函数的概念及其三要素(定义域、值域和解析式)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程
一、预习导入
函数及其三要素的知识网络图:
二、复习预习
初中函数的定义:
一般地,在某个变化过程中,有两个变量x和y,如果给定了一个x值,相应地就确定了一个y值,那么称y是x的函数.其中x是自变量,y是因变量。
初中学过哪些函数?
一次函数y=kx+b(k≠0);
反比例函数y=k/x(k≠0);
二次函数y=ax2+bx+c(a≠0)。
三、知识讲解
考点1 函数的定义
设A、B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f::A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
其中,x叫做自变量.x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f (x)|x∈A}叫做函数的值域,值域是B的子集。
注意:
○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
考点2 函数的三要素
(1)函数的三要素:定义域、对应关系和值域
(2)三要素的运用之判断两个函数的相等:当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数.
考点3 区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
定义名称符号数轴表示
{x|a≤x≤b} 闭区间[a,b]