初二数学取值范围练习题

合集下载

八年级初二数学二次根式知识点及练习题及解析

八年级初二数学二次根式知识点及练习题及解析

一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数B .0≤x≤5C .x≥5D .x≤52.下列运算错误的是( ) A= B.=C.)216=D.)223=3.a b =--则( ) A .0a b +=B .0a b -=C .0ab =D .220a b +=4.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .535.当4x =-的值为( )A .1BC .2D .36.如果关于x 的不等式组0,2223x mx x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >则符合条件的所有整数m 的个数是( ). A .5B .4C .3D .27.下列计算正确的是( )A 6=± B.=C.6= D=(a≥0,b≥0)8.下列计算正确的是( )A=B=C4=D3=-9.下列运算正确的是() A=B .(28-=C12=D1=10.与根式1x x--的值相等的是( ) A .x -B .2x x --C .x --D .x -二、填空题11.若m =20161-,则m 3﹣m 2﹣2017m +2015=_____.12.把31a a-根号外的因式移入根号内,得________ 13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.14.已知函数1x f xx,那么21f _____.15.120654010144152118+++235a b c +的形式(,,a b c 为正整数),则abc =______.16.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11 233第行 131541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).17.14+⋅⋅⋅=的解是______.18.已知实数m 、n 、p 满足等式,则p =__________.19.=_______.20.a ,小数部分是b b -=______.三、解答题21.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.解:设x222(35)(35)2(35)(35)x =++-++-,即235354x =++-+,x 2=10 ∴x =10.∵3535++->0,∴3535++-=10. 请利用上述方法,求4747++-的值. 【答案】14 【分析】根据题意给出的解法即可求出答案即可. 【详解】设x =47++47-,两边平方得:x 2=(47+)2+(47-)2+247?47+-, 即x 2=4+7+4﹣7+6, x 2=14 ∴x =±14.∵47++47->0,∴x =14. 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2007)=2013.24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可. 【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.26.已知x y ==求下列各式的值: (1)22x xy y -+; (2).y xx y+ 【答案】(1) 72;(2)8. 【分析】计算出xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xyxy+-,然后利用整体代入的方法计算.【详解】∵x =,y ==32∴xy=12, (1)22x xy y -+ =(x+y )2-3xy,=2132-⨯ =72; (2)y x x y +=2212()22812x y xy xy-⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.27.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1. 【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.已知x²+2xy+y²的值. 【答案】16 【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算. 本题解析: ∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的性质得出5-x≥0,求出即可. 【详解】|5|5x x ==-=-, ∴5-x≥0, 解得:x≤5,故选D . 【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.C解析:C 【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得. 【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C . 【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.C解析:C 【分析】直接利用二次根式的性质 ,将已知等式左边化简,可以得到a 与b 中至少有一个为0,进而分析得出答案即可. 【详解】解:∵a b =--, ∴a-b=-a-b , 或b-a=-a-b∴a= -a ,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0ab =. 故选:C . 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.4.B解析:B 【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案. 【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,a (x-a )≥0和x-a≥0可以得到a≥0, a (y-a )≥0和a-y≥0可以得到a≤0, 所以a 只能等于0,代入等式得,所以有x=-y , 即:y=-x ,由于x ,y ,a 是两两不同的实数, ∴x >0,y <0. 将x=-y 代入原式得: 原式=()()()()2222313x x x x x x x x +---=--+-. 故选B . 【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.5.A解析:A 【分析】根据分式的运算法则以及二次根式的性质即可求出答案. 【详解】 解:原式2223232323x x x x112323x x将4x =代入得, 原式114234232211131331133331131=.故选:A. 【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.6.C解析:C 【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2. 【详解】 解:解不等式02x m->得x >m , 解不等式223x x --<-得x >2, ∵不等式组解集为x >2, ∴m ≤2,则|m|=3或2,∴m=-3,3,2或-2, 由m ≤2得,m=-3,-2或2.即符合条件的所有整数m 的个数是3个. 故选:C . 【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.7.D解析:D6=,故A 不正确;根据二次根式的除法,可直接得到2=,故B 不正确; 根据同类二次根式的性质,可知C 不正确;= (a≥0,b≥0)可知D 正确.故选:D8.B解析:B 【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案. 【详解】解:A A 错误;B =,故B 正确;C ==C 错误;D 3=,故D 错误;故选:B .【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A 错误;选项B ,(2428-=⨯=,选项B 正确;选项C 124==,选项C 错误;选项D 1,选项D 错误.综上,符合题意的只有选项B .故选B .【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.10.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x 是负数,所以-x x-⋅=- 故选:D .【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x 的符号是负号,这是解题的难点. 二、填空题11.4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm ), ∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.12.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a-≥, ∴0a <,∴===故答案为:a . 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.13.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键. 14.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时, .【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x =,代入原函数即可解答. 【详解】 因为函数1x f xx ,所以当1x =时, 211()2221f x . 【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 15.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++.2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n (n ≥3且n 是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.【详解】设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为 ()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 18.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.19.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t =,由算术平方根的非负性可得t ≥0,则244t =+8=+8=+81)=+6=+21)=1t ∴=..【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.20.【详解】若的整数部分为a ,小数部分为b ,∴a=1,b=,∴a -b==1.故答案为1.解析:【详解】a ,小数部分为b ,∴a =1,b 1,∴-b 1)=1.故答案为1.三、解答题21.无22.无23.无25.无26.无27.无28.无。

初中数学《函数自变量的取值范围》练习题(含答案)

初中数学《函数自变量的取值范围》练习题(含答案)

函数自变量的取值范围一 、选择题(本大题共4小题)1.函数y =x 的取值范围是( )A .12x -≥B .12x ≥C .12x ≤-D .12x ≤2.在函数y 中,自变量x 的值取值范围是( )A.3x <-B.3x ≤-C.3x ≤D.3x >3.函数y =的自变量的取值范围是( ) A.22x -<≤ B.22x -≤≤ C.2x ≤且2x ≠ D.22x -<<4.以下说法正确的是( )A .平行四边形是轴对称图形B .函数y =的自变量取值范围2x ≥ C .相等的圆心角所对的弧相等 D .直线5y x =- 不经过第二象限二 、填空题(本大题共10小题)5.根据你的理解写出下列y 与x 的函数关系式,并写出自变量的取值范围(我们称为定义域).⑴ 某人骑车以6/m s 是速度匀速运动的路程y 与时间x ,解析式: ,定义域: ;⑵ 正方形的面积y 与边长x ,解析式: ,定义域: ;6.函数52x y x -=-自变量的取值范围是 . 7.函数214y x =-的自变量x 的取值范围是 . 8.函数2113y x =+的自变量x 的取值范围是 .9.函数y =x 的取值范围是 . 10.在函数 121y x =-中,自变量x 的取值范围是 .11.函数13y x =-中自变量x 的取值范围是__________ 12.函数y 的自变量x 的取值范围是 .13.函数25y x =-自变量的取值范围是 .14.函数y 的自变量x 的取值范围是 .三 、解答题(本大题共8小题)15.某礼堂共有25排座,第一排有20个座位,后面每排比前一排多1个座位.求每排座位数y 与这排的排数x 的函数关系,并写出自变量的取值范围.16.求下列各函数中自变量x 的取值范围;⑴y =y;⑶0y x =;⑷y =+17.如图,周长为24的凸五边形ABCDE 被对角线BE 分为等腰ABE ∆及矩形BCDE ,AE DE =,设AB 的长为x ,CD 的长为y ,求y 与x 之间的函数关系式,写出自变量的取值范围.18.等腰ABC ∆周长为10cm ,底边BC 长为cm y ,腰长为cm x 。

求取值范围的题

求取值范围的题

示例1:不等式求解题目:解不等式2x - 5 < 3(x - 1) 并求x 的取值范围。

解答:展开不等式右边:2x - 5 < 3x - 3将所有项移到左边:2x - 3x < 5 - 3简化得到:-x < 2两边同时乘以-1(注意要翻转不等号):x > -2因此,x 的取值范围是x > -2。

示例2:分式不等式求解题目:解不等式(x - 2)/(x + 3) > 0 并求x 的取值范围。

解答:找出不等式的临界点:x = 2 和x = -3将数轴分为三个区间:(-∞, -3),(-3, 2),(2, +∞)选取每个区间内的测试点,例如:-4, 0, 3代入原不等式检验:当x = -4 时,(x - 2)/(x + 3) = (-4 - 2)/(-4 + 3) = 6/(-1) = -6 < 0当x = 0 时,(x - 2)/(x + 3) = (0 - 2)/(0 + 3) = -2/3 < 0当x = 3 时,(x - 2)/(x + 3) = (3 - 2)/(3 + 3) = 1/6 > 0根据测试结果,只有当x 在区间(2, +∞) 时,不等式成立。

因此,x 的取值范围是x > 2(注意x ≠ -3 因为分母不能为零)。

示例3:二次方程根的取值范围题目:已知方程x^2 - 4x + m = 0 有两个实数根,求m 的取值范围。

解答:根据二次方程的判别式Δ = b^2 - 4ac,其中 a = 1, b = -4, c = m要使方程有两个实数根,需要Δ ≥ 0计算判别式:Δ = (-4)^2 - 4 × 1 × m = 16 - 4m解不等式16 - 4m ≥ 0 得到m ≤ 4因此,m 的取值范围是m ≤ 4。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

八年级数学上册第十五章分式方法专题巧用分式方程的解求字母的值或取值范围习题新人教版

八年级数学上册第十五章分式方法专题巧用分式方程的解求字母的值或取值范围习题新人教版
2
6
6
②当 2m+1≠0 时,x=-
.若-
=3,分母为 0,此时方程无解,
2m+1
2m+1
3
6
解得 m=- ;若-
=0,分母为 0,此时方程无解,但无 m 的值与之对应.
2
2m+1
1
3
2m+x
2
综上所述,当 m=- 或 m=- 时,关于 x 的分式方程
-1= 无解.
2
2
x-3
x
类型三 利用分式方程的解的取值范围求字母的值或取值范围
x> 7 .
a-3
∴-1≤
<0,解得-4≤a<3,即整数 a=-4,-3,-2,-1,0,1,2.分
7
a+1
a+1
式方程去分母,得 x+a-2=3x-3,解得 x=
.∵x=
为整数,且 x≠1,
2
2
∴a=-3 或-1,∴所有满足条件的整数 a 的值之和为-3-1=-4.
3
1
∴若这个分式方程有解,m 的取值范围是 m≠±1,且 m≠- .
3
2m-x

3.若关于x的分式方程
+1= 无解,求m的值.
−1
(x+3)(x-1)
2m-x
x
2m-3
解:分式方程
+1=
去分母、整理,得 x=
.
(x+3)(x-1)
x-1
2
若分式方程无解,则 x=1 或 x=-3.
2m-3
5
当 x=1 时,


5.若关于x的分式方程
-1=
的解为非负数,求k的取值
−3
(x-3)(x-1)
范围.
解:分式方程去分母,得 x(x-1)-(x-3)(x-1)=k,去括号、合并

