摄影测量空间后方交会

合集下载

空间后方交会的解算

空间后方交会的解算

空间后方交会的解算一. 空间后方交会的目的摄影测量主要利用摄影的方法获取地面的信息,主要是是点位信息,属性信息,因此要对此进行空间定位和建模,并首先确定模型的参数,这就是空间后方交会的目的,用以求出模型外方位元素。

二. 空间后方交会的原理空间后方交会的原理是共线方程。

共线方程是依据相似三角形原理给出的,其形式如下111333222333()()()()()()()()()()()()A S A S A S A S A S A S AS A S A S A S A S A S a X X b Y Y c Z Z x f a X X a Y Y a Z Z a X X b Y Y c Z Z y f a X X a Y Y a Z Z -+-+-=--+-+--+-+-=--+-+-上式成为中心投影的构线方程,我们可以根据几个已知点,来计算方程的参数,一般需要六个方程,或者要三个点,为提高精度,可存在多余观测,然后利用最小二乘求其最小二乘解。

将公式利用泰勒公式线性化,取至一次项,得到其系数矩阵A ;引入改正数(残差)V ,则可将其写成矩阵形式:V AX L =-其中111333222333[,]()()()()()()()()()()()()()()Tx y A S A S A S x A S A S A S A S A S A S y A S A S A S L l l a X X b Y Y c Z Z l x x x fa X X a Y Y a Z Z a X Xb Y Yc Z Z l y y y fa X X a Y Y a Z Z =-+-+-=-=+-+-+--+-+-=-=+-+-+- 则1()T T X A A A L -=X 为外方位元素的近似改正数,由于采用泰勒展开取至一次项,为减少误差,要将的出的值作为近似值进行迭代,知道小于规定的误差三. 空间后方交会解算过程1. 已知条件近似垂直摄影00253.24mmx y 0f ===2. 解算程序流程图MATLAB 程序format long;s1=xlsread('data.xls');%读取数据a1=s1(1:4,1:2);%影像坐标b1=s1(1:4,3:5);%地面摄影测量坐标a2=s1.*10^-3;%影像坐标单位转化j1=a2(1,:)-a2(2,:);j2=j1(1,1)^2+j1(1,2)^2;lengh_a1=sqrt(j2); %相片某一长度j1=b1(1,:)-b1(1,:);j2=j1(1,1)^2+j1(1,2)^2;lengh_b1=sqrt(j2); %地面对应的长度m=lengh_b1/lengh_a1;%求出比例尺n0=0;p0=0;q0=0;x0=mean(b1(:,1));y0=mean(b1(:,2));f=153.24*10^-3;z0=m*f;x001={x0,x0,x0,x0};X0=cell2mat(x001)';y001={y0,y0,y0,y0};Y0=cell2mat(y001)';z001={z0,z0,z0,z0};Z0=cell2mat(z001)';%初始化外方位元素的值aa1=cos(n0)*cos(q0)-sin(n0)*sin(p0)*sin(q0);aa2=-sin(q0)*cos(n0)-sin(n0)*sin(p0)*cos(q0);aa3=-sin(n0)*cos(p0);bb1=sin(q0)*cos(p0);bb2=cos(q0)*cos(p0);bb3=-sin(p0);cc1=sin(n0)*cos(q0)+sin(p0)*cos(n0)*sin(q0);cc2=-sin(n0)*sin(q0)+sin(p0)*cos(q0)*cos(n0);cc3=cos(n0)*cos(p0);%计算改正数XX1=aa1.*(b1(:,1)-X0)+bb1.*(b1(:,2)-Y0)+cc1.*(b1(:,3)-Z0); XX2=aa2.*(b1(:,1)-X0)+bb2.*(b1(:,2)-Y0)+cc2.*(b1(:,3)-Z0); XX3=aa3.*(b1(:,1)-X0)+bb3.*(b1(:,2)-Y0)+cc3.*(b1(:,3)-Z0); lx=a1(:,1)+f.*(XX1./XX3);ly=a1(:,2)+f.*(XX2./XX3);l={lx',ly'};L=cell2mat(l)';%方程系数A=[-3.969*10^-5 0 2.231*10^-5 -0.2 -0.04 -0.06899;0 -3.969*10^-5 1.787*10^-5 -0.04 -0.18 0.08615;-2.88*10^-5 0 1*10^-5 -0.17 0.03 0.08211;0 -2.88*10^-5 -1.54*10^-5 0.03 -0.2 0.0534;-4.14*10^-5 0 4*10^-6 -0.15 -7.4*10^-3 -0.07663;0 -4.14*10^-5 2.07*10^-5 -7.4*10^-3 -0.19 0.01478;-2.89*10^-5 0 -1.98*10^-6 -0.15 -4.4*10^-3 0.06443;0 -2.89*10^-5 -1.22*10^-5 -4.4*10^-3 -0.18 0.01046];%L=[-1.28 3.78 -3.02 -1.45 -4.25 4.98 -4.72 -0.385]'.*10^-2; %第一次迭代X=inv(A'*A)*A'*L;3.结果X=1492.41127406195-554.4015671761941425.68660973544-0.0383847815608609 0.00911624039769785 -0.105416434087641S=1492.41127406195-554.401567176194 1425.68660973544 38436.9616152184 27963.1641162404-0.105416434087641。

单像空间后方交会名词解释

单像空间后方交会名词解释

单像空间后方交会名词解释
单像空间后方交会是摄影测量学中的一个重要概念,它是指利用单个影像进行地物测量和定位的方法。

在单像空间后方交会中,通过对单张影像进行分析,可以确定地面上物体的位置和形状。

这个过程涉及到对影像中的特征点进行识别和匹配,然后利用相机内外参数以及影像上的像点坐标来计算地物的三维坐标。

单像空间后方交会的过程包括以下几个步骤,首先是对影像进行预处理,包括去畸变、影像配准等操作;然后是特征点的提取和匹配,这一步是通过计算机视觉算法来实现的,可以利用角点、边缘等特征来进行匹配;接下来是相机内外参数的标定,这一步是为了将像素坐标转换为实际世界坐标而进行的;最后是利用已知的相机参数和像点坐标来计算地物的三维坐标。

单像空间后方交会在航空摄影、遥感影像解译和地图制图等领域有着广泛的应用。

它可以通过对单张影像的处理,实现对地物的测量和定位,为地理信息系统和地图制图提供了重要的数据基础。

同时,随着计算机视觉和图像处理技术的不断发展,单像空间后方交会的精度和效率也在不断提高,为各种应用领域提供了更加可靠和精确的地物信息。

摄影测量解析基础(后方交会前方交会)

摄影测量解析基础(后方交会前方交会)

