人教版高中数学必修三 第二章 统计变量间的相关关系(线性回归)
高中数学第二章统计2.3变量的相关性2.3.1-2.3.2变量间的相关关系两个变量的线性相关教学案新人教B版必修3
2.3.1 & 2.3.2 变量间的相关关系 两个变量的线性相关习课本P73~78,思考并完成以下问题预(1)相关关系是函数关系吗?(2)什么是正相关、负相关?与散点图有什么关系?(3)回归直线方程是什么?如何求回归系数?(4)如何判断两个变量之间是否具备相关关系?[新知初探]1.两个变量的关系分类函数关系相关关系 特征两变量关系确定两变量关系带有随机性2.散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. 3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.4.最小二乘法设x ,Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx ,当x 取值x i (i =1,2,…,n )时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q =i =1n(y i -a-bx i)2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.5.回归直线方程的系数计算公式回归直线方程回归系数系数a^的计算公式方程或公式y^=a^+b^x b^=∑i=1nxiyi-n x-y-∑i=1nx2i-n x2a^=y-b^x-上方加记号“^ ”的意义区分y的估计值y^与实际值ya,b上方加“^ ”表示由观察值按最小二乘法求得的估计值[小试身手]1.下列命题正确的是( )①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A.①③④B.②③④C.③④⑤D.②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.v,u;对变量1,得散点图图10),…,1,2=i)(iy,ix(有观测数据y,x.对变量2)(由这两个散点图可以判断2.,得散点图图10),…,1,2=i)(iv,iu(有观测数据A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关.80,当施肥量为250+x 5=y ^归方程为的线性回(kg)y 与水稻产量(kg)x .若施肥量3kg 时,预计水稻产量约为________kg..650(kg)=250+5×80=y ^代入回归方程可得其预测值80=x 解析:把 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8y 30 40 60 50 70若已求得它们的回直线的方程为______________________.,5=2+4+5+6+85=x 解析:由题意可知 y50.=30+40+60+50+705=即样本中心为(5,50).,a ^+x 6.5=y ^设回归直线方程为 ,)y ,x (回归直线过样本中心∵ ,7.51=a ^,即a ^+6.5×5=50∴ 17.5+x 6.5=y ^回归直线方程为∴ 17.5+x 6.5=y ^答案:相关关系的判断[典例] (1) ①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系. (2)某个男孩的年龄与身高的统计数据如下表所示.年龄x (岁)123456身高y (cm)78 87 98 108 115 120①画出散点图;②判断y 与x 是否具有线性相关关系.[解析] (1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;在③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y 与x 具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④求回归方程[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985①画出散点图;②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:秒/转14,所以机器的运转速度应控制在≤14.9x ,解得≤1067-x 5170得≤10y 由③内.求回归直线方程的步骤.)数据一般由题目给出)(n ,…,1,2=i )(i y ,i x (收集样本数据,设为(1) (2)作出散点图,确定x ,y 具有线性相关关系..i y i x ,2i x ,i y ,i x 把数据制成表格(3).iy i ∑i =1nx ,2i ∑i =1n x ,y ,x 计算(4) ⎩⎪⎨⎪⎧b ^=∑i =1nxiyi -n x y ∑i =1n x2i -n x 2,a ^=y -b ^ x .,公式为a ^,b ^代入公式计算(5).a ^+x b ^=y ^写出回归直线方程(6) [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.,52=1+2+3+44=x (2) y ,134=1+3+4+54=∑i=14x 39.=20+12+6+1=i y i ∑i =14x 2i ,30=16+9+4+1= b^,1310=39-4×52×13430-4×⎝ ⎛⎭⎪⎫522=a^,0=52×1310-134= .为所求的回归直线方程x 1310=y ^所以 利用线性回归方程对总体进行估计[典例x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:,3.5=2.5+3+4+4.54=y ,4.5=3+4+5+64=x (2) ∑i=14x ,66.5=6×4.5+5×4+4×3+3×2.5=i y i ∑i=14x 2i ,86=26+25+24+23= ∑i =14xiyi -4xy∑i =14x2i -4x 2=b ^所以 ,0.7=66.5-4×4.5×3.586-4×4.52=a ^0.35.=0.7×4.5-3.5=x b ^-y = 0.35.+x 0.7=y ^所以所求的线性回归方程为 ,)吨标准煤70.35(=0.35+0.7×100=y ^时,100=x 当(3) 90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:it iy it 2it i y i1 1 5 1 52 2 6 4 123 3 7 9 214 4 8 16 325 5 10 25 50 ∑153655120这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1n y i =365=7.2.又∑i =1nt2i -n t -2=55-5×32=10,i =1n t i y i -n t-y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( )A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C.2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为2+x 1.5=y ^A. 2+x 1.5=-y ^B. 2-x 1.5=y ^C. 2-x 1.5=-y ^D. 之间负相关,回归直线y ,x ,由散点图可知变量a ^+x b ^=y ^设回归方程为 B 解析:选 2.+x 1.5=-y ^,因此方程可能为>0a ^,<0b ^轴上的截距为正数,所以y 在 个样本点,n 的y 和x 是变量)n y ,n x (,…,)2y ,2x (,)1y ,1x (设3.直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( ))y ,x (过点l .直线A B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误. 4.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的,x 0.006 2+9.5=y ^的回归方程为x 关于吨位y 人,船员人数32~5人数 (1)若两艘船的吨位相差1 000,求船员平均相差的人数;(2)估计吨位最大的船和最小的船的船员人数.,则2x ,1x 设两艘船的吨位分别为(1)解: y^)2x 6 20.00+(9.5-1x 0.006 2+9.5=2y ^-1 =0.006 2×1 000≈6, 即船员平均相差6人.,0.006 2×192≈11+9.5=y ^时,192=x 当(2) 0.006 2×3 246≈30.+9.5=y ^时,3 246=x 当 即估计吨位最大和最小的船的船员数分别为30人和11人.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( ) A .确定性关系 B .相关关系 C .函数关系D .无任何关系 解析:选 B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.,下x 80+50=y ^变化的回归直线方程为)千元(x 依劳动生产率)元(y .农民工月工资2列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元的单x ,但要注意80增加y ,1每增加x 知,x 80+50=y ^由回归直线方程 B 解析:选位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:则y 对x 的线性回归方程为( )A .y =x -1B .y =x +1x 12+88=y .C176=y .D =y ,176=174+176+176+176+1785=x 计算得, C 解析:选符合.C 检验知,)y ,x (,根据回归直线经过样本中心176=175+175+176+177+17754.已知x 与y 之间的几组数据如下表:,若某同学根据上表中的前两组a ^+x b ^=y ^假设根据上表数据所得线性回归直线方程为数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )′a <a ^,′b >y ^′ B.a >a ^,′b >b ^A. ′a <a ^,′b <y ^′ D.a >a ^,′b <b ^C. 解析:选C 由(1,0),(2,2)求b ′,a ′.2.=-2×1-0=′a ,2=2-02-1=′b ,58=24+15+12+3+4+0=i y i ∑i =16x 时,a ^,b ^求 x ,136=y ,3.5= ∑i=16x 2i ,91=36+25+16+9+4+1= ,57=58-6×3.5×13691-6×3.52=b ^∴ a^,13=-52-136=×3.557-136= ′.a >a ^,′b <b ^∴ =y ^的回归方程为(cm)x 对身高(kg)y 岁的人,体重38岁到18.正常情况下,年龄在50.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右. =y ^时,178=x 的人的体重进行预测,当178 cm 解析:用回归方程对身高为0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:________.=a ,则a +x 4=-y 由表中数据,求得线性回归方程为 ,132=4+5+6+7+8+96=x 解析: y,80=92+82+80+80+78+686=)y ,x (由回归方程过样本中心点 .a ^+1324×=-80得 106.=1324×+80=a ^即 答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y ,估计该台机器最为划算的使用年限为x 1.3-10.47=y ^具备线性相关关系,回归方程为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:;y ,x 求(1) (2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件?3 487)=i y i ∑i =17x ,45 309=2i ∑i =17y ,280=2i ∑i =17x 提示:( ,6=3+4+5+6+7+8+97=x (1)解: y≈79.86.66+69+73+81+89+90+917= ,≈4.753 487-7×6×79.86280-7×62=b ^∵(2) a^,51.36=4.75×6-79.86= .x 4.75+51.36=y ^之间的回归直线方程为x 纯利与每天销售件数∴ ≈31.29.x ,所以651.3+x 4.75=200时,200=y ^当(3) 因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.9.