最新华东师大版下册数学八年级函数自变量的取值范围.函数值同步练习试题.doc

最新华东师大版下册数学八年级函数自变量的取值范围.函数值同步练习试题.doc

(新课标)华东师大版八年级下册17.1.2函数自变量的取值范围.函数值一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A.x>2 B.x≥2 C.x<2 D.x≤22.函数y=中的自变量x的取值范围是()A.x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣13.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=14.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A.1 B.﹣2 C.D.35.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 烤制时间/分40 60 80 100 120140 160 180设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A.140 B.138 C.148 D.1607.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣48.在函数y=中,自变量x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1二.填空题(共6小题)9.函数中,自变量x的取值范围是_________ .10.函数y=中,自变量x的取值范围是_________ .11.函数,当x=3时,y= _________ .12.函数的主要表示方法有_________ 、_________ 、_________ 三种.13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是_________ .输入数据 1 2 3 4 5 6 …输出数据…14.已知方程x﹣3y=12,用含x的代数式表示y是_________ .三.解答题(共6小题)15.求函数y=的自变量x的取值范围.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t 计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.17.1.2函数自变量的取值范围.函数值参考答案与试题解析一.选择题(共8小题)1.函数y=中自变量x的取值范围为()A. x>2 B.x≥2 C.x<2 D.x≤2考点:函数自变量的取值范围.菁优网版权所有专题:函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意,得x﹣2≥0,解得x≥2.故选:B.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.函数y=中的自变量x的取值范围是()A. x≥0 B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1考点:函数自变量的取值范围.菁优网版权所有专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.点评:本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.在函数y=中,自变量x的取值范围是()A. x>1 B.x<1 C.x≠1 D.x=1考点:函数自变量的取值范围.菁优网版权所有分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x﹣1≠0,解得x≠1.故选:C.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.根据如图所示程序计算函数值,若输入的x的值为﹣1,则输出的函数值为()A. 1 B.﹣2 C.D. 3考点:函数值.菁优网版权所有专题:图表型.分析:先根据x的值确定出符合的函数解析式,然后进行计算即可得解.解答:解:x=﹣1时,y=x2=(﹣1)2=1.故选A.点评:本题考查了函数值的求解,根据自变量的取值范围准确确定出相应的函数解析式是解题的关键.5.下面说法中正确的是()A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对考点:函数的表示方法.菁优网版权所有分析:表示函数的方法有三种:解析法、列表法和图象法.解答:解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.点评:本题考查了函数的三种表示方法:解析法、列表法和图象法.要熟练掌握.6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.5 1 1.5 2 2.5 3 烤制时间/分40 60 80 100 120140 160 180设鸭的质量为x千克,烤制时间为t,估计当x=3.2千克时,t的值为()A. 140 B.138 C.148 D.160考点:函数的表示方法.菁优网版权所有分析:观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x=3.2千克代入即可求出烤制时间t.解答:解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t分钟,烤鸭的质量为x千克,t与x的一次函数关系式为:t=kx+b,,解得所以t=40x+20.当x=3.2千克时,t=40×3.2+20=148.故选C.点评:本题考查了一次函数的运用.关键是根据题目的已知及图表条件得到相关的信息.7.如图,根据流程图中的程序,当输出数值y为1时,输入数值x为()A.﹣8 B.8 C.﹣8或8 D.﹣4考点:函数值.菁优网版权所有专题:图表型.分析:根据流程,把输出的函数值分别代入函数解析式求出输入的x的值即可.解答:解:∵输出数值y为1,∴①当x≤1时,0.5x+5=1,解得x=﹣8,符合,②当x>1时,﹣0.5x+5=1,解得x=8,符合,所以,输入数值x为﹣8或8.故选C.点评:本题考查了函数值求解,比较简单,注意分两种情况代入求解.8.在函数y=中,自变量x的取值范围是()A. x≤1 B.x≥1 C.x<1 D.x>1考点:函数自变量的取值范围.菁优网版权所有分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二.填空题(共6小题)9.函数中,自变量x的取值范围是x≥﹣2且x≠1 .考点:函数自变量的取值范围.菁优网版权所有分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解解答:解:根据题意得:,解得:x≥﹣2且x≠1.故答案是:x≥﹣2且x≠1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.函数y=中,自变量x的取值范围是x≠2 .考点:函数自变量的取值范围;分式有意义的条件.菁优网版权所有专题:计算题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.解答:解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.11.函数,当x=3时,y= ﹣3 .考点:函数值.菁优网版权所有分析:把自变量的值代入函数解析式进行计算即可求解.解答:解:当x=3时,y==﹣3.故答案为:﹣3.点评:本题考查了函数值的求解,把自变量的值代入函数解析式进行计算即可求解,是基础题,比较简单.12.函数的主要表示方法有列表法、图象法、解析式法三种.考点:函数的表示方法.菁优网版权所有专题:推理填空题.分析:根据函数的三种表示法解答即可.解答:解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.点评:本题考查了函数的表示方法,不论何种形式,符合函数定义即可,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).13.邓教师设计一个计算程序,输入和输出的数据如下表所示:那么当输入数据是正整数n时,输出的数据是.输入数据 1 2 3 4 5 6 …输出数据…考点:函数的表示方法.菁优网版权所有专题:计算题;规律型.分析:分析可得:各个式子分子是输入的数字,分母是其3倍减1,故当输入数据是正整数n时,即可求得输出的值.解答:解:∵各个式子分子是输入的数字,分母是其3倍减1,∴当输入数据是正整数n时,输出的数据是.点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.14.已知方程x﹣3y=12,用含x的代数式表示y是y=x﹣4 .考点:函数的表示方法.菁优网版权所有分析:要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解答:解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.点评:考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.三.解答题(共6小题)15.求函数y=的自变量x的取值范围.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.菁优网版权所有专题:计算题.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数>等于0,分母不等于0,就可以求解.解答:解:根据二次根式的意义,被开方数4+2x≥0,解得x≥﹣2;根据分式有意义的条件,x﹣1≠0,解得x≠1,因为x≥﹣2的数中包含1这个数,所以自变量的范围是x≥﹣2且x≠1.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.求下列函数的自变量的取值范围.(1)y=x2+5;(2)y=;(3)y=.考点:函数自变量的取值范围.菁优网版权所有分析:(1)根据对任意实数,多项式都有意义,即可求解;(2)根据分母不等于0,即可求解;(3)根据任意数的平方都是非负数即可求解.解答:解:(1)x是任意实数;(2)根据题意得:x+4≠0,则x≠﹣4;(3)x是任意实数.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.已知函数y=2x﹣3.(1)分别求当x=﹣,x=4时函数y的值;(2)求当y=﹣5时x的值.考点:函数值.菁优网版权所有分析:(1)把x的值分别代入函数关系式计算即可得解;(2)把函数值代入函数关系式,解关于x的一元一次方程即可.解答:解:(1)x=﹣时,y=2×(﹣)﹣3=﹣1﹣3=﹣4,x=4时,y=2×4﹣3=8﹣3=5;(2)y=﹣5时,2x﹣3=﹣5,解得x=﹣1.点评:本题考查了函数值求解,已知函数值求自变量,是基础题,准确计算是解题的关键.18.当自变量x取何值时,函数y=x+1与y=5x+17的值相等?这个函数值是多少?考点:函数值.菁优网版权所有分析:根据函数值相等,自变量相等,可得方程组,根据解方程组,可得答案.解答:解:由题意得,解得,当x=﹣时,函数y=x+1与y=5x+17的值相等,这个函数值是﹣15.点评:本题考查了函数值,利用了函数值相等,自变量相等得出方程组是解题关键.19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)0 1 2 3 4 5温度(℃)20 14 8 2 ﹣4 ﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?考点:函数的表示方法.菁优网版权所有专题:应用题.分析:(1)根据图表,反映的是距离地面的高度和温度两个量,所以温度和高度是两个变化的量,温度随高度的变化而变化;(2)根据表格数据,高度越大,时间越低,所以随着高度的h的增大,温度t 在减小;(3)求出当h=6时温度t的值即可.解答:解:(1)上表反映了温度和高度两个变量之间.高度是自变量,温度是因变量.(2)如果用h表示距离地面的高度,用t表示温度,那么随着高度h的增大,温度t逐渐减小(或降低).(3)距离地面6千米的高空温度是﹣16℃.点评:本题是对函数定义的考查和图表的识别,自变量、因变量的区分对初学函数的同学来说比较困难,需要在学习上多下功夫.20.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t 计算,其中x是深度,t是地球表面温度,y是所达深度的温度.(1)在这个变化过程中,自变量和因变量分别是什么?(2)如果地表温度为2℃,计算当x为5km时地壳的温度.考点:函数值;常量与变量.菁优网版权所有专题:应用题.分析:(1)因为温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度,所以自变量是x,因变量是y.(2)令t=2,x=5,代入函数解析式,即可求解.解答:(1)解:自变量是地表以下的深度x,因变量是所达深度的温度y;(2)解:当t=2,x=5时,y=3.5×5+2=19.5;所以此时地壳的温度是19.5℃.点评:本题只需利用函数的概念即可解决问题.。

初中函数取值范围练习题

初中函数取值范围练习题

初中函数取值范围练习题函数是数学中一个重要的概念,函数的取值范围是我们在学习函数时需要掌握的重点。

下面将通过一些练习题来帮助理解函数的取值范围。

练习题一:设函数 f(x) = 2x - 1,求函数 f(x) 的取值范围。

解析:要求函数 f(x) 的取值范围,需要找到 x 的所有可能取值,然后代入函数中求出对应的函数值。

首先,设函数 f(x) 的函数值为 y。

根据函数的定义式可得:y = 2x - 1然后,我们可以通过观察发现,函数 f(x) 是一个一次函数,其图像是一条直线。

由于一次函数的图像是一条无限延伸的直线,因此函数f(x) 的取值范围也是无限的。

练习题二:设函数 g(x) = x^2 + 2x + 3,求函数 g(x) 的取值范围。

解析:要求函数 g(x) 的取值范围,同样需要找到 x 的所有可能取值,然后代入函数中求出对应的函数值。

首先,设函数 g(x) 的函数值为 y。

根据函数的定义式可得:y = x^2 + 2x + 3接下来,我们可以通过图像来观察函数 g(x) 的取值范围。

由于函数g(x) 是一个二次函数,其图像是一个开口朝上的抛物线。

我们可以看到,函数的图像在抛物线的顶点处取得最小值,然后逐渐增大。

因此,我们只需要求出函数的顶点即可确定函数的取值范围。

通过求导数可得函数的导函数为 g'(x) = 2x + 2。

当导函数等于零时,函数的斜率为零,即函数的切线为水平线。

解方程 g'(x) = 0 可得 x = -1。

将 x = -1 代入原函数 g(x) 可得 y = 3。

因此,函数 g(x) 的取值范围为大于等于 3 的所有实数。

练习题三:设函数 h(x) = 1/x,求函数 h(x) 的取值范围。

解析:要求函数 h(x) 的取值范围,同样需要找到 x 的所有可能取值,然后代入函数中求出对应的函数值。

首先,设函数 h(x) 的函数值为 y。

根据函数的定义式可得:y = 1/x函数 h(x) 的定义域为除了 x = 0 外的所有实数。

八年级数学一次函数自变量取值范围练习题

八年级数学一次函数自变量取值范围练习题

八年级数学一次函数自变量取值范围班别 姓名 学号一、学习目标:了解函数概念,并学会找自变量取值范围。

二、学习过程:知识点一:自变量的取值范围:提示:x 能取什么数或不能取什么数例1、(1)21y x =+的自变量x 的取值范围是 ;(2)1y x=的分母 0≠,即x ≠ 。