06
结果输出
输出目标点的三维坐标数据。
前方交会方法的优缺点分析
优点 不需要地面控制点,可以在未知环境中进行测量。
可以快速获取大范围的三维空间信息。
前方交会方法的优缺点分析
• 适用于动态目标和快速测量场景。
前方交会方法的优缺点分析
01
缺点
02
03
04
对光照条件敏感,光照变化会 影响测量精度。
对摄影图像的质量要求较高, 需要清晰、分辨率高的图像。
随着科技的不断发展,摄影测量技术也在不断进步和完善,其在各个领域的应用 也日益广泛和深入。
摄影测量的历史与发展
01
摄影测量起源于19世纪中叶,当时人 们开始使用胶片相机进行地形测量。 随着技术的发展,数字相机逐渐取代 了胶片相机,使得摄影测量更加便捷 和高效。
02
近年来,随着计算机技术和人工智能 的飞速发展,摄影测量技术也取得了 重大突破。例如,无人机技术的兴起 使得摄影测量更加灵活、快速和安全 ;计算机视觉和深度学习技术的应用 则提高了影像解析的自动化和智能化 水平。
在复杂地形和遮挡严重的环境 中,前方交会方法可能会失效

05 实际应用案例
Hale Waihona Puke 后方交会方法应用案例总结词
通过已知的摄影站和地面控制点,解算出摄影中心和地面点的空间坐标。
详细描述
后方交会方法常用于地图更新、地籍测量和城市三维建模等领域。例如,在城市三维建模中,利用后方交会方法 可以快速准确地获取建筑物表面的空间坐标,为构建真实感强的城市三维模型提供数据支持。
图像获取
获取至少两幅不同角度的摄影图像。
01
02
像片处理
对图像进行预处理,包括图像校正、去噪等 操作。

第五讲 单片空间后方交会

第五讲 单片空间后方交会

x12 − f (1 + 2 ) f xy − 1 1 f
2 x2 − f (1 + 2 ) f

x1 y1 f
y12 − f (1 + 2 ) f − x2 y2 f
x y − 2 2 f
2 x3 − f (1 + 2 ) f
2 y2 − f (1 + 2 ) f

x3 y3 f
xy − 3 3 f
Y B
A
C X
利用航摄像片上三个以上像点坐标和对应像 点坐标和对应地面点坐标,计算像片外方位元 素的工作,称为单张像片的空间后方交会。 进行空间后方交会运算,常用的一个基本公 式是前面提到的共线方程。式中的未知数,是 六个外方位元素。由于一个已知点可列出两个 方程式,如有三个不在一条直线上的已知点, 就可列出六个独立的方程式,解求六个外方位 元素。由于共线条件方程的严密关系式是非线 性函数,不便于计算机迭代计算。为此,要由 严密公式推导出一次项近似公式,即变为线性 函数。
(5) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式,逐 ) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式, 点计算像点坐标的近似值 ( x), ( y ) 并计算 lx , l y a ( X − X S ) + b1 (Y − YS ) + c1 ( Z − Z S ) x=−f 1 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) a ( X − X S ) + b2 (Y − YS ) + c2 ( Z − Z S ) y=−f 2 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) (6) 组成误差方程式。 ) 组成误差方程式。 7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (8) 解算法方程,迭代求得未知数的改正数。 ) 解算法方程,迭代求得未知数的改正数。

单像空间后方交会实习报告

单像空间后方交会实习报告

单像空间后方交会实习报告一、实习目的单像空间后方交会是摄影测量中确定像片外方位元素的重要方法。

通过本次实习,旨在深入理解单像空间后方交会的基本原理和计算过程,熟练掌握相关软件的操作,提高对摄影测量数据处理的实践能力,并培养解决实际问题的思维和方法。

二、实习原理单像空间后方交会的目的是利用像片上的像点坐标以及相应的地面控制点坐标,通过数学模型求解像片的外方位元素(三个线元素 Xs、Ys、Zs 和三个角元素φ、ω、κ)。

其基本原理基于共线条件方程,即摄影中心、像点和相应的地面点位于同一条直线上。

共线条件方程可以表示为:\\begin{align}x x_0&= f\frac{a_1(X X_s) + b_1(Y Y_s) + c_1(Z Z_s)}{a_3(X X_s) + b_3(Y Y_s) + c_3(Z Z_s)}\\y y_0&= f\frac{a_2(X X_s) + b_2(Y Y_s) + c_2(Z Z_s)}{a_3(X X_s) + b_3(Y Y_s) + c_3(Z Z_s)}\end{align}\其中,\((x,y)\)为像点坐标,\((x_0,y_0)\)为主点坐标,\(f\)为摄影机焦距,\((X,Y,Z)\)为地面点的物方空间坐标,\((X_s,Y_s,Z_s)\)为摄影中心的物方空间坐标,\((a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)\)为由角元素φ、ω、κ 构成的旋转矩阵的元素。

三、实习数据本次实习使用了一组航空像片,像片比例尺为 1:5000,焦距为152mm,像主点坐标为\((x_0,y_0)=(5000mm,5000mm)\)。

同时,提供了 6 个均匀分布在像片范围内的地面控制点的物方空间坐标和像点坐标。

四、实习步骤1、数据准备整理地面控制点的物方空间坐标和像点坐标,确保数据的准确性。

输入像片的基本参数,如像主点坐标、焦距等。

后方交会残差值误差范围

后方交会残差值误差范围

后方交会残差值误差范围后方交会是摄影测量中常用的一种方法,用于确定地面上各个点的空间坐标。

在实际应用中,由于各种误差的存在,后方交会的结果会产生一定的残差值误差。

误差范围的确定对于保证测量结果的准确性和可靠性非常重要。

本文将从后方交会的基本原理、误差来源、误差计算方法以及误差范围的确定等方面进行详细的分析和论述。

一、后方交会的基本原理后方交会是一种基于像对几何关系的摄影测量方法,通过对各个像点的位置测量和相对方位角的观测,计算出地面控制点的空间坐标。

其基本原理可以简述如下:1. 反投影原理:根据像点在像空间上的位置,利用摄影测量的几何关系反推出这些像点所对应的地面点在物空间上的位置。

反投影原理是后方交会的理论基础,也是误差产生的根源。

2. 控制点观测:确定一定数量的控制点,并测量其像点位置及相对方位角。

控制点的选择应满足精度要求和实际情况,通常采用地面测量或其他摄影测量方法进行。

3. 几何模型:根据反投影原理和控制点观测,建立几何模型,描述像空间与物空间之间的几何关系。

模型包括相机的内外参数、像点的位置和相对方位角等。

4. 误差方程:利用几何模型,建立误差方程,将测量值与真实值之间的误差表示出来。

误差方程是分析误差来源、计算误差范围的基础。

二、后方交会误差的来源后方交会的误差主要来自于以下几个方面:1. 相机内外参数的误差:相机的内外参数是后方交会的重要参数,包括焦距、主点位置、旋转矩阵、平移向量等。

