工程流体力学课后习题答案(第二版)
工程流体力学课后习题答案
工程流体力学(第二版)习题与解答1 2p p 2 1 V 第 1 章 流体的力学性质1-1 用压缩机压缩初始温度为 20℃的空气,绝对压力从 1 个标准大气压升高到 6 个标准大气压。
试计算等温压缩、绝热压缩、以及压缩终温为 78℃这三种情况下,空气的体积 减小率∆V = (V 1 - V 2 )/V 1 各为多少?解:根据气体压缩过程方程: pV k = const ,有(V /V ) = ( p / p )1/ k ,所以2112(V -V ) V ⎛ p ⎫1/ k ∆ = 1 2 = 1 - 2= 1 - 1 ⎪VV V p 1 1 ⎝ 2 ⎭ 等温过程 k =1,所以∆V = 1 - p 1 / p 2 = 1 -1/ 6 =83.33%绝热过程 k =1.4,所以 ∆ = 1 - ( p / p )1/1.4= 1 - (1/ 6)1/1.4 =72.19% 压缩终温为 78℃时,利用理想气体状态方程可得∆ = 1 - V 2 = 1 - p 1T 2 = 1 - 1⨯ 78=80.03% V 1 p 2T 1 6 ⨯ 201-2 图 1-12 所示为压力表校验器,器内充满体积压缩系数 β = 4.75 ⨯10-10 m 2/N 的油, 用手轮旋进活塞达到设定压力。
已知活塞直径 D =10mm ,活塞杆螺距 t =2mm ,在 1 标准大气压时的充油体积为 V 0=200cm 3。
设活塞周边密封良好,问手轮转动多少转,才能达到 200 标准大气压的油压(1 标准大气压=101330Pa )。
解:根据体积压缩系数定义积分可得:β = - 1 d V → V = V exp[-β ( p - p )]pV d pp因为 ntπ D 24 = V 0 - V = V 0 ⎩⎣1 - e x p - β p ( p - p 0 ) ⎤⎦所以n = 4 V ⎡1 - e - β ( p - p )⎤ = 12.14 rpmπ D 2t 0 ⎣⎦0.05mm1kN20°图 1-12 习题 1-2 附图图 1-13 习题 1-3 附图1-3 如图 1-13 所示,一个底边为200mm ⨯ 200mm 、重量为 1kN 的滑块在 20°斜面的油膜上滑动,油膜厚度 0.05mm ,油的粘度μ= 7 ⨯10-2 Pa·s 。
工程流体力学第二版习题答案-(杜广生)
因此,转动圆盘所需力矩为:
12.解:
摩擦应力即为单位面积上的牛顿内摩擦力。由牛顿内摩擦力公式可得:
13.解:
活塞与缸壁之间的间隙很小,间隙中润滑油的速度分布可以看作线性分布。
间隙宽度:
因此,活塞运动时克服摩擦力所消耗的功率为:
14.解:
对于飞轮,存在以下关系式:力矩M=转动惯量J*角加速度 ,即
《工程流体力学》习题答案(杜广生主编)
第一章习题
1.解:依据相对密度的定义: 。
式中, 表示4摄氏度时水的密度。
2.解:查表可知,标准状态下: , , , , ,因此烟气在标准状态下的密度为:
3.解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:
列等压面方程: ,式中:
因此,B点的计示压强为:
12.解:
如图所示,取1-1截面为等压面,列等压面方程:
解方程,可得:
13.解:
图示状态为两杯压强差为零时的状态。
取0-0截面为等压面,列平衡方程: ,由于此时 ,因此可以得到: (1)
当压强差不为零时,U形管中液体上升高度h,由于A,B两杯的直径和U形管的直径相差10倍,根据体积相等原则,可知A杯中液面下降高度与B杯中液面上升高度相等,均为 。
因此,可以解得A,B两点的压强差为:
如果 ,则压强差与h之间存在如下关系:
10.解:
如图所示,选取1-1,2-2,3-3截面为等压面,列等压面方程:
对1-1截面:
对2-2截面:
对3-3截面:
联立上述方程,可以解得两点压强差为:
11.解:
如图所示,选取1-1截面为等压面,并设B点距离1-1截面垂直高度为h
工程流体力学第二版习题答案-(杜广生)
《工程流体力学》习题答案(杜广生主编)第一章 习题1. 解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:112231.9760.1352.9270.003 1.4290.052 1.2510.760.8040.051.341/n nkg m ρραραρα=++=⨯+⨯+⨯+⨯+⨯=3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:31.44101325567.410S K p Pa κ==⨯⨯=⨯式中,对于空气,其等熵指数为1.4。
4. 解:根据流体膨胀系数表达式可知:30.0058502V dV V dT m α=⋅⋅=⨯⨯=因此,膨胀水箱至少应有的体积为2立方米。