所以自变量x 的取值范围是 。

(3)2y x =的自变量x 的取值范围是 ;(4)11y x =+的分母 0≠,即x ≠ 。

所以自变量x 的取值范围是 。

(5)y =x -2≥0,所以自变量x 的取值范围是 ;练习:求下列函数中自变量的取值范围。

(1)225y x =-+的自变量x 的取值范围是 ;(2)213x y +=的自变量x 的取值范围是 ; (3)321y x =+的分母 0≠,即x ≠ 。

所以自变量x 的取值范围是 ;(4)35y x =-的分母 0≠,即x ≠ 。

所以自变量x 的取值范围是 。

(5)b =中, ≥0,所以自变量x 的取值范围是 ;(6)12x y -=的自变量x 的取值范围是 ;例2:现有笔记本500本分给学生,每人5本,则余下的本数y 和学生数x 之间的函数关系式(也叫解析式) ,自变量x 的范围是 。

练习:1、购买一些铅笔,单价0.2元每支,写出总价y 元与铅笔支数x 的函数解析式 ,自变量是 ,是 的函数,自变量x 的取值范围。

2、一个三角形的底边长为10,高h 可任意伸缩,写出面积S 随h 变化的解析式,常量是 ,变量是 ,自变量是 , 是 的函数,自变量的取值范围 。

义,而且还要使 有意义。

三、课堂练习:A 组1、求下列函数的函数值(1)25y x =+ (2)22y x =解:当1x=时,y=,x=时,y=,解:当1当3x=-时,y=,x=时,y=,当1当3x=时,y=,x=-时,y=,当3当10x=-时,y=。

x=时,y=。

当32、一个小球由静止开始从一个斜坡上向下滚动,已知小球滚动的距离s(cm)与时间t(s)的函数关系式是2=,如果斜坡长为2米,求小球滑到坡底的时s t2间,写出自变量的取值范围。

2023年中考数学----《函数基础知识--自变量的取值范围与函数值》专项练习题(含答案解析)

2023年中考数学----《函数基础知识--自变量的取值范围与函数值》专项练习题(含答案解析)

2023年中考数学复习----《函数基础知识--自变量的取值范围与函数值》知识总结与专项练习题(含答案解析)知识总结1. 函数的概念:设在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数,x 是自变量。

2. 自变量的取值范围:(1)使函数表示有意义。

①分母不能为0。

②被开方数大于等于0。

③幂的底数和指数不能同时为0。

(2)满足实际问题的实际意义。

3. 函数值:函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值。

专项练习题1、(2022•黄石)函数y =113−++x x x 的自变量x 的取值范围是( ) A .x ≠﹣3且x ≠1 B .x >﹣3且x ≠1C .x >﹣3D .x ≥﹣3且x ≠1 【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:函数y =+的自变量x 的取值范围是:x +3>0,且x ﹣1≠0,解得:x >﹣3且x ≠1.故选:B .2、(2022•丹东)在函数y =x x 3+中,自变量x 的取值范围是( ) A .x ≥3 B .x ≥﹣3C .x ≥3且x ≠0D .x ≥﹣3且x ≠0 【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【解答】解:由题意得:x +3≥0且x ≠0,解得:x ≥﹣3且x ≠0,故选:D .3、(2022•牡丹江)函数y =2−x 中,自变量x 的取值范围是( )A .x ≤﹣2B .x ≥﹣2C .x ≤2D .x ≥2【分析】根据二次根式(a ≥0),可得x ﹣2≥0,然后进行计算即可解答.【解答】解:由题意得: x ﹣2≥0,∴x ≥2,故选:D .4、(2022•恩施州)函数y =31−+x x 的自变量x 的取值范围是( ) A .x ≠3 B .x ≥3C .x ≥﹣1且x ≠3D .x ≥﹣1 【分析】利用分式有意义的条件和二次根式有意义的条件得到不等式组,解不等式组即可得出结论.【解答】解:由题意得:,解得:x ≥﹣1且x ≠3.故选:C .5、(2022•连云港)函数y =1−x 中自变量x 的取值范围是( )A .x ≥1B .x ≥0C .x ≤0D .x ≤1【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x ﹣1≥0,∴x ≥1.故选:A .6、(2022•黑龙江)函数31−−=x x y 自变量x 的取值范围是( ) A .x ≥1且x ≠3 B .x ≥1C .x ≠3D .x >1且x ≠3 【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,x ﹣1≥0且x ﹣3≠0,解得x ≥1且x ≠3.故选:A .7、(2022•无锡)函数y =x −4中自变量x 的取值范围是( )A .x >4B .x <4C .x ≥4D .x ≤4【分析】因为当函数用二次根式表达时,被开方数为非负数,所以4﹣x ≥0,可求x 的范围.【解答】解:4﹣x ≥0,解得x ≤4,故选:D .8、(2022•安顺)要使函数y =12−x 在实数范围内有意义,则x 的取值范围是 .【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:2x ﹣1≥0,解得:x ≥,故答案为:x ≥.9、(2022•哈尔滨)在函数y =35+x x 中,自变量x 的取值范围是 . 【分析】根据分母不能为0,可得5x +3≠0,然后进行计算即可解答.【解答】解:由题意得:5x +3≠0,∴x ≠﹣,故答案为:x ≠﹣.10、(2022•巴中)函数y =31−x 中自变量x 的取值范围是 . 【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:根据题意得:x ﹣3>0,解得:x >3.故答案为:x >3.x −4。

初二数学函数综合题附答案

初二数学函数综合题附答案

初二数学函数综合题附答案一、单选题1.函数22x y -=中x 的取值范围是( ) A .x ≤2B .x ≥2C .x <2D .x >22.以下能够准确表示宣城市政府地理位置的是( )A .离上海市282千米B .在上海市南偏西80︒C .在上海市南偏西282千米D .东经30.8︒,北纬118︒3.直线23y x =-可由直线2y x =( )平移得到.A .向上平移3个单位B .向下平移3个单位C .向上平移2个单位D .向下平移2个单位 4.如图,函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组00ax y b kx y -+=⎧⎨-=⎩的解是( )A .42x y =-⎧⎨=-⎩B .42x y =⎧⎨=⎩C .24x y =-⎧⎨=-⎩D .24x y =⎧⎨=⎩5.已知点M (m +1,1﹣m )在y 轴上,则点M 的坐标是( ) A .(2,0) B .(﹣2,0) C .(0,﹣2) D .(0,2) 6.在平面直角坐标系中,点A (2,﹣3)位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知抛物线y =ax 2+bx +c (a ≠0)的顶点为(2,4),有以下结论:①当a >0时,b 2-4ac >0;②当a >0时,ax 2+bx +c≥4;③若点(-2,m ),(3,n )在抛物线上,则m <n ;④若关于x 的一元二次方程ax 2+bx +c =0的一根为-1,则另一根为5.其中正确的是( ) A .①②B .①④C .②③D .②④8.下列的各点中,在反比例函数5y x=图象上的点是( ) A .()2,4B .()1,5C .1,22⎛⎫ ⎪⎝⎭D .11,23⎛⎫ ⎪⎝⎭9.平面直角坐标系中,属于第四象限的点是( ) A .()5,3B .()5,3-C .()5,3-D .()5,3--10.下列一次函数中,y 随x 的增大而减小的是( )A .y =x ﹣3B .y =1﹣xC .y =2xD .y =3x +211.己知点A (﹣6,y 1)和B (﹣2,y 2)都在直线13y x b =-+上,则y 1,y 2满足( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .大小不确定 12.抛物线y =﹣2(x ﹣3)2﹣4的顶点坐标是( )A .(﹣3,4)B .(﹣3,﹣4)C .(3,﹣4)D .(3,4)13.已知正比例函数y =(2m ﹣6)x 的图象上一点(x 0,y 0),且0x y <0,则m 的取值范围是( ) A .m >3B .m >13C .m <13D .m <314.已知二次函数2y ax bx c =++的图像开口向下,顶点坐标为()3,7-,那么该二次函数有( ) A .最小值-7 B .最大值-7 C .最小值3 D .最大值3 15.一次函数31y x b =+-的图象不经过第二象限,则常数b 的取值范围是( )A .1b ≥B .1b <C .1b ≤D .1b >二、填空题16.在一次函数3y x =-+中,当1x >时,y ________.17.如图,直线1y kx =+与直线2y x b =-+交于点()1,2A ,由图象可知,不等式12kx x b +≥-+的解为______.18.如图,直线1y x =+与y mx n =+相交于点()1,2P ,则关于x ,y 的二元一次方程组1y x y mx n =+⎧⎨=+⎩的解为______.19.将抛物线23y x =向下平移1个单位,所得抛物线的解析式是________.20.若抛物线2y ax bx c =++与x 轴的两个交点坐标是()6,0- 和 ()4,0,则该抛物线的对称轴是________.三、解答题21.已知二次函数2y x mx n =-++的图象经过()2,5A --,()0,3B 两点. (1)求该抛物线的解析式及对称轴; (2)当x 为何值时,0y >?22.已知:二次函数y =ax 2+bx +c (a ≠0)中的x 和y 满足表:x …… ﹣1 0 1 2 3 …… y……﹣3﹣4m……(1)这个二次函数的对称轴是直线______,m 的值为______; (2)求出这个二次函数的解析式;(3)若点A (t ,y 1)、B (t +1,y 2)两点都在该函数图象上,且t <0,比较y 1与y 2的大小,并说明理由.23.已知抛物线y =x 2﹣2x ﹣8,完成下列各题: (1)求证:该抛物线与x 轴一定有两个交点;(2)该抛物线与x 轴的两个交点分别为A 、B (A 在B 的左侧),求A 、B 的坐标. 24.已知二次函数222y x x m =-+-的图象与x 轴有交点,求非负整数m 的值. 25.某涵洞的横断面呈拋物线形,现测得底部的宽 1.6m AB =,涵洞顶部到底面的最大高度为2.4m.在如图所示的直角坐标系中,求抛物线所对应的二次函数的表达式.【参考答案】一、单选题1.B 2.D 3.B 4.A 5.D 6.D 7.D 8.B 9.C 10.B 11.A 12.C 13.D 14.B 15.C 二、填空题16.2< 17.1≥x18.12x y =⎧⎨=⎩19.231y x =-20.x = -1三、解答题21.(1)抛物线的解析式为223y x x =-++;对称轴为直线1x = (2)当13x -<<时0y > 【解析】 【分析】(1)根据待定系数法求二次函数解析式,然后根据2bx a=-求解对称轴即可; (2)根据二次函数与x 轴交点坐标与二次函数的图象与性质进行求解即可. (1)解:由题意知,将()(2,5,3)0A B --,代入2y x mx n =-++中得4253m n n --+=-⎧⎨=⎩,解得:23m n =⎧⎨=⎩∴2y x 2x 3=-++∵()21221b x a =-=-=⨯- ∴对称轴为直线1x =∴抛物线的解析式为2y x 2x 3=-++;对称轴为直线1x =. (2)解:令0y =,则2230x x -++= ∴()()130x x -+-= 解得1x =-或3x =∴抛物线与x 轴交点坐标为:(1,0)-,(3,0); 由二次函数的图象与性质可得当13x 时,0y > ∴当13x 时,0y >. 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的对称轴,二次函数与x 轴的交点,二次函数的图象与性质.解题的关键在于熟练掌握二次函数的图象与性质. 22.(1)1x =;3-; (2)223y x x =-- (3)12y y > 【解析】 【分析】(1)根据表中x 、y 的对应值可知,当1x =-与3x =时y 的值相等,所以此两点关于抛物线的对称轴对称,由中点坐标公式即可得出对称轴的直线方程,再由二次函数对称性可得m 的值;(2)利用待定系数法求得即可; (3)根据二次函数的增减性可得结论. (1)解:由表中x 、y 的对应值可知,当1x =-与3x =时y 的值相等, ∴对称轴是直线1312x -+==, 由二次函数的对称性可知,当0x =与2x =时y 的值相等,3m ∴=-;故答案为:1x =;3-; (2)解:当0x =时,3y =-, ∴设23y ax bx =+-,代入(1,0)-,(1,4)-,∴3034a b a b --=⎧⎨+-=-⎩, ∴12a b =⎧⎨=-⎩,∴抛物线的解析式为:223y x x =--;(3)解:12y y >,理由如下:抛物线的解析式为:223y x x =--,开口向上,对称轴为直线1x =, 0t <,11t t ∴<+<,∴此时,抛物线随x 的增大而减小,12y y ∴>.【点睛】此题考查待定系数法求函数解析式,二次函数的性质,掌握待定系数法求函数解析式的方法与步骤是解决问题的关键. 23.(1)见解析(2)点A 的坐标为(-2,0),点B 的坐标为(4,0) 【解析】 【分析】(1)根据b 2﹣4ac 与零的关系即可判断出二次函数y =x 2﹣2x ﹣8的图象与x 轴交点的个数;(2)令0y =,则2280x x --=,求出x 的值即可得到答案. (1)解:∵()()22=42418360b ac ∆-=--⨯⨯-=>, ∴抛物线y =x 2﹣2x ﹣8与x 轴有两个交点. (2)解:令0y =,则2280x x --=, ∴()()420x x -+=, 解得2x =-或4x =, ∵点A 在点B 的左侧,∴点A 的坐标为(-2,0),点B 的坐标为(4,0). 【点睛】本题主要考查了抛物线与x 轴的交点问题,求抛物线与x 轴的交点坐标,熟知相关知识是解题的关键. 24.0或1或2或3 【解析】 【分析】根据二次函数y =x 2-2x +m -2的图象与x 轴有交点,根据Δ≥0列出m 的不等式,求出m 的取值范围即可. 【详解】解:∵二次函数y =x 2-2x +m -2的图象与x 轴有交点, ∴Δ=4-4(m -2)≥0,∴m ≤3, ∵m 为非负整数, ∴m =0或1或2或3. 【点睛】本题主要考查了抛物线与x 轴交点的知识,解答本题的关键是根据二次函数y =x 2-2x +m -2的图象与x 轴有交点列出m 的不等式,此题难度不大. 25.2154y x =-. 【解析】 【分析】根据此抛物线经过原点,可设函数关系式为2y ax =,根据 1.6AB m =,涵洞顶点O 到水面的距离为2.4m ,那么A 点坐标应该是()0.8, 2.4--,利用待定系数法即可求解. 【详解】解:设此抛物线所对应的函数表达式为:2y ax =,1.6AB m =,涵洞顶点O 到水面的距离为2.4m ,A ∴点坐标应该是()0.8, 2.4--, 把A 点代入得:22.4(0.8)a -=-⨯, 解得:154a =-, 故涵洞所在抛物线的函数表达式2154y x =-. 【点睛】本题主要考查了二次函数的应用,解题的关键在于结合题意列出式子求出解析式.。

