matrix M),and a1:1mixture of Fly ash+Metakaolin(matrix FM)has been studied.The study shows that alkaline activation leads to the formation, in both cases,of similar but not identical alkaline alumino-silicate gels as the main reaction product,and different types of zeolites(sodalite,zeolite A and faujasite)as by-products.The materials have cementing properties and can be applied in the ceramic industry(Zeoceramics)as well as in the cement industry(Zeocements)The alkaline activated M matrices display a high degree of reaction,under the experimental conditions used,which exceeds that observed in the FM matrices.However,the FM materials exhibit better strength values,which peak at29MPa after curing at150°C forfive hours.This is because the addition offly ash is responsible,in part,for the increase in the gel/zeolite ratio in the reaction products (the gel being the main origin of the mechanical properties in the resulting material).On the other hand,the gel that forms in the FM matrices displays larger percentage of Q4(3Al)and Q4(2Al units)and higher Si/Al ratio(ffi1.4) than the gel that develops in the materials containing only metakaolin.Curing temperature of pastes is a determining factor in the kinetics of the reactions involved in the materials setting and hardening.In the two studied matrices,curing at150°C(T2)gave rise to the highest mechanical strength.AcknowledgementsThe authors would like to thank the Programme for High Specialisation in Industrial Technologies‘‘New low-temperature techniques and ceramic coverings’’funded by the Instituto de la Pequen˜a y Mediana Industria de la Generalitat Valenciana,IMPIVA(REF.IMAETA/2004/ 15–IMAETB/2005/12).Thanks are also due to the Direc-torate General of Scientific Research forfinancing project BIA2004-04835;and to the CSIC for co-financing Euro-pean social contract REF.I3P-PC2004L.The authors wish finally to thank I.Sobrados and J.Sanz for their help with the MAS-NMR studies.References[1]V.D.Glukhovsky,The soil silicates,Gosstroy,Kiev,1959(Disserta-tion,in Russian).[2]P.V.Krivenko,in:First International Conference of AlkalineCements and Concretes,State Technical University,Kiev,1994,pp.12–45.[3]J.Davidovits,in:First International Conference of Alkaline Cementsand Concretes,State Technical University,Kiev,1994,pp.131–149.[4]A.Ferna´ndez-Jime´nez,A.Palomo,M.Criado,Mater.Construct.56(2006)51–65.[5]H.Xu,J.S.J.van Deventer,Int.J.Miner.Process.59(2000)247–266.[6]V.F.F.Barbosa,K.J.D.MacKenzie,C.Thaumaturgo,Int.J.Inorg.Mater.2(2000)309–317.[7]A.Ferna´ndez-Jime´nez,A.Palomo,M.Criado,Cement Concrete Res.35(2005)1204–1209.[8]J.Davidovits,J.Therm.Anal.37(1991)1633.[9]P.Duxson,J.L.Provis,G.C.Lukey, F.Separovic,J.S.J.vanDeventer,Langmuir21(2005)3028–3036.[10]M.L.Granizo,M.T.Blanco-Varela,A.Palomo,J.Mater.Sci.35(2000)6309–6315.[11]A.Palomo,M.T.Blanco Varela,M.S.Granizo, F.Puertas,T.Va´zquez,M.W.Grutzeck,Cement Concrete Res.29(1999)997–1004.[12]A.Palomo,F.P.Glasser,Br.Ceram.Trans.91(1992)107–112.[13]P.Duxson,S.W.Mallicoat,G.C.Lukey,W.M.Kriven,J.S.J.vanDeventer,Colloids Surf.A:Physicochem.Eng.Asp.292(2007)8–20.[14]Hongling Wang,Haihong Li,Fengyuan Yan,Colloids Surf.A:Physicochem.Eng.Asp.268(2005)1–6.[15]P.Duxson, A.Ferna´ndez-Jime´nez,J.L.Provis,G.C.Lukey, A.Palomo J.S.J.van Deventer,J.Mater.Sci.,in press,doi:10.1007/ s10853-006-0637-z.[16]A.Ferna´ndez-Jime´nez,A.Palomo,Fuel82(2003)2259–2265.[17]A.Ferna´ndez-Jime´nez,A.Palomo,C.Lopez-Hombrados,ACI J.Mater.103(2006)106–112.[18]J.S.G.van Jaarsveld,J.S.J.van Deventer,G.C.Lukey,Mater.Lett.57(2003)1272–1280.[19]A.Buchwald,M.Schulz,Cement Concrete Res.35(2005)968–973.[20]A.Palomo,M.W.Grutzeck,M.T.Blanco,Cement Concrete Res.19(1999)1323–1329.[21]A.Madani,A.Aznar,J.Sanz,J.M.Serratosa,J.Phys.Chem.94(1990)760–765.[22]M.Alkan, C.Hopa,Z.Yilmaz,H.Guler,Micropor.Mesopor.Mater.86(2005)176–184.[23]G.J.McCarthy,D.M.Johansen,S.J.Steinwand,D.J.Hassett,O.E.Manz,R.J.Stevenson,in:G.J.McCarthy,F.P.Glasser,D.M.Roy, S.Diamond(Eds.),Fly Ash and Coal Conversion By-products: Characterization,Utilization and Disposal III,Materials Research Society,Pittsburg,1987,pp.159–170.[24]P.Duxson,J.L.Provis,G.C.Lukey,S.W.Mallicoat,W.M.Kriven,J.S.J.van Deventer,Colloids Surf.A:Physicochem.Eng.Asp.269 (2005)47–58.48 A.Ferna´ndez-Jime´nez et al./Microporous and Mesoporous Materials108(2008)41–49。

纳米改性碱激发胶凝材料的研究进展

纳米改性碱激发胶凝材料的研究进展

第48卷第8期 2020年8月硅 酸 盐 学 报Vol. 48,No. 8 August ,2020JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI :10.14062/j.issn.0454-5648.20190521纳米改性碱激发胶凝材料的研究进展叶家元,张文生(中国建筑材料科学研究总院有限公司,绿色建筑材料国家重点实验室,北京 100024)摘 要:以添加纳米组分为手段的纳米技术为胶凝材料改性提供了新方法。