由于摄影测量设备和仪器的制造和使用限制,这些参数会存在误差,从而影响后方交会的结果。

2. 观测误差:观测误差包括控制点的像点测量误差和方位角观测误差。

像点测量误差可以由像点测量精度来描述,方位角观测误差可以由方位角观测精度来描述。

观测误差是由测量设备、操作人员和环境等因素共同引起的。

3. 地面控制点的精度:后方交会的精度还受到地面控制点的精度限制。

如果地面控制点的精度较差,那么后方交会的精度也会受到影响。

摄影测量学空间后方交会实验报告

摄影测量学空间后方交会实验报告

摄影测量学实验报告实验一、单像空间后方交会学院:建测学院班级:测绘082姓名:肖澎学号: 15一.实验目的1.深入了解单像空间后方交会的计算过程;2.加强空间后方交会基本公式和误差方程式,法线方程式的记忆;3.通过上机调试程序加强动手能力的培养。

二.实验原理以单幅影像为基础,从该影像所覆盖地面范围内若干控制点和相应点的像坐标量测值出发,根据共线条件方程,求解该影像在航空摄影时刻的相片外方位元素。

三.实验内容1.程序图框图2.实验数据(1)已知航摄仪内方位元素f=153.24mm,Xo=Yo=0。

限差0.1秒(2)已知4对点的影像坐标和地面坐标:3.实验程序using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace ConsoleApplication3{class Program{static void Main(){//输入比例尺,主距,参与平参点的个数Console.WriteLine("请输入比例尺分母m:\r");string m1 = Console.ReadLine();double m = (double)Convert.ToSingle(m1);Console.WriteLine("请输入主距f:\r");string f1 = Console.ReadLine();double f = (double)Convert.ToSingle(f1);Console.WriteLine("请输入参与平差控制点的个数n:\r");string n1 = Console.ReadLine();int n = (int)Convert.ToSingle(n1);//像点坐标的输入代码double[] arr1 = new double[2 * n];//1.像点x坐标的输入for (int i = 0; i < n; i++){Console.WriteLine("请输入已进行系统误差改正的像点坐标的x{0}值:\r", i+1);string u = Console.ReadLine();for (int j = 0; j < n; j += 2){arr1[j] = (double)Convert.ToSingle(u);}}//2.像点y坐标的输入for (int i = 0; i < n; i++){Console.WriteLine("请输入已进行系统误差改正的像点坐标的y{0}值:\r", i+1);string v = Console.ReadLine();for (int j = 1; j < n; j += 2){arr1[j] = (double)Convert.ToSingle(v);}}//控制点的坐标输入代码double[,] arr2 = new double[n, 3];//1.控制点X坐标的输入for (int j = 0; j < n; j++){Console.WriteLine("请输入控制点在地面摄影测量坐标系的坐标的X{0}值:\r", j+1);string u = Console.ReadLine();arr2[j , 0] = (double)Convert.ToSingle(u);}//2.控制点Y坐标的输入for (int k = 0; k < n; k++){Console.WriteLine("请输入控制点在地面摄影测量坐标系的坐标的Y{0}值:\r", k+1);string v = Console.ReadLine();arr2[k , 1] = (double)Convert.ToSingle(v);}//3.控制点Z坐标的输入for (int p =0; p < n; p++){Console.WriteLine("请输入控制点在地面摄影测量坐标系的坐标的Z{0}值:\r", p+1);string w = Console.ReadLine();arr2[p , 2] = (double)Convert.ToSingle(w);}//确定外方位元素的初始值//1.确定Xs的初始值:double Xs0 = 0;double sumx = 0;for (int j = 0; j < n; j++){double h = arr2[j, 0];sumx += h;}Xs0 = sumx / n;//2.确定Ys的初始值:double Ys0 = 0;double sumy = 0;for (int j = 0; j < n; j++){double h = arr2[j, 1];sumy += h;}Ys0 = sumy / n;//3.确定Zs的初始值:double Zs0 = 0;double sumz = 0;for (int j = 0; j <= n - 1; j++){double h = arr2[j, 2];sumz += h;}Zs0 = sumz / n;doubleΦ0 = 0;doubleΨ0 = 0;double K0 = 0;Console.WriteLine("Xs0,Ys0,Zs0,Φ0,Ψ0,K0的值分别是:{0},{1},{2},{3},{4},{5}", Xs0, Ys0, Zs0, 0, 0, 0);//用三个角元素的初始值按(3-4-5)计算各方向余弦值,组成旋转矩阵,此时的旋转矩阵为单位矩阵I:double[,] arr3 = new double[3, 3];for (int i = 0; i < 3; i++)arr3[i, i] = 1;}double a1 = arr3[0, 0]; double a2 = arr3[0, 1]; double a3 = arr3[0, 2];double b1 = arr3[1, 0]; double b2 = arr3[1, 1]; double b3 = arr3[1, 2];double c1 = arr3[2, 0]; double c2 = arr3[2, 1]; double c3 = arr3[2, 2];/*利用线元素的初始值和控制点的地面坐标,代入共线方程(3-5-2),* 逐点计算像点坐标的近似值*///1.定义存放像点近似值的数组double[] arr4 = new double[2 * n];//----------近似值矩阵//2.逐点像点坐标计算近似值//a.计算像点的x坐标近似值(x)for (int i = 0; i < 2 * n; i += 2){for (int j = 0; j < n; j++){arr4[i] = -f * (a1 * (arr2[j, 0] - Xs0) + b1 * (arr2[j, 1] - Ys0) + c1 * (arr2[j, 2] - Zs0)) / (a3 * (arr2[j, 0] - Xs0) + b3 * (arr2[j, 1] - Ys0) + c3 * (arr2[j, 2] - Zs0)); }}//b.计算像点的y坐标近似值(y)for (int i = 1; i < 2 * n; i += 2){for (int j = 0; j < n; j++){arr4[i] = -f * (a2 * (arr2[j, 0] - Xs0) + b2 * (arr2[j, 1] - Ys0) + c2 * (arr2[j, 2] - Zs0)) / (a3 * (arr2[j, 0] - Xs0) + b3 * (arr2[j, 1] - Ys0) + c3 * (arr2[j, 2] - Zs0)); }}//逐点计算误差方程式的系数和常数项,组成误差方程:double[,] arr5 = new double[2 * n, 6]; //------------系数矩阵(A)//1.计算dXs的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 0] = -1 / m; //-f/H == -1/m}//2.计算dYs的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 1] = -1 / m; //-f/H == -1/m}//3.a.计算误差方程式Vx中dZs的系数for (int i = 0; i < 2 * n; i += 2)arr5[i, 2] = -arr1[i] / m * f;}//3.b.计算误差方程式Vy中dZs的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 2] = -arr1[i] / m * f;}//4.a.计算误差方程式Vx中dΦ的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 3] = -f * (1 + arr1[i] * arr1[i] / f * f);}//4.a.计算误差方程式Vy中dΦ的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 3] = -arr1[i - 1] * arr1[i] / f;}//5.a.计算误差方程式Vx中dΨ的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 4] = -arr1[i] * arr1[i + 1] / f;}//5.b.计算误差方程式Vy中dΨ的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 4] = -f * (1 + arr1[i] * arr1[i] / f * f);}//6.a.计算误差方程式Vx中dk的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 5] = arr1[i + 1];}//6.b.计算误差方程式Vy中dk的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 5] = -arr1[i - 1];}//定义外方位元素组成的数组double[] arr6 = new double[6];//--------------------外方位元素改正数矩阵(X)//定义常数项元素组成的数组double[] arr7 = new double[2 * n];//-----------------常数矩阵(L)//计算lx的值for (int i = 0; i < 2 * n; i += 2)arr7[i] = arr1[i] - arr4[i]; //将近似值矩阵的元素代入}//计算ly的值for (int i = 1; i <= 2 * (n - 1); i += 2){arr7[i] = arr1[i] - arr4[i]; //将近似值矩阵的元素代入}/* 对于所有像点的坐标观测值,一般认为是等精度量测,所以权阵P为单位阵.所以X=(ATA)-1ATL *///1.计算ATdouble[,] arr5T = new double[6, 2 * n];for (int i = 0; i < 6; i++){for (int j = 0; j < 2 * n; j++){arr5T[i, j] = arr5[j, i];}}//A的转置与A的乘积,存放在arr5AA中double[,] arr5AA = new double[6, 6];for (int i = 0; i < 6; i++){for (int j = 0; j < 6; j++){arr5AA[i, j] = 0;for (int l = 0; l < 2 * n; l++){arr5AA[i, j] += arr5T[i, l] * arr5[l, j];}}}nijuzhen(arr5AA);//arr5AA经过求逆后变成原矩阵的逆矩阵//arr5AA * arr5T存在arr5AARATdouble[,] arr5AARAT = new double[6, 2 * n];for (int i = 0; i < 6; i++){for (int j = 0; j < 2 * n; j++){arr5AARAT[i, j] = 0;for (int p = 0; p < 6; p++){arr5AARAT[i, j] += arr5AA[i, p] * arr5T[p, j];}}}//计算arr5AARAT x L,存在arrX中double[] arrX = new double[6];for (int i = 0; i < 6; i++){for (int j = 0; j < 1; j++){arrX[i] = 0;for (int vv = 0; vv < 6; vv++){arrX[i] += arr5AARAT[i, vv] * arr7[vv];}}}//计算外方位元素值double Xs, Ys, Zs, Φ, Ψ, K;Xs = Xs0 + arrX[0];Ys = Ys0 + arrX[1];Zs = Zs0 + arrX[2];Φ = Φ0 + arrX[3];Ψ = Ψ0 + arrX[4];K = K0 + arrX[5];for (int i = 0; i <= 2; i++){Xs += arrX[0];Ys += arrX[1];Zs += arrX[2];Φ += arrX[3];Ψ += arrX[4];K += arrX[5];}Console.WriteLine("Xs,Ys,Zs,Φ,Ψ,K的值分别是:{0},{1},{2},{3},{4},{5}", Xs0, Ys0, Zs0, Φ, Ψ, K);Console.Read();}//求arr5AA的逆矩public static double[,] nijuzhen(double[,] a) {double[,] B = new double[6, 6];int i, j, k;int row = 0;int col = 0;double max, temp;int[] p = new int[6];for (i = 0; i < 6; i++){p[i] = i;B[i, i] = 1;}for (k = 0; k < 6; k++){//找主元max = 0; row = col = i;for (i = k; i < 6; i++){for (j = k; j < 6; j++){temp = Math.Abs(a[i, j]);if (max < temp){max = temp;row = i;col = j;}}}//交换行列,将主元调整到k行k列上if (row != k){for (j = 0; j < 6; j++){temp = a[row, j];a[row, j] = a[k, j];a[k, j] = temp;temp = B[row, j];B[row, j] = B[k, j];B[k, j] = temp;i = p[row]; p[row] = p[k]; p[k] = i; }if (col != k){for (i = 0; i < 6; i++){temp = a[i, col];a[i, col] = a[i, k];a[i, k] = temp;}}//处理for (j = k + 1; j < 6; j++){a[k, j] /= a[k, k];}for (j = 0; j < 6; j++){B[k, j] /= a[k, k];a[k, k] = 1;}for (j = k + 1; j < 6; j++){for (i = 0; j < k; i++){a[i, j] -= a[i, k] * a[k, j];}for (i = k + 1; i < 6; i++){a[i, j] -= a[i, k] * a[k, j];}}for (j = 0; j < 6; j++){for (i = 0; i < k; i++){B[i, j] -= a[i, k] * B[k, j];}for (i = k + 1; i < 6; i++){B[i, j] -= a[i, k] * B[k, j];}for (i = 0; i < 6; i++) {a[i, k] = 0;a[k, k] = 1;}}//恢复行列次序for (j = 0; j < 6; j++){for (i = 0; i < 6; i++) {a[p[i], j] = B[i, j]; }}for (i = 0; i < 6; i++){for (j = 0; j < 6; j++) {a[i, j] = a[i, j];}}return a;}4.实验结果四.实验总结此次实验让我深入了解单像空间后方交会的计算过程,加强了对空间后方交会基本公式和误差方程式,法线方程式的记忆。