初二数学一次函数经典试题含答案

初二数学一次函数经典试题含答案

初二数学一次函数超经典试题含答案一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是( )A.y= B.y= C.y= D.y=·2.下面哪个点在函数y=x+1的图象上( )A.(2,1) B.(-2,1) C.(2,0) D.(-2,0)3.下列函数中,y是x的正比例函数的是( )A.y=2x-1 B.y=2 D.y=-2x+14.一次函数y=-5x+3的图象经过的象限是( )A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进, 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b的图象经过点(2,-1)和(0,3), 那么这个一次函数的解析式为( )A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=x-3二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________, 该函数的解析式为_ ________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+ 2 上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y 轴的负半轴, 且y 的值随x 的增大而减少, 则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.Array 18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共60分)21.(14分)根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC 表示从甲地向乙地打长途电话所需的电话费y(元) 与通话时间t(分钟)之间的函数关系的图象(1)写出y与t 之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米, 现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1. 1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0. 9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:第一份3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17. 18.0;7 19.±6 20.y=x+2;421.①y=x;②y=x+ 22.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0. 6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴ 解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

一元一次不等式(组)中参数取值范围的解题方法和技巧(专项练习)八年级数学下册基础知识专项讲练(北师大

一元一次不等式(组)中参数取值范围的解题方法和技巧(专项练习)八年级数学下册基础知识专项讲练(北师大

专题2.14 一元一次不等式(组)中参数取值范围的解题方法与技巧(专项练习)一、单选题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3 C .a >3 D .a ≤3 2.已知关于x 的不等式组15x a x b -≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( ) A .6 B .8C .10D .12 3.关于x 的方程26a x -=的解是非负数,那么a 满足的条件是( ) A .3a > B .3a ≤ C .3a < D .3a ≥ 4.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( ) A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-4 5.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<- B .74a -≤≤- C .74a -≤<- D .74a -<≤- 6.若mx 5m >,两边同除以m 后,变为x 5<,则m 的取值范围是( ) A .m 0> B .m 0< C .m 0≥ D .m 0≤ 7.若实数3是不等式2x a 20--<的一个解,则a 可取的最小整数为( ) A .2 B .3 C .4 D .58.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ).A .8-B .8C .10D .26二、填空题9.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__. 10.已知不等式1322x x -≥ 与不等式30x a -≤的解集相同,则a =_______. 11.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 12.在平面直角坐标系中,点A ,B 的坐标分别为(3,5),(3,7),直线y =2x +b 与线段AB 有公共点,则b 的取值范围是______.13.若不等式组52355x x x a+≤-⎧⎨-+<⎩无解,则a 的取值范围是______.14.如图,直线y =3x 和y =kx +2相交于点P (a ,3),则不等式3x >kx +2的解集为_____.15.若关于x 的不等式0x a -<的正整数解只有3个,则a 的取值范围是________________. 16.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.17.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______. 18.已知不等式组43103x x a -≤≤-⎧⎪⎨->⎪⎩有解,那么a 的取值范围是___________. 19.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集为55x -≤<,则a b 的值为___________. 20.若不等式组31x x m <⎧⎨>-⎩无解,则m 的取值范围是_____. 21.若关于x 的不等式组25011222x x m +>⎧⎪⎨+⎪⎩,有四个整数解,则m 的取值范围是____________.22.若关于x 的不等式23x a +的解集如图所示,则常数a =__________.23.关于x ,y 的二元一次方程组22123x y m x y +=+⎧⎨+=⎩的解满足不等式1x y ->,则m 的取值范围是______.24.已知直线()110y kx k =+<与直线()20y nx n =>的交点坐标为11,22n ⎛⎫⎪⎝⎭,则不等式组42nx kx nx -<+<的解集为________. 25.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.26.若不等式00x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________. 27.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________. 28.若x y >,且(2)(2)a x a y -<-,则a 的取值范围是________.29.若关于x 的不等式组2()102153x m x 的解集为76x -<<-,则m 的值是______.30.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____.三、解答题31.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围;(2)试化简1a a 2-++.32.如图,直线y=kx+b 经过点A (5,0),(1,4).(1)求直线AB 的解析式;(2)如图,若直线y=mx+n (m >0)与直线AB 相交于点B ,请直接写出关于x 的不等式mx+n <4的解.33.(1)关于x 的方程32x m m x +=- 与方程()3423x x +=-的解互为倒数,求m 的值. (2)已知关于x 的方程()()1232x x a -=+的解适合不等式312x a -+>,求a 的取值范围.参考答案1.B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .【点拨】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.D【分析】先求出两个不等式的解集,再求其公共解,再根据不等式组的解集列出求出a 、b 的值,再代入代数式进行计算即可得解.【详解】15x a x b -≥⎧⎨+≤⎩①②, 由①得,x ≥a +1,由②得,x ≤b−5,∵不等式组的解集是3≤x ≤5,∴a +1=3,b−5=5,解得a =2,b =10,所以,a +b =2+10=12.故选:D .【点拨】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 3.D【分析】先用含字母a 的式子表示出x ,再根据题意建立不等式求解即可.【详解】解方程得:26x a =-,由题意得:260a -≥,解得: 3a ≥,故选:D .【点拨】本题考查一元一次方程的解及解一元一次不等式,准确根据解的情况建立关于参数的不等式并求解是解题关键.4.C【分析】先求解不等式组,再根据条件判断出含参代数式的范围,从而求得参数的范围即可.【详解】 解原不等式得:35m x x ⎧<-⎪⎨⎪>-⎩,即53m x -≤<-, 由所有整数解的和为-9,可知原不等式包含的整数为-4,-3,-2或-4,-3,-2,-1,0,1,当整数为-4,-3,-2时,则13m -2<-≤-,解得:36m ≤<, 当整数为-4,-3,-2,-1,0,1时,则23m 1<-≤,解得:63m -≤<-, 故选:C .【点拨】本题考查含参不等式组求解问题,熟练掌握对含参代数式范围的确定是解题关键. 5.D【分析】先解不等式得出23a x -≤,然后根据不等式只有2个正整数解可知正整数解为1和2,据此列出不等式组求解即可.【详解】解:32x a +,32x a ∴-,则23a x -, ∵不等式只有2个正整数解,∵不等式的正整数解为1、2,则2233a -≤<, 解得:74a -<-,故答案为D .【点拨】本题主要考查一元一次不等式的整数解,正确求解不等式并根据不等式的整数解的情况列出关于某一字母的不等式组是解答本题的关键.6.B【分析】利用不等式的性质判断即可.【详解】解:若mx 5m >,两边同除以m 后,变为x 5<,则m 的取值范围是m 0<.故选:B .【点拨】此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.7.D【分析】将x 3=代入不等式得到关于a 的不等式,求解即可.【详解】根据题意,x 3=是不等式的一个解,∴将x 3=代入不等式,得:6a 20--<,解得:4a>,则a可取的最小整数为5,故选:D.【点拨】此题考查不等式的解的定义,解一元一次不等式,正确理解不等式的解的定义将x=3代入得到关于a的不等式是解题的关键.8.A【分析】解不等式组和方程得出关于x的范围及x的值,根据不等式组有4个整数解和方程的解为整数得出k的范围,继而可得整数k的取值.【详解】解:解关于x的方程9x-3=kx+14得:179xk =-,∵方程有整数解,∴9-k=±1或9-k=±17,解得:k=8或10或-8或26,解不等式组155222228xxx kx+⎧>+⎪⎪⎨-⎪≥-⎪⎩得不等式组的解集为2528kx-≤<,∵不等式组有且只有四个整数解,∴20128k-<≤,解得:2<k≤30;所以满足条件的整数k的值为8、10、26,故选:A.【点拨】本题主要考查方程的解和一元一次不等式组的解,熟练掌握解方程和不等式组的能力,并根据题意得到关于k的范围是解题的关键.9.2a【分析】求出不等式组中每个不等式的解集,根据已知即可得出关于a 的不等式,即可得出答案.【详解】 解:不等式组11x x a >⎧⎨<-⎩无解, 11a ∴-,解得:2a ,故答案为:2a .【点拨】本题考查了一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式,题目比较好,难度适中.10.6-【分析】首先根据解不等式的方法,求出两个不等式的解集2x -≤和3a x ≤,根据两个不等式的解集相同,可知23a =-,进而求出答案. 【详解】 解: 解不等式1322x x -≥得:2x -≤, 解不等式30x a -≤得:3a x ≤, 两个不等式的解集相同, ∴23a =-, ∴6a =-.故答案为:6-.