5. 解:由流体压缩系数计算公式可知:392511050.5110/(4.90.98)10dV V k m N dp -⨯÷=-=-=⨯-⨯ 6. 解:根据动力粘度计算关系式:74678 4.2810 2.910Pa S μρν--==⨯⨯=⨯⋅7. 解:根据运动粘度计算公式:3621.310 1.310/999.4m s μνρ--⨯===⨯8. 解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:630.317.83100.2 3.36100.001U F AN h μπ--==⨯⨯⨯⨯=⨯ 9. 解:如图所示,高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积:2=2=tan cos cos dh h dA rdh παπαα由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:===tan d r h υυωωαυδδδ则在微元dh 高度内的力矩为:332===2tan tan tan tan cos cos h h dM dA r dh h h dh ωαπαωατμαπμδαδα⋅⋅因此,圆锥旋转所需的总力矩为:33430==2=24tan tan cos cos H H M dM h dh ωαωαπμπμδαδα⎰⎰10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=60n Dπυ 由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:=d dy υυδ则轴与轴承之间的总切应力为:==T A Db υτμπδ克服轴承摩擦所消耗的功率为:2==P T Db υυμπδ因此,轴的转速可以计算得到:60=r/min n D υπ11.解:根据转速n 可以求得圆盘的旋转角速度:2290===36060n ππωπ⨯ 如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:=d dy υυδ则微元宽度dr 上的微元力矩:3233==2=2=6r dM dA r rdr r r dr r dr ωπμτμππμπδδδ⋅⋅ 因此,转动圆盘所需力矩为:4422322-3(2)0.40.23==6=6=6 3.14=71.98N m 40.23104DD M dM r dr μμππδδ⨯⨯⨯⋅⨯⎰⎰12. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
工程流体力学第二版习题答案-(杜广生)(完整资料).doc
【最新整理,下载后即可编辑】《工程流体力学》习题答案(杜广生主编)第一章 习题1. 解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:112231.9760.1352.9270.003 1.4290.052 1.2510.760.8040.051.341/n nkg m ρραραρα=++=⨯+⨯+⨯+⨯+⨯=3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm 的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:31.44101325567.410S K p Pa κ==⨯⨯=⨯式中,对于空气,其等熵指数为1.4。
4. 解:根据流体膨胀系数表达式可知:30.0058502V dV V dT m α=⋅⋅=⨯⨯= 因此,膨胀水箱至少应有的体积为2立方米。
5. 解:由流体压缩系数计算公式可知:392511050.5110/(4.90.98)10dV V k m N dp -⨯÷=-=-=⨯-⨯6. 解:根据动力粘度计算关系式:74678 4.2810 2.910Pa S μρν--==⨯⨯=⨯⋅7. 解:根据运动粘度计算公式:3621.310 1.310/999.4m s μνρ--⨯===⨯ 8. 解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:630.317.83100.2 3.36100.001U F AN h μπ--==⨯⨯⨯⨯=⨯9. 解:如图所示,高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积:2=2=tan cos cos dh h dA rdh παπαα由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:===tan d r h υυωωαυδδδ则在微元dh 高度内的力矩为:332===2tan tan tan tan cos cos h h dM dA r dh h h dh ωαπαωατμαπμδαδα⋅⋅因此,圆锥旋转所需的总力矩为:33430==2=24tan tan cos cos H H M dM h dh ωαωαπμπμδαδα⎰⎰10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=60n Dπυ由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:=d dy υυδ则轴与轴承之间的总切应力为:==T A Db υτμπδ克服轴承摩擦所消耗的功率为:2==P T Db υυμπδ因此,轴的转速可以计算得到:3-360606050.7100.810====2832.16r/min 3.140.20.245 3.140.20.3P n D D Db υδππμπ⨯⨯⨯⨯⨯⨯⨯11.解:根据转速n 可以求得圆盘的旋转角速度:2290===36060n ππωπ⨯如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:=d dy υυδ则微元宽度dr 上的微元力矩:3233==2=2=6r dM dA r rdr r r dr r dr ωπμτμππμπδδδ⋅⋅ 因此,转动圆盘所需力矩为:4422322-30(2)0.40.23==6=6=6 3.14=71.98N m 40.23104DD M dM r dr μμππδδ⨯⨯⨯⋅⨯⎰⎰12. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