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元)2 4 4 6 6 6 7 7 8 10年饮食 支出y(万元)0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3(2)若某家庭年收入为9万元,预测其年饮食支出.406)=2i ∑i =110x ,117.7=i y i ∑i =110x 参考数据:( 解:依题意可计算得:x,10.98=y x ,36=2x ,1.83=y ,6= ,406=2i ∑i =110x ,117.7=i y i ∑i =110x ∵又,≈0.17∑i=110xiyi -10x y ∑i =110x2i -10x 2=b ^∴ a^0.81.+x 0.17=y ^∴,0.81=x b ^-y = 1.0.8+x 0.17=y ^所求的回归方程为∴ .)万元2.34(=0.81+0.17×9=y ^时,9=x 当(2) 可估计年收入为9万元的家庭每年饮食支出约为2.34万元.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选 C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20 解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190 192.=n ,求得80=n200+1 200+1 0001 000× B 解析:选 4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )200+x 10=y ^200 B.+x 10=-y ^A. 200-x 10=y ^200 D.-x 10=-y ^C. 解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.,则y 和x ,它们的平均数分别是n y ,…,2y ,1y 与n x ,…,2x ,1x .设有两组数据5)(的平均数是1+n y 3-n x 2,…,1+2y 3-2x 1,2+1y 3-1x 2新的一组数据 y 3-x 2.A 1+y 3-x 2.By 9-x 4.C1+y 9-x 4.D ,)n ,…,1,2=i 1(+i y 3-i x 2=i z 设 B 解析:选 =⎝ ⎛⎭⎪⎫1+1+…+1n +)n y +…+2y +1y (3n -)n x +…+2x +1x (2n =)n z +…+2z +1z (1n =z 则 1.+y 3-x 2 6.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12[35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( )211A.13B. 12C.23D. 解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7.13=2266的数据约占31.5,故总体中大于或等于22=3+ 7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90 解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,87.=75)+80+85×4+90×2+95+(100110平均数为 8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3 1.8.=5×0+20×1+10×2+10×3+5×450B 解析:选 9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4用水量y 4.5 4 3 2.5的a ,则a +x 0.7=-y 之间具有线性相关关系,其线性回归方程为x 与月份y 用水量值为( )A .5.25B .5C .2.5D .3.5 解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4 +5+6+3+(515+80,平均数为77,去掉一个最低分95去掉一个最高分 C 解析:选,因此1.2=]286)-(85+285)-(85+286)-(85+283)-(85+285)-[(8515,方差为85=6)选C.,…,2+2x 2,3+1x 3,则2s ,方差是x 的平均数是n x ,…,3x ,2x ,1x .如果数据11)(的平均数和方差分别是2+n x 32s 和x A.2s 9和x 3.B2s 9和2+x 3.C4+2s 12和2+x 3.D nx …,2x ,1x ,由于数据2+x 3的平均数是2+n x 3,…,2+2x 2,3+1x 3 C 解析:选.2s 9的方差为2+n x 3,…,2+2x 2,3+1x 3,所以2s 的方差为 12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是( ) A .x =9 B .y =8C .乙的成绩的中位数为26D .乙的成绩的方差小于甲的成绩的方差解析:选B 因为甲的成绩的极差为31,所以其最高成绩为39,所以x =9;因为乙的成绩的平均值为24,所以y =24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小. 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.∴,2;又方差为20=y +x ,则10=159)×+11+10+y +x (,得10解析:由平均数为=xy 208,2=2y +2x ,得2=15]×210)-(9+210)-(11+210)-(10+210)-y (+210)-x [( 4.=x2+y2-2xy =x -y 2=|y -x |∴,192 答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.12.=×482148+36解析:抽取的男运动员的人数为 答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)59408 66368 36016 26247 25965 49487 26968 86021 77681 83458 21540 62651 69424 78197 20643 67297 76413 66306 51671 54964 87683 30372 39469 97434解析:以3开始向右读,每次读取三位,重复和不在范围内的不读,依次为368,360,162,494,021.答案:368,360,162,494,02116.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1,∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,10.=z ,20=y 同理,30.=x ,解得0.030×10=x100则3.=×181030+20+10的学生中选取的人数为[140,150]故从 答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) ,应如何110名学生中抽取50为调查某班学生的平均身高,从)分10本小题满分(.17抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样? 抽签法或随机数(人,采用简单随机抽样法5,即抽取110名学生中抽取50解:从法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?22.=1326=17+19+20+21+25+306样本均值为1)(解: 4=1312×名工人中有12,故推断该车间13=26知样本中优秀工人所占比例为(1)由(2)名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人);四川籍的有15+10+5+5+5=40(人).2,即四川籍的应抽取2=x ,解得x40=5100人,依题意得x 设四川籍的驾驶人员应抽取人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样.,100=99)+98+103+98+99+101+(10217=甲x (2) x,100=110)+115+75+85+90+115+(11017=乙 ,1)≈3.43+4+9+4+1+1+(417=2甲s ,228.57=100)+225+625+225+100+225+(10017=2乙s ,故甲车间产品比较稳定.2乙s <2甲s ∴ 21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数 频率[10,15) 10 0.25[15,20) 25n [20,25) mp[25,30] 20.05 合计M1(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 40.=M ,所以0.25=10M知,0.25频率是 因为频数之和为40,所以10+25+m +2=40,解得m =3.0.075.=340=p 故 因为a 是对应分组[15,20)的频率与组距的商,125.0.=2540×5=a 所以 (2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入iy i ∑i =110x ,20=i ∑i =110y ,80=i ∑i =110x 的数据资料,算得)单位:千元(i y 与月储蓄)单位:千元(i x 720.=2i ∑i =110x ,184= ;a ^+xb ^=y ^的线性回归方程x 对月收入y 求家庭的月储蓄(1) (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.,8=8010=i ∑i =1n x 1n =x ,10=n 由题意知(1)解: y ,2=2010=i ∑i =1n y 1n = ,80=210×8-720=2x 10-2i ∑i =110x 又 ∑i=110x ,24=10×8×2-184=y x 10-i y i ,0.3=2480=∑i =110xiyi -10x y∑i =110x2i -10x 2=b ^由此得 a^,0.4=-0.3×8-2=x b ^-y = 0.4.-x 0.3=y ^故所求回归方程为 (2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。
高一数学人必修三课件第二章统计变量间的相关关系
汇报人:XX 20XX-01-21
目录
• 统计变量间相关关系概述 • 散点图与线性相关关系 • 非线性相关关系 • 相关系数及其性质 • 建立数学模型预测未来趋势 • 总结回顾与拓展延伸
01
统计变量间相关关系概述
定义与背景
01
统计变量间相关关系指的是两个 或多个变量之间存在的某种依存 关系,当一个变量发生变化时, 另一个变量也会随之发生变化。
相关系数
介绍了相关系数的概念和计算方法,包括皮尔逊相关系数和斯皮尔曼相关系数等。相关 系数可以量化变量间的相关程度,帮助我们判断变量间是否存在显著的线性关系。
拓展延伸:多元线性回归简介
多元线性回归模型
讲解了多元线性回归模型的概 念和构建方法。多元线性回归 模型可以描述多个自变量与一 个因变量之间的线性关系。
关系。
案例二
研究某城市交通事故数与时间的关系。通过计算相关系数发现,交通事故数与时间之间 的相关系数接近0,表明它们之间不存在线性相关关系。进一步观察数据发现,交通事 故数在不同的时间段内呈现出周期性的变化,因此可以判断交通事故数与时间之间存在
周期性相关关系。
04
相关系数及其性质
相关系数定义及计算公式
02
相关关系的研究起源于19世纪中 叶,随着现代科学技术的发展, 相关关系已经成为统计学中研究 的重要内容之一。
相关关系与函数关系区别
相关关系是一种非确定性的关系,即 变量之间的关系不是严格的函数关系 ,而是存在一定的随机性和不确定性 。
函数关系是一种确定性的关系,即一 个变量的取值完全由另一个或几个变 量的取值所确定。
相关系数定义
相关系数是衡量两个变量之间线性相关程度的统计量,其取值范围在-1到1之间 。当相关系数接近1时,表示两变量呈强正相关;接近-1时,表示两变量呈强负 相关;接近0时,表示两变量之间无线性相关关系。
高中高中数学第二章统计2.3.1变量之间的相关关系2.3.2两个变量的线性相关课件新人教A版必修3
解:(1)画出散点图.