【点拨】本题考查了解一元一次不等式,熟知解一元一次不等式的基本步骤是解题的关键. 11.2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围.【详解】由不等式组2x a x >⎧⎨>⎩的解为2x >, 可得2a ≤.故答案为:2a ≤.【点拨】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.12.-1≤b ≤1【分析】由一次函数图象上点的坐标特征结合直线与线段有公共点,即可得出关于b 的一元一次不等式,解之即可得出b 的取值范围.【详解】解:当x=3时,y =2×3+b=6+b ,∴若直线y =2x +b 与线段AB 有公共点,则6567b b +≥⎧⎨+≤⎩,解得-1≤b ≤1 故答案为:-1≤b ≤1.【点拨】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征结合直线与线段有公共点,列出关于b 的一元一次不等式是解题的关键.13.172a ≤ 【分析】先解一元一次不等式组,再根据不等式组无解即可得出a 的取值范围.【详解】解:解一元一次不等式组52355x x x a +≤-⎧⎨-+<⎩, 得:725x x a⎧≤-⎪⎨⎪>-⎩,∵不等式组无解,∴752a -≥-, 解得:172a ≤, 故答案为:172a ≤. 【点拨】本题考查了一元一次不等式组的解法、一元一次不等式的解法,会根据不等式组无解求解参数a 的取值范围是解答的关键.14.x >1【分析】先把点P (a ,3)代入直线y =3x 求出a 的值,故可得出P 点坐标,再根据函数图象进行解答即可.【详解】解:∵直线y =3x 和直线y =kx +2的图象相交于点P (a ,3),∵3=3a ,解得a =1.∵P (1,3).由函数图象可知,当x >1时,直线y =3x 的图象在直线y =kx +2的图象的上方, ∵3x >kx +2的解集为x >1.故答案为:x >1.【点拨】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.15.3<a ≤4【分析】先求出不等式0x a -<的解集,然后再根据只有3个正整数解,确定出a 的取值范围即可.【详解】解:∵0x a -<∴x <a∵关于x 的不等式0x a -<的正整数解只有3个,∴3<a ≤4.故答案为:3<a ≤4.【点拨】本题主要考查了解一元一次不等式和一元一次不等式的整数解的相关知识点,根据不等式的解集得到关于m 的不等式组成为解答本题的关键.16.3,4,5,6 67m <≤【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有4个整数解即可求得m 的范围.【详解】0721x m x -<⎧⎨-≤⎩①②, 由①得:x m <,由②得:26x ≥,3x ≥,∵不等式组的整数解共有4个,∴整数解为3,4,5,6,∴m 取值范围为67m <≤.故答案为:3,4,5,6;67m <≤.【点拨】本题考查了不等式组的解法及整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.-54<a <4 【分析】先解方程组用含a 的式子表示方程组的解,根据方程组的解是正数,列出关于a 的不等式组,再求解.【详解】解:3951x y a x y a +=+⎧⎨-=+⎩①②, ①+②得:2810x a =+,45x a =+,①-②得:228y a =-+,4y a =-+,所以,原方程组的解为:454x a y a =+⎧⎨=-+⎩, ∵ 方程组的解为正,∴45a +>0且4a -+>0, 解得:-54<a <4, 故填:-54<a <4. 【点拨】本题考查了方程组的解法,以及一元一次不等式组的解法,解此类问题要先用字母a 表示方程组的解,再根据题意,列不等式组,最后求解.18.1a <-【分析】先求出不等式组中第二个不等式的解,再结合数轴,根据不等式组有解即可得.【详解】 解103x a ->得:3x a >, 在数轴上表示两个不等式的解如下:要使不等式组有解,则33a <-,解得1a <-,故答案为:1a <-.【点拨】本题考查了一元一次不等式组的解,熟练掌握不等式组的解法是解题关键.19.1914- 【分析】先求出不等式组中两个不等式的解,再根据不等式组的解集可得一个关于a 、b 的二元一次方程组,解方程组可得a 、b 的值,然后代入即可得.【详解】221x a b x a b -≥⎧⎨-<+⎩①②, 解不等式①得:x a b ≥+, 解不等式②得:212a b x ++<, 由题意得:52152a b a b +=-⎧⎪⎨++=⎪⎩, 解得1914a b =-⎧⎨=⎩, 则1914a b =-, 故答案为:1914-. 【点拨】本题考查了解一元一次不等式组、二元一次方程组,熟练掌握不等式组和方程组的解法是解题关键.20.4m ≥【分析】利用不等式组取解集的方法进行判断即可得到关于m 的不等式,再解不等式即可得解.【详解】解:∵不等式组31x x m <⎧⎨>-⎩无解 ∴13m -≥∴4m ≥.故答案是:4m ≥【点拨】本题考查了由一元一次不等式的解集确定参数,熟练掌握不等式组取解集的方法是解题的关键,一般有两种方法,数周表示法,或者口诀(大大取大,小小取小,大小小大中间找,大大小小无处找).21.32m -<-【分析】解不等式组的两个不等式,根据其整数解的个数得出1≤4+m <2,解之可得.【详解】 解:25011222x x m +>⎧⎪⎨+⎪⎩①②, ①式化简得25x >-, ∴52x >-, ②式化简得4x m +,542x m ∴-<+, 又∵该不等式组有4个整数解,∴整数解为2-,1-,0,1.故142m +<,得4142m m +⎧⎨+<⎩, 解得3m -,2m <-,故m 的取值范围为32m -<-,故答案为:32m -<-.【点拨】本题主要考查不等式组的整数解问题,根据不等式组的整数解的个数得出关于m 的不等式组是解题的关键.22.5【分析】先根据数轴上不等式解集的表示方法求出此不等式的解集,再求出所给不等式的解集与已知解集相比较即可求出a 的值. 【详解】由图可知x 的解集为1x -,∵23x a +,∴23x a -, 32a x -, 312a -∴=-, 32a -=-,5a =.故答案为5.【点拨】 本题考查在数轴上表示一元一次不等式的解集,熟知实心圆点与空心圆点的区别是解题关键.23.32m >【分析】将两个方程相减得到x y -,再根据题意建立不等式求解即可.【详解】 22123x y m x y +=+⎧⎨+=⎩①②,由①-②得=22x y m --, 建立不等式221m ->,解得32m >, 故答案为:32m >. 【点拨】 本题考查解一元一次不等式、二元一次方程的解,解答本题的关键是明确题意,明确它们各自的解答方法.24.1<x <3【分析】根据一次函数的图象与性质,将11,22n ⎛⎫ ⎪⎝⎭代入()110y kx k =+<,可得k =n−2,将42nx kx nx -<+<化为不等式组4(2)2(2)2nx n x n x nx -<-+⎧⎨-+<⎩,解此不等式组即可得解. 【详解】解:把11,22n ⎛⎫ ⎪⎝⎭代入y 1=kx +1,可得12n =12k +1, 解得k =n−2.∴y 1=(n−2)x +1.则42nx kx nx -<+<可化为4(2)2(2)2nx n x n x nx -<-+⎧⎨-+<⎩. 解此不等式组得:1<x <3.∴不等式组42nx kx nx -<+<的解集为1<x <3.故答案为:1<x <3.【点拨】本题考查了一次函数与一元一次不等式的关系,解题的关键是理清题意并建立相应的一元一次不等式组进而求解.25.3m <【分析】先将方程组中的两个方程相加化简可得2x y m +=-+,再代入1x y +>-可得一个关于m 的一元一次不等式,然后解不等式即可得.【详解】23224x y m x y +=-+⎧⎨+=⎩, 两个方程相加得:3336x y m +=-+,即2x y m +=-+,由题意得:21m -+>-,解得3m <,故答案为:3m <.【点拨】本题考查了二元一次方程组、一元一次不等式,熟练掌握二元一次方程组的特殊解法是解题关键.26.2a =-、3b =【分析】由于不等式组00x b x a -<⎧⎨+>⎩有解,则解不等式组得到-a <x <b ,然后与2<x <3进行对比即可确定a 和b 的值.【详解】解:∵不等式组00x b x a -<⎧⎨+>⎩的解集为2<x <3,而解不等式组00x b x a -<⎧⎨+>⎩得-a <x <b ,∴-a=2,b=3,即a=-2,b=3.故答案为:2a =-、3b =.【点拨】本题考查了不等式的解集,掌握不等式的性质是解题的关键.27.32a -<≤-【分析】先解出不等式组,根据它有3个整数解求出a 的取值范围.【详解】解:解不等式组得1a x ≤<,∵它有3个整数解,∴解是-2,-1,0,∴32a -<≤-.故答案是:32a -<≤-.【点拨】本题考查函参不等式组求参数问题,解题的关键是掌握解不等式组的方法.28.2a <【分析】根据不等式的性质,两边同时乘一个负数不等号改变,求出a 的取值范围.【详解】解:∵x y >,而(2)(2)a x a y -<-,∴20a -<,即2a <.故答案是:2a <.【点拨】本题考查不等式的性质,解题的关键是掌握不等式的性质.29.152【分析】 先解不等式组得出其解集为1262mx ,结合76x -<<-可得关于m 的方程,解之可得答案.【详解】解:2()102153x m x ①②由∵得:2210x m +->,221x m >-+, 12x m >-+由∵得:212x <-,6x <-, ∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=- 152m ∴= 【点拨】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键. 30.2﹤a ≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a 的取值范围即可.【详解】解:解不等式3112x +-<得:x ﹥﹣1, ∴原不等式组的解集为:﹣1﹤x ﹤a ,∵不等式组有3个整数解,∴2﹤a ≤3,故答案为:2﹤a ≤3.【点拨】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a 的取值范围是解答的关键,必要时可借助数轴更直观.31.(1)a 1>;(2)2a 1+.【分析】(1)根据不等式的基本性质,得到关于a 的不等式,即可求解;(2)根据求绝对值的法则以及a 的范围,即可得到答案.【详解】(1)∵ 关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-, ∴ 1a 0-<,∴ a 1>∵2()由(1)得a 1>, ∴1a 0-<,a 20+>, ∴1a a 2a 1a 22a 1-++=-++=+.【点拨】本题主要考查不等式的性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键. 32.(1)5y x =-+;(2)x <1.【分析】(1)先设出直线AB 的解析式,利用待定系数法求AB 的解析式即可,(2)利用函数的增减性和x=1时的函数图像上点的位置来求即可.【详解】解:(1)∵直线y=kx+b 经过点A (5,0)、B (1,4),∴504k b k b +=⎧⎨+=⎩, 解方程组得15k b =-⎧⎨=⎩, ∴直线AB 的解析式为y=﹣x+5;(2)∵直线y=mx+n (m >0)与直线AB 相交于点B (1,4),∴当x=1时,mx+n=4,∵m >0,∴函数y=mx+n 随x 的增大而增大,∴关于x 的不等式mx+n <4的解集是x <1.【点拨】本题考查一次函数与一元一次不等式,掌握一次函数解析式的求法,以及一次函数与一元一次不等式的关系,会求函数值,会比较函数值的大小关系是解题关键.33.(1)85m =;(2)113a <-. 【分析】 (1)首先解方程()3423x x +=-,得到12x =,根据两个方程解是互为倒数,可知另一个方程的解为2x =,将2x =代入方程32x m m x +=-即可; (2)首先解方程()()1232x x a -=+,得到143x a =+,根据方程()()1232x x a -=+的解适合不等式312x a -+>,所以将143x a =+代入不等式,求出答案即可. 【详解】解:(1)()3423x x +=- 解方程得:12x =, 两个方程解是互为倒数,∴另一个解为:2x =,将2x =代入方程32x m m x +=-, 得:2232m m +=-,解得:85m =. 故m 的值为85. (2)()()1232x x a -=+ 112622x x a -=+ 31622x a =+ ∴143x a =+, 方程()()1232x x a -=+的解适合不等式312x a -+>, ∴将143x a =+代入312x a -+>,得: 134123a a ⎛⎫-⨯++> ⎪⎝⎭1212a a --+>311a ->113a <- 故a 的取值范围为:113a <-. 【点拨】本题考查了倒数,一元一次方程的解和解一元一次方程,方程和不等式的综合题,正确求出方程的解是解题的关键.。