工程流体力学第二版习题答案
《工程流体力学》习题答案(杜广生主编)第一章 习题1. 解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:112231.9760.1352.9270.003 1.4290.052 1.2510.760.8040.051.341/n nkg m ρραραρα=++=⨯+⨯+⨯+⨯+⨯=L 3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:31.44101325567.410S K p Pa κ==⨯⨯=⨯式中,对于空气,其等熵指数为。
4. 解:根据流体膨胀系数表达式可知:30.0058502V dV V dT m α=⋅⋅=⨯⨯=因此,膨胀水箱至少应有的体积为2立方米。
5. 解:由流体压缩系数计算公式可知:392511050.5110/(4.90.98)10dV V k m N dp -⨯÷=-=-=⨯-⨯ 6. 解:根据动力粘度计算关系式:74678 4.2810 2.910Pa S μρν--==⨯⨯=⨯⋅7. 解:根据运动粘度计算公式:3621.310 1.310/999.4m s μνρ--⨯===⨯8. 解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:630.317.83100.2 3.36100.001U F AN h μπ--==⨯⨯⨯⨯=⨯ 9. 解:如图所示,高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积: 2=2=tan cos cos dh h dA rdh παπαα由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:===tan d r h υυωωαυδδδ则在微元dh 高度内的力矩为:332===2tan tan tan tan cos cos h h dM dA r dh h h dh ωαπαωατμαπμδαδα⋅⋅因此,圆锥旋转所需的总力矩为:33430==2=24tan tan cos cos H H M dM h dh ωαωαπμπμδαδα⎰⎰10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=60n Dπυ 由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:=d dy υυδ则轴与轴承之间的总切应力为:==T A Db υτμπδ克服轴承摩擦所消耗的功率为:2==P T Db υυμπδ因此,轴的转速可以计算得到:60=r/min n D υπ11.解:根据转速n 可以求得圆盘的旋转角速度:2290===36060n ππωπ⨯ 如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:=d dy υυδ则微元宽度dr 上的微元力矩:3233==2=2=6r dM dA r rdr r r dr r dr ωπμτμππμπδδδ⋅⋅ 因此,转动圆盘所需力矩为:4422322-3(2)0.40.23==6=6=6 3.14=71.98N m 40.23104DD M dM r dr μμππδδ⨯⨯⨯⋅⨯⎰⎰12. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
工程流体力学课后习题测验答案(第二版)
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
(完整版)工程流体力学第二版习题答案解析-[杜广生]
《工程流体力学》习题答案(杜广生主编)第一章 习题1. 解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:112231.9760.1352.9270.003 1.4290.052 1.2510.760.8040.051.341/n nkg m ρραραρα=++=⨯+⨯+⨯+⨯+⨯=3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:31.44101325567.410S K p Pa κ==⨯⨯=⨯式中,对于空气,其等熵指数为1.4。
4. 解:根据流体膨胀系数表达式可知:30.0058502V dV V dT m α=⋅⋅=⨯⨯=因此,膨胀水箱至少应有的体积为2立方米。
5. 解:由流体压缩系数计算公式可知:392511050.5110/(4.90.98)10dV V k m N dp -⨯÷=-=-=⨯-⨯ 6. 解:根据动力粘度计算关系式:74678 4.2810 2.910Pa S μρν--==⨯⨯=⨯⋅7. 解:根据运动粘度计算公式:3621.310 1.310/999.4m s μνρ--⨯===⨯8. 解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:630.317.83100.2 3.36100.001U F AN h μπ--==⨯⨯⨯⨯=⨯ 9. 