中考数学应用题专题复习
历年初三数学中考辅导之—应用题及答案
中考数学辅导之—应用题(相关中考题)应用题部分一、填空题1、含盐18%的盐水a千克中,含纯盐_____千克。
2、某种储蓄月利率是0.8%,存入100元本金后,本息和y(元)与所存月数x之间的函数关系式为_____。
3、某种商品的进货价为每件a元,零售价为每件1100元,若商店按零售价的80%降价销售,仍可获利10%(相对于进货价),则a=_____元。
4、某钢铁厂去年1月份的钢产量为3000吨,3月份上升到3630吨,那么这两个月平均每月增长的百分率是_____。
5、托运行李p千克(p为整数)的费用为c,已知托运第一个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用0.5元,则计算托运行李费用c的公式是_____。
6、学校锅炉房存了m天用的煤a吨,要使储存的煤比预定的时间多用n天,平均每天应当节约煤_____吨。
7、一商店将每台彩电先按进价提高40%标出销售价,然后在广告中宣传将以80%的优惠价出售,结果每台彩电赚了300元,那么每台彩电的进价是_____元。
8、钢笔的原价为每支a元,降低20%后的价格是_____元。
9、某商场销售一批电视机,1月份每台毛利润是售出价的20%(毛利润=售出价-买入价),2月份该商场将每台售出价调低10%(买入价不变),结果销售台数比1月份增加120%,那么2月份的毛利润总额与1月份的毛利润总额之比是_____。
二、选择题1、某商店上月的营业额是a万元,本月比上月增长15%,那么本月的营业额是:A、(a+1)15%万元B、15%a万元C、(1+15%)a万元D、(1+15%)2a万元2、某钢铁厂去年1月某种钢产量为5000吨,3月上升到7200吨,设平均每月增长的百分率为x,根据题意,得:A、5000(1+x)+5000(1+x)2=7200B、5000(1+x2)=7200C、5000(1+x)2=7200D、5000+5000(1+x)+5000(1+x)2=72003、某食品连续两次涨价10%后价格是a元,那么原价是:A、a121.元 B、a⨯112.元 C a⨯092.元 D、a09.元4、某校办工厂今年1月份生产课桌500张,因管理不善,2月份产量减少了10%,从3月份起加强管理,产量逐月上升,4月份产量达到648张,则该厂3、4月份的平均增长率为:A、10%B、15%C、20%D、25%5、一商店把货物按标价九价出售,仍可获利20%,若该货物的进价为每件21元,则每件的标价应为:A、27.72元B、28元C、29.17元D、30元6、某家具的标价为132元,若降价9折出售(即优惠10%),仍可获利10%(相对于进货价),则该家具的进货价是:A、108元B、105元C、106元D、118元7、学校组织一组学生春游,预计共需费用120元,后来又有2人参加,费用不变,这样每人可少分摊3元,原来这组学生的人数是:A、8B、10C、12D、158、某商店选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克,混合成杂拌糖后出售,则这种杂拌糖平均每千克售价是:A、18元B、18.4元C、19.6元D、20元9、有一项工程,甲单独做要a天完成,乙单独做要b天完成,那么甲、乙合作完成这项工程所需的天数是:A、a bab+B、aba b+C、1a b+D、a b+210、甲、乙两人分别从相距s千米的两地同时出发,若同向而行,则t1小时快者追上慢者,若相向而行,则t2小时后,两人相遇,那么快者的速度是慢者速度的:A、tt t212+倍 B、t tt122+倍 C、t tt t1212-+倍 D、t tt t1212+-倍11、甲、乙两人分别从A、B两地同时出发,相向而行,在点C相遇后,甲又经过t1小时到达B地,乙又经过t2小时到达A地,设AC=s1,BC=s2,则tt12等于:A、ss21B、ss2212C、ss12D、ss122212、某班举办了一次集邮展览,展出的邮票若每人3张,则多24张,若每人4张,则少26张,这个班共展出邮票张数是:A、174B、178C、168D、164三、解答题1、甲、乙两地相距300千米,一辆客车从甲地出发驶向乙地;经过45分钟后,一辆货车以每小时比客车快10千米的速度由乙地出发驶向甲地,两车刚好在甲、乙两地的中点相遇,分别求出两车的速度。
中考数学专题实际应用题(解析版)
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)
九年级数学中考专项复习——函数图像与实际问题应用题(附答案)
中考专项复习——函数与实际问题1. 甲、乙两车从A 城出发前往B 城.在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间 h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60 km/h 的速度匀速行驶.(Ⅰ)填空:① A ,B 两城相距km② 当02x ≤≤时,甲车的速度为 km/h ③ 乙车比甲车晚 h 到达B 城 ④ 甲车出发4h 时,距离A 城km⑤ 甲、乙两车在行程中相遇时,甲车离开A 城的时间为 h(Ⅱ)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式.(Ⅲ)当1352x ≤≤时,两车所在位置的距离最多相差多少km ?y 1/ km 53232. 已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:离开家的时间/min 6 10 20 46 离家的距离/km12.5(Ⅱ)填空:① 聪聪家到体育场的距离为______km② 聪聪从体育场到文具店的速度为______km/min ③ 聪聪从文具店散步回家的速度为______ km/min④ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.3.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表: 一次购买台数(台) 2 6 15 … 甲电器店收费(元) 6000 … 乙电器店收费(元)4800…(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.4.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.5.共享电动车是一种新理念下的交通工具:主要面向的出行市场,现有A 两种品牌的共享电动车,给出的图象反映了收费元与骑行时间min 之间的对应关系,其中品牌收费方式对应,品牌的收费方式对应. 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为,小明家到工厂的距离为,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时的值是 . (Ⅲ)直接写出,关于的函数解析式.3~10km B y x A 1y B 2y 300m /min 9km x 1y 2y x y /元O 10 20 x /min8 66. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.7. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为 y 乙(个),其函数图象如图所示. (I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =8. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的折出售.在乙书店一次购书的标价总额不超过元的按标价总额计费,超过元后的部分打折.设在同一家书店一次购书的标价总额为(单位:元,). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元… 在甲书店应支付金额/元 … 在乙书店应支付金额/元…(Ⅱ)设在甲书店应支付金额元,在乙书店应支付金额元,分别写出、关于的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额元,则在甲、乙两个书店中的 书店购书应支付的金额少.9. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家,文具店离家.周末小明从家出发,匀速跑步到体育场;在体育场锻炼后,匀速走了到文具店;在文具店停留买笔后,匀速走了返回家.给出的图象反映了这个过程中小明离开家的距离与离开家的时间之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min离开家的距离/ km(II )填空:① 体育场到文具店的距离为______ ② 小明从家到体育场的速度为______ ③ 小明从文具店返回家的速度为______④ 当小明离家的距离为时,他离开家的时间为______ (III )当时,请直接写出关于的函数解析式.81001006x 0x 501503*********y 2y 1y 2y x 2801203km 1.5km 15min 15min 15min 20min 30min km y min x 6122050701.23km km /min km /min 0.6km min 045x ≤≤y x10. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.11. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m②明明在书店停留的时间是min③明明与家距离900m 时,明明离开家的时间是 min(Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式. 时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m400 60012. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km⑤ 当甲车离开A 城120km 时甲车行驶了 h ⑥ 当乙车出发行驶 h 时甲乙两车相距20km13.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F32506886104参考答案1. 解:(Ⅰ)①360 ②60 ③56④6803⑤52或196(Ⅱ)当0≤x ≤2时 160y x =当2223x <≤时 1120y =当222533x <≤时 1280803y x =-(Ⅲ)当1352x ≤≤时由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大 ∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103km2.解:(Ⅰ) 1.5(Ⅱ)①2.5 ②③ ④12或 (Ⅲ)当时当时3. 解:(Ⅰ)16800 33000 14400 36000(Ⅱ)当0<≤5时当>5时,即;=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数).(x >0且x 为正整数)531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x1y 23000802400y x x %(Ⅲ)设与的总费用的差为元. 则 即. 当时 即 解得.∴当时 选择甲乙两家电器店购买均可 ∵<0∴随的增大而减小∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算4. 解:(Ⅰ)1 0.5(Ⅱ)填空:(i ) 25 (ii )(iii ) (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧x (0≤x ≤15),1(15<x ≤30), x +2(30<x ≤ 45).5.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>6. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y ∵图象过),(500和)(330,80∴⎩⎨⎧+==b k b8033050 1y 2y y 180060002400y x x 6006000y x 0y60060000x10x10x 600y x 1y 2y 23115160115130-解得⎩⎨⎧==505.3b k ∴y 与x 的函数关系式为505.3+=x y )800(≤≤x7. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当时 当时当时∵图象经过(4 120)则 解得:∴ 当时∴(2)设 把 分别代入得解得 ∴与时间t 之间的函数关系式为:8. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲03t t y 40=甲43≤t <120=甲y 84≤t <140b t y +=甲1440120b +⨯=401-=b 84≤t <4040-=t y 甲⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲2b kt y +=乙(5,0)(8,360)⎩⎨⎧+=+=22836050b k b k ⎩⎨⎧-==6001202b k y 乙)乙85(600120≤≤-=t t y9. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x10. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13(Ⅲ)当04x ≤<时5y x =当412x <≤时5154y x =+11. 解:(Ⅰ)1000 600(Ⅱ)①600 ②4 ③4.5或7或338 (Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<) 12. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或213. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x (Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等. 时间/min 2 3 4 12 容器内水量/L 10 15 20 30。
广东省深圳市中考数学复习 应用题专题