(2)判断变量x,y是否具有相关关系?如果具有相关关系,那么是正相关还是 负相关?
解:(2)具有相关关系.根据散点图,左下角到右上角的区域,变量x的值由小 变大时,另一个变量y的值也由小变大,所以它们具有正相关关系.
方法技巧 两个随机变量x和y是否具有相关关系的确定方法: (1)散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断 (如本题); (2)表格、关系式法:结合表格或关系式进行判断; (3)经验法:借助积累的经验进行分析判断.
4
4
解:(2)由表中的数据得: xi yi =52.5, x =3.5, y =3.5, xi2 =54,
i 1
i 1
n
所以 b =
xi yi n x y
i 1
n
xi2
2Hale Waihona Puke nx=52.5 4 3.5 3.5 54 4 3.52
=0.7,
i 1
a = y - b x =3.5-0.7×3.5=1.05,
年份x
储蓄存款 y(千亿元)
2013 5
2014 6
2015 7
2016 8
2017 10
为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2 012,z=y-5 得到表2:
时间代号t
1
2
3
4
5
z
0
1
2
3
5
(1)求z关于t的线性回归方程;
5
5
解:(1) t =3, z =2.2, ti zi=45, ti2 =55,
知识探究
1.相关关系与函数关系不同 函数关系中的两个变量间是一种确定性关系,相关关系是一种不确定性关系. 2.正相关和负相关 (1)正相关 在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关 关系,我们就称它为正相关. (2)负相关 在散点图中,点散布在从左上角到右下角的区域,对于两个变量的这种相关 关系,我们就称它为负相关.
高中数学人教A版必修三:第2章 2-3 变量间的相关关系课件
系就是相关关系,例如,某位同学的“物理成绩”与“数学成绩”之间的
关系,我们称它们为相关关系;再一类是不相关,即两个变量间没有任
何关系.
【做一做 1】下列图形中具有相关关系的两个变量是(
)
解析:A 项中显然任给一个 x 都有唯一确定的 y 和它对应,是一
【例题 2】每立方米混凝土的水泥用量 x(单位:kg)与 28 天后混凝土
的抗压强度 y(单位:kg/cm2)之间的关系有如下数据:
16 17 18 19 20 21 22 23 24 25 26
x 15
0
0
0
0
0
0
0
0
0
0
0
0
y 56. 58. 61. 64. 68. 71. 74. 77. 80. 82. 86. 89.
第二章
2.3
统计
变量间的相关关系
知识能力目标引航
1.了解相关关系、线性相关、回归直线、最小二乘法的定义.
2.会作散点图,能判断两个变量之间是否具有相关关系.
3.会求回归直线方程,并能用回归直线方程解决有关问题.
1.相关关系
(1)定义:如果两个变量中一个变量的取值一定时,另一个变量的
取值带有一定的随机性,那么这两个变量之间的关系,叫做相关关系.
9
3
6
6
1
3
1
4
2
6
4
7
求两个变量间的回归直线方程.
分析:由题目可获取以下主要信息:
①两个变量具有线性相关关系;
②由两个变量的对应数据求回归直线方程.
解答本题要先列出相应的表格,有了表格中的那些相关数据,回
高中数学必修3第二章:统计2.3变量间的相关关系
Y 研考点·知规律
探究悟道 点拨技法
题型一 相关关系的判断 【例 1】 河北国欣农研会的科研人员在 7 块并排、形状大小 相同的试验田上对某棉花新品种进行施化肥量 x 对产量 y 影响的 试验,得到如下表所示的一组数据(单位:kg): 施化肥量 x 15 20 25 30 35 40 45 棉花产量 y 330 345 365 405 445 450 455
D 读教材·抓基础
回扣教材 扫除盲点
课本导读
1.两个变量的线性相关 (1)在散点图中,点散布在从 左下角 到 右上角的区域,对于 两个变量的这种相关关系,我们将它称为正相关. (2)在散点图中,点散布在从 左上角 到 右下角的区域,两个 变量的这种相关关系称为负相关. (3)如果散点图中点的分布在整体上看大致在一条直线附近 , 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.
() (A)她儿子10岁时的身高一定是145.83 cm (B)她儿子10岁时的身高在145.83 cm以上 (C)她儿子10岁时的身高在145.83 cm左右 (D)她儿子10岁时的身高在145.83 cm以下
2.经调查知,某品牌汽车的销售量y(辆)与广告费用x(万元)之 间的回归直线方程为 yˆ =250+4x,当广告费用为50万元时,预计 汽车销售量约为 ______辆.
2.回归方程 (1)最小二乘法:使得样本数据的点到回归直线的 距离的平方
和最小的方法叫最小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,
^^ ^
y1)、(x2,y2),…,(xn,yn).其回归方程为y=bx+a,则
n
n
xi- x yi- y xiyi-n x y
人教版高中数学【必修三】[知识点整理及重点题型梳理]_变量间的相关关系_提高
人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习变量的相关性【学习目标】1.明确两个变量具有相关关系的意义;2.知道回归分析的意义;3.知道回归直线、回归直线方程、线性回归分析的意义;4.掌握对两个变量进行线性回归的方法和步骤,并能借助科学计算器确定实际问题中两个变量间的回归直线方程;【要点梳理】【变量的相关关系 400458 知识讲解1】要点一、变量之间的相关关系变量与变量之间存在着两种关系:一种是函数关系,另一种是相关关系。
1.函数关系函数关系是一种确定性关系,如y=kx+b,变量x取的每一个值,y都有唯一确定的值和它相对应。
2.相关关系变量间确定存在关系,但又不具备函数关系所要求的确定性相关关系分为两种:正相关和负相关要点诠释:对相关关系的理解应当注意以下几点:(1)相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.(3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化.例如正方形面积S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计.3.散点图将收集到的两个变量的统计数据分别作为横、纵坐标,在直角坐标系中描点,这样的图叫做散点图。
通过散点图可初步判断两个变量之间是否具有相关关系,她反映了各数据的密切程度。
人教版高中数学必修3第二章统计-《2.3.2两个变量的线性相关》教案(1)_001
2.3.2两个变量的线性相关教学目标:经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
教学重点:经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
教学过程:1.回顾上节课的案例分析给出如下概念: (1)回归直线方程 (2)回归系数2.最小二乘法3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x )代入回归方程对预报量(即因变量Y )进行估计,即可得到个体Y 值的容许区间。
(3)利用回归方程进行统计控制规定Y 值的变化,通过控制x 的范围来实现统计控制的目标。
如已经得到了空气中NO 2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO 2的浓度。
4.应用直线回归的注意事项(1)做回归分析要有实际意义;(2)回归分析前,最好先作出散点图; (3)回归直线不要外延。
5.实例分析: 某调查者从调查中获知某公司近年来科研费用支出(i X )与公司所获得利润(i Y )的统计资料如下表:i X i Y 要求估计利润(i Y )对科研费用支出(i X )的线性回归模型。
解:设线性回归模型直线方程为:i i X Y 10ˆˆˆββ+=因为:5630===∑n XX i306180===∑nYY i现利用公式(Ⅰ)、(Ⅱ)、(Ⅲ)求解参数10的估计值:23006009001200540060003020061803010006)(ˆ2221==--=-⨯⨯-⨯=--=∑∑∑∑∑i i i i i i X X n Y X Y X n β 205230ˆˆ10=⨯-=-=X Y ββ∑∑--=-=22110)(ˆˆˆX n X YX n Y X X Y ii i βββ 205230ˆˆ10=⨯-=-=X Y ββ25010056200305610002==⨯-⨯⨯-=∑∑---=-=2110)())((ˆˆˆX X Y Y X X X Y ii iβββ 205230ˆˆ10=⨯-=-=X Y ββ250100==所以:利润(i Y )对科研费用支出(i X )的线性回归模型直线方程为:i i X Y 220ˆ+=6、求直线回归方程,相关系数和作图,这些EXCEL 可以方便地做到。
最新人教版高中数学必修3第二章变量间的相关关系
2.3 变量间的相关关系
一、本节知识结构
二、教学重点与难点
重点:
1.利用散点图直观认识两个变量之间的线性关系.