解:如图所示,高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积: 2=2=tan cos cos dh h dA rdh παπαα由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:===tan d r h υυωωαυδδδ则在微元dh 高度内的力矩为:332===2tan tan tan tan cos cos h h dM dA r dh h h dh ωαπαωατμαπμδαδα⋅⋅因此,圆锥旋转所需的总力矩为:33430==2=24tan tan cos cos H H M dM h dh ωαωαπμπμδαδα⎰⎰10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=60n Dπυ 由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:=d dy υυδ则轴与轴承之间的总切应力为:==T A Db υτμπδ克服轴承摩擦所消耗的功率为:2==P T Db υυμπδ因此,轴的转速可以计算得到:3-360606050.7100.810====2832.16r/min 3.140.20.245 3.140.20.3P n D D Db υδππμπ⨯⨯⨯⨯⨯⨯⨯11.解:根据转速n 可以求得圆盘的旋转角速度:2290===36060n ππωπ⨯ 如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:=d dy υυδ则微元宽度dr 上的微元力矩:3233==2=2=6r dM dA r rdr r r dr r dr ωπμτμππμπδδδ⋅⋅ 因此,转动圆盘所需力矩为:4422322-30(2)0.40.23==6=6=6 3.14=71.98N m 40.23104DD M dM r dr μμππδδ⨯⨯⨯⋅⨯⎰⎰12. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
工程流体力学课后习题答案解析(第二版)
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
(完整版)工程流体力学课后习题答案(第二版)
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==Θ原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμΘ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yuATmgddsinμθ==001.0145.04.062.22sin8.95sin⨯⨯⨯⨯==δθμuAmgsPa1047.0⋅=μ1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律yuddμτ=,定性绘出切应力沿y方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0.9mm,长度20mm,涂料的粘度μ=0.02Pa.s。
工程流体力学课后习题参考答案(周云龙洪文鹏教材版)
工程流体力学课后习题参考答案《工程流体力学》(第二版)中国电力出版社周云龙洪文鹏合编一、绪论1-1 kg/m31-2 kg/m31-3m3/h1-41/Pa 1-5 Pa·s1-6 m2/s1-7 (1)m/s1/s(2)Pa·s (3) Pa1-8 (1)(Pa)(2)(Pa)1-9 (1) (N)(2) (Pa)(3)1-10Pa·s Pa·s1-11( N·m) 1-12 m/sm2NkW1-13 Pa·sm2NkW1-141-15 m2N1-16 m2m/sr/min1-17Pa·sN1-18 由1-14的结果得N·m1-191-20 mm 1-21mm 二、流体静力学2-1kPa2-2PaPa2-3 且m(a) PaPa(b) PaPa(c) PaPa2-4 设A点到下水银面的距离为h1,B点到上水银面的距离为h2即m 2-5kg/m3Pa2-6 Pa 2-7(1)kPa(2)PakPa2-8设cm m mkPa2-9 (1)Pa(2)cm2-10Pa m2-11整理得m2-12Pa2-13cm 2-142-15整理:kPa 2-16设差压计中的工作液体密度为Pam2-17Pa2-18kPa2-19 (1) N(2) N2-21 设油的密度为NNN对A点取矩m(距A点)2-22 设梯形坝矩形部分重量为,三角形部分重量为(1)(kN)(kN)m(2)kN·m<kN·m稳固2-23总压力F的作用点到A点的距离由2-24 m m2-25 Nm(距液面)2-26Nm (距液面)或m(距C点)2-27第一种计算方法:设水面高为m,油面高为m;水的密度为,油的密度为左侧闸门以下水的压力:N右侧油的压力:N左侧闸门上方折算液面相对压强:(Pa)则:N由力矩平衡方程(对A点取矩):解得:(N)第二种计算方法是将左侧液面上气体的计示压强折算成液柱高(水柱高),加到水的高度中去,然后用新的水位高来进行计算,步骤都按液面为大气压强时计算。
工程流体力学第2版答案
课后答案网 工程流体力学第一章绪论20C 的水2.5m 3,当温度升至80C 时,其体积增加多少? 温度变化前后质量守恒,即卩$1 = P2V2又20C 时,水的密度 R = 998.23kg/m 380 C 时,水的密度971.83kg/m 3则增加的体积为 i V =V 2-y = 0.0679m 3当空气温度从 0C 增加至20 C 时,运动粘度V 增加15%,重度Y 减少10%,问此时动力粘度 卩增加 (百分数)?卩"P=(1+0.15)v 原(1—0.1) P 原 =1.035十原卩原=1.035卩原上J 竺5丄=0.0354原4原此时动力粘度卩增加了 3.5%2有一矩形断面的宽渠道,其水流速度分布为 U =0.002 Pg (hy-0.5y )/卩,式中P 、卩分别为水的密度和动力粘度,h 为水深。