摄影测量后方交会

摄影测量后方交会

单张相片后方交会目录●作业任务 (3)●解算原理 (3)●具体过程 (4)●算法描述及程序流程 (4)●计算结果 (7)●结果分析 (8)●心得体会及建议 (8)●参考文献 (9)一,作业任务已知摄影机主距f=153.24mm,四对点的像点坐标与相应地面坐标列入下表:表1-1计算近似垂直摄影情况下后方交会解。

二,解算原理【关键词1】中心投影构像方程在摄影测量学中,最重要的方程就是中心投影构像方程(图2-1)。

这个方程将地面点在地面摄影测量坐标系中的坐标(物方坐标)和地面点对应像点的像平面坐标联系起来。

在解析摄影测量与数字摄影测量中是极其有用的。

在以后将要学习到的双像摄影测量光束法、解析测图仪原理及数字影像纠正等都要用到该式。

图2-1在上述公式中:x和y分别为以像主点为原点的像点坐标,相应地面点坐标为X,Y,Z,相片主距f以及外方位元素Xs,Ys,Zs,ψ,ω,κ。

而在此次作业中,就是已知四个地面控制点的坐标以及其对应的像点坐标,通过间接平差原理来求解此张航片的外方位元素。

【关键词2】间接平差在一个平差问题中,当所选的独立参数X的个数等于必要观测值t时,可将每个观测值表达成这t个参数的函数,组成观测方程,然后依据最小二乘原理求解,这种以观测方程为函数模型的平差方法,就是间接平差方法间接平差的函数模型为:随机模型为:平差准则为:VtPV=min【关键词3】单像空间后方交会利用至少三个已知地面控制点的坐标A(Xa,Ya,Za)、B(Xb,Yb,Zb)、Z(Xc,Yc,Zc),与其影像上对应的三个像点的影像坐标a(xa,ya)、b(xb,yb)、c(xc,yc),根据共线方程,反求该像点的外方位元素Xs,Ys,Zs,ψ,ω,κ。