本文综述了纳米SiO 2等纳米颗粒及碳纳米管等纳米材料对碱激发胶凝材料工作性能、凝结硬化行为、力学性能与耐久性的影响。

纳米SiO 2等高活性纳米颗粒发挥提供可溶性硅的化学作用,诸如纳米TiO 2等其他超细颗粒发挥成核位点、颗粒填充的物理效应,可加速反应、致密基体、提升强度、降低渗透等,从而获得性能更优异的纳米改性碱激发胶凝材料。

碳纳米管及石墨烯等多维纳米材料具有优异的力学性能,可提升碱激发胶凝材料的韧性、改善其脆性,且优异的电学性能可赋予碱激发胶凝材料损伤自诊断、光催化等功能。

本文还分析了已有研究中改性浆体流动性、凝结时间及硬化体强度、抗渗透等结果并不一致的原因,指出纳米SiO 2对液相环境的影响及其与溶液中Ca 2+的作用是导致结果差异的主要原因。

此外,还展望了该领域未来研究重点。

关键词:碱激发胶凝材料;纳米颗粒;碳纳米管;石墨烯;改性中图分类号:TU528 文献标志码:A 文章编号:0454–5648(2020)08–1263–15 网络出版时间:2020–06–23Research Progress on Nano-Modified Alkali-Activated Cementitious MaterialsYE Jiayuan , ZHANG Wensheng(The State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China)Abstract: A nano-modification method is proposed to improve the performance of alkali activated cementitious materials (AAM). This paper reviewed the effects of nano-particles (i.e ., silica particles) and nano-materials (i.e ., cabon nano-tube) on the workability, setting and hardening behavior, mechanical property and durability of AAM. The acceleration of geopolymerization, the more compact matrix, the higher strength and the lower permeability of nano-modified AAM occur due to the presence of soluble silica in alkali solution from silica nanoparticles and the nucleation site effect, filling effect derived from other nano-particles such as TiO 2 nanoparticles. The modified AAM with a higher toughness and a lower brittleness is available for the incorporation of carbon nano-tube or graphene oxide. Furthermore, the carbon nano-tube or graphene oxide modified AAM exhibits some functional characteristics like the self-sensing capacity to detect its own structural damage and the photocatalytic performance to treat wastewater. Some controversial issues on the flowability and setting time of fersh mixtures, strength and permeability of hardened samples containing silica nanoparticles in previous studies were also represented. The reason for the controversial issues above could be due to the interaction bewteen silica nanoparticles and alkaline solution and the initial chemical reaction between silica nanoparticles and Ca 2+ ions in solution. In addition, some further research works on nano-modified AAM were also given.Keywords: alkali-activated cementitious materials; nano-particles; carbon nano-tube; graphene; performance improvement以添加纳米组分为手段的纳米技术成为材料设计与性能调控的新方法。

咖啡因有助于对抗痴呆

咖啡因有助于对抗痴呆

龙源期刊网
咖啡因有助于对抗痴呆
作者:
来源:《大自然探索》2017年第08期
经过对1400多种化合物的筛选,科学家发现其中包括咖啡因在内的24种有可能提升大脑中一种能抵御痴呆的酶——NMNAT2的含量。

NMNAT2的保护作用是在2016年被发现的。

这些化合物的发现有助于研发药物以提升大脑中NMNAT2的含量,从而产生一道化学“屏障”,抵御神经退行性疾病的严重后果。

此前,科学家已发现NMNAT2在大脑中的两个作用:一是保护神经元免遭压力损害,二是对抗错误折叠的τ蛋白。

作为衰老引起的“斑块”,τ蛋白会在大脑中堆积。

错误折叠的蛋白,已被发现与包括阿尔兹海默症和帕金森病在内的多种严重疾病有关。

科学家发现咖啡因等化合物不仅能增加大脑中NMNAT2的产生,而且能提升经过基因改造后产生大量错误折叠的τ蛋白的实验鼠的记忆力。

早些时候的研究表明,经过基因改造后产生大量错误折叠的τ蛋白的实验鼠,产生的NMNAT2含量也低。

为证实咖啡因的效果,科学家让经过基因改造后产生较低含量NMNAT2的实验鼠摄入咖啡因。

结果,这些实验鼠开始产生与正常老鼠一样含量的NMNAT2。

课件:生物学基础-酪氨酸蛋白激酶

课件:生物学基础-酪氨酸蛋白激酶
PTK与疾病的关系
许多疾病都与PTK的异常表达或活性有关,如癌症、糖尿病、心血管疾病、免疫疾病等。因此,PTK成为了药物研发的重要靶点。
PTK在生物学中的重要性
PTK在许多生物学过程中都发挥着重要作用,如细胞增殖、分化、迁移、存活和凋亡等。它参与了多种信号通路的调控,如胰岛素、生长因子、细胞因子和免疫受体等信号通路。
酪氨酸蛋白激酶通常包含一个共同的功能区段,称为催化结构域,负责ATP结合和磷酸化反应。
结构域
结构特征
酪氨酸蛋白激酶的活性调节
02
酪氨酸蛋白激酶可以通过磷酸化或其他方式被激活,从而促进其催化反应的进行。
酶的激活
酪氨酸蛋白激酶可以被磷酸酶等酶类去磷酸化而失活,从而抑制其催化反应的进行。
酶的抑制
酪氨酸蛋白激酶可以将磷酸基团转移到特定的底物上,促进底物的活化或改变其功能。
磷酸化
磷酸酶可以将磷酸基团从底物上移除,使底物恢复其原始状态或功能。
去磷酸化
底物的浓度可以影响酪氨酸蛋白激酶的活性,当底物浓度较高时,酪氨酸蛋白激酶的活性增强。
底物浓度
抑制剂
基因表达调控
一些小分子物质或蛋白质可以与酪氨酸蛋白激酶结合,从而抑制其活性。
基因表达调控可以影响酪氨酸蛋白激酶的合成和表达,从而影PTK结构和功能的深入了解,越来越多的药物被开发出来以抑制其活性或调节其表达。这些药物在临床试验中显示出良好的疗效,为治疗多种疾病提供了新的选择。
谢谢您的观看
THANKS
课件:生物学基础-酪氨酸蛋白激酶
汇报人:
2023-12-21
酪氨酸蛋白激酶简介酪氨酸蛋白激酶的活性调节酪氨酸蛋白激酶在细胞信号转导中的作用酪氨酸蛋白激酶与人类疾病的关系总结与展望