试求h=0.5m 时渠底(y=0)处的切应力。
[解广一=0.002 Pg (h-y)/A dyT /理=0.002 Pg(h -y) dy当 h =0.5m, y=0 时T =0.002X1000X9.807(0.5—0)V 2 =空= 2.5679m 3P 21-2. 多少 1-3.=9.807Pa1-4.一底面积为45X 50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块 运动速度u=1m/s ,油层厚1cm,斜坡角22.620 (见图示),求油的粘度。
mg sin 6卩=0.1047 Pa s方向的分布图。
h O.OSmm木块重量沿斜坡分力F 与切力T 平衡时,等速下滑mg sin 9 F = -----------5x9.8xsin 22.62Au 0.4x0.45x^-0.0011-5. 已知液体中流速沿 y 方向分布如图示三种情况,试根据牛顿内摩擦定律T =卩9-,定性绘出切应力dyylT = T o1-6. 为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学第二版习题答案-(杜广生)
《工程流体力学》习题答案(杜广生主编)第一章习题1。
解:依据相对密度的定义:。
式中,表示4摄氏度时水的密度.2. 解:查表可知,标准状态下:,,,,,因此烟气在标准状态下的密度为:3。
解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm的空气的等熵体积模量:式中,对于空气,其等熵指数为1。
4。
4。
解:根据流体膨胀系数表达式可知:因此,膨胀水箱至少应有的体积为2立方米.5. 解:由流体压缩系数计算公式可知:6. 解:根据动力粘度计算关系式:7。
解:根据运动粘度计算公式:8。
解:查表可知,15摄氏度时空气的动力粘度,因此,由牛顿内摩擦定律可知:9。
解:如图所示,高度为h处的圆锥半径:,则在微元高度dh范围内的圆锥表面积:由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:则在微元dh高度内的力矩为:因此,圆锥旋转所需的总力矩为:10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:则轴与轴承之间的总切应力为:克服轴承摩擦所消耗的功率为:因此,轴的转速可以计算得到:11.解:根据转速n可以求得圆盘的旋转角速度:如图所示,圆盘上半径为r处的速度:,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:则微元宽度dr上的微元力矩:因此,转动圆盘所需力矩为:12。
解:摩擦应力即为单位面积上的牛顿内摩擦力。
由牛顿内摩擦力公式可得:13. 解:活塞与缸壁之间的间隙很小,间隙中润滑油的速度分布可以看作线性分布。
间隙宽度:因此,活塞运动时克服摩擦力所消耗的功率为:14. 解:对于飞轮,存在以下关系式:力矩M=转动惯量J*角加速度,即圆盘的旋转角速度:圆盘的转动惯量:式中,m为圆盘的质量,R为圆盘的回转半径,G为圆盘的重量。
2021年工程流体力学课后习题答案(第二版)
第一章 绪论欧阳光明(2021.03.07)1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少?[解] 温度变化前后质量守恒,即2211V V ρρ=又20℃时,水的密度31/23.998m kg =ρ80℃时,水的密度32/83.971m kg =ρ则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)?[解] 原原ρννρμ)1.01()15.01(-+==此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dy du -=当h =0.5m ,y =0时1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620(见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律y u d d μτ=,定性绘出切应力沿y 方向的分布图。
[解] 1-6μ[解] 253310024.51020108.014.3m dl A ---⨯=⨯⨯⨯⨯==π 1-7.两平行平板相距0.5mm ,其间充满流体,下板固定,上板在2Pa 的压强作用下以0.25m/s 匀速移动,求该流体的动力粘度。
[解] 根据牛顿内摩擦定律,得1-8.一圆锥体绕其中心轴作等角速度16rad s ω=旋转。
锥体与固定壁面间的距离δ=1mm ,用0.1Pa s μ=⋅的润滑油充满间隙。
锥体半径R=0.3m ,高H=0.5m 。
工程流体力学课后习题参考答案(周云龙洪文鹏教材版)