这种解算方法是以单张像片为基础,亦称单像空间后方交会。

在此次作业中,就是已知四个控制点在地面摄影测量坐标系中的坐标和对应的像点坐标。

由此可以列出8个误差方程,存在两个多余观测数,则n=2。

摄影测量学空间后方交会实验报告13页

摄影测量学空间后方交会实验报告13页

摄影测量学空间后方交会实验报告13页报告摘要:本实验以三张已知高度物体的相片为样本,运用摄影测量学的空间后方交会算法,通过MATLAB编程实现对物体三维坐标的计算,并加以检验与探讨,得出结论相对合理。

同时,本实验也通过对MATLAB编程的应用,掌握了空间后方交会算法的理论及实践方法。

1. 实验目的(1)学习和应用摄影测量学中的空间后方交会算法,掌握其计算方法和程序实现过程。

(2)了解数字像相机的相关特性,并掌握其使用方法。

(3)通过对样本数据的处理,熟悉和掌握MATLAB编程的应用技巧。

2. 实验器材数字相机一部,尺子一把,样本图像三张,MATLAB软件。

3. 实验原理在精密测量领域中,采用摄影测量学的空间后方交会算法,可实现三维坐标的测量和重建。

这种方法是将已知物体的照片,通过对像点的提取及校准,得出像点坐标系下的物体的三维坐标系下的坐标。

这种算法的基本思路是:利用像点坐标系下的物体三维坐标系下的坐标关系,构建一个误差最小的方程组,通过矩阵的求解,得到物体三维坐标系下的坐标。

数字相机是一种基于CCD或CMOS成像器材料的成像设备,根据数字信号的处理能力,合成电子图像。

数字相机的性能主要包括分辨率、感光度、曝光控制、焦距、光圈等参数。

使用数字相机拍摄时,应根据拍摄对象的光线条件、距离、尺寸、景深等因素,进行调节。

4. 实验过程(1)利用数字相机拍摄三张已知高度物体的照片,并在样本上面贴标记,用尺子测算实际高度。

(2)利用图像处理软件MATLAB,对照片进行像点识别和校准,得到像点坐标系下的坐标。

(3)根据相片中已知物体的测高值及像点坐标系下的坐标值,通过MATLAB编写空间后方交会的程序算法,得出物体的三维坐标系下的坐标。

(4)对得出的坐标值进行检验及探讨,分析误差来源及部分工具库的使用方法。

5. 实验结果与分析本实验所得出的三维坐标值,原本应是在一个确定点之间展开的点集。

知道参数计算不全或精度不够是常有的事情(尤其在没有精密测量器具的条件下),这种情况我们应该考虑从给出的角度和图像来看和计算得到位置。

空间后方交会的直接解

空间后方交会的直接解

空间后方交会的直接解空间后方交会,即由物方已知若干个操纵点和相应的像点坐标,解求摄站的坐标与影像的方位,这是一个摄影测量的大体问题。

通常采纳最小二乘解算,由于原始的观测值方程是非线性的,因此,一样空间后方交会必需已知方位元素的初值,且解算进程是个迭代解算进程。

可是,在实时摄影测量的某些情形下,影像相关于物方坐标系的方位是任意的,且没有任何初值可供参考。

这时常规的空间后方交会最小二乘算法就无法处置,而必需成立新的空间后方交会的直接解法。

直接解法的大体思想是将它分成两步:先求出三个已知点iP 到摄站S 的距离i S ;然后求出摄站S 的坐标和影像方位。

物方一已知点()iiii,Z ,Y X P 在影像上的成像()iii,y x p ,依照影像已知的内方位元素()00,y f,x可求得从摄站()S S SS ,Z ,Y X到已知点iP 的观测方向i,βαi 。

()⎪⎪⎭⎪⎪⎬⎫-+-=-=2020tan tan x x f y y βf x x αi i i i i (1)距离方程组能够写成如下形式:⎪⎭⎪⎬⎫=+++=+++=+++020202312113312323233223221222211221b x x x a x b x x x a x b x x x a x (2)其中()j ;i ,,i,j S ,b a ijijijij≠===321cos ϕ。

因此,解算摄站S 到三个操纵点的距离问题,被归结为解算一个三元二次联立方程组的问题。

那个方程组的解算方式选用迭代法。

迭代计算公式可写成:()()() ,,,K Ab Aa x K K 2101=+=+(3)其中,[]TS F S F S F a 231312232321212=()()()()()()()()()()[]T2K 1K 3312K 3K 2232K 2K 112K S S G S S G S S G b------=()()()()[]TK K K K S S S x 232221=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111111---A⎪⎪⎭⎫ ⎝⎛=2sin 2122ijij F ϕ ij ij ij F G ϕcos 22=因此,距离的初值,即当0=K 时,Aa x =0()()20i0iS S =()()()()()()()()()()[]T2010331203022320201120S S G S S G S S G b------=代入(2-24)式进行迭代。

《摄影测量学》第10讲-空间后方交会

《摄影测量学》第10讲-空间后方交会

0 0 Fx ( X S ,YS0 , Z S ,ϕ 0 , ω0 ,κ 0 ) → Fx0
0 (XS − XS ) +
(YS − YS0 ) +
0 (Z S − Z S ) +
(ω − ω0 ) +
∂Fx0 ∂κ
0 0 (κ − κ 0 ) + Fx ( X S , YS0 , Z S ,ϕ 0 , ω0 ,κ 0 )
内 容 安 排
• 单像空间后方交会概述 • 共线方程的线性化(难点) 共线方程的线性化(难点) • 利用共线条件方程解算像片的外方位元 点) ( 点)
[一]概述
1、什么叫单像空间后方交会 什么叫单像空间后方交会 利用地面控制点及其在片像上的像点, 利用地面控制点及其在片像上的像点,确定一 张像片外方位元素的方法。 张像片外方位元素的方法。
2
(
)
求:a = ?
取初值
任取a0=0: da = 6 由于:da = a − a0,a = a0 + da = 6 da = −36 / 13 = −2.8 取a0=6: 由于:da = a − a0,a = a0 + da = 3.2 da = −1 取a0=3.2 由于:da = a − a0,a = a0 + da = 2.2
S S
) + b2 ( Y − Y S ) + c 2 ( Z − Z S ) ) + b3 ( Y − Y S ) + c 3 ( Z − Z S )
a1 ( X − X S ) + b1 (Y − YS ) + c1 ( Z − Z S ) Fx = x + f =0 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) Fy = y + f a 2 ( X − X S ) + b2 (Y − YS ) + c 2 ( Z − Z S ) =0 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S )

相片的空间后方交会解算 -回复

相片的空间后方交会解算 -回复

相片的空间后方交会解算-回复相片的空间后方交会解算是大地测量学中的一种测量方法,用来确定摄影测量中的相片位置和相对方位。

这种解算方法非常重要,可以用于制图、地形分析、地貌研究等各种大地测量的应用中。

下面将逐步回答关于相片的空间后方交会解算的问题,希望能够对你有所帮助。

首先,什么是相片的空间后方交会解算呢?相片的空间后方交会解算是指通过观测相片上的像点所对应的地面点的坐标,以及摄影测量的外方位元素(包括摄影基线的长度和方向,摄影机的姿态等),通过一系列的计算方法,确定相片所拍摄的地面点的坐标。