康奈尔癌症化学

康奈尔癌症化学

康奈尔癌症化学
康奈尔大学在癌症化学领域有许多研究成果,以下是部分介绍:
- 马明林团队:在控制抗肿瘤免疫的各种免疫抑制代谢物中,色氨酸分解代谢物犬尿氨酸(Kyn)是一个有吸引力的阻断靶标,通过多种途径介导免疫抑制。

马明林团队提出了一种局部化学免疫代谢疗法,通过注射超分子水凝胶同时释放多柔比星,诱导免疫原性肿瘤细胞死亡和犬尿氨酸酶,破坏TME中Kyn介导的免疫抑制途径,协同增强肿瘤免疫原性并释放抗肿瘤免疫。

- 林和宁团队:2016年在学术杂志《Cell》子刊《Cancer Cell》在线发表了题为“A SIRT2-Selective Inhibitor Promotes c-Myc oncoprotein Degradation and Exhibits Broad Anticancer Activity”的研究论文。

该研究团队开发了一种酶抑制剂,证实能够有效对抗多种癌症,其中较为显著的是白血病和大肠癌。

康奈尔大学在癌症化学领域的研究为癌症治疗提供了新的思路和方法,推动了癌症治疗的发展。

如你想了解更多相关内容,可继续向我提问。

药用级组氨酸原材料药的重要用途

药用级组氨酸原材料药的重要用途

药用级组氨酸原材料药的重要用途组氨酸,是一种α—氨基酸,化学式为C6H9N3O2,组氨酸在1896年由德国物理学家艾布瑞契·科塞尔分别出来。

在营养学的范畴里,组氨酸被认为是一种人类必需氨基酸,重要是对儿童。

在成年之后,人类开始可以本身合成组氨酸。

在慢性尿毒症患者的膳食中添加少量的组氨酸,氨基酸结合进入血红蛋白的速度加添,肾原性贫血减轻,所以组氨酸也是尿毒症患者的必需氨基酸。

在组氨酸脱羧酶的作用下,组氨酸脱羧形成组胺。

组胺具有很强的血管舒张作用,并与多种反应及炎症有关。

另外,组胺会刺激胃蛋白酶与胃酸。

α—氨基β—咪唑基丙酸,属于碱性氨基酸或杂环氨基酸。

由Pa—uli反应即和重氮苯磺酸反应产生红色。

有D,D,L—及混旋体(L为拉丁文左的意思,D是拉丁文DEXTRO,右的意思,D与L指的是氨基酸分子结构的手性)存在于珠蛋白内。

也是存在肌肉中的一种肌肽成分。

L—组氨酸无色片状或针状结晶,无臭,稍有苦味。

227℃软化,277℃分解。

溶于水。

旋光度—39.4°(c=1.13,水中)。

以干面粉,猪、牛血粉,猪毛或蹄甲为原材料制取,也可由葡萄糖发酵制得。

组氨酸与其他氨基酸相比,除一些常见的化学反应外,由于其右侧链咪唑基与重氮苯磺酸能形成棕红色化合物,即波利(Pauly)反应。

由于咪唑基解离常数为6.0,即解离的质子浓度与水的相近,因此组氨酸既可作为质子供体,又可作为质子受体。

药用级组氨酸原材料药的重要用途氨基酸输液及综合氨基酸制剂的极紧要成分,医药上用于治疗胃溃疡、贫血、过敏症等。

另一方面,咪唑基供出质子和接受质子的速度十分快,半寿期小于10—10s,且供出质子和接受质子的速度将近相等。

组氨酸残基在活性蛋白中常为活性中心。

组氨酸为半必需氨基酸,可作为药物或生化试剂。

对人体来说,组氨酸可由普通的中心代谢产物合成,因此始终被认为是非必需氨基酸,但随研究的深入,人们发现幼龄动物和婴儿体内的组氨酸合成量不能满足机体生长需要,即使是成年动物,若不从食物中增补,体内合成的也不能满足需要,所以人们又称之为半必需氨基酸。

阿片生长因子生物学功能研究进展

阿片生长因子生物学功能研究进展

阿片生长因子生物学功能研究进展黄雯雯【期刊名称】《生命科学仪器》【年(卷),期】2011(009)001【总页数】5页(P34-38)【作者】黄雯雯【作者单位】【正文语种】中文阿片生长因子(Opioid Growth Factor)简称OGF,即甲硫氨酸脑啡肽(Met-enk),是一种重要的内源性阿片肽,已被证实在多种动物的组织器官中存在。

作用范围广泛,最初发现其具有镇痛作用,随后的研究又发现其参与免疫调节、影响细胞增殖,并在与免疫系统相关疾病的治疗方面可以发挥作用。

近年来,有文献报道OGF对肿瘤的形成、个体发育、细胞再生、组织愈合等有负性调节作用,并且没有物种、组织细胞的特异性,但可以被阿片受体拮抗剂纳洛酮阻断[1]。

本文就近年来有关阿片生长因子生物学功能研究进行简要介绍。

1 阿片生长因子研究历史阿片生长因子,即甲硫氨酸脑啡肽(Met-Enk),是由5个氨基酸残基组成的多肽(Try-Gly-Gly-Phe-Met)。

对Met-Enk的早期研究是将其作为镇痛剂和神经递质进行的,随后的研究发现其受体在神经系统,免疫系统,肿瘤组织和正常细胞中均有分布,研究重点转移至Met-Enk对免疫系统、肿瘤细胞和正常细胞的作用,结果发现Met-Enk不但参与免疫调节,而且影响细胞增殖[2]。

因其对肿瘤的形成、细胞再生、组织愈合、个体发育等有负性调节作用,Met-Enk又被称为阿片生长因子(Opioid Growth Factor),简称OGF[1-3]。

生物学家和药理学家长期以来一直在探索阿片肽的作用机制,根据吗啡作用的高度选择性、立体结构专一性及拮抗剂的竞争性等特点,采用受体药理学方法成功提取了μ、δ、κ三种不同功能的受体。

1989年发现了不同于μ、δ、κ的新受体“zeta”,其介导细胞生长调控,因此又被称为Opioid Growth Factor Receptor,简称OGFr[3]。