应用题专题试卷一、单选题1、互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A、120元B、100元C、80元D、60元2、已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A、518=2(106+x)B、518﹣x=2×106C、518﹣x=2(106+x)D、518+x=2(106﹣x)3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A、2×1000(26﹣x)=800xB、1000(13﹣x)=800xC、1000(26﹣x)=2×800xD、1000(26﹣x)=800x4、为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A、 B、C、 D、5、施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A、﹣=2B、﹣=2C、﹣=2D、﹣=26、八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A、 B、 C、 D、7、足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A、1或2B、2或3C、3或4D、4或58、某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A、103块B、104块C、105块D、106块9、一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A、 B、 C、 D、10、2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程()A、7200(1+x)=9800B、7200(1+x)2=9800C、7200(1+x)+7200(1+x)2=9800D、7200x2=980011、某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A、560(1+x)2=315B、560(1﹣x)2=315C、560(1﹣2x)2=315D、560(1﹣x2)=315二、解答题12、某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?13、学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克? (2)这些采摘的黄瓜和茄子可赚多少元?14、为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?15、甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度; (2)当甲到达学校时,乙同学离学校还有多远?16、某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?17、五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?18、一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.19、为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.20、青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.21、为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a万元,请求出a的取值范围.22、(2016•深圳)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.23、孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.24、为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.25、随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?26、光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1)求这个月晴天的天数.(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).27、为培养学生养成良好的“爱读书,读好书,好读书”的习惯,我市某中学举办了“汉字听写大赛”,准备为获奖同学颁奖.在购买奖品时发现,一个书包和一本词典会花去48元,用124元恰好可以购买3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)学校计划用总费用不超过900元的钱数,为获胜的40名同学颁发奖品(每人一个书包或一本词典),求最多可以购买多少个书包?28、某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?29、早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?30、为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?31、()在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?32、为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B 型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A 型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?33、我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?34、某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?35、春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.36、2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?37、某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?38、大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?(2)设每件商品的售价为x元,超市所获利润为y元.①求y与x之间的函数关系式;②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?39、随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?40、长沙市为了治理城市污水,需要铺设一段全长为300米的污水排放管道.铺设完120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务.(1)求原计划每天铺设管道多少米?(2)若原计划每天的支出为4000元,则现在比原计划少支出多少钱?41、为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?42、济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?43、在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?答案解析部分一、单选题1、【答案】C【考点】一元一次方程的应用【解析】【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷ =200,解得:x=80.∴该商品的进价为80元/件.故选C.【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷ =200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.2、【答案】C【考点】一元一次方程的应用【解析】【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选C.【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3、【答案】C【考点】一元一次方程的应用,根据数量关系列出方程【解析】【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.4、【答案】D【考点】二元一次方程的应用【解析】【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.5、【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设原计划每天施工x米,则实际每天施工(x+50)米,根据题意,可列方程:﹣=2,故选:A.【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.6、【答案】C【考点】由实际问题抽象出分式方程【解析】【解答】解:由题意可得,﹣= ,故选C.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.7、【答案】C【考点】二元一次方程的应用【解析】【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x= ,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.8、【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选C.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.9、【答案】A【考点】二元一次方程组的应用【解析】【解答】解:由题意可得,,故选A.【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设每年增长率都为x,根据题意得,7200(1+x)2=9800,故选B【分析】根据题意,可以列出相应的方程,本题得以解决.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.11、【答案】B【考点】一元二次方程的应用【解析】【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.二、解答题12、【答案】解:(1)设第一次购进x件文具,则第二次就购进2x件文具,由题意得:=﹣2.5解之得x=100,经检验,x=100是原方程的解,2x=2×100=200答:第二次购进200件文具.(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元.【考点】分式方程的应用【解析】【分析】(1)设第一次购进x件文具,则第二次就购进2x件,根据第二次购进时发现每件文具进价比第一次上涨了2.5元,所购进文具的数量是第一次购进数量的2倍,可列方程求解.(2)利润=售价﹣进价,根据(1)算出件数,然后算出总售价减去成本即为所求.13、【答案】(1)解:设采摘黄瓜x千克,茄子y千克.根据题意,得,。
中考数学专题知识点题型复习训练及答案解析(经典珍藏版):26 应用题
备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.3.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.4.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.5.一次函数的应用(1)分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)概括整合①简单的一次函数问题:a建立函数模型的方法;b分段函数思想的应用.②理清题意是采用分段函数解决问题的关键.6.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.五年中考1.(2019•成都)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p x来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?2.(2018•成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?3.(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)8 9 10 11.5 13y1(分钟)18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.4.(2016•成都)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?5.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?一年模拟6.(2019•成华区模拟)随着人们生活水平的提高,对饮水品质的需求也越来越高,某商场购进甲、乙两种型号的净水器,每台甲型净水器比每台乙型净水器进价多200元,已知用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等.(1)求每台甲型,乙型净水器的进价各是多少元?(2)该商场计划花费不超过9.8万元购进两种型号的净水器共50台进行销售,甲型净水器每台销售2500元,乙型净水器每台售价2200元,商场还将从销售甲型净水器的利润中按每台a元(70<a<80)捐献给贫困地区作为饮水改造扶贫资金.设该公司售完50台净水器并捐献扶贫资金后获得的利润为W元,求W的最大值.7.(2019•邛崃市模拟)某健身馆普通票价为40元/张,6﹣9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6﹣9月使用,不限次数.设健身x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.8.(2019•武侯区模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.9.(2019•锦江区模拟)十三五”以来,党中央,国务院不断加大脱贫攻坚的支持决策力度,并出台配套文件,国家机关各部门也出台多项政策文件或实施方案.某单位认真分析被帮扶人各种情况后,建议被帮扶人大力推进特色产业,大量栽种甜橙;同时搭建电商运营服务平台,开设网店销售农产品橙.丰收后,将一批甜橙采取现场销售和网络销售相结合进行试销,统计后发现:同样多的甜橙,现场销售可获利800元,网络销售则可获利1000元,网络销售比现场销售每件多获利5元(1)现场销售和网络销售每件分别多少元?(2)根据甜橙试销情况分析,现场销售量a(件)和网络销售量b(件)满足如下关系式:b a2+12a ﹣200.求a为何值时,农户销售甜橙获得的总利润最大?最大利润是多少?10.(2019•武侯区模拟)成都市某商场购进甲、乙两种商品,甲商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l1所示,乙商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l2所示.(1)请分别求出直线l1,l2的函数表达式,并直接写出甲、乙两种商品的购进单价各是多少元?(2)现该商场购进甲、乙两种商品各100件,甲、乙商品的销售单价均为70元,销售一段时间后,商场对甲商品搞促销活动,打八折继续销售剩余甲商品,乙商品的销售单价始终保持不变.若商场规定甲商品打折前的销售数量不得多于甲商品打折后的销售数量的,那么甲商品应接原销售单价销售多少件,才能使得甲、乙两种商品全部销售完后商场获得最大利润?最大利润为多少元?11.(2019•双流区模拟)某文具店出售一种文具,每个进价为2元,根据长期的销售情况发现:这种文具每个售价为3元时,每天能卖出500个,如果售价每上涨0.1元,其销售量将减少10个.物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润,每个文具的售价应是多少?(2)该如何定价,才能使这种文具每天的利润最大?最大利润是多少?12.(2016•荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.13.(2019•郫都区模拟)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?14.(2019•郫都区模拟)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)求果园增种橙子树x(棵)与果园橙子总产量y(个)的函数关系式;(2)多种多少棵橙子,可以使橙子的总产量在60420个以上?15.(2019•成都模拟)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?精准预测1.天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?3.已知A、B两地相距2.4km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y(km)与他行驶所用的时间x(min)之间的关系.根据图象解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方0.6km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离A地的距离y乙(km)与所用时间x(min)的关系的大致图象;(3)乙在第几分钟到达B地?(4)两人在整个行驶过程中,何时相距0.2km?4.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.5.某水果店经销一种高档水果,售价为每千克60元(1)连续两次降价后售价为每千克48.6元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克48元,每天可售出80千克,经市场调查发现,若售价每涨价1元,日销售量将减少4千克,设每千克涨价t元,每天获得的利润为w元.①当售价为多少元时,每天获得的利润为最大?最大为多少元?②水果店老板为保证每天的利润不低于988元,请直接写出t的取值范围是.6.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?7.我国为了实现到达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w (万元)的范围.8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.某公司生产的一种商品其售价是成本的1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?10.永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?11.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)12.为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?13.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?14.某运动品商场欲购进篮球和足球共100个,两种球进价和售价如下表所示,设购进篮球x个(x为正整数),且所购进的两种球能全部卖出,获得的总利润为w元.(1)求总利润W关于x的函数关系式.(2)如果购进两种球的总费用不低于5800元且不超过6000元,那么该商场如何进货才能获利最多?并求出最大利润.(3)在(2)的条件下,若每个篮球的售价降低a元,请分析如何进货才能获得最大利润.篮球足球进价(元/个)62 54售价(元/个)76 6015.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作。