通过这种方法,可以将相片的像点坐标转化为地面点的坐标,从而达到控制相片位置的目的。

接下来,相片的空间后方交会解算有哪些步骤?相片的空间后方交会解算包括以下几个基本步骤:1. 外方位元素的确定:首先需要确定摄影测量中的外方位元素,包括摄影基线的长度和方向,摄影机的姿态等。

这些元素是解算相片空间位置的基础,可以通过测量方法或者其他数据源来确定。

2. 像点的测量:接下来需要对相片上的像点进行测量,确定其位置。

通常使用特定的测量设备,如数字化扫描仪或者像片投影仪,将像点的坐标测量出来。

3. 标定元素的确定:在解算之前,还需要确定相机的内方位元素,包括主距、畸变系数等。

这些元素可以通过相机的标定或者其他方法来确定。

4. 空间后方交会解算:有了上述的基本数据,就可以进行空间后方交会的计算了。

首先,根据已知的外方位元素和内方位元素,将像点的像平面坐标转化为物方空间坐标。

然后,利用解析几何的方法,以及已知的地面控制点坐标,通过空间交会的原理,求解出未知点的坐标。

最后,通过检核和精度评定来评估解算结果的可靠性。

以上就是相片的空间后方交会解算的基本步骤。

相片的空间后方交会解算在大地测量学中有着广泛的应用。

它可以用于测绘制图,制作数字地面模型,地形分析等各类应用。

它还可以应用于地貌研究,通过对不同时间段拍摄的相片进行空间后方交会解算,可以观察地形变化和地表运动等现象。

摄影测量实验报告(空间后方交会—前方交会)

摄影测量实验报告(空间后方交会—前方交会)

空间后方交会—空间前方交会程序编程实验一.实验目的要求掌握运用空间后方交会-空间前方交会求解地面点的空间位置.学会运用空间后方交会的原理,根据所给控制点的地面摄影测量坐标系坐标以及相应的像平面坐标系中的坐标,利用计算机编程语言实现空间后方交会的过程,完成所给像对中两张像片各自的外方位元素的求解。

然后根据空间后方交会所得的两张像片的内外方位元素,利用同名像点在左右像片上的坐标,求解其对应的地面点在摄影测量坐标系中的坐标,并完成精度评定过程,利用计算机编程语言实现此过程.二.仪器用具计算机、编程软件(MATLAB)三.实验数据实验数据包含四个地面控制点(GCP)的地面摄影测量坐标及在左右像片中的像平面坐标。

此四对坐标运用最小二乘法求解左右像片的外方位元素,即完成了空间后方的过程.另外还给出了5对地面点在左右像片中的像平面坐标和左右像片的内方位元素。

实验数据如下:内方位元素:f=152。

000mm,x0=0,y0=0 四.实验框图此过程完成空间后方交会求解像片的外方位元素,其中改正数小于限差(0。

00003,相当于0。

1'的角度值)为止。

在这个过程中采用迭代的方法,是外方位元素逐渐收敛于理论值,每次迭代所得的改正数都应加到上一次的初始值之中。

在空间后方交会中运用的数学模型为共线方程确定Xs,Ys,Zs的初始值时,对于左片可取地面左边两个GCP的坐标的平均值作为左片Xs 和Ys的初始值,取右边两个GCP的坐标平均值作为右片Xs 和Ys的初始值。

Zs可取地面所有GCP的Z坐标的平均值再加上航高.空间前方交会的数学模型为:五.实验源代码function Main_KJQHFJH()global R g1 g2 m G a c b1 b2;m=10000;a=5;c=4;feval(@shuru);%调用shuru()shurujcp()函数完成像点及feval(@shurujcp);%CCP有关数据的输入XYZ=feval(@MQZqianfangjh); %调用MQZqianfangjh()函数完成空间前方、%%%%%% 单位权中误差%%%%%后方交会计算解得外方位元素global V1 V2;%由于以上三个函数定义在外部文件中故需VV=[]; %用feval()完成调用过程for i=1:2*cVV(i)=V1(i);VV(2*i+1)=V2(i);endm0=sqrt(VV*(VV’)/(2*c-6));disp('单位权中误差m0为正负:’);disp(m0); %计算单位权中误差并将其输出显示输入GCP像点坐标及地面摄影测量坐标系坐标的函数和输入所求点像点坐标函数:function shurujcp()global c m;m=input(’摄影比例尺:');%输入GCP像点坐标数据函数并分别将其c=input('GCP的总数=');%存入到不同的矩阵之中disp('GCP左片像框标坐标:');global g1;g1=zeros(c,2);i=1;while i<=cm=input('x=');n=input('y=');g1(i,1)=m;g1(i,2)=n;i=i+1;enddisp('GCP右片像框标坐标:’);global g2;g2=zeros(c,2);i=1;while i〈=cm=input('x=’);n=input('y=’);g2(i,1)=m;g2(i,2)=n;i=i+1;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function shuru()global a;a=input('计算总像对点数='); %完成想计算所需的像平面坐标global b1;%坐标输入,存入不同的矩阵中b1=zeros(a,2);disp('左片像点坐标:')i=1;while i〈=am=input('x=’);n=input(’y=’);b1(i,1)=m;b1(i,2)=n;i=i+1;end%%global b2;b2=zeros(a,2);disp(’右片像点坐标:')i=1;while i〈=am=input('x=’);n=input('y=’);b2(i,1)=m;b2(i,2)=n;i=i+1;end%%global c;c=input(’GCP的总数=');disp('GCP摄影测量系坐标:’)global G;G=zeros(3,c);i=1;while i〈=cm=input(’X=');n=input(’Y=');v=input(’Z=');G(i,1)=m;G(i,2)=n;G(i,3)=v;i=i+1;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%空间前方交会和后方交会函数:function XYZ=MQZqianfangjh()global R1 R2 a f b1 b2 Ra Rb;global X1 X2;R1=Ra;R2=Rb;R1=zeros(3,3);R2=zeros(3,3);global g1 g2 G V1 V2 V WF c QXX QXX1 QXX2;xs0=(G(1,1)+G(3,1))/2;ys0=(G(1,2)+G(3,2))/2;[Xs1,Ys1,Zs1,q1,w1,k1 R]=houfangjh(g1,xs0,ys0);%对左片调用后方交会函数R1=R;V1=V;WF1=WF;QXX1=QXX;save '左片外方位元素为。

五上、数字摄影测量学单片空间后方交会

五上、数字摄影测量学单片空间后方交会

总误差方程
法方程
V Ax L
x (AT A) 1 (AT L)
X s Ys V1 A1 l1 Z V2 A2 l2 s V , A , L , x , Vn An ln T T li xi ( xi ) yi ( yi ) , Vi v xi v yi a11 a12 a13 a14 a15 a16 Ai a21 a22 a23 a24 a25 a26
已知点必须多余点, 数据处理方法采用 最小二乘法!
这是所有测量的一个统一的基本原则! 摄影测量也不例外。
二、误差方程与法方程