工程流体力学课后习题参考答案《工程流体力学》(第二版)中国电力出版社周云龙洪文鹏合编一、绪论1-1 kg/m31-2 kg/m31-3m3/h1-41/Pa1-5 Pa·s1-6 m2/s1-7 (1)m/s1/s(2)Pa·s(3) Pa1-8 (1)(Pa)(2)(Pa)1-9 (1) (N)(2) (Pa)(3)1-10Pa·s Pa·s1-11( N·m) 1-12 m/sm2NkW1-13 Pa·sm2NkW1-141-15 m2N1-16 m2m/sr/min1-17Pa·sN1-18 由1-14的结果得N·m 1-191-20 mm1-21 mm二、流体静力学2-1kPa2-2PaPa2-3 且m(a) PaPa(b) PaPa(c) PaPa2-4 设A点到下水银面的距离为h1,B点到上水银面的距离为h2即m2-5kg/m3Pa2-6 Pa 2-7(1)kPa(2)PakPa2-8设cm m mkPa2-9 (1)Pa (2)cm2-10Pa m2-11整理得m2-12Pa2-13cm 2-142-15整理:kPa2-16设差压计中的工作液体密度为Pam2-17Pa2-18kPa2-19 (1) N (2) N 2-21 设油的密度为NNN对A点取矩m(距A点)2-22 设梯形坝矩形部分重量为,三角形部分重量为(1)(kN)(kN)m(2)kN·m<kN·m 稳固2-23总压力F的作用点到A点的距离由2-24 m m2-25 Nm(距液面)2-26Nm (距液面)或m(距C点)2-27第一种计算方法:设水面高为m,油面高为m;水的密度为,油的密度为左侧闸门以下水的压力:N右侧油的压力:N左侧闸门上方折算液面相对压强:(Pa)则:N由力矩平衡方程(对A点取矩):解得:(N)第二种计算方法是将左侧液面上气体的计示压强折算成液柱高(水柱高),加到水的高度中去,然后用新的水位高来进行计算,步骤都按液面为大气压强时计算。
工程流体力学第二版习题答案
第一章习题
1.解:依据相对密度的定义: 。
式中, 表示4摄氏度时水的密度。
2.解:查表可知,标准状态下: , , , , ,因此烟气在标准状态下的密度为:
3.解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:
此时,取0’-0’截面为等压面,列等压面方程:
由此可以求解得到压强差为:
将式(1)代入,可得
14.解:
根据力的平衡,可列如下方程:
左侧推力=总摩擦力+活塞推力+右侧压力
即: ,
式中A为活塞面积,A’为活塞杆的截面积。
由此可得:
15.解:
分析:隔板不受力,只有当隔板左右液面连成一条直线时才能实现(根据上升液体体积与下降液体体积相等,可知此直线必然通过液面的中心)。如图所示。
总压力F的作用点D位于平板CD的中心线上,其距离O点长度 ,
式中 ,为形心距离O点的长度, ,为形心的惯性矩。因此,可计算出:
25.解:
设水闸宽度为b,水闸左侧水淹没的闸门长度为l1,水闸右侧水淹没的闸门长度为l2。作用在水闸左侧压力为
(1)
其中
则
(2)
作用在水闸右侧压力为
(3)
其中
则
(4)
由于矩形平面的压力中心的坐标为
设容器中气体的真空压强为 ,绝对压强为
如图所示,选取1-1截面为等压面,则列等压面方程:
因此,可以计算得到:
真空压强为:
5.解:
如图所示,选取1-1,2-2截面为等压面,并设1-1截面距离地面高度为H,则可列等压面方程:
联立以上三式,可得:
化简可得:
工程流体力学第二版习题答案-(杜广生)
《工程流体力学》习题答案(杜广生主编)第一章 习题1。
解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2。
解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:112231.9760.1352.9270.003 1.4290.052 1.2510.760.8040.051.341/n nkg m ρραραρα=++=⨯+⨯+⨯+⨯+⨯=3。
解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:31.44101325567.410S K p Pa κ==⨯⨯=⨯式中,对于空气,其等熵指数为1。
4。
4. 解:根据流体膨胀系数表达式可知:30.0058502V dV V dT m α=⋅⋅=⨯⨯=因此,膨胀水箱至少应有的体积为2立方米。
5。
解:由流体压缩系数计算公式可知:392511050.5110/(4.90.98)10dV V k m N dp -⨯÷=-=-=⨯-⨯ 6。
解:根据动力粘度计算关系式:74678 4.2810 2.910Pa S μρν--==⨯⨯=⨯⋅7. 解:根据运动粘度计算公式:3621.310 1.310/999.4m s μνρ--⨯===⨯8。
解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:630.317.83100.2 3.36100.001U F AN h μπ--==⨯⨯⨯⨯=⨯ 9。
工程流体力学课后习题答案(第二版)之令狐文艳创作
第一章 绪论令狐文艳1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少?[解] 温度变化前后质量守恒,即2211V V ρρ=又20℃时,水的密度31/23.998m kg =ρ80℃时,水的密度32/83.971m kg =ρ则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)?[解] 原原ρννρμ)1.01()15.01(-+==此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dy du -=当h =0.5m ,y =0时1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620(见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律y u d d μτ=,定性绘出切应力沿y 方向的分布图。