2023年中考数学第一轮复习应用题专项训练
2023年中考第一轮复习应用题专项训练一、解答题1.为开展好校园足球活动,某些学校计划联合购买一批足球运动装备,经市场调查,甲、乙两商场分别以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球贵20元,4套队服与5个足球的费用相等,经洽谈,甲商场优惠方案是:每购买10套队服,送一个足球;乙商场优惠方案是;若购买队服超过90套,则购买足球打八折.(1)求每套队服和每个足球的价格分别是多少?(2)若计划一共购买100套队服和m(m大于10)个足球,请用含m的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若需要购买40个足球,你认为到甲、乙哪家商场购买比较合算?请说明理由.2.北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多20元,购买甲、乙两种型号各10个共需1760元.(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?(2)某团队计划用不超过4500元购买甲、乙两种型号的“冰墩墩”共50个,求最多可购买多少个甲种型号的“冰墩墩”?3.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?4.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为;(2)求兽、鸟各有多少.5.某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?6.端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B 品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?7.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?8.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?9.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?10.某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?11.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?12.阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?13.为了传承雷锋精神,某中学向全校师生发起“献爱心”募捐活动,准备向西部山区学校捐赠篮球、足球两种体育用品.已知篮球的单价为每个100元,足球的单价为每个80元.(1)原计划募捐5600元,全部用于购买篮球和足球,如果恰好能够购买篮球和足球共60个,那么篮球和足球各买多少个?(2)在捐款活动中,由于师生的捐款积极性高涨,实际收到捐款共6890元,若购买篮球和足球共80个,且支出不超过6890元,那么篮球最多能买多少个?14.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?。
中考数学不定方程应用题专题
中考专题复习:不定方程应用题专题一、课本题再现例1:现有1角、5角、1元硬币各10枚,从中取出15枚,共值7元.1角、5角、1元硬币各取多少枚?解法一:设1角、5角、1元的硬币分别取x枚、y枚、z枚,那么1551070x y zx y z++=⎧⎨++=⎩①②,②-②得4y+9z=55,即y=5594z-=14-194z+,而x、y、z都为正整数,且不大于10,那么1+9z必须是4的倍数,即z=3,7,…当z=3时,y=7,x=5符合题意;当z=7时,y=-2,x=10不符合题意,所以1角取5枚,5角取7枚,1元取3枚.解法二:设1角、5角、1元的硬币各取x枚、y枚、z枚,根据题意得150.10.57x y zx y z++=⎧⎨++=⎩①②,②-②得0.9x+0.5y=8,②y=16-95 x,由x、y、z都为不小于10的整数知x需为5的倍数,且x=5或10,当x=5时,y=7,z=3(符合题意);当x=10时,y=-2,z=7(不符合题意),所以,1角取5枚、5角取7枚、1元取3枚.从上面解答可以得出此类不定方程应用题解题的一般步骤:首先,读懂题意并找到数量关系,设未知数,用等量关系列出方程组并解方程组;其次,用某一字母表示其他未知数,利用整除性质及整数的条件,求出符合题意的答案.其中选用适当的字母来表示其他量是解题关键.若选用的字母比较合适,则解题的难度会减小不少,反之会增大运算量.如解法二中得到式子y=16-95x,很容易找出这样有鲜明特点的数如x=5,10,…,而解法一则运算量会增大.二、在选择题的应用例2:(2020黑龙江龙东中考)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案()A.12种B.15种C.16种D.14种解:设购买A种奖品m个,购买B种奖品n个,(1)当C种奖品个数为1个时,根据题意得10m+20n+30=200,整理得m+2n=17,因为m、n都是正整数,则0<2n<17,所以n=1,2,3,4,5,6,7,8;(2)当C种奖品个数为2个时,根据题意得10m+20n+60=200,整理得m+2n=14,因为m、n都是正整数,则0<2n<14,所以n=1,2,3,4,5,6;综上共有8+6=14种购买方案.故选:D.例3:(黑龙江鹤岗中考)今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()A.2种 B.3种 C.4种 D.5种4中考解:设小虎足球队胜了x场,平了y场,负了z场,小虎足球队踢平场数是所负场数的k倍.依题意,得17316x y zx yy kz++=⎧⎪+=⎨⎪=⎩①②③,把②代入②②,得(1)17316x k zx kz++=⎧⎨+=⎩,解得z=3523k+(k为正整数),又因为z为正整数,则2k+3=35或5或7,所以当k=1时,z=7;当k=2时,z=5;当k=16时,z=1.综上所述,小虎足球队所负场数的情况有3种.三、在填空题的应用例4(2020黄石中考改编)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),那么商人的购买方法共有种,列出所有的可能购买方案.解:设每头牛值x两银子,每只羊值y两银子,根据题意得:,解得:.即每头牛值3两银子,每只羊值2两银子.设19两银子购买a头牛,b只羊,依题意有3a+2b=19,则b=,因为a,b都是正整数,那么a=1,3,5;所以商人共有三种购买方法:②购买1头牛,8只羊;②购买3头牛,5只羊;②购买5头牛,2只羊.例5(2020重庆A卷)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.解:设第一时段统计摸到红、黄、绿球的次数分别为a,b,c,则第二时段统计摸到红、黄、绿球的次数分别为3a,2b,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得250210702510(5012020)(503010)420a b c a b c a b c ++=⎧⎨++-++=⎩,即25217251942a b c b c ++=⎧⎨+=⎩,所以424325429b a c b-⎧=⎪⎨⎪=-⎩, 因为a ,c 为正整数,所以42430254290b b -⎧⎪⎨⎪-⎩≥≥,则4342≤b ≤143,因为b 为正整数,所以b =2,3,4;当b =2,3时,a 的值非正整数,不符合题意;当b =4时,a =5,c =6,符合题意;所以150a +60b +40c =150×5+60×4+40×6=1230,即第二时段返现金额为1230元.四、在解答题的应用例6(2021杭州模考)某市政府筹集了抗旱必需物资120t 打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:已知它们的总辆数为16,你能通过列方程组的方法求出可能的运送方案吗?(2)哪种方案的运费最少?最少是多少元?解:(1)设甲型车有x 辆,乙型车有y 辆,丙型车有z 辆.根据题意,得165810120x y z x y z ++=⎧⎨++=⎩,消去z ,得5x +2y =40.所以x =8-25y . 由x ,y ,z 是非负整数,可知x 与y 的和不大于16,y 为5的倍数,则80x y =⎧⎨=⎩,,65x y =⎧⎨=⎩,,410.x y =⎧⎨=⎩,,所以808x y z =⎧⎪=⎨⎪=⎩,,,655x y z =⎧⎪=⎨⎪=⎩,,,4102x y z =⎧⎪=⎨⎪=⎩,,. 所以有三种运送方案:②甲型车8辆,丙型车8辆;②甲型车6辆,乙型车5辆,丙型车5辆;②甲型车4辆,乙型车10辆,丙型车2辆.(2)3种方案的运费分别是:②400×8+600×8=8000(元);②400×6+500×5+600×5=7900(元);②400×4+500×10+600×2=7800(元).因为8000>7900>7800,所以调用甲型车4辆,乙型车10辆,丙型车2辆时运费最少,最少是7800元.例7(广西梧州中考)我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x 件,售完此两种商品总利润为y 元.写出y 与x 的函数关系式.(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?(3)“五·一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?-x)件,由题意,得y=(20-15)x+(45-35)(100-x)=-5x+1000,故y与x之间的函数关系式为:y=-5x+1000;(2)由题意,得15x+35(100-x)≤3000,解之,得x≥25.因为y=-5x+1000,k=-5<0,所以y随x的增大而减小,所以当x取最小值25时,y最大值,此时y=-5×25+1000=875(元),所以至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元;(3)设小王到该商场购买甲种商品m件,购买乙种商品n件.②当打折前一次性购物总金额不超过400时,购物总金额为324÷0.9=360(元),则20m+45n=360,m=18-94n>0,所以0<n<8.n是4的倍数,有3种情况:情况1:m=0,n=8,则利润是:324-8×35=44(元);情况2:m=9,n=4,则利润是:324-(15×9+35×4)=49(元);情况3:m=18,n=0,则利润是:324-15×18=54(元);②当打折前一次性购物总金额超过400时,购物总金额为324÷0.8=405(元)则20m+45n=405,m=8194n>0,所以0<n<9.m、n均是正整数,有2种情况:情况1:m=9,n=5,则利润为:324-(9×15+5×35)=14(元);情况2:m=18,n=1,则利润为:324-(18×15+1×35)=19(元).综上所述,商家可获得的最小利润是14元,最大利润是54元.练习题1(2020重庆B卷)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3②5②2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8②5,则7月份外卖还需增加的营业额与7月份总营业额之比是.解:设6月份的总营业额为a 元,7月份的总营业额为b 元,则7月份增加的总营业额为(b -a )元.根据题意,6月份该火锅店堂食、外卖、摆摊三种方式的营业额可分别表示为310a 元,510a 元,210a 元,7月份该火锅店堂食、外卖、摆摊三种方式的营业额可分别表示为820b 元,520b 元,720b 元,所以7月份摆摊增加的营业额为(720b -210a )元.根据7月份摆摊增加的营业额占总增加的营业额的25,得720b -210a =25(b -a ),解得b =4a ,所以7月份外卖还需增加的营业额与7月份的总营业额之比为552010b a b -=55420104a a a⨯-=18.故答案为18. 2 百鸡问题;鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.百钱买百鸡,问:鸡翁、鸡母、鸡雏各几何?解 设鸡翁x 只、鸡母y 只、鸡雏z 只,依题意,得100,1153100,23x y z x y z ++=⎧⎪⎨++=⎪⎩()() ②×3-②,得7x +4y =100.显然x =4,y =18是该方程的一组解,故x =4+4t ,y =18-7t .所以,z =78+3t .因为,0<(x ,y ,z )<100,t =0,1或2.故x =4,y =18,z =78;x =8,y =11,z =81或x =12,y =4,z =843、某商场计划拨款万元从厂家购进台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台元,乙种每台元,丙种每台元.②若商场同时购进两种不同型号的电视机台,共付万元,请探究一下商场的进货方案; ②若商场销售一台甲种电视机可获利元,销售一乙种电视机可获利元,销售一台丙种视机可获利元.在同时购进两种不同电视机的方案中,哪种能使获利最大? ②若商场准备用万元同时购进三种不同型号的电视机台,请你设计进货方案. 解②应分三种情形讨论:②设购进甲种电视机台,乙种电视机台,列方程组,解得; ②同理求得若同时购进甲、丙电视机分别为台和台;②不可能同时购进乙、丙两种电视机(方程组无正整数解).②通过直接计算,上述两种方案的利润分别为元和元,应选第二种方案.也可进行估算,在三种机型中,乙的利润率最低,甲、丙相同,易选择方案二.950150021002500509150200250950x y 501500210090000x y x y +=⎧⎨+=⎩2525x y =⎧⎨=⎩351587509000②设购进甲、乙、丙三种电视机分别为台、台和台,可列方程组,分别解出和得, 根据题意,分别得到符合题意的整数解为:,,,4、有一水库,有水流进,同时也向外放水,可使用40天,最近库区降雨,流入库区的水量增加20%,如果放水量增加10%,仍可使用40天,如果按原来的放水量放水,可使用多少天?解:设未降雨的一天流进的水为x 立方米,未降雨的一天流出的水为y 立方米,水库原有a 立方米, 根据两次的情况可得:40a y x -=,1.1 1.240a y x -=,所以 1.1 1.2y x y x -=-,2y x =,40a x =,若按原来的放水可使用:( 1.2)400.850a y x x x ÷-=÷=(天)5、有甲、乙、丙三种规格的钢条,已知甲种2根,乙种1根,丙种3根共长23米;甲种1根,乙种4根,丙种5根共长36米。