2.了解最小二乘法的思想.
3.根据给出的线性回归方程的系数公式建立线性回归方程.
4.变量之间相关关系的理解.
难点:回归思想的建立;对回归直线与观测数据的关系的理解.
三、编写意图与教学建议
教科书通过思考栏目“物理成绩与数学成绩之间的关系”引导学生考察变量之间的关系.在讨论这种关系的过程中,使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,教科书通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型),使学生通过探索用多种方法确定线性回归直线,体会最小二乘法的思想,掌握计算回归方程的斜率与截距的方法.通过引导学生观察对应于年龄x的脂肪含量数据y和yˆ=0.57x-0.446之间的关系,领悟到利用同归方程可以做预测.通过气温与饮料销售量的例子及随后的思考.使
学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程做出的预测结果的随机性,并且可能犯错误.
在阅读与思考栏日“线性关系的强与弱”中.进一步介绍了描述两个变量之间关系强弱的样本特征相关系数的计算公式及统计含义,通过具有不同相关系数的数据的散点图,进一步加深对相关系数的直观理解.
教学中,应该让学生了解本节知识和其他数学知识之间的相互关系,从总上把握研究变量之间关系的基本方法,体会利用线性回归方程解决实际问题的全过程以及对所得结论的正确理解.。
人教版-高中数学必修3--2
i1
i1
第四步,写出回归方程 y bx a
2.回归方程被样本数据惟一拟定,各样本点大致
分布在回归直线附近.对同一种总体,不同旳样本 数据相应不同旳回归直线,所以回归直线也具有 随机性.
3.对于任意一组样本数据,利用上述公式都能够求
得“回归方程”,假如这组数据不具有线性有关关 系,即不存在回归直线,那么所得旳“回归方程” 是没有实际意义旳.所以,对一组样本数据,应先 作散点图,在具有线性有关关系旳前提下再求回归 方程.
旳点是杂乱分布旳,有些散点图中旳点旳分布有一 定旳规律性,年龄和人体脂肪含量旳样本数据旳散 点图中旳点旳分布有什么特点?
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
这些点大致分布在一条直线附近.
思索3:假如散点图中旳点旳分布,从整体上看
作业:
P94习题2.3 A组:2,3. B组:1.
知识探究(一):回归直线
思索1:一组样本数据旳平均数是样本数据旳中
心,那么散点图中样本点旳中心怎样拟定?它一定
是散点图中旳点吗?
脂肪含量
40
35
30
25
20 15
(x, y )
10
5
0 20 25 30 35 40 45 50 55 60 65 年龄
脂肪含量
思索2:在多种各样旳散点图中,有些散点图中
你以为其回归直线是一条还是几条?
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
脂肪含量
思索5:在样本数据旳散点图中,能否用直尺
精确画出回归直线?借助计算机怎样画出回归 直线?
人教版高中数学必修3第二章统计-《2.3.2两个变量的线性相关》教案(2)_002
§2.3.2两个变量的线性相关⑵教学目标(1)了解非确定性关系中两个变量的统计方法; (2)掌握散点图的画法及在统计中的作用; (3)掌握回归直线方程的求解方法. 教学重点线性回归方程的求解. 教学难点回归直线方程在现实生活与生产中的应用. 教学过程: 一、复习(1)两个变量间由函数关系时,数据点位于某曲线上.(2)两个变量间的关系是相关关系时,数据点位于某曲线附近. (3)两个变量间的关系为线性相关时,数据点位于某直线附近.该直线叫回归直线,对应的方程叫回归方程,该直线作为两个变量有线性相关关系的代表 (4)求回归方程的一般步骤: 第一步,计算平均数;,y x 第二步,求和;,∑∑==ni i ni i i x y x 121第三步,计算;)())((1221121x b y a xn x yx n yx x x y y x xb n i i ni ii ni i ni i i-=--=---=∑∑∑∑====,第四步,写出回归方程 .a bx y +=∧练习1.由一组10个数据(x i ,y i )算得,10,5==y x,292,583121==∑∑==ni i ni i ix y x则b = ,a = ,回归方程为 .练习2..).5,4(),4,3(),2,1(),3,2(),(之间的回归直线方程与求的值分别实验测得四组数据x y y x 二、新授1. 两个变量是否有相关关系可以先作出散点图进行判断.2. 两个变量间是否有相关关系也可以通过求相关函数来判断.其中∑∑∑===-⋅---=ni ni i ini i iy y x xy y x xr 11221)()())((.]75.0,1[时,负相关很强当--∈r.]1,75.0[时,正相关很强当∈r.]75.0,30.0[]30.0,75.0[时,相关性一般或当-∈-∈r r .),(1在一条直线上时,数据点当i i y x r =三、习题讲解关系数学成绩与物理成绩的④③吸烟与健康的关系关系②农作物产量与施肥的高的关系①父母的身高与子女身③下列属于线性相关的是)(.1 ),(.),0(.)0,(.)0,0(..2y x D y C x B A Da bx y )必过(线性回归方程+=∧.2910610000062.05.93253246192161970.6人的船员数为人,对于最大的船估计小的船估计的船员数为人,对于最,船员平均人数相差,假定两船吨位相差结论:船员人数位的回归分析得到如下人,由船员人数关于吨人到数目从,船员的吨位区间从艘轮船的研究中,船的年的一项关于t x t t +=-.2210.1301.801.1301.千元元,劳动生产率为当月工资为元;千元,则工资提高劳动生产率提高元;千元,则工资提高劳动生产率提高元;千元,则工资为劳动生产率为D C B A )(下列判断正确的是,程为(千元)变化的回归方(元)与劳动生产率工人月工资B x y x y 805.5+=个单位平均增加个单位平均增加个单位平均减少个单位平均增加)(增加一个单位时,变量设有一个回归方程为3.5.5.3.53.4y D y C y B y A x x y -=)(间的线性回归方程过点之与,则之间的数据如下表所示、已知D x y y x .3),(.),0(.)0,(.)0,0(.y x D y C x B A课后作业教学反思:。
高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教
A .1 B .1 C .1 D .1 1 6 8 4 2
35
【思路导引】利用回归直线方程必过样本点的中心求解.
【解析】选B.依题意可知样本点的中心为 ( 3 , ,3 )
48
则3
8
= 1×
3
+3
4
,a 解得
=a .
1 8Βιβλιοθήκη 36【拓展延伸】相关关系的强弱
(1)若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),称r=
6
(2)你能举例说明你对正相关与负相关的理解吗? 提示:随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性 的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少 变多. 随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关 关系,我们称为负相关.例如,汽车越重,每消耗1 L汽油所行驶的平均路程就 越短.
n
n
x i2,
xi y,i
i1
i1
30
(5)代入公式计算
b ,a,公式为
n
x iyi n x y
b
i1
n
x
2 i
n
x
2
i1
,
a y b x .
(6)写出回归直线方程 = x+ .
yb a
31
【跟踪训练】 已知变量x,y有如下对应数据:
x1234 y1345
(1)作出散点图. (2)用最小二乘法求关于x,y的回归直线方程.
42
【思路导引】(1)以产量为横坐标,以生产能耗对应的测量值为纵坐标, 在平面直角坐标系内画散点图. (2)应用计算公式求得线性相关系数 bˆ , aˆ 的值. (3)实际上就是求当x=100时,对应的 yˆ 的值.