已知值 x0 , y0 , f ,m, X, Y, Z 观测值 x , y 相应改正数 vx,vy 未知数 Xs, Ys, Zs, , , 泰勒级数展开
四、空间后方交会的精度
求解各未知数的精度可以通过法方程系数矩阵 求逆的方法,解出相应的权倒数 Qii
mi m0 Qii 按下式计算第i未知数的中误差:
式中,m0为单位权中误差,计算公式 为: m [VV ] 0 2n 6 ,其中n为控制点的点数。
空间后方交会用到的已知点越多,空间后方交会 的精度越高,此外空点的分布也空间后方交会计算 的精度。空间后方交会使用的控制点应当避免位于 一个圆柱面上,否则,会出现解不唯一的情况。
偏导数 1
x f X Z 2 ( Z X) X s Z X s X s f 2 ( a1Z a3 X ) Z 1 X (a1 f f a3 ) Z Z 1 (a1 f a3 x) Z
偏导数 2
x f X Z 2 ( Z X) Z

摄影测量作业3-空间后方交会计算

摄影测量作业3-空间后方交会计算
5
CFileDialog dlgOpenFile(TRUE, _T("txt"), NULL, OFN_FILEMUSTEXIST, _T("(文本文件)|*.txt|(所有文件)|*.*)||"));
if (dlgOpenFile.DoModal() == IDCANCEL) return;//如果选择取消按钮,则退出
原理、算法流程、源程序、计算结果、结果分析、心得体会等。
三.实验所用到的数学公式及程序计算步骤。
单张影像的空间后方交会:利用已知地面控制点数据及相应像点坐标 根据共线方程反 求影像的外方位元素。 数学模型:共线条件方程式:
3
求解过程: (1)获取已知数据。从航摄资料中查取平均航高与摄影机主距;获取控制点的地面测
CMatrix X,_A,_AA,N_AA; _A = ~A;//A 的转置 _AA = _A*A; N_AA = _AA.Inv();//_AA 的逆矩阵 X = N_AA*_A*L; return X; }
CMatrix CKongJianHouFangJiaoHuiDlg::GetA(CMatrix xyXYZ, double f, CMatrix XX)//计算系数矩 阵A {
CMatrix CKongJianHouFangJiaoHuiDlg::GetL(CMatrix xyXYZ, double f, CMatrix XX)//计算 L 矩阵 {
int iRow = xyXYZ.Row(); CMatrix L(2 * iRow, 1); double XS = XX(0, 0); double YS = XX(0, 1); double ZS = XX(0, 2);
A(2*i, 3) = y*sin(w) - (x*(x*cos(k) - y*sin(k)) / f + f*cos(k))*cos(w); A(2*i, 4) = -f*sin(k) - x*(x*sin(k) + y*cos(k)) / f; A(2*i, 5) = y; A(2*i+1, 0) = (a2*f + a3*y) / _Z; A(2 * i + 1, 1) = (b2*f + b3*y) / _Z; A(2 * i + 1, 2) = (c2*f + c3*y) / _Z; A(2 * i + 1, 3) = -x*sin(w) - (y*(x*cos(k) - y*sin(k)) / f - f*sin(k))*cos(w); A(2 * i + 1, 4) = -f*cos(k) - y/ f*(x*sin(k) + y*cos(k)); A(2 * i + 1, 5) = -x; } return A; }

单像空间后方交会原理

单像空间后方交会原理

单像空间后方交会原理你知道单像空间后方交会吗?这可是摄影测量里一个超有趣的概念呢!咱们先来说说啥是单像空间后方交会。

想象一下,你拿着相机拍了一张照片,这张照片里有好多好多的景物。

那单像空间后方交会呢,就是通过这一张照片里的信息,去算出拍摄这张照片的时候,相机在空间里的位置和姿态。

比如说,照片里有一座山,还有一条河,还有几棵大树。

那咱们怎么通过这些东西来知道相机当时在哪,朝哪个方向呢?这就用到单像空间后方交会啦!这当中有几个关键的东西哦。

一个是控制点,就好像是我们的“小帮手”。

这些控制点是我们事先知道它们在空间里准确位置的点。

比如说,有个特别明显的大石头,我们知道它在地球上的坐标是多少。

然后呢,还有像片的内方位元素。

这就像是相机的“小秘密”,比如说相机的焦距啦等等。

那怎么通过这些来算出相机的位置和姿态呢?这就像是一个解谜的过程!咱们得先把照片上控制点的像点坐标找出来,这就像是在照片里给这些控制点“定位”。

然后呢,根据一些数学公式和算法,把这些坐标啊、内方位元素啊、控制点的空间坐标啊等等都放到一起,就像是把一堆拼图的碎片拼起来。

这个过程可不容易哦,得算好多好多的数学式子。

但是别担心,咱们聪明的科学家们早就想出了办法,有各种软件和工具能帮咱们完成这些复杂的计算。

你可能会想,这有啥用啊?用处可大啦!比如说,我们要做地图,要对一个地方进行测量,单像空间后方交会就能帮我们得到相机的位置和姿态,这样就能更准确地知道照片里的东西在实际空间里的位置啦。

而且哦,现在科技越来越发达,单像空间后方交会的精度也越来越高。

这就像是我们的眼睛越来越厉害,能看得更清楚,更准确!想象一下,如果没有单像空间后方交会,那我们看到的照片就只是一张好看的图片,没办法知道那么多背后的信息。

但是有了它,一张照片就像是一个装满了秘密的宝盒,我们可以一点点地解开,发现更多有趣的东西。

怎么样,是不是觉得单像空间后方交会很神奇很有趣呀?希望我讲得能让你明白这个有点复杂但又超级酷的原理!。

测绘中的航空摄影测量像空间后方交会定向技术和方法

测绘中的航空摄影测量像空间后方交会定向技术和方法

测绘中的航空摄影测量像空间后方交会定向技术和方法测绘中的航空摄影测量——像空间后方交会定向技术和方法导言:测绘工作是指通过对地球进行观测和测量,获取和处理地理空间信息的一系列工作。

航空摄影测量是测绘工作中重要的手段之一,能够高效、精确地获取大范围的地理信息。

而像空间后方交会定向技术和方法则是航空摄影测量中的关键环节,本文将对其进行探讨和介绍。

一、像空间后方交会定向的定义和原理像空间后方交会定向是航空摄影测量中解算摄影测量像对的相对定向元素、绝对定向元素和外业布控点坐标的一种方法。

它的基本原理是通过观测同一地物点在不同影像上的像点坐标,并结合已知的摄影测量元素,利用空间三角测量的方法和数学公式对航空影像进行分析和处理,最终得到准确的地物点坐标。