数学中考应用题及答案
数学中考应用题及答案1. 某工厂生产一种产品,原计划每天生产100件,实际每天生产120件。
若原计划生产时间为30天,实际生产时间为25天,求实际生产效率比原计划提高了百分之几?答案:解:首先计算原计划和实际的生产总量。
原计划生产总量 = 100件/天× 30天 = 3000件实际生产总量 = 120件/天× 25天 = 3000件接下来计算提高的百分比。
提高的百分比 = [(实际生产量 - 原计划生产量) / 原计划生产量] × 100%提高的百分比 = [(3000 - 3000) / 3000] × 100% = 0%答:实际生产效率与原计划相比没有提高。
2. 某商店购进一批商品,进价为每件20元,若按每件30元出售,可售出500件。
若每件商品提价1元,销售量将减少20件。
求该商店为获得最大利润,每件商品应定价多少元?答案:解:设每件商品提价x元,则每件商品的售价为(30+x)元,销售量为(500-20x)件。
利润函数为:y = (30+x-20)(500-20x) = -20x^2 + 300x + 5000这是一个开口向下的二次函数,对称轴为x = 7.5。
当x = 7.5时,y取得最大值,此时售价为30 + 7.5 = 37.5元。
答:每件商品应定价为37.5元,此时利润最大。
3. 某校组织学生去春游,若租用45座客车,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,其余车刚好坐满。
求该校共有多少名学生?答案:解:设租用45座客车x辆,则学生总数为45x + 15。
根据题意,租用60座客车时,有(x-1)辆坐满,一辆空着,所以学生总数为60(x-1)。
将两个表达式相等,得到方程:45x + 15 = 60(x-1)解方程得:45x + 15 = 60x - 6015 + 60 = 60x - 45x75 = 15xx = 5所以,学生总数为:45 × 5 + 15 = 240人。
中考数学应用题汇编及解析
一、代数应用题:1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间治理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间治理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间治理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-〔元〕; 〔2〕设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =〔千克〕(120%) 1.811700x x x +-==〔千克〕答:〔1〕当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; 〔2〕小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提升了用油的重复利用率,并且发现在技术革新的根底上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析]〔1〕由题意,得70(160%)7040%28⨯-=⨯=〔千克〕 〔2〕设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --=部门经理小张这个经理的介绍能反映该公司员工的月工资实际水平吗?欢送你来我们公司应聘!我公司员工的月平均工资是2500元,薪水是较高的.解得:1275,10x x ==-〔舍去〕(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工 治理人员 普通工作人员人员结构 总经理 部门经理 科研人员销售人员 高级技工 中级技工勤杂工员工数(名) 1 3 2 3 24 1 每人月工资(元)21000 840020252200 1800 1600950请你根据上述内容,解答以下问题:〔1〕该公司“高级技工〞有 名;〔2〕所有员工月工资的平均数x 为2500元,中位数为 元,众数为 元; 〔3〕小张到这家公司应聘普通工作人员.请你答复右图中小张的问题,并指出用〔2〕中的哪个 数据向小张介绍员工的月工资 实际水平更合理些; 〔4〕去掉四个治理人员的工资后,请你计算出其他员工的月平均工资y 〔结果保存整数〕,并判断y 能否反映该公司员工的月工资实际水平.[解析] 〔1〕由表中数据知有16名;〔2〕由表中数据知中位数为1700;众数为1600;〔3〕这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.〔说明:该问中只要写对其中一个数据或相应统计量〔中位数或众数〕也可以〕 〔4〕250050210008400346y ⨯--⨯=≈1713〔元〕.y 能反映.4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚〔点C 〕的水平线为x 轴、过山顶〔点A 〕的铅垂线为y 轴建立平面直角坐标系如图〔单位:百米〕.AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且)4,(m B . 〔1〕设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;〔2〕从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上〔见图〕. ①分别求出前三级台阶的长度〔精确到厘米〕; ②这种台阶不能一直铺到山脚,为什么?〔3〕在山坡上的700米高度〔点D 〕处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE 〔米〕.假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x ,〔…2分〕 ∴)8(42y x -=,y x -=82〔…3分〕∵)4,(m B ,∴482-=m =4,∴)4,4(B〔…4分〕〔2〕在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x 〔百米〕894≈〔厘米〕〔…6分〕同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x 〔百米〕371≈〔厘米〕 〔…7分〕 第三级台阶的长度为02843.023=-x x 〔百米〕284≈〔厘米〕〔…8分〕②取点)4,4(B ,又取002.04+=y ,那么99900.3998.32≈=x∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 〔…10分〕 〔注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性〕 ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR〔…9分〕在题设图中,作OA BH ⊥于H那么︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚〔…10分〕〔3〕)7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值〔…11分〕 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x〔…13分〕当320=x 时,38max =y ∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y 〔米〕与挖掘时间x 〔时〕之间关系的局部图象.请解答以下问题: 〔1〕乙队开挖到30米时,用了_____小时.开挖6小时时, 甲队比乙队多挖了______米; 〔2〕请你求出:①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?PQR时)〔3〕如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] 〔1〕2;10;〔2〕①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点〔6,60〕, ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点〔2,30〕、〔6,50〕,∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.〔说明:通过观察图象并用方程来解决问题,正确的也给分〕 〔3〕由图可知,甲队速度是:60÷6=10〔米/时〕.设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料〔这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理〕.当每吨售价为260元时,月销售量为45吨.该经销店为提升经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x 〔元〕,该经销店的月利润为y 〔元〕. 〔1〕当每吨售价是240元时,计算此时的月销售量;〔2〕求出y 与x 的二次函数关系式〔不要求写出x 的取值范围〕;〔3〕请把〔2〕中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;〔4〕小静说:“当月利润最大时,月销售额也最大.〞你认为对吗?请说明理由.[解析] 〔1〕5.71024026045⨯-+=60〔吨〕.〔2〕260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.〔3〕24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.〔4〕我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大.∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.〔说明:如果举出其它反例,说理正确,也相应给分〕二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图〔尺寸如下图〕,车棚顶部是圆柱侧面的一局部,其展开图是矩形.图10—2是车棚顶部截面的示意图,AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积〔不考虑接缝等因素,计算结果保存π〕.[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于F ,如图1.…………〔1分〕由垂径定理,可知: E 是AB 中点,F 是AB 中点,∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………〔2分〕 设半径为R 米,那么OE =(R -2)米.O BA·图10—2图10—1 AB2米 43米·图1EF A在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………〔5分〕 ∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………〔6分〕∴∠AOB =120°. ∴ AB 的长为1804120π⨯=38π. ………………………〔7分〕∴帆布的面积为38π×60=160π〔平方米〕. …………………………………〔8分〕 〔说明:此题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分〕9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格〔每个小方格的边长均为1个单位长〕,其对称中央为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中央也是点O ,它以每秒1个单位长的速度由起始位置向外扩大〔即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……〕,直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动〔即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动〕.正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠局部面积为y 个平方单位.〔1〕请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠局部〔重叠局部用阴影表示〕,并分别写出重叠局部的面积;〔2〕①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式.〔3〕对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠局部面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.〔说明:问题〔3〕是额外加分题,加分幅度为1~4分〕图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5D图14-7E C BA DFG H M Q NOP[解析]〔1〕相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.〔2〕①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,那么MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-〔7-x 〕= x -1. ∴y=MT ·MS =〔x -1〕〔2x -1〕=2x 2-3x +1. ②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,那么 TQ =7-x ,∴MT =MQ -TQ =6-〔7-x 〕=x -1. ∴y=MN ·MT =6〔x -1〕=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,那么 TQ=x -7,∴MT =MQ -TQ =6-〔x -7〕=13-x . ∴y = MN ·MT =6〔13-x 〕=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,那么MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =〔13-x 〕〔27-2x 〕=2x 2-53x +351.〔说明:以上四种情形,所求得的y 与x 的函数关系式正确的,假设不化简不扣分〕 〔3〕对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;图2-4 E C B A D F G H Q N O P T 图2-5E C B A DF GH M N O PT 图2-6 E C B A DF G HK Q N OP R S 图2-3 E C B A D F G H M Q N OP S T 图2-2 E C B A D FG HMN O P 图2-1 E C B AD Q O P当x=35时,y取得最大值36.④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;当x=49时,y取得最大值36.。
中考复习如何备考数学应用题
中考复习如何备考数学应用题数学应用题一直是中考数学考试的重点和难点之一,需要考生掌握一定的数学知识,并且能够将所学知识应用到实际问题中,解决实际问题。
下面将为大家介绍中考复习如何备考数学应用题的方法和技巧。
一、理清数学知识框架1. 确定复习范围:首先要了解中考数学应用题的考察范围,包括平面几何、立体几何、函数与方程、统计与概率等方面的知识。
2. 建立数学知识框架:在了解考察范围的基础上,建立自己的数学知识框架,将各个知识点有机地连接起来,形成完整的体系,这样有助于我们在做题时更加灵活和熟练。
二、强化基础知识1. 温故知新:在备考数学应用题时,要先进行基础知识的复习和巩固,温故而知新。
回顾已学过的知识点,重点关注容易出错或易混淆的概念和方法,强化记忆和理解。
2. 查漏补缺:在复习的过程中,要及时查找并补充自己的学习漏洞,针对弱点进行有针对性的训练,做到知识无死角。
三、掌握解题方法1. 阅读清晰题目:在做数学应用题时,首先要仔细阅读题目,理解题目所描述的实际问题,明确需要求解的内容和条件。