人教版高中数学必修三 第二章 统计《变量间相关关系》教学设计
《变量间相关关系》教学设计一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算机基础,主要是电子表格的使用。
二、教材地位和作用:变量间的相关关系是高中新教材人教A版必修 3 第二章 2.3 节的内容,本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。
为以后学习回归分析思想的应用奠定基础。
三、教学目标:1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及回归方程系数公式的推导过程,利用EXCEL求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。
②通过动手操作培养学生观察、分析、比较和归纳能力,引出利用计算机等现代化教学工具的必要性。
3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。
利用电子书包让学生动手操作,合作交流激发学生的学习兴趣。
四、教学内容的重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想借助电子表格求出回归方程。
教学内容的难点:对最小二乘法的数学思想和回归方程的理解教学实施过程中的难点:根据给出的线性回归方程的系数公式建立线性回归方程。
五、教学媒体设计:本节课涉及大量数据计算及分析,用传统方法很难突破,故我主要通过电子书包,课前发布预学案、上课时发布课堂学案,通过学生动手操作、教师动画演示、师生合作交流来突出重点、突破难点。
六、教学过程:(一)课前通过电子书包平台,发布预学案。
学生完成预学案。
(如下)1、2、通过思考我们知道上述三个关系均不是函数关系,它们均称为相关关系。
3、(二)课堂上点评预学案完成情况:1、展示学生讨论情况,并明确两变量间的函数关系与相关关系的区别2、点评课前自测。
(三)师生探究与互动1、探究如何确定两变量间是否有相关关系?具有怎样的相关关系?(1)探究人体年龄与脂肪含量关系是否具有相关关系思考:判断以下案例是否有相关关系:(a)2007届高三总分前10名的学生每周用于数学学习时间x(单位:h)与数学成绩y(单(c)样本序号n(2)探究:由脂肪与年龄的散点图我们知道它们具有正相关,能否更具体些,确定它们以什么方式正相关呢?分析:年龄与脂肪含量的散点图这些点大致分布在一条直线附近,像这样,如果散点图中点的分布从整体上看大致在一条直线附近.提炼:我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线,该直线叫回归方程.思考:我们该怎样来求出这个回归方程?分析:问题1:回归直线应具有什么特征?(从整体上看,各点与此直线的距离)问题2:如何刻画各点与直线的接近程度? (设直线方程为:y=a+bx ,任意给定一个样本点(i i y x ,),我们用来刻画点与直线的接近程度。
人教版高中数学必修三 第二章 统计变量间的相关关系(线性回归)
变量间的相关关系(线性回归)一、变量之间的相关关系1、凭我们的学习经验可知,物理成绩与数学成绩有一定的关系,数学成绩的好坏会对物理成绩造成影响。
但除此以外,还存在其他影响物理成绩的因素。
例如,是否喜欢物理,用在物理学习上的时间等。
当我们主要考虑数学成绩对物理成绩的影响时,就要考察这两者之间的相关关系。
自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。
2、相关关系与函数关系的异同点相同点:两者均是指两个变量的关系。
不同点:(1)函数关系是一种确定的关系。
如匀速直线运动中时间t 与路程s 的关系;相关关系是一种非确定的关系。
如一块农田的水稻产量与施肥量之间的关系。
事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系。
(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。
例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系,然而学会新词并不能使脚变大,而是涉及第三个因素――年龄,当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大。
(3)相关关系的分析方向由于相关关系的不确定性,在寻找变量间相关关系的过程中,统计发挥着非常重要的作用。
我们可以通过收集大量的数据,在对数据进行统计分析的基础上,发现其中的规律,对它们的关系作出判断。
二、两个变量的线性相关 1、回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析。
通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性。
一般地,对于某个家庭来说,它的年饮食支出不一定随年收入的增加而增加或减少。
但如果是大量的个体,可能就会表现出一定的规律来。
观察表中数据,大体上来看,随着家庭看收入的增加,年饮食支出也在增加。
为了确定这一相关关系的细节,我们需要进行数据分析。
与以前一样,我们可以作统计图、表。
通过作统计图、表,可以使我们对两个变量之间的关系有一个直观上的印象和判断。
人教版高中数学必修三 第二章 统计《变量间的相关关系》教学反思
《变量间的相关关系》教学反思一.教材分析:本节是人教 A 版高中数学必修三第二章《统计》中的第三节 "变量间的相关关系" 的这一课时.在上一课时,学生已经懂得根据两个相关变量的数据作出散点图, 并利用散点图直观认识变量间的相关关系. 这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想. 从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一.线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础.二.教学目标根据课标的要求及前面的分析,结合学生的认知特点确定本节课的教学目标如下:知识与技能: 1. 知道最小二乘法和回归分析的思想; 2. 能根据线性回归方程系数公式求出回归方程过程与方法: 经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识.情感态度与价值观通过合作学习,养成倾听别人意见和建议的良好品质三.重点难点分析: 根据目标分析,确定教学重点和难点如下: 教学重点: 1. 知道最小二乘法和回归分析的思想; 2.会求回归直线教学难点: 建立回归思想,会求回归直线四.教学学法本节课在建构主义理论的支持下,首先采用问题探究式教学方法创设情境, 然后教师作为引导者和帮助者, 采用启发式教学方法与学生共同经历回归分析的过程.在多元智能学习理论的指导下,学生通过合作学习,自主学习和探究式学习的方式完成了一个完整的数学学习过程五.教学反思新课标的数学教学要重创新.我个人理解,应该指以下几个方面: (1)教师教学方法,教学手段,教学模式的创新 (2)学生学习方式的创新 (3)对学生创新思维的培养本节课的教学设计就在一个"新"字,结合手持技术的"新"教学手段,通过"有什么看法 ","能提出哪些问题","我们该思考什么"这样的提问方式和实验操作, 合作探究的"新型"学习方式增强学生发现问题的能力和提问意识,达到提高学生创新思维的目的。
2020年高中数学必修三第二章《统计》2.3.1变量之间的相关关系-2.3.2两个变量的线性相关
2020年高中数学必修三第二章《统计》2.3.1变量之间的相关关系2.3.2两个变量的线性相关学习目标 1.了解变量间的相关关系,会画散点图;2.根据散点图,能判断两个变量是否具有相关关系;3.了解线性回归思想,会求回归直线的方程.知识点一变量间的相关关系思考1粮食产量与施肥量间的相关关系是正相关还是负相关?答案在施肥不过量的情况下,施肥越多,粮食产量越高,所以是正相关.思考2怎样判断一组数据是否具有线性相关关系?答案画出散点图,若点大致分布在一条直线附近,就说明这两个变量具有线性相关关系,否则不具有线性相关关系.梳理1.相关关系的定义变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的,那么这两个变量之间的关系叫做相关关系,两个变量之间的关系分为函数关系和相关关系.2.散点图将样本中n个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形叫做散点图.3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.知识点二两个变量的线性相关思考任何一组数据都可以由最小二乘法得出线性回归方程吗?答案用最小二乘法求线性回归方程的前提是先判断所给数据是否具有线性相关关系(可利用散点图来判断),否则求出的线性回归方程是无意义的.梳理 回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:回归直线对应的方程叫做回归直线的方程,简称回归方程. (3)最小二乘法:求线性回归方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b ^x ,其中,b ^是线性回归方程的斜率,a ^是线性回归方程在y 轴上的截距.