2020-2021初二数学下期末试卷(及答案)

2020-2021初二数学下期末试卷(及答案)

2020-2021初二数学下期末试卷(及答案)一、选择题1.若(5-x)2=x﹣5,则x的取值范围是()A.x<52.若代数式x+1x-1B.x≤5C.x≥5D.x>5有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 3.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S∆AOB =S四边形DEOF中正确的有A.4个B.3个C.2个D.1个4.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x-k的图象大致是()A.B.C.D.5.已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A.±3B.3C.-3D.无法确定6.如图,以△Rt ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=62,那么AC的长等于()A.12B.16C.43D.827.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差8.如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△P AD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△APD 的面积为()A.4B.5C.6D.79.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法不一定成立的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD10.如图,在ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A.2B.3C.4D.611.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑()米A.0.4B.0.6C.0.7D.0.812.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则y=kx-k的图象大致是()A.B.C.D.二、填空题13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足_________条件时,四边形BEDF是正方形.14.在函数y=x-4x+1中,自变量x的取值范围是______.15.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.16.如图所示,将四根木条组成的矩形木框变成ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.17.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______.18.将直线y=2x向下平移3个单位长度得到的直线解析式为_____.19.已知a<0,b>0,化简(a-b)2=________20.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.三、解答题21.在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,达到B级以上(含B级)为优秀,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图,请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩为C级的人数为_______人;(3)小明同学根据以上信息制作了如下统计表:8(1)班8(2)班平均数(分)m91中位数(分)9090方差n29请分别求出m和n的值,并从优秀率和稳定性方面比较两个班的成绩;22.已知:如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:∠EBF=∠EDF.23.甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)学生甲学生乙数与代数9394空间与图形9392统计与概率8994综合与实践9086(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?24.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.25.如图所示,ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】因为a2=-a(a≤0),由此性质求得答案即可.【详解】∵(5-x)2=x-5,∴5-x≤0∴x≥5.故选C.【点睛】此题考查二次根式的性质:a2=a(a≥0),a2=-a(a≤0).2.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得x≥-1且x≠1.故选A.⎨∠BAD=∠ADE DEOF【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.B解析:B【解析】【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,所以AE=BF;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则AE⊥BF;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA≠OE;最后根据△ABF≌△DAE得S△ABF =S△DAE,则S△ABF△-S AOF=S△DAE△-S AOF,即S△AOB=S四边形.【详解】解:∵四边形ABCD为正方形,∴AB=AD=DC,∠BAD=∠D=90°,而CE=DF,∴AF=DE,△在ABF和△DAE中⎧AB=DA⎪⎪⎩AF=DE∴△ABF≌△DAE,∴AE=BF,所以(1)正确;∴∠ABF=∠EAD,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE⊥BF,所以(2)正确;连结BE,形-∵BE >BC ,∴BA≠BE , 而 BO ⊥AE ,∴OA≠OE ,所以(3)错误;∵△ABF ≌△DAE , ∴S △ABF =S △DAE ,∴S △ABF △-S AOF =S △DAE △-S AOF ,∴S △AOB =S 四边DEOF ,所以(4)正确.故选 B .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.4.B解析:B【解析】 【分析】先根据正比例函数 y = kx 的函数值 y 随 x 的增大而增大判断出 k 的符号,再根据一次函数 的性质进行解答即可. 【详解】解:Q 正比例函数 y = kx 的函数值 y 随 x 的增大而增大,∴ k >0, k <0 ,∴ 一次函数 y = x - k 的图象经过一、三、四象限.故选 B . 【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出 k 的取值范围.5.C解析:C【解析】 【分析】根据一次函数的定义可得 k -3≠0,|k|-2=1,解答即可. 【详解】一次函数 y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为 1. 所以|k|-2=1, 解得:k=±3,因为 k -3≠0,所以 k≠3, 即 k=-3.故选:C .(62)+(62)=12,【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.6.B解析:B【解析】【分析】首选在AC上截取C G=AB=4,连接OG,利用SAS△可证ABO≌△GCO,根据全等三角形的性质可以得到:O A=OG=62,∠AOB=∠COG,则可证△AOG是等腰直角三角形,利用勾股定理求出AG=12,从而可得AC的长度.【详解】解:如下图所示,在AC上截取C G=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90︒,∴OB=OC,∠BAC=∠BOC=90︒,∴点B、A、O、C四点共圆,∴∠ABO=∠ACO,△在ABO△和GCO中,BA=CG{∠ABO=∠ACO,OB=OC∴△ABO≌△GCO,∴OA=OG=62,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90︒,∴∠AOG=∠AOB+∠BOG=90︒,∴△AOG是等腰直角三角形,∴AG=22∴AC=12+4=16.故选:B.【点睛】⨯ ⨯ 4 = 5;本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.7.D解析:D【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越 大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