2. 提取问题要点:将问题要点提取出来,包括已知条件和待求量,对于复杂题目可以进行问题拆解,将大问题分解为小问题,逐步解决。
3. 运用数学方法:根据已知条件和所需求的内容,选择合适的数学方法和公式进行求解。
需要注意的是,一定要正确运用所学知识,不要盲目使用公式,要根据题目要求进行灵活变形。
4. 检验答案合理性:在得出答案后,要进行反复检验,看结果是否合理,是否符合实际问题的情况,有时需要借助绘图或实际意义来验证答案的正确性。
四、做题技巧1. 注意单位换算:在做数学应用题时,特别要注意单位之间的换算关系,避免在计算过程中出现单位错误。
2. 画图辅助:对于几何类的应用题,可以借助几何图形进行辅助分析和求解,将抽象的问题具体化,更加直观和明了。
3. 多练习:通过大量的练习题,熟悉不同类型的数学应用题,增加解题的经验和技巧,提高应对不同题型的能力。
中考数学专题复习填空实际应用题
中考数学专题复习填空实际应用题学校:___________姓名:___________班级:___________考号:__________评卷人得分一、填空题1.某销售商五月份销售A、B、C三种饮料的数量之比为3:2:4,A、B、C三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A饮料增加的销售占六月份销售总额的115,B、C饮料增加的销售额之比为2:1.六月份A饮料单价上调20%且A饮料的销售额与B饮料的销售额之比为2:3,则A饮料五月份的销售数量与六月份预计的销售数量之比为_____________.2.盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个,其中A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A盒的成本为145元,B盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C盒的成本为__________元.3.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.4.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.5.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.6.某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________.7.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________.(-=100%商品的售价商品的成本价商品的利润率商品的成本价)8.为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是_____(商品的销售利润率=商品的售价-商品的成本价商品的成本价×100%)参考答案:1.910【解析】 【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可 【详解】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x , A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y . 六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m , A 饮料增加的销售占六月份销售总额的115A 饮料销售额为3xy+115m , A 饮料的销售额与B 饮料的销售额之比为2:3, B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∴C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∴C 饮料销售额:13117134+42215420xy m xy xy xy m ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∴191171315210420xy m xy m xy m m +++++= ∴=15m xy六月份A 种预计的销售额1315415xy xy xy +⨯=, 六月份预计的销售数量()1041+20%y 3xy x ÷=∴A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x = 故答案为910【点睛】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键 2.155 【解析】 【分析】设B 盒中蓝牙耳机3a 个,迷你音箱2a 个,列方程求出B 盒中各种设备的数量,再设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x 、y 、z 元,根据题意列出方程组,再整体求出32x y z ++的值即可. 【详解】解:根据题意,设B 盒中蓝牙耳机3a 个,迷你音箱2a 个,优盘的数量为3a+2a=5 a 个,则23132513222a a a ++++++++=,解得,a=1;设蓝牙耳机、多接口优盘、迷你音箱的成本分别为x 、y 、z 元,根据题意列方程组得,23145352245x y z x y z ++=⎧⎨++=⎩①② ∴-∴得,2100x y z ++=③, ∴×3-∴得,32155x y z ++=, 故答案为:155. 【点睛】本题考查了三元一次方程组和一元一次方程的应用,解题关键是找准题目中的等量关系列出方程(组),熟练运用等式的性质进行方程变形,整体求值.3.18【解析】 【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∴7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.4.1230.【解析】【分析】设第一时段统计摸到红、黄、绿球的次数分别为a,b,c,则第二时段统计摸到红、黄、绿球的次数分别为3a,2b,4c,第三时段统计摸到红、黄、绿球的次数分别为a,4b,2c.根据题意得到关于a,b,c方程组,根据a,b,c均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩,即25217251942a b c b c ++=⎧⎨+=⎩,其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∴a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a +60b +40c =150×5+60×4+40×6=1230. 故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可. 【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数. 5.3:20 【解析】 【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x ,依题意列出方程组,用y 的代数式分别表示x 、y ,然后进行计算即可. 【详解】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x依题意可得,5919()121640191:3:43164x y x y x y y z x z ⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+= ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①② 由∴得32x y =③ 将∴代入∴得38z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202y z x y y y ==++ 故答案为3:20. 【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键 6.18:19 【解析】 【分析】设第一、二、三、四车间每天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,根据题意列出三元一次方程组,解方程组得到答案. 【详解】解:设第一、二、三、四车间每天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天, 则第五、六车间每天生产的产品数量分別是34x 和83x ,由题意得,6()36322248(24)43x x x m ac x x m bc x m bc ⎧⎪+++=⎪⎪⎛⎫++=⎨ ⎪⎝⎭⎪⎪+⨯+=⎪⎩①②③,2⨯-②③得,3m x =,把3m x =分别代入∴得,92x ac =, 把3m x =分别代入∴得,1922x bc =, 则:18:19a b =,甲、乙两组检验员的人数之比是18:19,故答案为18:19.【点睛】本题考查的是三元一次方程组的应用,根据题意正确列出三元一次方程组、正确解出方程组是解题的关键.7.8 9【解析】【详解】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a袋,乙销售b袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:品种类别甲乙A31B12C12由题意可得甲的成本价为:58.5130%=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.8.47【解析】 【分析】根据每袋甲种粗粮的成本是每千克A 种粗粮成本的7.5倍,可得甲的成本,乙的成本;根据乙种袋装粗粮的销售利润率是20%,可得乙的售价,根据每袋乙种粗粮售价比每袋甲种粗粮售价高20%,可得甲的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案. 【详解】设A 的单价为x 元,B 的单价为y 元,C 的单价为z 元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a 袋,乙的销售量为b 袋,由题意,得 A 一袋的成本是7.5x=3x+y+z , 化简,得 y+z=4.5x ;乙一袋的成本是x+2y+2z=x+2(y+z )=x+9x=10x , 乙一袋的售价为10x (1+20%)=12x , 甲一袋的售价为10x . 根据甲乙的利润,得(10x-7.5x )a+20%×10xb=(7.5xa+10xb )×24% 化简,得 2.5a+2b=1.8a+2.4b 0.7a=0.4b 47a b , 故答案为47.【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.。
中考数学专题复习:实际应用问题
(1)若围成的花园面积为91 m2,求花园的边长;
(2)在点P处有一棵树与墙CD,AD的距离分别为12 m和6 m,要能将这棵树围
在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,
求此时花园的边长.
解:(1)设AB长为a m,则BC长为(20-a)m.
在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时花
园的边长.
解: (2)设花园的一边长为 x,面积为 y,
则 y=x(20-x)=-x2+20x=-(x-10)2+100,
≥ 6,
≥ 12,
由题意得
或
20- ≥ 12 20- ≥ 6,
解得:6≤x≤8 或 12≤x≤14.
(2)每台 A 型机器人售价 3 万元,每台 B 型机器人售价 2 万元,该公司计划采购 A,B 两种型号的机器
人共 20 台,必须满足每天搬运的货物不低于 1 800 吨,请根据以上要求,求出 A,B 两种机器人分别
采购多少台时,所需费用最低?最低费用是多少?
【自主解答】(1)设每台 A 型机器人每天搬运货物 x 吨,每台 B 型机器人每天搬运
二次函数应用题是中考的必考题,每年中考试题
都要考查二次函数应用题,其重要程度不言而喻.
专题四
例1
方程(组)、函数在商品销售利润问题中的应用
[安徽中考]某超市销售一种商品,成本为每千克40元,规定每千克售
价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千
克售价x(元)满足一次函数关系,部分数据如下表:
例题1 为庆祝中国共产党建党100周年,某校加强了学生对党史知识的学习,并组
中考数学冲刺专题训练(附答案):应用题
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学冲刺专题训练(附答案):应用题一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元 B .180元 C .200元 D .220元【答案】C 【解析】设这种衬衫的原价是x 元, 依题意,得:0.6x+40=0.9x-20, 解得:x=200. 故选:C .2.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( ) A .4 B .5 C .6 D .7【答案】C 【解析】设这种植物每个支干长出x 个小分支, 依题意,得:2143x x ++=, 解得: 17x =-(舍去),26x =. 故选:C .3.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A .3种B .4种C .5种D .6种【答案】B 【解析】设购买A 品牌足球x 个,购买B 品牌足球y 个, 依题意,得:60751500x y +=,∴4205y x =-.x ,y 均为正整数,∴11516x y =⎧⎨=⎩,221012x y =⎧⎨=⎩,33158x y =⎧⎨=⎩,44204x y =⎧⎨=⎩,∴该学校共有4种购买方案.故选:B .4.为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A 型“共享单车”,因为单车需求量增加,计划继续投放B 型单车,B 型单车的投放数量与A 型单车的投放数量相同,投资总费用减少20%,购买B 型单车的单价比购买A 型单车的单价少50元,则A 型单车每辆车的价格是多少元?设A 型单车每辆车的价格为x 元,根据题意,列方程正确的是( )A .200000200000(120%)50x x -=- B .200000200000(120)50x x x +=- C .200000200000(120%)50x x -=+ D .200000200000(120)50x x x +=+ 【答案】A 【解析】设A 型单车每辆车的价格为x 元,则B 型单车每辆车的价格为(50)x -元, 根据题意,得200000200000(120)50x x x -=- 故选A .5.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩【答案】A【解析】设甲的钱数为x ,乙的钱数为y ; 由甲得乙半而钱五十,可得:1x y 502+= 由甲把其23的钱给乙,则乙的钱数也为50;可得:2503x y += 故答案为:A6.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( ) A .3种 B .4种C .5种D .6种【答案】C 【解析】设该店购进甲种商品x 件,则购进乙种商品()50x -件,根据题意,得:()()60100504200102050750x x x x ⎧+-≤⎪⎨+->⎪⎩,解得:2025x ≤<, ∵x 为整数,∴20x、21、22、23、24,∴该店进货方案有5种, 故选:C .7.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x=+ C .1201508x x=- D .1201508x x =+ 【答案】D 【解析】∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件, ∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.8.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只. A .55 B .72C .83D .89【答案】C 【解析】设该村共有x 户,则母羊共有()517x +只,由题意知,()()517710517713x x x x ⎧+-->⎪⎨+--<⎪⎩解得:21122x <<, ∵x 为整数, ∴11x =,则这批种羊共有115111783+⨯+=(只), 故选C .