[解] 1-6过。
,涂μ拉力。
(1.O1N )[解] 253310024.51020108.014.3m dl A ---⨯=⨯⨯⨯⨯==π1-7.两平行平板相距0.5mm ,其间充满流体,下板固定,上板在2Pa 的压强作用下以0.25m/s 匀速移动,求该流体的动力粘度。
[解] 根据牛顿内摩擦定律,得1-8.一圆锥体绕其中心轴作等角速度16rad s ω=旋转。
锥体与固定壁面间的距离δ=1mm ,用0.1Pa s μ=⋅的润滑油充满间隙。
锥体半径R=0.3m ,高H=0.5m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1-1.20℃的水2.5m3,当温度升至80℃时,其体积增加多少?[解] 温度变化前后质量守恒,即又20℃时,水的密度80℃时,水的密度则增加的体积为1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)?[解]此时动力粘度增加了3。
5%1-3.有一矩形断面的宽渠道,其水流速度分布为,式中、分别为水的密度和动力粘度,为水深。
试求时渠底(y=0)处的切应力。
[解]当=0.5m,y=0时1-4.一底面积为45×50cm2,高为1cm的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm,斜坡角22.620(见图示),求油的粘度.[解]木块重量沿斜坡分力F与切力T平衡时,等速下滑1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律,定性绘出切应力沿y方向的分布图。
[解]1—6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0。
9mm,长度20mm,涂料的粘度=0。
02Pa.s。
若导线以速率50m/s拉过模具,试求所需牵拉力。
(1。
O1N)[解]1—7.两平行平板相距0。
5mm,其间充满流体,下板固定,上板在2Pa的压强作用下以0.25m/s匀速移动,求该流体的动力粘度。
[解]根据牛顿内摩擦定律,得1-8.一圆锥体绕其中心轴作等角速度旋转。
锥体与固定壁面间的距离=1mm,用的润滑油充满间隙.锥体半径R=0.3m,高H=0。
5m.求作用于圆锥体的阻力矩.(39.6N·m)[解]取微元体如图所示微元面积:切应力:阻力:阻力矩:1—9.一封闭容器盛有水或油,在地球上静止时,其单位质量力为若干?当封闭容器从空中自由下落时,其单位质量力又为若干?[解] 在地球上静止时:自由下落时:第二章流体静力学2-1.一密闭盛水容器如图所示,U形测压计液面高于容器内液面h=1.5m,求容器液面的相对压强.[解]2—2.密闭水箱,压力表测得压强为4900Pa。
压力表中心比A点高0.5m,A点在液面下1。
5m。
求液面的绝对压强和相对压强。
[解]2—3.多管水银测压计用来测水箱中的表面压强。
图中高程的单位为m.试求水面的绝对压强p abs。
[解]2—4.水管A、B两点高差h1=0。
2m,U形压差计中水银液面高差h2=0。
2m。
试求A、B两点的压强差。
(22.736N/m2)[解]2-5.水车的水箱长3m,高1。
8m,盛水深1.2m,以等加速度向前平驶,为使水不溢出,加速度a的允许值是多少?[解] 坐标原点取在液面中心,则自由液面方程为:当时,,此时水不溢出2-6.矩形平板闸门AB一侧挡水。
已知长l=2m,宽b=1m,形心点水深h c=2m,倾角=45,闸门上缘A处设有转轴,忽略闸门自重及门轴摩擦力.试求开启闸门所需拉力.[解] 作用在闸门上的总压力:作用点位置:2—7.图示绕铰链O转动的倾角=60°的自动开启式矩形闸门,当闸门左侧水深h1=2m,右侧水深h2=0.4m 时,闸门自动开启,试求铰链至水闸下端的距离x。
[解]左侧水作用于闸门的压力:右侧水作用于闸门的压力:2-8.一扇形闸门如图所示,宽度b=1.0m,圆心角=45°,闸门挡水深h=3m,试求水对闸门的作用力及方向[解]水平分力:压力体体积:铅垂分力:合力:方向:2-9.如图所示容器,上层为空气,中层为的石油,下层为的甘油,试求:当测压管中的甘油表面高程为9。
14m时压力表的读数.[解] 设甘油密度为,石油密度为,做等压面1—-1,则有2-10.某处设置安全闸门如图所示,闸门宽b=0.6m,高h1= 1m,铰接装置于距离底h2= 0.4m,闸门可绕A 点转动,求闸门自动打开的水深h为多少米。
[解] 当时,闸门自动开启将代入上述不等式得2-11.有一盛水的开口容器以的加速度3.6m/s2沿与水平面成30o夹角的斜面向上运动,试求容器中水面的倾角。
[解] 由液体平衡微分方程,,在液面上为大气压,2-12.如图所示盛水U形管,静止时,两支管水面距离管口均为h,当U形管绕OZ轴以等角速度ω旋转时,求保持液体不溢出管口的最大角速度ωmax。
[解]由液体质量守恒知,I管液体上升高度与II管液体下降高度应相等,且两者液面同在一等压面上,满足等压面方程:液体不溢出,要求,以分别代入等压面方程得:2-13.如图,,上部油深h1=1.0m,下部水深h2=2.0m,油的重度=8.0kN/m3,求:平板ab单位宽度上的流体静压力及其作用点.[解] 合力作用点:2—14.平面闸门AB倾斜放置,已知α=45°,门宽b=1m,水深H1=3m,H2=2m,求闸门所受水静压力的大小及作用点。