初二数学函数综合题含答案

初二数学函数综合题含答案

初二数学函数综合题含答案一、单选题1.函数32x y x +=-中,自变量x 的取值范围是( ) A .3x >- B .3x ≥-且2x ≠ C .2x ≠ D .3x >-且2x ≠2.点()4,5P 关于y 轴对称点的坐标是( )A .()5,4B .()4,5--C .()4,5-D .()4,5- 3.在直角坐标系的x 轴的负半轴上,则点P 坐标为( )A .()4,0-B .()0,4C .()0,3-D .()1,04.抛物线()2243y x =-+顶点坐标是( ) A .()4,3B .()4,3-C .()4,3-D .()3,45.将抛物线23y x =先向右平移1个单位,再向上平移1个单位,得到抛物线( ) A .()2311y x =-+ B .()2311y x =++C .()2311y x =--D .()2311y x =+-6.如果点()3a a +,到x 轴距离等于4,那么a 的值为( ) A .4B .7-C .1D .7-或17.如图,边长均为1个单位的正方形组成的方格纸内有一张笑脸图案,已知左眼的坐标是(-2,1),那么右眼的坐标是( )A .(2,-1)B .(1,-1)C .(0,1)D .(-1,0)8.某商场降价销售一批名牌衬衫,已知所获得利润y (元)与降价金额x (元)之间的关系是2260800y x x =-++,则获利最多为() A .15元B .400元C .80元D .1250元9.抛物线22y x =-的图象可能是( )A .B .C .D .10.若点5(),A m ,(),2B n 在一次函数2y x b =+的图象上,则m 与n 的大小关系是( ) A .m n > B .m n <C .m n ≥D .m n ≤11.二次函数2y ax bx c =++的图象如图所示,若M =4a +2b ,N =a -b .则M 、N 的大小关系为( )A .M <NB .M =NC .M >ND .无法确定12.如图,△ABC 中,点B ,C 是x 轴上的点,且A (3,2),以原点O 为位似中心,作△ABC 的位似图形△A ′B ′C ′,且△ABC 与A ′B ′C ′的相似比是1:2,则点A ′的坐标是( )A .(﹣6,﹣4)B .(﹣1.5,﹣1)C .(1.5,1)或(﹣1.5,﹣1)D .(6,4)或(﹣6,﹣4)13.将一次函数23y x =-的图象沿y 轴向上平移3个单位长度后,所得图象的函数表达式为( ) A .2y x =B .26y x =-C .53y x =-D .3y x =--14.下列各曲线中,不表示y 是x 的函数的是( )A .B .C .D .15.点()2,21P a a --在第四象限,且到y 轴的距离为3,则a 的值为( ) A .1-B .2-C .1D .2二、填空题16.一次函数y =kx +b (k ,b 为常数且k ≠0)的图象如图所示,且经过点(-2,0),则关于x 的不等式kx +b >0的解集为___________17.一次函数表达式为y =﹣3x +2,该函数图象在平面直角坐标系中不经过第 _____象限. 18.抛物线()21212y x =--+与y 轴的交点坐标是______. 19.抛物线221y x x =-+与x 轴的交点坐标是______.20.已知22(1)1y x =-+,当1≥x 时,y 随x 的增大而__________(填“增大”或“减小”或“不变”).三、解答题21.如图,已知抛物线2y x bx c =-++与一直线相交于1,0A ,()2,3C -两点,与y 轴交于点N .(1)求抛物线的函数关系式; (2)求直线AC 的函数关系式;(3)若P 是抛物线上位于直线AC 上方的一个动点.求APC △面积的最大值.22.商场销售一批衬衫,平均每天可销售20件,每件盈利30元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件衬衫每降价1元,商场平均每天可多销售出2件.(1)求每件衬衫降价多少元,商场每天利润可达750元;(2)求每件衬衫降价多少元该商场每天利润最大,并求出最大利润.23.如图,已知二次函数y =ax 2(a ≠0)与一次函数y =kx ﹣2的图象相交于A (﹣1,﹣1),B 两点.(1)求a ,k 的值; (2)求点B 的坐标; (3)求S △AOB .24.已知抛物线y =12x 2﹣x ﹣32与x 轴交于点A ,点B (点A 在点B 左侧). (1)求点A ,点B 的坐标;(2)用配方法求该抛物线的顶点C 的坐标,判断△ABC 的形状,并说明理由;(3)在抛物线的对称轴上是否存在点P ,使以点O 、点C 、点P 为顶点的三角形构成等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.已知,如图,二次函数2y x bx c =-++的图象与x 轴交于A ,B 两点,与y 轴交于点()1,10C,且经过点()0,6(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴.y时x的取值范围.(3)求ABC的面积,写出>0【参考答案】一、单选题1.B2.D3.A4.A5.A6.D7.C8.D9.A10.A11.A12.D13.A14.D15.A二、填空题16.x<-217.三18.(0,-1)1,019.()20.增大三、解答题21.(1)y =−x 2−2x +3 (2)y =−x +1 (3)278【解析】 【分析】(1)用待定系数法即可求解; (2)利用待定系数法确定直线解析式;(3)根据(2)的结论,设Q (x ,−x +1),则P (x ,−x 2−2x +3),过点P 作PQ x ⊥轴,交AC 于点Q ,根据三角形面积公式求解即可. (1)解:由抛物线y =−x 2+bx +c 过点A (1,0),C (−2,3),得10423b c b c -++=⎧⎨--+=⎩, 解得23b c =-⎧⎨=⎩,故抛物线为y =−x 2−2x +3; (2)设直线为y =kx +n 过点A (1,0),C (−2,3),则23k n k n +=⎧⎨-+=⎩, 解得11k n =-⎧⎨=⎩,故直线AC 为y =−x +1; (3)如图,过点P 作PQ x ⊥轴,交AC 于点Q ,∵直线AC 为y =−x +1;设Q (x ,−x +1),则P (x ,−x 2−2x +3), ∴PQ =(−x 2−2x +3)−(−x +1)=−x 2−x +2,∴S △APC =12()22C A x x x x --+⨯-⨯=12()223x x ⨯--+⨯=23127228x ⎛⎫-++ ⎪⎝⎭,∴△APC 面积的最大值为278【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.22.(1)每件衬衫应降价15元,商场平均每天要盈利750元; (2)每件衬衫降价10元该商场每天利润最大,最大利润为800元. 【解析】 【分析】(1)设每件衬衫应降价x 元,则每件盈利(30)x -元,每天可以售出(202)x +件,所以此时商场平均每天要盈利(30)(202)x x -+元,根据商场平均每天要盈利750=元,为等量关系列出方程求解即可;(2)根据利润=每件利润⨯销量列出函数解析式,根据函数的性质求最值. (1)解:设每件衬衫应降价x 元,则每件盈利(30)x -元,每天可以售出(202)x +件, 由题意,得(30)(202)750x x -+=, 即:220750x x -+=, 解,得15=x ,215x =,为了扩大销售量,增加盈利,尽快减少库存,所以x 的值应为15, ∴每件衬衫应降价15元,商场平均每天要盈利750元;(2)解:设该商场每天利润为w 元,由题意,得22(30)(202)2406002(10)800w x x x x x =-+=-++=--+,20-<,∴当10x =时,w 有最大值,最大值为800,∴每件衬衫降价10元该商场每天利润最大,最大利润为800元.【点睛】此题主要考查了一元二次方程与二次函数的应用,关键在于理解清楚题意找出等量关系列出函数解析式和一元二次方程. 23.(1)a =﹣1,k =﹣1 (2)(2,﹣4) (3)3 【解析】【分析】(1)根据待定系数法即可求得;(2)解析式联立,解方程组即可求得B 的坐标;(3)设直线y =﹣x ﹣2与y 轴的交点为G ,则G (0,﹣2),利用S △AOB =S △AOG +S △BOG 求得△AOB 的面积. (1)解:∵y =ax 2过点A (﹣1,﹣1), ∴﹣1=a ×1,解得a =﹣1,∵一次函数y =kx ﹣2的图象相过点A (﹣1,﹣1), ∴﹣1=﹣k ﹣2,解得k =﹣1; (2)解22y x y x =-+⎧⎨=-⎩ 得11x y =-⎧⎨=-⎩或24x y =⎧⎨=-⎩,∴B 的坐标为(2,﹣4); (3)设直线y =﹣x ﹣2与y 轴的交点为G ,则G (0,﹣2),∴S △AOB =S △AOG +S △BOG =1212⨯⨯+1222⨯⨯=3.【点睛】本题考查了二次函数与一次函数综合问题,待定系数法求解析式,一次函数与二次函数交点问题,求三角形面积,数形结合是解题的关键. 24.(1)A (-1,0),B (3,0)(2)点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由见解析 (3)点P 的坐标为(1,2),52),(1,52)-或3(1,)4-【解析】 【分析】(1)把0y =代入到21322y x x =--得,213022x x --=,解得13x =,21x =-,又因为点A 在点B 的左侧,即可得;(2)21322y x x =--配方得21(1)22y x =--,即可得点C 的坐标为(1,-2),根据点A ,B ,C 的坐标得4AB =,AC ,BC =AC =BC ,又因为2224+=,所以222AC BC AB +=,即可得90ACB ∠=︒,从而得出ACB △是等腰直角三角形;(3)当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形,即可得点P 的坐标(1,2),当CO CP =时,CP =,即可得点P 的坐标为2)或(1,2),当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a ,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,解得34a =-,即可得点P 的坐标为3(1,)4-,综上,即可得. (1)解:把0y =代入到21322y x x =--得, 213022x x --= 2230x x --=(3)(1)0x x -+=解得13x =,21x =-, ∵点A 在点B 的左侧, ∴A (-1,0),B (3,0). (2) 解:21322y x x =-- =21(3)2x x -- =21(1)22x x -+- =21(1)22x --∴点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由如下:∵A (-1,0),B (3,0),C (1,-2), ∴3(1)4AB =--=,ACBC∴AC =BC ,∵2224+=, ∴222AC BC AB +=, ∴90ACB ∠=︒,∴ACB △是等腰直角三角形.(3)解:当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形, ∴点P 的坐标为(1,2);当CO CP =时,22(10)(20)5CP =-+-=, ∴点P 的坐标为(1,52)-或(1,52)--;当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a , 如图所示,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,22441a a a ++=+34a =-∴点P 的坐标为3(1,)4-;综上,点P 的坐标为(1,2),52),(1,52)或3(1,)4-.【点睛】本题考查了二次函数与三角形的综合,解题的关键是掌握二次函数的性质,等腰三角形的判定与性质.25.(1)256y x x =-++;(2)顶点坐标是549,24⎛⎫⎪⎝⎭,对称轴是52x =;(3)ABC ∆的面积为21,>0y 时,x 的取值范围是-1<<6x . 【解析】 【分析】(1)直接利用待定系数法将已知点代入得出方程组求出答案; (2)直接利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x 轴的交点坐标,然后利用三角形面积公式和图像得出答案. 【详解】(1)∵二次函数2y x bx c =-++的图象经过点()0,6C 、()1,10,∴6110c b c =⎧⎨-++=⎩, 解这个方程组,得56b c =⎧⎨=⎩, ∴该二次函数的解析式是256y x x =-++;(2)225495624y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴顶点坐标是549,24⎛⎫ ⎪⎝⎭; 对称轴是52x =; (3)∵二次函数256y x x =-++的图象与x 轴交于A ,B 两点,∴2560x x -++=,解这个方程得:11x =-,26x =,即二次函数256y x x =-++与x 轴的两个交点的坐标为()1,0A -,()6,0B .∴ABC ∆的面积()116162122ABC S AB OC =⨯=⨯--⨯=. 由图像可得,当-1<<6x 时,>0y ,故>0y 时,x 的取值范围是-1<<6x .【点睛】本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键.。

2020年上学期初中八年级数学 自变量的取值范围 习题课(1)

2020年上学期初中八年级数学 自变量的取值范围 习题课(1)

个图形的重叠部分也是等腰直角三
角形.由MA=x,得
y=
1 2
x2 , 00#≤xx≤1100. .
14.一辆长途汽车,以60 km/h的平均速度,从甲地驶往相距270
km的乙地.求汽车距乙地的路程s(km)与行驶时间t(h)的函数关系 式,并指出自变量的取值范围.
解: s=270-60t,自变量t的取值范围是0≤t≤4.5.
6.汽车由A地驶往相距840千米的B地,汽车的平均速度为每
小时70千米,t小时后,汽车距B地s千米. (1)求s与t的函数表达式,并写出自变量t的取值范围. (2)经过2小时后,汽车离B地多少千米? (3)经过多少小时后,汽车离B地140千米? 解: (1)s=840-70t(0≤t≤12).
(2)当t=2时,s=840-70×2=700. 所以经过2小时后,汽车离B地700千米.
的取值范围,则这个函数解析式为( C )
A.y=x+2
B.y=x2+2
C.y= x + 2
D.y= 1 x+ 2
2. 等腰三角形的周长是40 cm,底边长y(cm)是腰长 x(cm)的函数,此函数表达式和自变量取值范围正确 的是( C ) A.y=-2x+40(0<x<20) B.y=-0.5x+20(10<x<20) C.y=-2x+40(10<x<20) D.y=-0.5x+20(0<x<20)
解:(1)设该厂每月的利润为W(元),产品件数为x件,则W=(50 -25)x-2×0.5x-30 000, 即W=24x-30 000.
(2)由题意可知,W>0,即24x-30 000>0,解得x>1 250. 因为x为正整数,所以该厂每月至少需生产并销售这种产 品1 251件.