二、填空题(本大题共4个小题,每小题6分,共24分)9.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____.【答案】 4.5112x yx y +=⎧⎪⎨-=⎪⎩【解析】设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x yx y +=⎧⎪⎨-=⎪⎩10.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________. 【答案】20%.【解析】设这两年中投入资金的平均年增长率是x ,由题意得: 5(1+x )2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意舍去). 答:这两年中投入资金的平均年增长率约是20%. 故答案是:20%.11.一艘轮船在静水中的最大航速为30/km h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______/km h . 【答案】10 【解析】设江水的流速为/x km h ,根据题意可得:120603030x x=+-,解得:10x =,经检验:10x =是原方程的根, 答:江水的流速为10/km h . 故答案为:10.12.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD=α. 若AO=85cm ,BO=DO=65cm. 问: 当74α=︒,较长支撑杆的端点A 离地面的高度h 约为_____cm .(参考数据:sin 370.6,≈cos30.8≈,sin530.8,cos530.6≈≈.)【答案】120. 【解析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,∵BO=DO , ∴OE 平分∠BOD , ∴∠BOE=12∠BOD=12×74°=37°,∴∠FAB=∠BOE=37°,在Rt △ABF 中,AB=85+65=150cm , ∴h=AF=AB•cos ∠FAB=150×0.8=120cm , 故答案为:120三、解答题(本大题共3个小题,每小题12分,共36分. 解答应写出文字说明、证明过程或演算步骤)13.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P 处测得古塔顶端M 的仰角为60︒,沿山坡向上走25m 到达D 处,测得古塔顶端M 的仰角为30︒.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助小明计算古塔的高度ME .(结果精确到0.1m ,参考数据:3 1.732≈)【答案】古塔的高度ME 约为39.8m . 【解析】解:作DC EP ⊥交EP 的延长线于点C ,作DF ME ⊥于点F ,作PH DF ⊥于点H ,则DC PH FE ==,DH CP =,HF PE =,设3DC x =,∵3tan 4θ=,∴4CP x =, 由勾股定理得,222PD DC CP =+,即22225(3)(4)x x =+,解得,5x =, 则315DC x ==,420CP x ==, ∴20DH CP ==,15FE DC ==, 设MF y =,则15ME y =+, 在Rt MDF 中,tan MF MDF DF∠=,则3tan 30MFDF y ==, 在Rt MPE 中,tan ME MPE PE ∠=,则3(15)tan 603ME PE y ==+, ∵DH DF HF =-, ∴33(15)203y y -+=,解得,7.5103y =+, ∴7.51031539.8ME MF FE =+=++≈. 答:古塔的高度ME 约为39.8m .14.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?【答案】(1)改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元;(2)共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚;方案3投入资金最少,最少资金是114万元.【解析】(1)设改造1个甲种型号大棚需要x万元,改造1个乙种型号大棚需要y万元,依题意,得:26248 x yx y-=⎧⎨+=⎩,解得:1218 xy=⎧⎨=⎩.答:改造1个甲种型号大棚需要12万元,改造1个乙种型号大棚需要18万元.(2)设改造m个甲种型号大棚,则改造(8﹣m)个乙种型号大棚,依题意,得:53(8)35 1218(8)128 m mm m+-⎧⎨+-⎩,解得:83≤m≤112.∵m为整数,∴m=3,4,5,∴共有3种改造方案,方案1:改造3个甲种型号大棚,5个乙种型号大棚;方案2:改造4个甲种型号大棚,4个乙种型号大棚;方案3:改造5个甲种型号大棚,3个乙种型号大棚.方案1所需费用12×3+18×5=126(万元);方案2所需费用12×4+18×4=120(万元);方案3所需费用12×5+18×3=114(万元).∵114<120<126,∴方案3改造5个甲种型号大棚,3个乙种型号大棚基地投入资金最少,最少资金是114万元.15.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【答案】(1)1502y x=-+(2)当x为10时,超市每天销售这种玩具可获利润2250元(3)当x为20时w 最大,最大值是2400元 【解析】(1)根据题意得,1502y x =-+; (2)根据题意得,()1405022502x x ⎛⎫+-+= ⎪⎝⎭, 解得:150x =,210x =, ∵每件利润不能超过60元, ∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元; (3)根据题意得,()211405030200022w x x x x ⎛⎫=+-+=-++ ⎪⎝⎭()213024502x =--+,∵102a =-<, ∴当30x <时,w 随x 的增大而增大,∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元.。
中考数学应用题(各类应用题汇总练习)
中考数学应用题(各类应用题汇总练习)中考数学应用题是考察学生在解决实际问题中应用数学知识和思维方法的能力。
这类题目通常涉及到数学与日常生活、生产劳动、科学技术等方面的联系,要求学生能够理解问题背景,运用数学知识去解决问题。
一、人民币兑换问题题目要求学生计算将一种货币兑换成另一种货币的数目。
例如,将人民币兑换成美元,或者将美元兑换成欧元等。
题目可设计如下:甲有5000人民币,最近他打算去美国旅行,需要将人民币兑换成美元。
已知1美元兑换成6.5人民币,甲打算兑换多少美元?二、购物打折问题题目要求学生计算购物时的打折优惠,例如满减、折扣等。
题目可设计如下:小明去商场购买一条裤子,这条裤子原价280元,商场正在举行活动,凡是购买满300元的商品都可以打8折。
小明购买这条裤子需要支付多少钱?三、完全平方数问题题目要求学生判断一个数是否为完全平方数,并计算它的平方根。
题目可设计如下:已知某个数的平方根是16,请计算这个数是多少?四、速度和距离问题题目要求学生根据给定的速度和时间,计算距离。
题目可设计如下:甲以每小时60千米的速度骑自行车,乙以每小时80千米的速度骑自行车,他们同时从相距200千米的地方出发相向而行。
请问他们相遇需要多少时间?五、平均数问题题目要求学生计算一组数的平均数,并应用平均数解决实际问题。
题目可设计如下:小明参加了五次考试,分别得到60分、70分、80分、90分和100分,请问他的平均分是多少?以上是中考数学应用题中的一些常见类型。
通过解答这些问题,学生们可以理解数学知识在实际生活中的应用,培养数学思维和解决问题的能力。
中考数学专题复习应用题行程问题
中考数学专题复习应用题
行程问题
Prepared on 21 November 2021
行程问题应用题
1.一列队伍长120米,在队伍行进时,通讯员从队尾赶到队首又立即返回队尾,若这段时间内队伍向前进了288米,队伍及通讯员速度始终不变,那么这段时间通讯员行走路程是多少
2.某铁路桥长1000米,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间共40S,求火车的速度和长度。
3.甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。
当他们第二次相遇时距离B地30千米。
问AB两地的距离是多少
4.在复线铁路上,快车和慢车分别从两个车站开出,相向而行。
快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。
从两车头相遇到两车的尾部离开,需要几秒钟
5.甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。
二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。
从开始走到第二次相遇,共用了6小时。
A、B两地相距多少千米
6.一排解放军从驻地出发去执行任务,每小时行5千米。
离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。
通讯员以每小时10千米的速度回到驻地,取了地图立即返回。
通讯员从驻地出发,几小时可以追上队伍。
中考数学复习之方程、不等式综合类应用题-附练习题含参考答案
中考数学复习之方程、不等式综合类应用题方法分享:1.理解题意:分层次,找结构,辨析类型借助表格、关系式等梳理条件2.建立数学模型:方程模型、不等式模型、函数模型寻找关键词,挖掘隐藏信息3.对数学模型进行处理计算过程中需要充分考虑未知数的实际意义4.结合实际意义验证结果例1:现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆.(2)如果安排9辆货车前往甲地,其余货车前往乙地.设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a之间的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费【思路分析】1.理解题意,梳理信息.2.建立数学模型(1)结合题中信息“用大、小两种货车共18辆,恰好能一次性运完这批物资”,考虑方程模型;(2)结合题中信息“自变量的取值范围”,考虑建立不等式模型,寻找题目中的不等关系(显性和隐性);(3)结合题中信息“运费最少的货车调配方案”,考虑建立函数模型.3.求解验证,回归实际.【过程书写】解:(1)设大货车用x辆,则小货车用(18-x)辆,根据题意,得16x+10(18-x)=228解得x=8∴大货车用8辆,小货车用10辆.(2)由题意得∵0809010(9)0a a a a a ⎧⎪-⎪⎪-⎨⎪--⎪⎪⎩≥≥≥≥为整数∴,且a 为整数∴(3)由题意得解得∵,且a 为整数∴,且a 为整数 在中∵∴w 随a 的增大而增大 ∴当a =5时,∴最优方案为精讲精练1. 为支持四川抗震救灾,重庆市A 、B 、C 三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D 、E 两县.根据灾区的情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20吨.要求C 地运往D 县的赈灾物资为60吨,A 地运往D 县的赈灾物资为x 吨(x 为整数),B 地运往D 县的赈灾物资数量小于A 地运往D 县的赈灾物资数量的2倍.其余的赈灾物资全部运往E 县,且B 地运往E 县的赈灾物资数量不超过23吨.已知A 、B 、C 三地的赈灾物资运往D 、E 两县的费用如右表: (1)求这批赈灾物资运往D 、E 两县的数量各是多少?(2)A 、B 两地的赈灾物资运往D 、E 两县的方案有几种?请你写出具体的运送方案; (3)为及时将这批赈灾物资运往D 、E 两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的方案中,该公司承担运送这批赈灾物资的总费用最多是多少?720800(8)500(9)650[10(9)]7011550w a a a a a =+-+-+--=+08a ≤≤701155008w a a a =+≤≤(,且为整数)1610(9)120a a +-≥5a ≥08a ≤≤58a ≤≤7011550w a =+700>min 11900w =(元)2. 为了保护环境,某生物化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金46万元,且每台乙型设备的价格是每台甲型设备价格的80%.实际运行中发现,每台甲型设备每月能处理污水180吨,每台乙型设备每月能处理污水150吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,于是该厂决定购买甲、乙两型设备共8台用于处理二期工程产生的污水,预算本次购买资金不超过74万元,预计二期工程每月将产生不超过1 250吨污水. (1)求每台甲型设备和每台乙型设备的价格各是多少元? (2)请求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)3. 某制造厂开发了一款新式机器,计划一年生产安装240台.由于抽调不出足够的熟练工来完成新式机器的安装,工厂决定招聘一些新工人,他们经过培训后上岗能独立进行机器的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8台机器;2名熟练工和3名新工人每月可安装14台机器.(1)熟练工和新工人每人每月分别可以安装多少台新式机器?(2)如果工厂招聘(010)n n <<名新工人,使得招聘的新工人和抽调的熟练工刚好..能完成一年的安装任务,那么工厂有哪几种...新工人的招聘方案? (3)在(2)的条件下,工厂给安装新式机器的每名熟练工每月发2 000元的工资,给每名新工人每月发1 200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W (元)尽可能地少?4. 在“五∙一”期间,某学校组织318名学生和8名教师到云台山旅游,为了学生安全,每辆车上至少安排一名教师.现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.(1)请帮助学校设计租车方案;(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,学校按哪种方案租车最省钱?此时租金是多少?(3)旅行前,一名教师由于有特殊情况,只有7名教师能随车出游,为保证所租的每辆车上只有一名教师,租车方案调整为:同时租65座、45座和30座的三种客车,出发时,所租的三种客车的座位恰好坐满,请问学校的租车方案如何安排?5.某校八年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大巴车两种车型可供选择.每辆大巴车比中巴车多15个座位,学校根据中巴车和大巴车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大巴车,不仅少用一辆,而且师生坐完后还多30个座位.(1)求中巴车和大巴车各有多少个座位?(2)客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大巴车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大巴车比中巴车多租一辆,所需租车费比单独租用任一种车型都要便宜,按这种方案需要中巴车和大巴车各多少辆?6.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1 000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.为了增加收入,今年电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3 500元,乙种电脑每台进价为3 000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台.根据以上信息解答下列问题:(1)今年三月份甲种电脑每台售价多少元?(2)请你为该电脑公司设计进货方案;(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?7.整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.