由此开辟了阿片生长因子研究的新篇章。

煅烧粉煤灰和偏高岭土配合比对地聚合物力学性能的影响

煅烧粉煤灰和偏高岭土配合比对地聚合物力学性能的影响
由于该类材料制备过程中不但使用粉煤灰、矿渣
等工业废 弃 物,使 得 污 染 物 排 放 量 低,环 境 效 益 明 显[6],而且由 于 地 聚 合 物 在 矿 山 巷 道 支 护 中 发 挥 出 了比传统的岩层支护方法,如混凝土和锚杆金属网支 护等更好的优越性,采用地聚合物喷涂支护技术部分 或全部取代传统支护的方法已引起加拿大等国采矿 界的日益关注[1,7-8]。
明:当煅烧粉煤灰与偏高岭土质量配合比为 2∶8时,地聚合物的力学性能较优;继续增大煅烧粉煤
灰比例,其力学性能反而下降。通过分析发现,掺入适量煅烧粉煤灰能使地聚合物内部孔隙率降低,
使其结构更致密、力学性能更优。使用煅烧粉煤灰和偏高岭土制备的复合地聚合物,能有效提高矿业
废弃物的综合利用,为矿业废料有效利用提供了一条技术途径,对环境产生的经济和社会效益明显。
Copyright©博看网 . All Rights Reserved.
2018年第 4期 /第 39卷
和煅烧粉煤灰由高岭土和粉煤灰煅烧制得。其中,高
岭土由湛江华鼎矿业有限公司生产,粉煤灰来自北京
市石景山热电厂原状粉煤灰;水玻璃则为工业产品,
质量分数为 50%,水玻璃模数为 2.2。原材料化学组
40 采 矿 工 程
黄 金 GOLD
2018年第 4期 /第 39卷
煅烧粉煤灰和偏高岭土配合比对地聚合物力学性能的影响
邹家强,王海洋,张 敏,刘爱华
(华南农业大学水利与土木工程学院)
摘要:为提高矿业废料粉煤灰和高岭土的综合利用率,用二者制备的煅烧粉煤灰和偏高岭土作
为试验原材料,考察二者在不同配合比下,对所制备的复合地聚合物的力学性能的影响。结果表
图 1 煅烧温度和氧化铝溶出率关系曲线

埃他卡林新衍生物激活ATP敏感性钾通道的亚型选择性

埃他卡林新衍生物激活ATP敏感性钾通道的亚型选择性

埃他卡林新衍生物激活ATP敏感性钾通道的亚型选择性陈玉萍;潘志远;崔文玉;汪海【期刊名称】《中国药理学通报》【年(卷),期】2008(24)11【摘要】目的研究埃他卡林新衍生物对不同亚型KATP通道的选择性作用.方法在特异性表达Kir6.2/SUR1、Kir6.2/SUR2A、Kir6.1/SUR2B 3种不同亚型KATP 通道的HEK-293细胞模型上,分别给予0.1、1.0、10、100 ×10-6 mol·L-1的埃他卡林新衍生物,研究其作用前后DiBAC4(3)细胞荧光强度的变化,评价其对克隆表达的不同亚型KATP通道的选择性作用.结果 7个埃他卡林新衍生物可激活KATP 通道,其中衍生物(3)、(7)、(8)、(9)、(12)和(14)对3个亚型的KATP通道均具有激活作用,衍生物 (7)对Kir 6.2/ SUR2A亚型的激活作用最强;衍生物(6)纳他卡林(natakalim)仅激活Kir 6.1/ SUR2B亚型,对Kir 6.2/ SUR2A和Kir 6.2/ SUR1亚型均无激活作用.结论纳他卡林为Kir 6.1/ SUR2B亚型高选择性开放剂.【总页数】4页(P1427-1430)【作者】陈玉萍;潘志远;崔文玉;汪海【作者单位】军事医学科学院毒物药物研究所,北京,100850;军事医学科学院毒物药物研究所,北京,100850;军事医学科学院毒物药物研究所,北京,100850;军事医学科学院毒物药物研究所,北京,100850;军事医学科学院卫生学环境医学研究所,天津,300050;北京赛德维康医药研究院,北京,100850【正文语种】中文【中图分类】R329.2;R329.24;R329.25;R394.2;R916.4;R972.4【相关文献】1.ATP敏感性钾通道开放剂埃他卡林逆转心室重构及其内皮细胞机制 [J], 钟明利;汪汇;周红敏;张雁芳;崔文玉;龙超良;段炼;汪海2.纳他卡林激活内皮细胞ATP敏感性钾通道SUR2B/Kir6.1亚型对eNOS磷酸化的调节作用 [J], 沈薇;汪海3.ATP敏感性钾通道SUR2B/Kir6.1亚型选择性开放剂纳他卡林的心血管药理学作用特征 [J], 唐渊;王汝欢;潘志远;崔文玉;汪海4.埃他卡林对KATP通道亚型选择性作用的研究 [J], 陈玉萍;崔文玉;汪海5.ATP敏感性钾通道开放剂埃他卡林对高原脱习服的影响 [J], 崔文玉;聂鸿靖;张东祥;肖忠海;张雁芳;崔建华;石永平;龙超良;王引虎;汪海因版权原因,仅展示原文概要,查看原文内容请购买。