初二数学函数试题

初二数学函数试题

初二数学函数试题1.函数y=+中自变量x的取值范围是A.x≤2B.x="3"C.x<2且x≠3D.x≤2且x≠3【答案】A【解析】根据分式的分母不能为0,二次根号下的数为非负数即可得到结果。

由题意得,解得,则,故选A.【考点】本题考查的是分式、二次根式有意义的条件点评:解答本题的关键是熟记分式的分母不能为0;二次根号下的数为非负数,二次根式才有意义。

2.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→作匀速运动,那么△ABP的面积S与点P运动的路程之间的函数图象大致是( )A B C D【答案】B【解析】根据点P的运动路径结合矩形的长和宽分析即可判断。

当B→C段运动时,底AB保持不变,高逐渐增大,则△ABP的面积S也逐渐增大,到达C点时,面积为;当点P在C→D段运动时,底AB和高均保持不变,则△ABP的面积S也保持不变,始终为,故选B.【考点】本题考查的是三角形的面积公式,函数图象点评:解答本题的关键是熟练掌握三角形的面积公式,注意同底等高的三角形面积相同。

3.如图,平面直角坐标系中,在边长为1的正方形的边上有一动点沿运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )【答案】D【解析】根据则点P的纵坐标y随点P走过的路程s之间的函数关系图象可以分为4部分,当P点在AB上,当P点在BC上,当P点在CD上,点P在AD上即可得出图象.P点在AB上,此时纵坐标越来越小,最小值是1,P点在BC上,此时纵坐标为定值1.当P点在CD上,此时纵坐标越来越大,最大值是2,P点在AD上,此时纵坐标为定值2.故选D.【考点】本题考查的是动点问题的函数图象点评:解决问题的关键是分解函数得出不同位置时的函数关系,进而得出图象.4.如图,和的是等腰直角三形,,.点B与点D重合,点在同一条直线上,将沿方向平移,至点与点重合时停止.设点之间的距离为x,与重叠部分的面积为,则准确反映与之间对应关系的图象是( )【答案】B【解析】要找出准确反映y与x之间对应关系的图象,需分析在不同阶段中y随x变化的情况,由题意知,在△ABC移动的过程中,阴影部分总为等腰直角三角形;据此根据重合部分的斜边长的不同分情况讨论求解.由题意知:在△ABC移动的过程中,阴影部分总为等腰直角三角形.当0<x<2时,此时重合部分的斜边长为x,则;当2≤x≤4时,此时重合部分的斜边长为2,则;当4<x≤6时,此时重合部分的斜边长为2-(x-4)=6-x,则;由以上分析可知,这个分段函数的图象左边为抛物线的一部分,中间为直线的一部分,右边为抛物线的一部分.故选B.【考点】本题考查的是动点问题的函数图象点评:解决问题的关键是分解函数得出不同位置时的函数关系,进而得出图象.5.如图,边长为1和2的两个正方形的一边在同一水平线上,小正方形沿水平线自左向右匀速穿过大正方形,下图反映了这个运动的全过程.设小正方形的运动时间为t,两正方形重叠部分面积为S,则S与t的函数图象大致为( ).【答案】C【解析】根据小正方形与大正方形重叠部分的变化情况,面积由0→逐步增大→保持不变→逐步减小→0,可判断函数图象.小正方形运动过程中,S与t的函数关系为分段函数,即当0≤t<1时,函数为s=t,当1≤t≤2时,函数为s=1,当2<t≤3时,s=3-t,即按照自变量t:0→1→2→3分为三段.故选C.【考点】本题考查的是动点问题的函数图象点评:解决问题的关键是分解函数得出不同位置时的函数关系,进而得出图象.6.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动连结DP,过点A作AE⊥DP,垂足为E,设DP=,AE=,则能反映与之间函数关系的大致图象是( )【答案】C【解析】连接AP,根据三角形面积的不同表示方法即可判断。

初二取值范围练习题

初二取值范围练习题

初二取值范围练习题问题一:已知 a、b、c 为实数,且 a + b + c = 13,a - b + c = 1,求ab 的取值范围。

解析:根据题目已知条件,我们可以列出以下两个方程:1)a + b + c = 132)a - b + c = 1将第二个方程改写为 a + c = b + 1,然后将其代入第一个方程:(a + b + c) + (a + c) = 13 + (b + 1)2a + 2c = b + 14由此可得 b = 2a + 2c - 14。

现在我们来确定 ab 的取值范围。

考虑两种情况:情况一:当 c = 0 时,根据 b = 2a + 2c - 14,可得 b = 2a - 14。

此时,ab 的取值范围为 a(2a - 14),即 2a^2 - 14a。

情况二:当c ≠ 0 时,根据 b = 2a + 2c - 14,可得 b = 2(a + c) - 14,即 b = 2(a + c) - 14。

此时,ab 的取值范围为 a[2(a + c) - 14],即 2a^2 + 2ac - 14a。

综上所述,ab 的取值范围为 2a^2 - 14a 和 2a^2 + 2ac - 14a。

问题二:已知函数 f(x) = mx + n 的定义域为 (-4, 5),值域为 (-9, 7),求 m 和 n 的取值范围。

解析:根据函数 f(x) = mx + n 的定义域和值域的特点,我们可以得出以下两个不等式:1)-4 < x < 5 (定义域)2)-9 < mx + n < 7 (值域)首先,我们来确定 m 的取值范围。

根据第二个不等式,移项得:-7 < mx < 7 - n由于 x 的取值范围为 (-4, 5),那么 m 的取值范围为 -7 / 5 < m < (7 - n) / 5。

接下来,我们来确定 n 的取值范围。

根据第二个不等式,移项得:-9 - mx < n < 7 - mx由于 x 的取值范围为 (-4, 5),那么 n 的取值范围为 -9 - 5m < n < 7 -4m。

初二数学选择题练习试题集

初二数学选择题练习试题集

初二数学选择题练习试题答案及解析1.若点P(2k-1,1-k)在第四象限,则k的取值范围为()A.k>1B.k<C.k>D.<k<1【答案】A.【解析】由题意得:,解得,∴k>1.故选A.【考点】1.点的坐标;2.解一元一次不等式组.2.一次函数y=-x-1的图象与y轴的交点坐标为()A.(-1,0)B.(1,0)C.(0,1)D.(0,-1)【答案】A.【解析】令x=0,得y=-0-1=-1,则函数与y轴的交点坐标是(-1,0).故选A.考点: 一次函数图象上点的坐标特征.3.如图,下列说法错误的是()A.∠1和∠2是同旁内角B.∠3和∠4是内错角C.∠5和∠6是同旁内角D.∠5和∠8是同位角【答案】C【解析】根据同旁内角、内错角、同位角的定义结合图形特征依次分析各选项即可作出判断. A、∠1和∠2是同旁内角,B、∠3和∠4是内错角,D、∠5和∠8是同位角,均正确,不符题意;C、∠5和∠6不是同旁内角,故错误,本选项符合题意.【考点】三线八角点评:本题属于基础应用题,只需学生熟练掌握同旁内角、内错角、同位角的定义,即可完成.4.在△ABC中,∠A=90°,对应三条边分别为a、b、c,则a、b、c满足的关系为()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.b+c=a【答案】C【解析】勾股定理:直角三角形的两条直角边的平方和等于斜边的平方.∵∠A=90°∴故选C.【考点】勾股定理点评:本题属于基础应用题,只需学生熟练掌握勾股定理,即可完成.5.若不等式组只有3个整数解,则a的取值范围是A.B.C.D.【答案】D【解析】先根据一元一次不等式组解出x的取值,再根据不等式组,只有3个整数解,求出实数a的取值范围.,由①得:,由②得:x<1,∴不等式组的解集为:a x<1,∵只有3个整数解,∴整数解为:0,-1,-2,∴,故选:D.【考点】一元一次不等式组点评:此题考查的是一元一次不等式的解法,根据x的取值范围,得出x的取值范围,然后根据不等式组只有3个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.在□ABCD中,E在BC边上,AE交BD于F,若BE∶EC=4∶5,则BF∶FD等于()A.4∶5B.5∶4C.5∶9D.4∶9【答案】D【解析】由平行四边形的性质可证△BEF∽△DAF,再根据相似三角形的性质∵ABCD是平行四边形,∴BC∥AD,BC=AD∴△BEF∽△DAF∴BE:DA=BF:DF∵BE∶EC=4∶5∴BE∶BC=4∶9∵BC=AD∴BF:FD= BE:DA=BE:BC=4:9故选D.【考点】平行四边形的性质,相似三角形的判定及性质点评:平行四边形的性质的应用是初中数学的重点,也是难点,是中考常见题,因而熟练掌握平行四边形的性质极为重要.7.下列图形是相似多边形的是()A.所有的平行四边形;B.所有的矩形C.所有的菱形;D.所有的正方形【答案】D【解析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【考点】相似多边形点评:本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.等于8.如图矩形ABCD中,若AB=4,BC=9,E、F分别为BC,DA上的点,则S四边形AECF()A.12B.24C.36D.48【答案】B【解析】根据AB,BC即可计算矩形ABCD的面积,根据AB,BE,CD,DF即可计算△ABE和△CDF的值,从而得到结果.AB=4,BC=9,则矩形ABCD的面积为4×9=36,△ABE的面积为×4×3=6,△CDF的面积为×4×3=6,∴四边形AECF的面积为36-6-6=24,故选 B.【考点】本题主要考查矩形的性质及三角形的面积公式点评:本题中正确计算△ABE和△CDF的面积是解题的关键.9.下列说法正确的是( )A.x=1是不等式-2x<1的解集B.x=-3是不等式-x<1的解集C.x>-2是不等式-2x<1的解集D.不等式-x<1的解集是x<-1【答案】A【解析】根据不等式的解集的定义依次分析各项即可。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学取值范围练习题
题目一:方程的解集表示范围
1. 解方程:2x + 5 = 13,并写出解集的表示范围。

解析:
将方程2x + 5 = 13移项,得到2x = 13 - 5,即2x = 8。

进一步计算得到x = 4。

解集的表示范围为{x | x = 4}。

题目二:不等式的解集表示范围
1. 求解不等式2x - 3 > 7,并写出解集的表示范围。

解析:
将不等式2x - 3 > 7移项,得到2x > 7 + 3,即2x > 10。

进一步计算得到x > 5。

解集的表示范围为{x | x > 5}。

题目三:复合不等式的解集表示范围
1. 求解复合不等式-2 < x - 3 ≤ 5,并写出解集的表示范围。

解析:
首先,解第一个不等式-2 < x - 3,移项得到x - 3 > -2,即x > 1。

再解第二个不等式x - 3 ≤ 5,移项得到x ≤ 5 + 3,即x ≤ 8。

综合以上两个不等式的解集,得到1 < x ≤ 8。

解集的表示范围为{x | 1 < x ≤ 8}。

题目四:绝对值不等式的解集表示范围
1. 求解绝对值不等式|3x - 5| < 7,并写出解集的表示范围。

解析:
首先,解不等式3x - 5 < 7,移项得到3x < 7 + 5,即3x < 12。

进一步计算得到x < 4。

然后,再解不等式3x - 5 > -7,移项得到3x > -7 + 5,即3x > -2。

进一步计算得到x > -2/3。

综合以上两个不等式的解集,得到-2/3 < x < 4。

解集的表示范围为{x | -2/3 < x < 4}。

结语:
通过解题,我们学习了方程和不等式的解集表示范围。

在数学中,准确表示解集能够帮助我们更好地理解和应用数学知识。

加强对取值范围的理解,将有助于我们解决实际问题和提高数学能力。

相关文档
最新文档