[解] 闸门左侧水压力:作用点:闸门右侧水压力:作用点:总压力大小:对B点取矩:2—15.如图所示,一个有盖的圆柱形容器,底半径R=2m,容器内充满水,顶盖上距中心为r0处开一个小孔通大气。
容器绕其主轴作等角速度旋转。
试问当r0多少时,顶盖所受的水的总压力为零。
[解]液体作等加速度旋转时,压强分布为积分常数C由边界条件确定:设坐标原点放在顶盖的中心,则当时,(大气压),于是,在顶盖下表面,,此时压强为顶盖下表面受到的液体压强是p,上表面受到的是大气压强是p a,总的压力为零,即积分上式,得,2—16.已知曲面AB为半圆柱面,宽度为1m,D=3m,试求AB柱面所受静水压力的水平分力P x和竖直分力P z . [解]水平方向压强分布图和压力体如图所示:2-17.图示一矩形闸门,已知及,求证〉时,闸门可自动打开。
[证明] 形心坐标则压力中心的坐标为当,闸门自动打开,即第三章流体动力学基础3-1.检验不可压缩流体运动是否存在?[解](1)不可压缩流体连续方程(2)方程左面项;;(2)方程左面=方程右面,符合不可压缩流体连续方程,故运动存在。
3-2.某速度场可表示为,试求:(1)加速度;(2)流线;(3)t= 0时通过x=—1,y=1点的流线;(4)该速度场是否满足不可压缩流体的连续方程?[解] (1)写成矢量即(2)二维流动,由,积分得流线:即(3),代入得流线中常数流线方程:,该流线为二次曲线(4)不可压缩流体连续方程:已知:,故方程满足.3—3.已知流速场,试问:(1)点(1,1,2)的加速度是多少?(2)是几元流动?(3)是恒定流还是非恒定流?(4)是均匀流还是非均匀流?[解]代入(1,1,2)同理:因此(1)点(1,1,2)处的加速度是(2)运动要素是三个坐标的函数,属于三元流动(3),属于恒定流动(4)由于迁移加速度不等于0,属于非均匀流。
3-4.以平均速度v=0.15 m/s 流入直径为D=2cm 的排孔管中的液体,全部经8个直径d=1mm的排孔流出,假定每孔初六速度以次降低2%,试求第一孔与第八孔的出流速度各为多少?[解]由题意;;······;式中S n为括号中的等比级数的n项和.由于首项a1=1,公比q=0。
98,项数n=8。
于是3—5.在如图所示的管流中,过流断面上各点流速按抛物线方程:对称分布,式中管道半径r0=3cm,管轴上最大流速u max=0。
15m/s,试求总流量Q与断面平均流速v。
[解] 总流量:断面平均流速:3—6.利用皮托管原理测量输水管中的流量如图所示。
已知输水管直径d=200mm,测得水银差压计读书h p=60mm,若此时断面平均流速v=0.84u max,这里u max为皮托管前管轴上未受扰动水流的流速,问输水管中的流量Q为多大?(3.85m/s)[解]3—7.图示管路由两根不同直径的管子与一渐变连接管组成.已知d A=200mm,d B=400mm,A点相对压强p A=68.6kPa,B点相对压强p B=39.2kPa,B点的断面平均流速v B=1m/s,A、B两点高差△z=1。
2m.试判断流动方向,并计算两断面间的水头损失h w。
[解]假定流动方向为A→B,则根据伯努利方程其中,取故假定正确。
3-8.有一渐变输水管段,与水平面的倾角为45º,如图所示。
已知管径d1=200mm,d2=100mm,两断面的间距l=2m。
若1-1断面处的流速v1=2m/s,水银差压计读数h p=20cm,试判别流动方向,并计算两断面间的水头损失h w和压强差p1-p2。
[解]假定流动方向为1→2,则根据伯努利方程其中,取故假定不正确,流动方向为2→1。
由得3-9.试证明变截面管道中的连续性微分方程为,这里s为沿程坐标。
[证明] 取一微段ds,单位时间沿s方向流进、流出控制体的流体质量差△m s为因密度变化引起质量差为由于3—10.为了测量石油管道的流量,安装文丘里流量计,管道直径d1=200mm,流量计喉管直径d2=100mm,石油密度ρ=850kg/m3,流量计流量系数μ=0。
95.现测得水银压差计读数h p=150mm。
问此时管中流量Q多大?[解] 根据文丘里流量计公式得3—11.离心式通风机用集流器A从大气中吸入空气。
直径d=200mm处,接一根细玻璃管,管的下端插入水槽中。
已知管中的水上升H=150mm,求每秒钟吸入的空气量Q。
空气的密度ρ为1.29kg/m3.[解]3-12.已知图示水平管路中的流量q V=2.5L/s,直径d1=50mm,d2=25mm,,压力表读数为9807Pa,若水头损失忽略不计,试求连接于该管收缩断面上的水管可将水从容器内吸上的高度h。
[解]3-13.水平方向射流,流量Q=36L/s,流速v=30m/s,受垂直于射流轴线方向的平板的阻挡,截去流量Q1=12 L/s,并引起射流其余部分偏转,不计射流在平板上的阻力,试求射流的偏转角及对平板的作用力.(30°;456。
6kN)[解] 取射流分成三股的地方为控制体,取x轴向右为正向,取y轴向上为正向,列水平即x方向的动量方程,可得:y方向的动量方程:不计重力影响的伯努利方程:控制体的过流截面的压强都等于当地大气压p a,因此,v0=v1=v23—14.如图(俯视图)所示,水自喷嘴射向一与其交角成60º的光滑平板。
若喷嘴出口直径d=25mm,喷射流量Q=33.4L/s,,试求射流沿平板的分流流量Q1、Q2以及射流对平板的作用力F。
假定水头损失可忽略不计。
[解] v0=v1=v2x方向的动量方程:y方向的动量方程:3-15.图示嵌入支座内的一段输水管,其直径从d1=1500mm变化到d2=1000mm。
若管道通过流量q V=1.8m3/s 时,支座前截面形心处的相对压强为392kPa,试求渐变段支座所受的轴向力F。