生物化学Ta值名词解释

生物化学Ta值名词解释

生物化学Ta值名词解释
生物化学Ta是需氧生物体内普遍存在的环状代谢途径.因为此代谢途径中有几个中间代谢物具有三个羧基,故称三羧酸循环.又因此循环由柠檬酸开始,故也称柠檬酸循环,也可用发现者的名字命名为Krebs循环.此途径在真核细胞的线粒体中进行,催化每一步反应的酶均位于线粒体内.循环的第一步反应是乙酰辅酶A的乙酰基(2碳化合物)与草酰乙酸(4碳化合物)缩合生成柠檬酸(6碳化合物),后者经异构化并脱氢、脱羧生成α-酮戊二酸(5碳化合物),再脱氢、脱羧生成琥珀酸(4碳化合物).琥珀酸进一步经两次脱氢、一次水化又重新生成草酰乙酸.草酰乙酸又可和另1分子乙酰辅酶A作用再生成柠檬酸,这样就形成了一个循环(见图).通过三羧酸循环的反应过程,可以看出三羧酸循环具有如下特点:⑴在此循环中,最初草酰乙酸因参加反应而消耗,但经过循环又重新生成.所以每循环一次,净结果为1个乙酰基通过两次脱羧而被消耗.循环中有机酸脱羧产生的二氧化碳,是机体中二氧化碳的主要来源.⑵在三羧酸循环中,共有4次脱氢反应,脱下的氢原子以NADH+H+和FADH2的形式进入呼吸链,最后传递给氧生成水,在此过程中释放的能量可以合成ATP.⑶乙酰辅酶A不仅来自糖的分解,也可由脂肪酸和氨基酸的分解代谢中产生,都进入三羧酸循环彻底氧化.并且,凡是能转变成三羧酸循环中任何一种中间代谢物的物质都能通过三羧酸循环而被氧化.所以三羧酸循环实际是糖、脂、蛋白质等有机物在生物体内末端氧化的共同途径.⑷三羧酸循环?是分解代谢途径,但又为一些物质的生物合成提供了前体分子.如草酰乙酸是合成天冬氨酸的前体,α-酮戊二酸是合成谷氨酸的前体.一些氨基酸还可通过此途径转化成糖.因而三羧酸循环构成了对合成代谢和分解代谢都可以通行的中心途径,故也称中心代谢途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Alkaline Activation of Metakaolin:Effect of Calcium Hydroxide in the Products of ReactionMaria Luz Granizo,Santiago Alonso,Maria T.Blanco-Varela,and Angel PalomoEduardo Torroja Institute(CSIC),28033Madrid,Spain The alkali activation of metakaolin(MK)leads to the produc-tion of high-mechanical-performance network-structure mate-rials.Adding calcium hydroxide(Ca(OH)2)to the raw MKproduces a somewhat different reaction:a network structure and C-S-H gel form.In the present study,MK and(MK؉Ca(OH)2)mixes were activated with5M and12M NaOHsolutions and cured at45°C.A5M concentration,in theabsence of Ca(OH)2,did not produce MK activation within thetest time.An activator concentration of12M resulted in complete activation and the formation of a network structure.When Ca(OH)2was present in the raw mix,a small amount ofC-S-H gel formed.I.IntroductionW HEN metakaolin(MK)is activated by alkali hydroxide solutions,a polycondensation reaction occurs,leading to the formation of a cementitious material with high mechanical strength.1–4The starting aluminosilicate and the compositional parameters,as well as the curing time and temperature,directly influence the final properties of the material that forms.5The synthesis of this binder can be compared with zeolite synthesis, although,in contrast to zeolites,the product is X-ray amorphous.Based on infrared(IR)and magic-angle spinning nuclear magnetic resonance(MAS NMR)results,we concluded that the structure of the binder is a three-dimensional framework formedby SiO4and AlO4tetrahedra linked alternately by shared O atoms,with alkali cations from the activator solution present to balance the negative charge of the tetrahedrally coordinated Al3ϩion.6–11When Ca(OH)2is mixed with MK,the activation reaction isdifferent:the products formed consist of a mixture of the material with the network structure described and a C-S-H gel,in propor-tions that are dependent on the reaction parameters.This observa-tion is in good agreement with the thermodynamical and micro-structural data found in the literature.11–15Thus,the aims of the present work were(i)to study the effect of modifications in the alkaline-activation process of MK resulting from variations in the alkali concentration(both with and without the addition ofCa(OH)2)and(ii)to compare and chemically characterize theproducts obtained in both cases.II.Experimental Procedure(1)MaterialsThe present study used a Spanish kaolin(C1,Guadalajara, Spain).A complete chemical and mineralogical characterization of the kaolin was given in a previous work.5Table I shows a chemical analysis of the kaolin,which contained quartz as a secondary species.The MK used as a raw material for synthesis experiments was prepared by thermal treatment of the kaolin at750°C for 24h.16The chemical composition of the prepared MK is shown in Table II.The Ca(OH)2was a chemical grade appropriate for laboratory use.(2)ProcedureMK and mixtures of(MKϩCa(OH)2)with a1:1ratio were activated with5M and12M NaOH solutions.We used a conduc-tion calorimeter system(JAF from Wexham Developments,Berks, U.K.)to examine the reaction of MK with the NaOH solutions. Calorimetric data were obtained isothermally at45°C(at temper-aturesϽ45°C,reactions occur too slowly18)with a fixed solution: solids ratio of0.7(both5M and12M NaOH solution concentra-tions were prepared).Samples removed from the calorimeter were treated with a mixture of acetone and ethanol(for only a few minutes,to avoid any dehydration effect),dried under vacuum to a constant weight, and treated with diluted HCl(1:9)and a solution of5%Na2CO3. (The attack with HCl and Na2CO3dissolves the products of alkaline activation,whereas the initial MK remains insoluble. Previous tests were conducted to check the effect of temperature and HCl concentration on MK.Insoluble residue was analyzed through IR spectroscopy until no alteration was observed.)This chemical attack at room temperature makes it possible to quantify the unreacted MK;the insoluble residue obtained is a measure of the degree of reaction attained.To determine silicon,aluminum,and sodium content,the products resulting from the alkali activation of MK,as well as the solids obtained from the acid treatment,were analyzed by induc-tively coupled plasma(ICP)spectroscopy(Model70ϩ,Jobin Yvon,France),after alkaline melting with lithium metaborate.The amount of H2O fixed by the samples was determined by differen-tial thermal analysis/thermogravimetry(DTA/TG)(Model STA 409,Netzsch,Selb,Germany).The amount of water-soluble sodium was analyzed by ion chromatography(Model ED40, Dionex,Sunnyvale,CA).The products obtained from activating the mixes of MKϩCa(OH)2also were treated with methanol and salicylic acid to dissolve the C-S-H gel while retaining the network structure material and the unreacted MK in the residue.The attack of the methanol-salicylic acid dissolves calcium silicates;17however,the network structure material and the unreacted MK remain unalteredM.Grutzeck—contributing editorManuscript No.189201.Received September22,1999;approved November22, 2000.Funding for this study provided