类型一 相关关系的判断与应用 命题角度1 判断两个变量的相关性例1 为了研究质量对弹簧长度的影响,对6根相同的弹簧进行测量,所得数据如下:判断它们是否有相关关系,若有,判断是正相关还是负相关. 解 散点图如图:由散点图可以看出两个变量对应的点大致分布在一条直线附近,因此可以得出结论:质量与弹簧长度这两个变量具有相关关系,且它们是正相关关系.反思与感悟在研究两个变量之间是否存在某种关系时,必须从散点图入手,对于散点图,可以作出如下判断:(1)如果所有的样本点都落在某一函数曲线上,那么就用该函数来描述变量之间的关系,即变量之间具有函数关系;(2)如果所有的样本点都落在某一直线附近,那么变量之间就有线性相关关系;(3)如果散点图中的点的分布几乎没有什么规律,那么这两个变量之间不具有相关关系,即两个变量之间是相互独立的.跟踪训练1下表是某地的年降雨量与年平均气温的统计表,判断两者是否具有相关关系,求线性回归方程有意义吗?解以x轴为年平均气温,y轴为年降雨量,可得相应的散点图如图.因为图中各点并不在一条直线的附近,所以两者不具有线性相关关系,没必要用回归直线进行拟合,即使用公式法求出线性回归方程也是没有意义的.命题角度2函数关系与相关关系的区别与联系例2下列关系中,是相关关系的是________.①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系.答案②④解析①中,正方形的边长与面积之间的关系是函数关系;②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人达到一定年龄后,身高就不发生明显变化了,所以它们不具有相关关系;④中,降雪量与交通事故的发生率之间具有相关关系. 反思与感悟 相关关系与函数关系的区别与联系如表所示:跟踪训练2 下列图形中两个变量具有相关关系的是( )答案 C解析A 是一种函数关系;B 也是一种函数关系;C 中从散点图中可看出所有点看上去都在某条直线附近波动,具有相关关系,而且是一种线性相关;D 中所有的点在散点图中没有显示任何关系,因此变量间是不相关的. 类型二 回归直线的求解与应用例3 一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器运转速度的变化而变化,下表为抽样试验的结果:(1)画出散点图;(2)如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系;(3)在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内? 解 (1)散点图如图所示:(2)近似直线如图所示:(3)由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.引申探究1.本例(3)中近似方程不变,若每增加一个单位的转速,生产有缺点的零件数近似增加多少? 解 因为y =5170x -67,所以当x 增加一个单位时,y 大约增加5170.2.本例(3)中近似方程不变,每小时生产有缺点的零件件数是7,估计机器的转速. 解 因为y =5170x -67,所以当y =7时,7=5170x -67,解得x ≈11.反思与感悟 求线性回归方程的一般步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x ,y,∑i =1nx 2i ,∑i =1nx i y i .(5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x2,a ^=y -b ^x .(6)写出线性回归方程y ^=b ^x +a ^.跟踪训练3 (1)变量y 与x 满足线性回归方程y ^=b ^x +a ^,现在将y 的单位由厘米变为米,x的单位由毫米变为米,则在新的线性回归方程y ^=b ^*x +a ^*中,b ^*是b ^的____________倍.(2)为了均衡教育资源,加大对偏远地区的教育投入,调查了某地区若干户家庭的年收入x (单位:万元)和年教育支出y (单位:万元),调查显示年收入x 与年教育支出y 具有相关关系,并由调查数据得到y 对x 的线性回归方程为y ^=0.15x +0.2.由线性回归方程可知,家庭年收入每增加1万元,年教育支出平均增加________万元. 答案 (1)10 (2)0.15解析 (1)由回归系数公式知,当y 的值变为原来的10-2倍,x 的值变为原来的10-3倍时,b^*的值应为原来的10倍.(2)回归直线的斜率为0.15,所以家庭年收入每增加1万元,年教育支出平均增加0.15万元.1.设有一个线性回归方程为y ^=2-1.5x ,则变量x 增加1个单位时,y 平均( ) A .增加1.5个单位 B .增加2个单位 C .减少1.5个单位 D .减少2个单位答案 C2.由三点(3,10),(7,20),(11,24)确定的线性回归方程为( ) A.y ^=1.75x -5.75 B.y ^=1.75x +5.75 C.y ^=-1.75x +5.75 D.y ^=-1.75x -5.75答案 B解析 设线性回归方程为y ^=b ^x +a ^, 则b ^=x 1y 1+x 2y 2+x 3y 3-3x y x 21+x 22+x 23-3x2=3×10+7×20+11×24-3×7×189+49+121-3×49=1.75,a ^=y -b ^x =18-1.75×7=5.75. 故y ^=1.75x +5.75,故选B.3.某地区近10年居民的年收入x 与年支出y 之间的关系大致符合y ^=0.8x +0.1(单位:亿元),预计今年该地区居民收入为15亿元,则今年支出估计是________亿元. 答案 12.1解析 将x =15代入y ^=0.8x +0.1,得y ^=12.1.4.某市居民2012~2016年家庭年平均收入x (单位:万元)与年平均支出y (单位:万元)的统计资料如表所示:根据统计资料,居民家庭年平均收入的中位数是__________万元,家庭年平均收入与年平均支出有________线性相关关系. 答案 13 正解析 考查中位数的定义,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时需取中间两数的平均数.由统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.5.某5名学生的总成绩和数学成绩(单位:分)如表所示:(1)画出散点图;(2)求y 对x 的线性回归方程(结果保留到小数点后3位数字); (3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩. 解 (1)散点图如图所示:(2)由题中数据计算可得x =391.6,y =67.8,∑i =15x 2i =770 654,∑i =15x i y i =133 548.代入公式得b ^=133 548-5×391.6×67.8770 654-5×391.62≈0.204,a ^=67.8-0.204×391.6≈-12.086,所以y 对x 的线性回归方程为y ^=-12.086+0.204x .(3)由(2)得当总成绩为450分时,y ^=-12.086+0.204×450≈80,即这个学生的数学成绩大约为80分.1.判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图.根据散点图,可以很容易看出两个变量是否具有相关关系,是不是线性相关,是正相关还是负相关. 2.求线性回归方程时应注意的问题(1)知道x 与y 成线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出线性回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的. (2)用公式计算a ^、b ^的值时,要先计算b ^,然后才能算出a ^.3.利用回归方程,我们可以进行估计和预测.若回归方程为y ^=b ^x +a ^,则x =x 0处的估计值为y ^0=b ^x 0+a ^.40分钟课时作业一、选择题1.某商品销售量y (件)与销售价格x (元/件)负相关,则其线性回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200答案 A解析 x 的系数为负数,表示负相关,排除B 、D ,由实际意义可知x >0,y >0,C 中,散点图在第四象限无意义,故选A.2.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 答案 D解析 由柱形图可知:A 、B 、C 均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,所以D 不正确.3.对变量x ,y 有观测数据(x i ,y i )(i =1,2,3,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,3,…,10),得散点图2,由这两个散点图可以判断( )A .y 与x 正相关,v 与u 正相关B .y 与x 正相关,v 与u 负相关C .y 与x 负相关,v 与u 正相关D .y 与x 负相关,v 与u 负相关 答案 C解析 根据散点图直接进行判断.4.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5 D.y ^=-0.3x +4.4答案 A解析 由变量x 与y 正相关知C 、D 均错,又回归直线经过样本点的中心(3,3.5),代入验证得A 正确,B 错误.