降价前,甲、乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%,对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.根据以上信息解答下列问题:(1)降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)若近期(降价后)该医院准备从经销商处购进甲、乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?8.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.9.某市在道路改造过程中,需要铺设一条长为1 000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设280米所用的天数比乙工程队铺设250米所用的天数少1天.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.10.为了保护环境,某生物化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金46万元,且每台乙型设备的价格是每台甲型设备价格的80%.实际运行中发现,每台甲型设备每月能处理污水180吨,每台乙型设备每月能处理污水150吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过74万元,预计二期工程完成后每月将产生1 250吨的污水.(1)每台甲型设备和每台乙型设备的价格各是多少元?(2)请求出用于二期工程的污水处理设备的所有购买方案.(3)若两种设备的使用年限都为10年,则在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)11. 为实现区域教育均衡发展,我市计划对某县A ,B 两类薄弱学校全部进行改造.根据预算,共需资金1 560万元.已知改造1所A 类学校和2所B 类学校共需资金230万元;改造2所A 类学校和1所B 类学校共需资金205万元.(1)改造1所A 类学校和1所B 类学校所需的资金分别是多少万元? (2)若该县的A 类学校不超过9所,则B 类学校至少有多 少所?(3)我市计划今年对该县A ,B 两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元,地方财政投入的改造资金不少于75万元,且地方财政投入到A ,B 两类学校的改造资金分别为每所10万元和每所15万元.请你通过计算求出所有的改造方案.12. 某制造厂开发了一款新式机器,计划一年生产安装240台.由于抽调不出足够的熟练工来完成新式机器的安装,工厂决定招聘一些新工人,他们经过培训后能独立进行机器的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8台新式机器;2名熟练工和3名新工人每月可安装14台新式机器.(1)求每名熟练工和每名新工人每月分别可以安装多少台新 式机器.(2)如果工厂招聘n (010n <<)名新工人,使得招聘的新工人和抽调的熟练工刚好..能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂每月给安装新式机器的每名熟练工发4 000元的工资,给每名新工人发2 400元的工资,那么工厂招聘多少名新工人,才能使新工人的数量多于熟练工,且工厂每月支出的工资总额W (元)尽可能的少?13. 某校八年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位.学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还空余30个座位. (1)求中巴车和大客车各有多少个座位.(2)客运公司为该校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元.学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用任何一种车型都要便宜.则按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?14.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价与去年同期相比,每台降价1 000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.为了增加收入,今年电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3 500元,乙种电脑每台进价为3 000元,公司计划用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台.根据以上信息解答下列问题:(1)今年三月份甲种电脑每台售价为多少元?(2)请你为该电脑公司设计出所有的进货方案;(3)若乙种电脑每台售价为3 800元,怎样安排进货该电脑公司才能获得最大利润?15.已知2辆A型车和1辆B型车载满货物时一次可运货10吨;1辆A型车和2辆B型车载满货物时一次可运货11吨.某物流公司现有货物31吨,计划同时租用A型车和B型车,要求一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物时一次可分别运货多少吨?(2)请你帮助该物流公司设计出所有的租车方案;(3)若每辆A型车的租金为100元/次,每辆B型车的租金为120元/次,请选出最省钱的租车方案,并求出最少的租车费.16.受金融危机的影响,某店经销的甲型号手机今年的售价与去年相比,每台降价500元,如果卖出相同数量的手机,去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,今年该店决定再经销乙型号手机,已知甲型号手机每台进价为1 000元,乙型号手机每台进价为800元,计划用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,则该店有哪几种进货方案?(3)若乙型号手机每台售价为1 400元,为了促销,打九折销售,而甲型号手机仍按今年的售价销售,则在(2)的各种进货方案中,哪种方案获利最大?最大利润是多少元?17. 小王家是新农村建设中涌现出的“养殖专业户”,他准备购置80只相同规格的网箱,养殖A ,B 两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资多于6.7万元,但不超过 6.91万元,其中购置网箱等基础建设需要1.2万元.设他用x 只网箱养殖A 种淡水鱼,目前平均每只网箱养殖A ,B 两种淡水鱼所需投入及产出情况如下表: (1)小王有哪几种养殖方式?(2)哪种养殖方案获得的利润最大?(3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A 种鱼价格上涨40%,B 种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)【参考答案】1.(1)这批赈灾物资运往D 县的数量为180吨,运往E 县的数量为100吨. (2)这批赈灾物资的运送方案有三种.方案一:A 地的赈灾物资运往D 县41吨,运往E 县59吨;B 地的赈灾物资运往D 县79吨,运往E 县21吨.方案二:A 地的赈灾物资运往D 县42吨,运往E 县58吨;B 地的赈灾物资运往D 县78吨,运往E 县22吨.方案三:A 地的赈灾物资运往D 县43吨,运往E 县57吨;B 地的赈灾物资运往D 县77吨,运往E 县23吨.(3)当x =41时,总费用有最大值.该公司承担运送这批赈灾物资的总费用最多为60 390元. 2.解:(1)设甲型设备的价格为x 万元,则乙型设备的价格为0.8x 万元,依题意得: 3x 2×0.8x 46 解得x 10 ∵10×80%8∵甲型设备每台价格10万元,乙型设备每台价格8万元.(2)设购买甲型设备m 台,则乙型设备购买(8m )台,依题意得:108(8)74180150(8)1250m m m m +-⎧⎨+- ⎩≤≥ 解得:53≤m ≤5. 所以购买方案有4种:鱼苗投资(百元) 饲料支出(百元)收获成品鱼(千克) 成品鱼价格(百元/千克)A 种鱼 2.3 3 100 0.1B 种鱼45.5550.4∵ ∵ ∵ ∵ 甲型设备(台) 2 3 4 5 乙型设备(台)6543(3)设二期工程10年用于治理污水的总费用为W 万元, W 10a8(8a )1×10a 1.5×10(8a )化简得:W3a184∵ W 随a 的增大而减小, ∵ 当a =5时,W 最小.∵ 按方案∵甲型购买5台,乙型购买3台的总费用最少.3.(1)每名熟练工每月可以安装4台新式机器,每名新工人每月可以安装2台新式机器; (2)共有4种新工人的招聘方案:方案 ∵ ∵ ∵ ∵ 招新工人(人) 2 4 6 8 调用熟练工(人)4321(3)应招聘4名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额最少. 4.(1)共两种方案,即:方案 ∵ ∵ 甲种客车(辆) 6 7 乙种客车(辆)21(2)方案一最省钱,此时租金是6 000元;(3)租65座、45座和30座的客车分别为2辆,3辆,2辆. 5.设每辆中巴车有座位x 个,每辆大巴车有座位(x +15)个, 依题意得:270270301+15x x +-=整理得:x 245x 40500 解之得:x 145,x 290(不合题意,舍去) 经检验x 45是方程的解,故x 15451560个.答:每辆中巴车有座位45个,每辆大巴车有座位60个. (2)①单独租用中巴车,租车费用为270×350452 100(元);②单独租用大巴车,租车费用为(61)×400 2 000(元);③设租用中巴车y 辆,大客车(y 1)辆,则有:350400(1)<2000350400(1)<21004560(1)270y y y y y y ++ ⎧⎪++ ⎨⎪++⎩≥ 解得:322<15y <≤,又∵y是整数,∵y2,y13故租用中巴车2辆和大巴车3辆.6.(1)甲种电脑今年三月份每台售价4 000元.(2)共有5种进货方案:∵∵∵∵∵甲种电脑(台)678910乙种电脑(台)98765(3)当a300时,(2)中所有方案获利相同.购买甲种电脑6台,乙种电脑9台时对公司更有利.7. (1)降价前甲、乙两种药品每盒的零售价格分别是15.8元和18元;(2)三种方案:∵∵∵甲种药品(箱)585960乙种药品(箱)4241408. (1)每辆A型车载满货物一次可运货3吨,每辆车B型车载满货物一次可运货4吨;(2)三种方案:∵∵∵A型车(辆)951B型车(辆)147(3)最省钱的租车方案是:A型车1辆,B型车7辆,最少租车费为940元.9. (1)甲工程队每天能铺设70米,乙工程队每天能铺设50米;(2)三种方案:∵∵∵甲工程队(米)500600700乙工程队(米)500400300万元.(2)共有4种购买方案.方案一,购买甲型设备2台,乙型设备6台;方案二,购买甲型设备3台,乙型设备5台;方案三,购买甲型设备4台,乙型设备4台;方案四,购买甲型设备5台,乙型设备3台.(3)方案四的总费用最少;即购买甲型设备5台,乙型设备3台.11.(1)改造1所A类学校所需的资金是60万元,改造1所B类学校所需的资金是85万元.(2)B类学校至少有12所.(3)共有3种改造方案.方案一,改造A类学校1所,B类学校5所;方案二,改造A类学校2所,B类学校4所;方案三,改造A类学校3所,B类学校3所.12.(1)每名熟练工每月可以安装4台新式机器,每名新工人每月可以安装2台.(2)工厂共有4种新工人的招聘方案.方案一,招聘2名新工人,抽调4名熟练工;方案二,招聘4名新工人,抽调3名熟练工;方案三,招聘6名新工人,抽调2名熟练工;方案四,招聘8名新工人,抽调1名熟练工.(3)工厂招聘4名新工人,才能使新工人的数量多于熟练工,且工厂每月支出的工资总额尽可能的少.13.(1)中巴车有45个座位,大客车有60个座位;(2)需要中巴车2辆,大客车3辆,租车费比单独租用中巴车少200元,比单独租用大客车少100元.14.(1)今年三月份甲种电脑每台售价为4 000元.(2)该电脑公司共有5种进货方案.方案一,购进甲种电脑6台,乙种电脑9台;方案二,购进甲种电脑7台,乙种电脑8台;方案三,购进甲种电脑8台,乙种电脑7台;方案四,购进甲种电脑9台,乙种电脑6台;方案五,购进甲种电脑10台,乙种电脑5台.(3)购进甲种电脑6台,乙种电脑9台,该电脑公司才能获得最大利润.15.(1)1辆A型车载满货物时一次可运货3吨,1辆B型车载满货物时一次可运货4吨.(2)该物流公司共有3种租车方案.方案一,租用A型车1辆,B型车7辆;方案二,租用A型车5辆,B型车4辆;方案三,租用A型车9辆,B型车1辆.(3)最省钱的租车方案为,租用A型车1辆,B型车7辆.最少的租车费为940元.16.(1)今年甲型号手机每台售价为1 500元.(2)该店共有5种进货方案.方案一,购进甲型号手机8台,乙型号手机12台;方案二,购进甲型号手机9台,乙型号手机11台;方案三,购进甲型号手机10台,乙型号手机10台;方案四,购进甲型号手机11台,乙型号手机9台;方案五,购进甲型号手机12台,乙型号手机8台.(3)购进甲型号手机12台,乙型号手机8台,所获利润最大,最大利润为9 680元.17.(1)小王共有5种养殖方案.方案一,养殖A种淡水鱼45箱,B种淡水鱼35箱;方案二,养殖A种淡水鱼46箱,B种淡水鱼34箱;方案三,养殖A种淡水鱼47箱,B种淡水鱼33箱;方案四,养殖A种淡水鱼48箱,B种淡水鱼32箱方案五,养殖A种淡水鱼49箱,B种淡水鱼31箱.(2)养殖A种淡水鱼45箱,B种淡水鱼35箱,所获利润最大.(3)价格变化后,养殖A种淡水鱼49箱,B种淡水鱼31箱,所获利润最大.。
中考数学复习----一次方程(组)应用典型例题与考点归纳
中考数学复习----一次方程(组)应用典型例题与考点归纳典型例题讲解1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.【答案】A 种茶每盒100元,B 种茶每盒150元【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据题意,得30206000,1.220 1.2155100.x y x y +=⎧⎨⨯+⨯=⎩解,得100,150.x y =⎧⎨=⎩∴A 种茶每盒100元,B 种茶每盒150元.【点睛】本题主要考查了二元一次方程组的实际应用,正确设出未知数列出方程组求解是解题的关键.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】240千米【分析】平常速度行驶了12的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是x 千米,则平时每小时行驶4x 千米,减速后每小时行驶204x ⎛⎫− ⎪⎝⎭千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时, 则可得:232044x x x ⎛⎫⨯+−= ⎪⎝⎭,解得:240x =, 答:小强家到他奶奶家的距离是240千米.【点睛】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值. 【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a 的值为8.【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列出二元一次方程组,解方程组即可;(2)根据题意列出一元二次方程,解方程即可.【详解】解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列方程组得,3231433x y x y +=⎧⎨+=⎩, 解得,75x y =⎧⎨=⎩, 答:每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)根据题意得,535450072500(1%)5(1%)(4500725005)(1%)2411a a a ⨯++⨯−=⨯+⨯+, 解得,10a =(舍去),28a =,答:a 的值为8.【点睛】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a ,x 的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x 的一元一次方程,解之即可得出x 的值(用含a 的代数式表示),再将其代入1.43x 1.1a 中即可求出结论. 【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a ﹣x )元.故答案为:1.04(a ﹣x ).(2)依题意,得:1.1a =1.43x+1.04(a ﹣x ),解得:x =213,∴1.43x1.1a =1.43⋅213a1.1a =0.22a1.1a =0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【分析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解析】(1)设笔记本的单价为x 元,单独购买一支笔芯的价格为y 元,依题意,得:{2x +3y =19x +7y =26, 解得:{x =5y =3. 答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a%.求a 的值.【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,{y −x =10010×2.4(x +y)=21600, 解得:{x =400y =500, 答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%), 解得:a =10,答:a 的值为10. 一次方(组)程应用考点归纳1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.。