by CICYT,through Project Nos.MAT93-0282 and MAT96-0598.Table I.Chemical Analysis of RawKaolin C1Oxide/component Content(%)SiO249.85Al2O336.34Fe2O30.57MgO0.15CaO0.00Loss on ignition,LOI12.65J.Am.Ceram.Soc.,85[1]225–31(2002) 225in this alcoholic medium(this was proved in the laboratorythrough preliminary tests).Measuring the SiO2in the solutionprovides the amount of SiO2that is fixed as C-S-H gel.At thesame time,measuring the compositional oxides in the residue provides quantitative data on the oxides ratio in the network-structure material.SiO2in the organic solvent,as well as the SiO2,Al2O3,and NaO in the residue,was measured by ICP.The sampleswere further analyzed by Fourier transform infrared(FTIR)spec-troscopy(ATIMATTSON Genesis,Madison,WI).Figures1and2 are schematic diagrams of the analytical procedure.III.Results(1)Metakaolin Activation in the Absence of Ca(OH)2 MK activation with the12M NaOH solution was followed by means of conduction calorimetry(see Fig.3).With[NaOH]ϭ5M, the paste did not harden(this seems to imply that activation was not achieved);consequently,no heat-evolution peaks appeared during the calorimetry test.The curve in Fig.3shows an initial sharp and intense peak on contact for the MK–NaOH solution anda second peak with a maximum atϳ0.5h.The small degree ofreaction at an activator concentration of5M was confirmed by theFTIR results:the IR spectrum of the samples showed bandscorresponding to the starting MK(at400,800,and1050cmϪ1)(see Fig.5).With an activator concentration of12M,the IRspectrum revealed the disappearance of the Al O O stretching bandat800cmϪ1,belonging to MK;the appearance of a new band at ϳ720cmϪ1,which is characteristic of a network structure;and a shift in the1050cmϪ1band of the MK toward lower frequencies(Ͻ1000cmϪ1)(see Fig.5).Table III shows the percentage of insoluble residue(see Fig.1,step(2))for samples activated with both5M and12M concentra-tions of NaOH.These values confirm that little MK activationoccurs when[NaOH]ϭ5M;however,when[NaOH]ϭ12M,MKdissolution is almost complete.For this reason,only productsobtained with12M concentrations were analyzed and character-ized in the present study.Table IV shows the ICP results for silicon,aluminum,andsodium(see Fig.1,steps(6B),(7B),and(8B));the insolubleresidue in the acidic medium(Fig.1,steps(3B)and(4B));water-soluble sodium(Fig.1,step(8C));and the amount of H2Ofixed in the sample(Fig.1,step(5)).Table V shows the relativecomposition of the alkali-network structure(see Fig.1,steps(9)–(12))formed when MK was activated with[NaOH]ϭ12M.(2)Metakaolin Activation in the Presence of Ca(OH)2 Figure4shows the heat-evolution-rate curves,as a function of time,obtained when MK activation was conducted in the presence of Ca(OH)2.In this case,an activator concentration of5M led tocomplete activation within the test time(the samplegained Fig.1.Scheme of the analysis procedure of metakaolin activated with alkaline dissolution in absence of calcium hydroxide.Table II.Chemical Analysis of RawMetakaolin Mk1Oxide/component Content(%)SiO257.00Al2O341.55Fe2O30.58MgO0.17CaO0.00Loss on ignition,LOI0.00226Journal of the American Ceramic Society—Granizo et al.Vol.85,No.1rigidity),and the reaction was recordable by calorimetry.Both curves (5M and 12M NaOH)present only one peak,because the first signal is produced so quickly (at the time of the contact between solid and liquid)that there is not sufficient time for the system to achieve the thermal equilibrium.Consequently,the calorimeter is not capable of detecting most of this initial infor-mation,which is lost.The differences between these two calori-metric curves may indicate differences in the nature of the products formed,as a function of the activator-solution concentra-tion.Generally,the IR spectra of these samples (see Fig.6)con-firmed a shift in the 1050cm Ϫ1band to lower frequencies (atϳ980cm Ϫ1),already observed by Palomo and Glasser.6However,differences were observed between the materials obtained by the 5M activation and the 12M activation:the appearance of sharp bands between 660and 720cm Ϫ1—similar to those present in network structures such as zeolites —when the activator concen-tration was 12M ,and the presence of a shoulder at ϳ1080cm Ϫ1(indicating the presence of unreacted MK)when the activator concentration was 5M .In Table VI,the percentage of unreacted MK in the presence of Ca(OH)2is expressed as an insoluble residue (see Fig.1,step (2B)).The higher the activator concentration,the more the reaction progresses (the more MK is dissolved).The ICP results fortheFig.2.Scheme of the analysis procedure of metakaolin activated with alkaline dissolution in presence of calcium hydroxide.January 2002Alkaline Activation of Metakaolin:Effect of Ca(OH)2in the Products of Reaction227insoluble residue (see Fig.2,steps (3B),(3C),(4B),and (4C))are shown in Table VII.The residue amounts (in percent)obtained when the samples were treated with methanol –salicylic acid (Fig.2,step (6))are shown in Table VIII.Table IX shows the percentage of SiO 2extracted as C-S-H gel when the sample was treated with methanol-salicylic acid,the unreacted SiO 2,and the percentage of inorganic polymer formed for each activator con-centration (see Fig.2,steps (5B),(3C),and (3E)).The main reaction product was an alkali containing network structure when the activator concentration was 12M ,whereas the main product was a C-S-H gel when the activator concentration was 5M .Previous NMR studies 11,12confirm these results by interpreting the signals at Ϫ84and Ϫ82ppm,respectively,of the 29Si spectrum of 5M -activated sample such as Si [Q2]and Si [Q2(1Al)](the presence of NaOH increases the solubility of Al(OH)4Ϫand allows the substitutions).An intense peak at Ϫ86ppm,corre-sponding to a three-dimensional network [Q4(4Al)],appears in the 29Si spectrum of the 12M -activated sample.At the lower NaOH concentration,formation of the alkali material was