故选A. 5.已知x 与y 之间的一组数据:若y 与x 线性相关,则y 与x 的回归直线y ^=b ^x +a ^必过( ) A .点(2,2) B .点(1.5,0) C .点(1,2) D .点(1.5,4)答案 D 解析 ∵x =0+1+2+34=1.5,y =1+3+5+74=4, ∴回归直线必过点(1.5,4).故选D. 6.已知x ,y 的取值如表所示:如果y 与x 线性相关,且线性回归方程为y ^=b ^x +132,则b ^等于( )A .-12B.12 C .-110D.110答案 A 解析 ∵x =2+3+43=3,y =6+4+53=5, ∴回归直线过点(3,5),∴5=3b ^+132,∴b ^=-12,故选A.二、填空题7.为了研究某种细菌在特定环境下随时间变化的繁殖规律,得到了下表中的数据,计算得回归方程为y ^=0.85x -0.25.由以上信息,可得表中c 的值为________.答案 6解析 x =3+4+5+6+75=5,y =2.5+3+4+4.5+c 5=14+c 5,代入回归方程中得14+c5=0.85×5-0.25,解得c =6.8.如图所示的五组数据(x ,y )中,去掉________后,剩下的四组数据相关性增强.答案 (4,10)解析 去掉点(4,10)后,其余四点大致在一条直线附近,相关性增强. 9.在一次试验中测得(x ,y )的四组数据如下:根据上表可得线性回归方程y ^=-5x +a ^,据此模型预报当x =20时,y 的值为________. 答案 26.5解析 x =16+17+18+194=17.5,y =50+34+41+314=39,∴回归直线过点(17.5,39), ∴39=-5×17.5+a ^, ∴a ^=126.5,∴当x =20时,y =-5×20+126.5=26.5.10.某工厂对某产品的产量与成本的资料分析后有如下数据:由表中数据得到的线性回归方程y ^=b ^x +a ^中b ^=1.1,预测当产量为9千件时,成本约为________万元. 答案 14.5解析 由表中数据得x =4,y =9,代入线性回归方程得a ^=4.6,∴当x =9时,y ^=1.1×9+4.6=14.5. 三、解答题11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求两变量之间的回归方程y ^=b ^x +a ^;(2)利用(1)中所求出的回归方程预测该地第6年的粮食需求量. 解 (1)由所给数据得 x =3,y =5.8,b ^=∑i =15(x i -x )(y i -y )∑i =15(x i -x )2=1.1,a ^=y -b ^x =2.5, ∴y ^=1.1x +2.5.故所求的回归方程为y ^=1.1x +2.5. (2)第6年的粮食需求量约为 y ^=1.1×6+2.5=9.1(万吨).12.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求月储蓄y (千元)关于月收入x (千元)的线性回归方程; (2)若该居民区某家庭的月收入为7千元,预测该家庭的月储蓄. 解 (1)由题意知n =10,x =1n ∑i =110x i =110×80=8,y =1n ∑i =110y i =110×20=2,又∑i =110x 2i -n x 2=720-10×82=80, ∑i =110x i y i -n x y =184-10×8×2=24,由此得b ^=2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)将x =7代入线性回归方程,可以得到该家庭的月储蓄约为y ^=0.3×7-0.4=1.7(千元). 13.为了分析某高三学生的学习状态,对其下一阶段的学习提供指导性建议,现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩(单位:分).(1)他的数学成绩与物理成绩哪个更稳定?并说明理由;(2)已知该学生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少分,并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.解 (1)x =100+-12-17+17-8+8+127=100,y =100+-6-9+8-4+4+1+67=100,s 2数学=142,s 2物理=2507,因为s 2数学>s 2物理, 所以他的物理成绩更稳定.(2)由于x 与y 之间具有线性相关关系,经计算得b ^=0.5,a ^=100-0.5×100=50. 所以线性回归方程为y ^=0.5x +50. 当y =115时,x =130. 估计他的数学成绩是130分.建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.。
人教版高中数学必修三课件:2.3变量间的相关关系
【解析】 散点图.
①根据表中提供的数据,可以画出如图所示的
②能.从散点图上可以看出,当天最高气温与卖出的热茶 杯数近似地呈线性相关关系,并且当天最高气温越高,所卖出 热茶的杯数就越少.
(3)下表是某地的年降雨量与年平均气温,判断两者是线性 相关关系吗?求回归方程有意义吗?
年平均气温(℃) 年降雨量(mm) 12.51 748 12.84 542 12.84 507 13.69 813 13.33 574 12.74 701 13.05 432
①画出数据对应的散点图; ②判断新房屋的销售价格和房屋面积之间是否具有相关关 系?如果有相关关系,是正相关还是负相关?
【思路】
建立直角坐标系 → 画散点图 → 相关关系
【解析】
①数据对应的散点图如下图所示.
②通过以上数据对应的散点图可以判断,新房屋的销售价 格和房屋的面积之间具有相关关系,且是正相关.
(3)观察两相关变量得如下数据: x y -1 -9 -2 -7 -3 -5 -4 -3 -5 -1 5 1 4 5 3 3 2 7 1 9
画出散点图,判断它们是否有线性相关关系.
【解析】
由数据可得相应的散点图如图所示.
由散点图可知,两者之间不具有线性相关关系.
题二 例2
求线性回归方程
一台机器由于使用时间较长, 生产零件有一些会缺损,
∧ ∧ ∧ ∧ ∧ ∧ ∧
授 人 以 渔
题型一 例1 ( ) A.角度和它的余弦值 B.正方形的边长和面积
相关关系的判断
(1)下列两个变量之间的关系,哪个不是函数关系
C.正n边形的边数和内角度数之和 D.人的年龄和身高
【解析】 函数关系就是一种变量之间有确定性的关系, 选项A, B,C都是函数关系,对于年龄确定的人群,仍可以有 不同身高的人.选项D符合题意. 【答案】 D
课件_人教版高中数学必修三变量之间的相关关系课件PPT课件_优秀版
(2).粮食的产量与施肥量; (3).小麦的亩产量与光照; (4).匀速行驶车辆的行驶距离与时间; (5).角α与它的正切值
练习2、 下列两个变量之间的关系,哪
个不是函数关系( D)
A.角度和它的余弦值 B.正方形边长和面积 C.正n边形的边数和内角度数之和 D.人的年龄和身高
第三步,写出回归方程
1、线性相关关系:散点图中点的分布从整体上看
匀速行驶车辆的行驶距离与时间;
在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
练习1、探究下面变量间的关系是函数关
系还是相关关系。
第三步,写出回归方程
匀速行驶车辆的行驶距离与时间;
第一步,画散点图,判断变量是否线性相关。
在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
(1)相关关系与函数关系的异同点?
(2)请举出生活中具有相关关系 的两个变量的例子。
相关关系与函数关系的异同点
相同点: 两者均是指两个变量间的关系。
不同点:(1)函数关系是一种确定关系, 相关关系是一种非确定的关系。
(2)函数关系是一种因果关系, 相关关系不一定是因果关系。
练习1、探究下面变量间的关系是函数关 系还是相关关系。
脂肪含量
20.9%
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
例:有一个同学家开了一个小卖部,他为了研究气 温对热饮销售的影响,经过统计,得到一个卖出的 热饮杯数与当天气温的对比表:
摄氏温度 -5 0 4 7 12 15 19 23 27 31 36
i1 n
人教版高中数学必修三《变量之间的相关关系和线性相关+回归直线及其方程》ppt课件
yÙi )2
思考4:为了从整体上反映n个样本数据与回归直线 的接近程度,你认为选用哪个数量关系来刻画比较 合适?
(x1, y1)
(xi,yi)
(xn,yn)
(x2,y2)
n
Q (yi yˆi )2 i 1 ( y1 bx1 a)2 ( y2 bx2 a)2
摄氏温度
-5
0
4
7
12
(℃)
热饮杯数 156
150
132
128
130
15
19
23
27
31
36
116
104
89
93
76
54
摄氏温度
-5
0
4
7
12
(℃)
热饮杯数 156
150
132
128
130
15
19
23
27
31
36
116
104
89
93
76
54
(1)画出散点图; (2)从散点图中发现气温与热饮杯数之 间关系的一般规 律; (3)求回归方程; (4)如果某天的气温是2℃,预测这天卖出的热饮杯数.