中考数学专题复习二次函数的应用题与最值问题
二次函数的应用题与最值问题二次函数最值问题(一)开口向上:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值.(二)开口向下:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1. 求解析式综合题型:例1.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =CD .(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.2.已知二次函数y =ax 2+bx +c 的图象过点(﹣1,0),且对任意实数x ,都有4x ﹣12≤ax 2+bx +c ≤2x 2﹣8x +6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.二次函数的应用题例1.某商品现在的售价为每件25元,每天可售出50件,市场调查发现,售价每上涨1元,每天就少卖出2件,已知该商品的进价为每件20元,设该商品每天的销售量为y件,售价为每件x元(x为正整数)(1)求y与x之间的函数关系式;(2)该商品的售价定为每件多少元时,每天的销售利润W(元)最大,最大利润是多少元?1.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.某商家在构进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y (元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x 天该产品的销售量z(件)与x(天)满足关系式z = x + 15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天,该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?.3.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;如果每台设备提价5万元时,则年销售量就减少50台.设该设备的年销售量为y(单位:台),销售单价为x(单位:万元/台).(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,则应把这种设备的销售单价定为多少万元时,该公司所获得的年利润最大?最大的年利润是多少?4.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.例2.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?1.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?2.如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x米,花园的面积为S平方米.(1)求S与x之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?例3.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.1.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.现将它的图形放在如图所示的直角坐标系中.求这条抛物线的解析式.2.如图是一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m,在图中直角坐标系中该抛物线的解析式.3.如图,是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,若水面上升1m,则水面宽为()A.m B.2m C.2m D.2m4.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t ﹣1.5t 2,那么飞机着陆后滑行的最远距离为( )A .600mB .400mC .300mD .200m5.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为()341212+--=x y ,由此可知铅球达到的最大高度是 m ,推出的距离是 m .6.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )直接具有的关系为h =24t ﹣4t 2,则小球从飞出到落地所用的时间为 s .7.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =﹣x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.例4.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.1.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.2.已知二次函数y =x 2+2bx +c(1)若b =c ,是否存在实数x ,使得相应的y 的值为1?请说明理由;(2)若b =c ﹣2,y 在﹣2≤x ≤2上的最小值是﹣3,求b 的值.3.当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.4.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是m .(1)求羽毛球经过的路线对应的函数关系式;(2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.。
初中数学应用题归纳总结完整版
初中数学应用题归纳列出方程(组)解应用题的一般步骤是:1审题:弄清题意和题目中的已知数、未知数;2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系3设未知数:据找出的相等关系选择直接或间接设置未知数4列方程(组):根据确立的等量关系列出方程5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验;7作答:包括单位名称在内进行完整的答语。
一,行程问题基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置.相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 二、利润问题现价=原价*折扣率折扣价=现价/原价*100%每件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用利润率=(售价--进价)/进价*100%标价=售价=现价进价=售价-利润售价=利润+进价三、计算利息的基本公式储蓄存款利息计算的基本公式为:利息=本金×存期×利率税率=应纳数额/总收入*100% 本息和=本金+利息税后利息=本金*存期*利率*(1- 税率)税后利息=利息*税率利率-利息/存期/本金/*100%利率的换算:年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。
使用利率要注意与存期相一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学应用题专题复习
中考数学应用题专题训练
1.在某城市美化工程招标中,甲、乙两个工程队投标。
甲队单独完成该工程需要60天,若甲队先做20天,剩下的工程由甲、乙合作24天可完成。
求乙队单独完成该工程需要多少天?若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
2.岳阳王家河流域综合治理工程已正式启动。
若由甲、乙两建筑队合作,6个月可以完成。
若由甲、乙两队独自完成,甲队比乙队少用5个月的时间完成。
求甲、乙两队单独完成该工程各需几个月的时间?已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月)。
为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?
3.在某城市美化工程招标中,甲、乙两个工程队投标。
甲
队单独完成该工程需要60天,若甲队先做20天,剩下的工程由甲、乙合作24天可完成。
求乙队单独完成该工程需要多少天?
4.2014年春季,我国西南五省持续干旱。
某厂计划生产1800吨纯净水支援灾区人民。
为尽快把纯净水发往灾区,工
人把每天的工作效率提高到原计划的1.5倍,结果比原计划提
前3天完成了生产任务。
求原计划每天生产多少吨纯净水?
5.XXX用5000元购进一批新品种的苹果进行试销,由于
销售状况良好,超市又调拨元资金购进该品种苹果。
但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的
2倍。
试销时该品种苹果的进货价是每千克多少元?如果超市
将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?
6.某单位为响应市委市政府的建设“绿色襄阳”号召,计划
将院内一块长30m,宽20m的长方形空地建成一个矩形花园。
要求在花园中修建两条纵向平行和一条横向弯折的小道,剩余
的地方种植花草。
如图所示,要使种植花草的面积为532m²,
问小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)
2.不等式应用题
1.一些学生需要住宿,一些宿舍可供选择。
若每间宿舍住
4人,则有20人无法安排住处;若每间宿舍住8人,则有一
间宿舍的人不空也不满。
问学生人数和宿舍数量分别为多少?
2.某商店在5月1日举行促销优惠活动,购买商品有两种
方案。
方案一是用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二是若不购买会员卡,则购买商店内任何商品,一律按商品价格的
9.5折优惠。
已知XXX在5月1日前不是该商店的会员。
1) 若XXX不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?
2) 请计算XXX购买商品的价格在什么范围内时,采用方
案一更合算。
3.某学校计划购买一批篮球、羽毛球拍和乒乓球拍,拿出
不超过3000元的资金。
已知篮球、羽毛球拍和乒乓球拍的单
价比为8︰3︰2,且其单价和为130元。
1) 请问篮球、羽毛球拍和乒乓球拍的单价分别为多少元?
2) 若要求购买篮球、羽毛球拍和乒乓球拍的总数量为80
个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?
4.某零件制造车间有20名工人,已知每名工人每天可制
造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元。
在这20名工
人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件。
1) 若此车间每天所获利润为y元,用x的代数式表示y。
2) 若要使每天所获利润不低于元,至少要派多少名工人
去制造乙种零件?
5.某城市每天产生垃圾700吨,由甲、乙两个垃圾厂处理。
甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处
理45吨,需花费495元。
如果规定该城市每天用于处理垃圾
的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?
6.某文具店要购进甲、乙两种铅笔。
已知购进100支甲种铅笔和50支乙种铅笔需要1000元,购进50支甲种铅笔和30支乙种铅笔需要550元。
1) 求甲、乙两种铅笔每支的价格。
2) 该文具店准备用1000元全部购进铅笔,要求甲种铅笔的数量不少于乙种铅笔数量的6倍,且不超过乙种铅笔数量的8倍。
问共有几种进货方案?
3) 若销售每支甲种铅笔可获利润2元,每支乙种铅笔可获利润3元。
在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
7.为了迎接“十一”小长假的购物高峰,某运动品牌专卖店要购进甲、乙两种运动鞋。
已知甲、乙两种运动鞋的进价和售价如下表:
运动鞋 | 甲。
| 乙。
|
进价。
| mm-20| 240.|
售价。
| 160.| 160.|
已知用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同。
1) 求甲种运动鞋的进价mm和售价。
2) 要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于元,且不超过元,问该专卖店有几种进货方案?
3) 在(2)的条件下,专卖店决定对甲种运动鞋进行优惠促销活动,每双优惠a元出售。
乙种运动鞋的价格不变。
为获得最大利润,该专卖店应如何进货?
三、一次函数应用题
1.2014年4月28日,世界园艺博览会在西安开幕,门票分为个人票和团体票两种。
个人票有三种种类,分别为夜票(A)、平日普通票(B)、指定日普通票(C),其单价如下表:
票种。
| 夜票(A) | 平日普通票(B) | 指定日普通票(C) |
单价(元) | 60.| 100.| 150.|
某社区居委会要购买100张个人票,其中B种票的张数
是A种票张数的3倍加8.设购买A种票张数为x,C种票张数为y。
1) 写出y与x之间的函数关系式。
2) 设购票总费用为w元,求出w与x之间的函数关系式。
3) 若每种票至少购买1张,其中购买A种票不少于20张,有几种购票方案?并求出购票总费用最少时,购买A、B、C
三种票的张数。
四、二次函数应用题
1.某商店经销一种泰山旅游纪念品,4月份的营业额为2000元。
为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元。
1) 求原来这种纪念品的售价和销售量。
2) 设原来这种纪念品的售价为x元,销售量为y件,求出5月份销售量和营业额分别是多少。
7.某商店共购进了600个旅游纪念品,每个的进价为6元。
第一周,商店以每个10元的价格售出了200个。
第二周,商
店仍可售出200个,但为了增加销量,商店决定降价销售。
根据市场调查,每降低1元的售价,可多售出50个,但售价不
能低于进价。
假设售价降低x元,销售一周后,商店以每个4
元的价格清仓处理剩余的旅游纪念品。
如果这批旅游纪念品共获利1250元,那么第二周每个旅游纪念品的销售价格是多少元?
8.某汽车销售公司在6月份销售某厂家的汽车。
每部汽车
的进价与销售有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均
降低0.1万元/部。
月底,厂家根据销售量一次性返利给销售公司。
如果销售量在10部以内(含10部),则每部汽车返利
0.5万元;如果销售量在10部以上,则每部汽车返利1万元。
1)假设该公司当月卖出了3部汽车,那么每部汽车的进
价为多少万元?
2)如果该公司计划在当月以每部28万元的销售价位盈利12万元,那么需要卖出多少部汽车?(盈利=销售利润+返利)。