negligible.Thus,quantitative analysis of the alkali-network structure was conducted only for those samples activated with the solution of 12M NaOH.An analysis of the residue obtained when the samples were treated with methanol-salicylic acid (Fig.2,steps (7B),(8B),(9B),and 6(B))is shown in Table X.The percentages of oxides constituting the alkali material (Fig.2,steps (10)–(13))are shown in Table XI.IV.Discussion(1)Metakaolin Activation in the Absence of Ca(OH)2The reaction steps describing the alkaline activation of MK were explained in previous investigations.18These steps may or may not overlap,and even are or are not recordable,as a function of the experimental parameters (temperature)and the nature of the raw MK (specific surface).The activation of the present MK with a 12M NaOH solution occurred in a way similar to that previously cited:(i)an initialdissolution peak that was not recordable because of the rapid MK dissolution,(ii)an induction period (almost nonexistent in this case because of the high rate of reaction),and (iii)a signal correspond-ing to the formation of the alkali-network structure.In the present case,the high [OH Ϫ]in the liquid phase accelerated the reaction,giving the aqueous phase a high ion concentration that provoked immediate product precipitation.When the activator concentration was 5M ,however,MK dissolution was very slow,the threshold concentration for precipitation of the reaction products was not attained within the test time,and the heat-evolution rate was not recordable.The material did not harden but rather remained in the plastic state.This slow dissolution rate was confirmed by the insoluble-residue result,which showed that only 20%of the starting MK had been activated after 24h.(2)Metakaolin Activation in the Presence of Ca(OH)2As in the absence of Ca(OH)2,the amount of insoluble residue was high;however,in this case,the paste hardened.Thus,the presence of Ca(OH)2favored the formation of some products that gave rigidity to the paste.ICP analysis of the filtrates obtained when the samples were treated with methanol –salicylic acid (see Table IX)demonstrated that C-S-H gel formed in the presence of Ca(OH)2with both high and low NaOH concentrations.Table IX reveals that C-S-H gel was the main reaction product when activation was conducted with the lowest NaOH concentration (5M ),whereas the amount of inorganic alkali material was very low.In contrast,when the NaOH concentration was 12M ,the main product that formed was the inorganic alkali material,although 20%of the initial SiO 2was fixed as C-S-H gel.This difference in the products formed when Ca(OH)2was present in the system,as a function of activator concentration,resulted from the high [OH Ϫ]in the aqueous phase under high [NaOH].The [OH Ϫ]impeded Ca(OH)2dissolution (during the first stages),and because an insufficient number of Ca 2ϩions existed to achieve saturation,no C-S-H gel formed.In that case,the prevailing reaction was the formation of the alkali-network structure.The formation of this hydrated aluminosilicate provoked a pH increase,favoring Ca(OH)2dissolution and C-S-H gel formation.Both processes overlapped,so their calorimetric signals were not separate,and only one signal appeared that was associ-ated with both processes.However,when [OH Ϫ]decreased (to 5M ),Ca(OH)2solubility was not as retarded.Consequently,the coexistence of sodium and calcium ions in solution resulted in an association between the reactions for C-S-H-gel formation and for alkali-network structure formation.In this particular case,condi-tions favored the formation of a C-S-H gel.The formation of an inorganic alkaline polymer in both the presence and the absence of Ca(OH)2was confirmed through IR spectroscopy (see Figs.5and 6).Adding Ca(OH)2to the raw MK resulted in a higher concen-tration of ions in the solution,which produced lower mobilityandFig.3.Rate of heat evolution of metakaolin activated with 12M NaOH vstime.Table III.Insoluble Residue Results of Metakaolin Activated with NaOHSampleInsoluble residue content (%)5M NaOH80.012M NaOH 11.2Table IV.Results of Analysis of the Sample as Well as theSolid Obtained in the Insoluble-Residue TreatmentSampleContent (%)Soluble Na 2O content (%)Na 2OSiO 2Al 2O 3H 2O12M (sample)184028.311.0 2.7612M (insoluble residue)64.225.5Table V.Chemical Analysis of Polymer Obtainedin the Absence of Calcium HydroxideSampleContent (%)SiO 2Al 2O 3Na 2OH 2O12M 34.1525.9717.9611.00228Journal of the American Ceramic Society —Granizo et al.Vol.85,No.1delayed the polycondensation reaction (calorimetric curves re-vealed a longer delay in the formation of the alkali material).The slowest product precipitation in this case indicated that the aqueous phase was saturated and the MK reaction slow,as shown by the insoluble-residue value.When the NaOH concentration was 5M ,MK dissolution was very slight in both cases;the [OH Ϫ]was not high enough to provoke high dissolution.When Ca(OH)2was present,the paste was rigid at 24h because of the small proportion of C-S-H gelformed,whereas it remained plastic when only MK was present because little alkali material formed.Tables XII and XIII show the chemical composition,in terms of molar ratio of oxides,for the phases that formed.The network structure formed was the same in both cases,although it formed in a minor proportion with respect to the initial reactant amount when Ca(OH)2was present,because an important excess of this hydrox-ide remained unreacted.The Al:Na ratio was ϳ1in the product,indicating that the network structure that formed had no OH Ϫgroups in its structure and that all of the Al 3ϩcharge was balanced by Na ϩcations fixed inside its structure.The Si:Al ratio also was ϳ1,indicating that the silicon environment corresponded to a tetrahedral silicate coordinated with four Al atoms.The general approximate formula for the alkali material formed both with and without Ca(OH)2is Si 2Al 2Na 