( yn bxn a)2
思考5:根据有关数学原理分析,当
n
n
( xi x )( yi y )
xi yi nx y
bˆ i 1 n
i 1 n
,
( xi x )2
xi 2 nx 2
i 1
时,总体偏差
Q n为(y最i i小1yˆi ),2 这样
i 1
aˆ y bˆx
就得到了回归方程,这种求回归方程的方法叫做最小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变量间的相关关系(线性回归)一、变量之间的相关关系1、凭我们的学习经验可知,物理成绩与数学成绩有一定的关系,数学成绩的好坏会对物理成绩造成影响。
但除此以外,还存在其他影响物理成绩的因素。
例如,是否喜欢物理,用在物理学习上的时间等。
当我们主要考虑数学成绩对物理成绩的影响时,就要考察这两者之间的相关关系。
自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。
2、相关关系与函数关系的异同点相同点:两者均是指两个变量的关系。
不同点:(1)函数关系是一种确定的关系。
如匀速直线运动中时间t 与路程s 的关系;相关关系是一种非确定的关系。
如一块农田的水稻产量与施肥量之间的关系。
事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系。
(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。
例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系,然而学会新词并不能使脚变大,而是涉及第三个因素――年龄,当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大。
(3)相关关系的分析方向由于相关关系的不确定性,在寻找变量间相关关系的过程中,统计发挥着非常重要的作用。
我们可以通过收集大量的数据,在对数据进行统计分析的基础上,发现其中的规律,对它们的关系作出判断。
二、两个变量的线性相关 1、回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析。
通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性。
一般地,对于某个家庭来说,它的年饮食支出不一定随年收入的增加而增加或减少。
但如果是大量的个体,可能就会表现出一定的规律来。
观察表中数据,大体上来看,随着家庭看收入的增加,年饮食支出也在增加。
为了确定这一相关关系的细节,我们需要进行数据分析。
与以前一样,我们可以作统计图、表。
通过作统计图、表,可以使我们对两个变量之间的关系有一个直观上的印象和判断。
除我们在前面所学的有关图、表外,我们还可以通过另外一种图――散点图来分析两个变量之间的关系。
2、散点图将样本中n 个数据点(,)i i x y (1,2,,i n )描在平面直角坐标系中,以表示具有相关关系的两个变量的一组数据的图形叫做散点图。
如上例中,为了更清楚地看出两变量是否有相关关系,我们以年收入x 的取值作为横坐标,把年饮食支出y 的相应取值作为纵坐标,可得相应散点图。
如图所示。
散点图形象地反映了各对数据的密切程度。
由图可见,年收入越高,年饮食支出超高。
图中点的趋势表明两个变量间确实存在一定的关系。
3、正相关、负相关从散点图可以看到点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关。
如年龄由小变大时,体内脂肪含量也在由小变大。
反之,如果两个变量的散点图中散布的位置是从左上角到右下角的区域。
即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关。
如汽车的重量和汽车每消耗1L 汽油所行驶的路程成负相关。
汽车越重,每消耗1L 汽油所行驶的平均路程就越短。
4、如果关于两个变量统计数据的散点图呈现如图的形状,则这两个变量之间不具有相关关系。
例如,学生的身高与学生的数学成绩没有相关关系。
利用散点图可以判断变量之间有无相关关系。
三、回归直线方程1、回归直线:观察散点图的特征,发现各点大致分布在通过散点图中心的一条直线附近。
如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。
2、根据不同的标准可画出不同的直线来近似地表示这种线性关系。
比如可以连接最左侧点和最右侧点得到一条直线;也可以让画出的直线上方的点和正方的点数目相等……这些办法,能保证各点与此直线在整体上是最接近的吗?它们虽然都有一定的道理,但总让人感到可靠性不强。
四、散点图和回归直线的画法1、建立直角坐标系,两轴的长度单位可以不一致。
2、将n 个数据点(,)(1,2,3,,)i i x y i n =描在平面直角坐标系中。
3、描的点可以是实心点,也可以是空心点。
4、画回归直线时,一定要画在多数点经过的区域。
实际画线时,先观察有哪两个点在直线上即可。
5、具体作回归直线时,用一条透明的直尺边缘在这些点间移动,使它尽量靠近或通过大多数点,然后画出直线。
五、回归直线方程的求法1、回归直线方程的求法-------最小二乘法实际上,求回归直线方程的关键是如何用数学的方法来刻画“从整体上看各点与此直线的距离最小”。
即最贴近已知的数据点,最能代表变量x 与y 之间的关系。
设与n 个观测点(,)(1,2,,)i i x y i n =最接近的直线方程为ˆy bx a =+(注意它与表示一次函数的习惯y ax b =+相反;y 表示y 的估算值)。
其中,a b 是待定系数。
当变量x 取(1,2,,)i x i n =时,可以得到:(1,2,,)i i y bx a i n =+=,它与实际收集到i y 之间的偏差是:()(1,2,,)i i i i y y y bx a i n -=-+=。
可见,偏差i i y y -的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不代表n 个点与相应直线在整体上的接近程度。
故采用n个偏差的平方和2221122()()()n n Q y bx a y bx a y bx a =--+--++--表示n 个点与相应直线在整体上的接近程度。
(类似的思想方法在定义方差时用过) 记21()n iii Q y bx a ==--∑(1ni =∑为连加符号)。
上式展开后,是一个关于,a b 的二次多项式,应用配方法,可求出使Q 取得最小值时,a b 的值,即1122211()(),(),n ni i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧-⋅--⋅⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑ 其中11n i i x x n ==∑,11ni i y y n ==∑。
如此得到的方程y bx a =+叫做回归直线方程,相应的直线叫做回归直线,由于y bx a =+,故巧合的是:(,)(1,2,,)i i x y i n =的中心点(,)x y 在回归直线上。
0x 处的估计值为0y bx a =+。
上述求回归直线的方法,是使得样本数据的点到它的距离的平方和最小。
由于平方又叫二乘方,所以这种使“偏差平方和为最小”的方法,叫做最小二乘法。
2、回归直线方程求解的方法步骤根据最小二乘法的思想和公式,利用计算器或计算机,可以方便地求出回归方程。
对上表中的数据进行具体计算,可列出以下表格: 故可得到:10110222110117.7106 1.837.90.1724061064610i ii ii x y x yb t xx ==-⋅-⨯⨯===≈-⨯-∑∑1.830.17260.800a y bx =-=-⨯≈,从而得到回归直线方程为0.8000.172y x =+。
由此可归纳出求线性回归直线方程的步骤: 第一步:列表,,i i i i x y x y ; 第二步:计算22111,,,,n n niii ii i i x y x y x y ===∑∑∑,第三步:代入公式计算,b a 的值; 第四步:写出直线方程y a bx =+。
六、利用回归直线对总体进行估计利用回归直线,我们可以进行预测。
若回归直线方程为y bx a =+,则0x x =处的估计值为:00y bx a =+。
例如上例中,知道了某个家庭的年收入,就可以利用回归方程来预测该家的年饮食支出。
例如,某家庭年收入为9万元,可预测该家庭的年饮食支出在0.17290.800 2.348⨯+=万元附近的可能性。
不过我们不能说该家庭的年饮食支出一定是2.348万元。
事实上,这个2.348万元是对年收入为9万元的家庭中的大部分家庭的饮食支出所作出的估计。
例:(江西南昌质量检测题)假设关于某设备的使用年限x 和所支出的维修费用y (万元)有如下的统计资料:(1)线性回归方程y bx a =+的回归系数,a b ; (2)估计使用年限为10年时,维修费用是多少?解析:因为y 对x 呈线性相关关系,所以可以用线性相关的方法解决问题。
(1)利用公式:1221ni ii nii x y nx yb xnx ==-⋅=-∑∑,a y bx =-来计算回归系数。
有时为了方便常制表对应算出2,i i i x y x ,以便于求和。
(2)获利线性回归方程后,取10x =,即得所求。
于是有21.23905410b ===-⨯,5 1.2340.08a y bx =-=-⨯=。
(2)回归直线方程是 1.230.08y x=+,当10x =年时, 1.23100.0812.38y =⨯+=万元,即估计使用10年时维修费用是12.38万元。
七、相关关系的强与弱对于变量x 与y 的一组观测值,称:()()niix x y y r --=∑ni ix y nx yr -⋅=∑叫做变量y 与之间的样本相关关系,简称为相关系数,用它来衡量,x y 之间的线性关系的强弱。
相关系数的性质: (1)1r ≤。
(2)当r 越接近于1时,相关程度越大。
特殊地,当1r =时,n 个点在同一直线上,当r 越接近于0时,相关程度越小。
(3)r 的大小反映了x 与y 之间的线性关系的强弱,相关系数r 至少大到什么程度才可以认为x 和y 的线性关系是显著的呢?这就需要进行显著性检验,即相关性检验。
一般地,由公式计算出样本的相关系数r 查表得到相应的临界值a r ,比较r 与a r 的大小。
若a r r ≥,就认为x 与y 线性相关显著;若a r r <,就认为在显著水平a 下,x 与y 线性相关不显著。