2H 4O 10.The analytical methodology used in both cases consisted of a selective-solutions method that made it possible to separate the material formed from the unreacted MK to analyze the chemical composition of the alkali material.On the other hand,this material from the C-S-H gel that formed when Ca(OH)2was present in the raw mix made it possible to quantitatively determine the proportions of all of the products formed in the reaction,thus providing for their later characterization.V.Conclusions(1)An inorganic alkali-network structure material formed in the present study when the concentration of NaOH was 12M.Fig.4.Rate of heat evolution of metakaolin ϩCa(OH)2activated with 12M and 5M NaOH vs time.Table VI.Insoluble Residue Results in the Presence ofCalcium HydroxideSampleInsoluble residue content (%)5M 34.212M 7.8Table VII.Oxide Content in the Insoluble-Residue Solid inthe Presence of Calcium HydroxideSampleSiO 2content (%)Al 2O 3content (%)Step 3BStep 3CStep 4B Step 4C5M 20.280.611.362.112M 4.2617.0 2.4813.6Table VIII.Residue Content of Samples inMethanol –Salicilic AcidSampleResidue content (%)5M 39.612M 45.0Table IX.Breakdown of SiO 2Fixed in theProducts FormedSampleComposition (%)SiO 2(CSH gel)Unreacted SiO 2SiO 2(alkaline polymer)5M17.580.6 1.812M 20.417.062.6Table X.Oxide Content of the Methanol –SalicilicAcid ResidueSampleContent (%)SiO 2Al 2O 3Na 2OH 2O12M 19.613.9 6.910.6Table XI.Chemical Analysis of Polymer Formed in thePresence of Calcium HydroxideSampleContent (%)SiO 2Al 2O 3Na 2OH 2O12M 15.411.5 6.910.6January 2002Alkaline Activation of Metakaolin:Effect of Ca(OH)2in the Products of Reaction229In the presence of Ca(OH)2,C-S-H gel was produced readilywith a low NaOH concentration;however,the formation of an alkali material as the main product required a higher activator concentration.(2)The reaction rate of alkali material formation was very low in the presence of Ca(OH)2because the ions were less mobile when the [OH Ϫ]of the solution was higher.(3)The main product formed both with and without Ca(OH)2was the same network structure,with the general approximate formula:Si 2Al 2Na 2H 4O 10.(4)The analytical methodology used in the present study provides a method for separating the products formed underdifferent conditions,to quantitatively determine the proportions of all of the products formed in the reaction,thus providing for their later characterization.References1J.Davidovits,“Minerals Polymers and Methods of Making Them,”U.S.Pat.No.4472199,1982.2J.Davidovits,“Geopolymers:Inorganic Polymeric New Materials,”J.Therm.Anal.,37,1633–56(1991).3M.L.Granizo,M.T.Blanco-Varela, F.Puertas,and A.Palomo,“Alkali,Activation of Metakaolin:Influence of Synthesis Parameters ”;in Proceedings of the Tenth International Congress on the Chemistry of Cement ,Vol.3(Gothenburg,Sweden,1997).Fig.5.FTIR spectra of metakaolin activation in the absence of Ca(OH)2((a)metakaolin,(b)metakaolin with 5M NaOH,and (c)metakaolin with 12MNaOH).Fig.6.FTIR spectra of metakaolin activation in the presence of Ca(OH)2((a)metakaolin ϩCa(OH)2,(b)metakaolin ϩCa(OH)2with 5M NaOH,and (c)metakaolin ϩCa(OH)2with 12M NaOH).Table XII.Elemental Molar Ratios,in theAbsence of Calcium HydroxideSampleMolar ratio Si/AlAl/Na Si/NaSi/H12M 1.110.870.980.46Table XIII.Elemental Molar Ratios,in thePresence of Calcium HydroxideSampleMolar ratio Si/AlAl/Na Si/NaSi/H12M 1.14 1.01 1.150.48230Journal of the American Ceramic Society —Granizo et al.Vol.85,No.14P.Krivenko,“Alkaline Cements:Terminology,Classification,Aspects of Dura-bility”;in Proceedings of the Tenth International Congress on the Chemistry of Cement,Vol.4(Gothenburg,Sweden,1997).5M.L.Granizo,M.T.Blanco-Varela,and A.Palomo,“Influence of the Starting Kaolin on Alkali-Activated Materials Based on Metakaolin:Study of the Reaction Parameters by Isothermal Conduction Calorimetry,”J.Mater.Sci.,35,1–7(2000). 6A.Palomo and F.P.Glasser,“Chemically-Bonded Cementitious Materials Based on Metakaolin,”Br.Ceram.Trans.J.,91,107–12(1992).7E.M.Flanigan,H.Khatami,and H.A.Szymanski,“Molecular Sieve Zeolites”; pp.201–229in Advances in Chemicals Series,Vol.101.American Chemical Society, Washington,DC,1971.8J.G.S.Van Jaarsveld,J.S.J.Van Deventer,and A.Schwartzman,“The Potential Use of Geopolymeric Materials to Immobilise Toxic Metals:Part II.Material and Leaching Characteristics,”Mineral.Eng.,12,75–91(1999).9E.Lipmaa,A.Samoson,and M.Magi,“High-Resolution27Al NMR of Alumi-nosilicates,”J.Am.Chem.Soc.,108,1730–35(1986).10J.Davidovits,“Geopolymers:Inorganic Polymeric New Materials,”J.Mater. Ed.,16,91–138(1994).11S.Alonso, A.Palomo,I.Sobrados,and J.Sanz,“Activacio´n Alcalina del Metacaolı´n en Presencia de Ca(OH)2:Efecto del Activador.Estudio por NMR,”pp. 79–80in VI Reunio´n Nacional de Materiales.Edited by M.Elizegui,I.Garuz,and F.Pen˜alba.San Sebastian,1999.12P.Faucon,T.Charpentier,A.Nonat,and J.C.Petit,“Triple-Quantum Two-Dimensional27Al Magic Angle Nuclear Magnetic Resonance Study of the Aluminium Incorporation in Calcium Silicate Hydrates,”J.Am.Chem.Soc.,120,12075–82(1998). 13P.S.De Silva and F.P.Glasser,“Hydration of Cements Based on Metakaolin: Thermochemistry,”Adv.Cem.Res.,3,167–77(1993).14M.Grutzeck,A.Benesi,and B.Fanning,“Silicon-29MAS NMR Study of Calcium Silicate Hydrates,”J.Am.Ceram.Soc.,72,665–68(1989).15X.Cong and R.J.Kirkpatrick,“29Si NMR Study of the Structure of the Calcium Silicate Hydrate,”Adv.Cem.Bas.Mater.,3[]144–56(1996).16M.Murat,“Hydration Reaction of Hardening of Calcinated Clays and Related Minerals.II.Influence on Mineralogical Properties of the Raw Kaolinite of the Reactivity of Metakaolin,”Cem.Concr.Res.,13,511–18(1983).17S.Takashima,Sement Giujitzu Nempo,Vol.XII;p.12,1958.18M.L.Granizo and M.T.Blanco-Varela,“Alkaline Activation of Metakaolin: Isothermal Conduction Calorimetry Study,”J.Therm.Anal.,52,957–65(1997).ⅪJanuary2002Alkaline Activation of Metakaolin:Effect of Ca(OH)2in the Products of Reaction231。

相关文档
最新文档