二、像空间后方交会定向的步骤和流程1. 影像预处理像空间后方交会定向的第一步是对采集的航空影像进行预处理。

这包括影像的几何校正、去畸变、边缘匹配和色调调整等工作。

通过这些预处理操作,可以保证后续的像点提取和像控测量的准确性。

2. 像点提取和像控测量像空间后方交会定向的关键步骤是对影像上的像点进行提取和测量。

这需要使用数字图像处理和计算机视觉的技术,通过筛选、匹配和校正等步骤,得到准确的像点坐标。

同时,还需要使用地面测量仪器对一些选定的像控点进行测量,作为后续定向的基础。

3. 摄影测量元素求解根据像点提取和像控测量的结果,结合已知的摄影测量元素,如摄影高度、焦距和旋转元素等,使用空间三角测量的方法和数学公式,求解相对定向和绝对定向元素。

这些元素包括像对的旋转角度、轴向比例尺和像对的位置误差等。

4. 外业布控点定位和坐标转换为了验证像空间后方交会定向结果的精度和可靠性,需要在实地布控一些已知坐标和控制点,通过GPS定位等技术手段测量其坐标。

然后,利用坐标转换的方法,将这些外业布控点的坐标转换为像平面坐标,与像空间后方交会定向的结果进行比对和分析。

5. 精度评定和验证在完成所有的定向计算和坐标转换后,需要对像空间后方交会定向的结果进行精度评定和验证。

9-空间后方交会

9-空间后方交会

a11 a12 Ai a21 a22
a13 a23
a14 a24
a15 a25
a16 a26
T
X dXS
dYS
dZS
d d d
li l x

ly

T
vi vx

vy

T
把所有像控点的误差方程列出后,构成总 误差方程,根据最小二乘间接评差原理可 列出法方程式:
五、空间后方交会实践
如何获取像片的六个外方位元素?
1)利用雷达;全球定位系统GPS;惯性导航系统.
2)空间后方交会:利用一定数量的地面控制点, 根据共线方程,反求像片的外方位元素。(已知 像片的内方位元素,至少三个地面点坐标并测出 相应的像点坐标)
计算要点:
1)计算的数学模型:共线方程按泰勒级数展开, 取一次项(线性化)。
2)在像片的四角选取四个或更多地面控制点,利 用最小二乘法平差计算。
计算步骤: 1)获取已知数据:比例尺1/m;H;内定向;控制点 地面坐标。
2)测量控制点的像点坐标。标刺,测量像框坐 标;像主点改正。 3)确定未知参数的初始值:竖直摄影时,角元 素初始值为零;线元素中,Zs0=H=mf; Xs0,Ys0取 控制点坐标的均值。
投 影 中 心 的 系 数
二、线性化-续
X Y Z
x xs 1 1 R R R y y s z zs
1 1
其中,R
R R R
1
1
1
把各偏导数代入整理得
f XX b2 Z Z ZZ x XX f sin XY f cos a 15 fsin ZZ ZZ x Yf a 16 Z fX f b1 YY f b2 XY y b 3 a 24 f b1 Z ZZ ZZ y XY f sin YY f cos a 25 fcos ZZ ZZ y X f a 26 Z x a 14 f Yf

空间后方交会

空间后方交会

空间后方交会
科技名词定义
中文名称:空间后方交会
英文名称:space resection
定义:利用航摄像片上三个以上不在一条直线上的已知点按构像方程计算该像片外方位元
素的方法。

空间后方交会,是指利用航摄像片上三个以上不在一条直线上的控制点按构像方程计算该像片外方位元素的方法。

内容
仅在待定点上设站,向三个已知控制点观测两个水平夹角a、b,从而计算待定点的坐标,称为后方交会。

交会测量是加密控制点常用的方法,它可以在数个已知控制点上设站,分别向待定点观测方向或距离,也可以在待定点上设站向数个已知控制点观测方向或距离,而后计算待定点的坐标。

常用的交会测量方法有前方交会、后方交会、侧边交会和自由测站法。

后方交会法首先出现于测绘地形图工作中,测量上称为“三点题”,是用图解法作为加密图根点之用。

后来随着解析法、公式法的出现,在工程建设控制测量中也经常被采用。

比如隧道工程控制网往往由于隧道开工前测设完成,而洞口土石方施工完毕后,需补设洞口投点,以便控制隧道轴线,测设投点就要用到后方交会法;深水桥墩放样测量中的墩心定位也可以应用此法,还可用来测定施工控制导线的始终点等。

应用范围之广说明了此法的实用性很强。

其代表图形如下图所示。

图中三角形ABC是控制网中的一个三角形,P点即为后方交会点(需确定坐标的待定点),只要置棱镜于P点,用全圆测回法测定a,b,r 三个角值,即可应用解析法公式算出待定点P的坐标。

此法内外业工作量小,只要P点的点位精度符合施工放样要求或作为洞口投点的精度要求,就可以成为广大测绘科技工作者所乐意选用的方法之一。

空间后方交会名词解释

空间后方交会名词解释

空间后方交会名词解释
空间后方交会,是指利用航摄像片上三个以上不在一条直线上的控制点按共线方程计算该像片外方位元素的方法。

是单幅影像解析过程中的一个步骤。

如果我们知道每幅影像的6个外方位元素,就能确定被摄物体与航摄影像的关系。

因此,如何获取影像的外方位元素,一直是摄影测量工作者所探讨的问题。

可采取的方法有:利用雷达、全球定位系统(GPS)、惯性导航系统(INS)以及星相摄影机来获取影像的外方位元素;也可利用影像覆盖范围内一定数量的控制点的空间坐标与影像坐标,根据共线条件方程反求该影像的外方位元素,这种方法称为单幅影像的空间后方交会。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摄影测量空间后方交会以单张影像空间后方交会方法,求解该像的外方位元素一、实验数据与理论基础:1、实验数据:航摄仪内方位元素f=153.24mm,x0=y0=0,以及4对点的影像坐标和相应的地面坐标:影像坐标地面坐标x(mm)y(mm)X(m)Y(m)Z(m)1-86.15-68.9936589.4125273.322195.172-53.4082.2137631.0831324.51728.693-14.78-76.6339100.9724934.982386.50410.4664.4340426.5430319.81757.312、理论基础(1) 空间后方交会是以单幅影像为基础,从该影像所覆盖地面范围内若干控制点的已知地面坐标和相应点的像坐标量测值出发,根据共线条件方程,解求该影像在航空摄影时刻的外方位元素Xs,Ys,Zs,φ,ω,κ。

(2) 每一对像方和物方点可列出2个方程,若有3个已知地面坐标的控制点,可列出6个方程,求取外方位元素改正数△Xs,△Ys,△Zs,△φ,△ω,△κ。

二、数学模型和算法公式1、数学模型:后方交会利用的理论模型为共线方程。

共线方程的表达公式为:)()()()()()(333111S A S A S A S A S A S A Z Z c Y Y b X X a Z Z c Y Y b X X a fx -+-+--+-+--=)()()()()()(333222S A S A S A S A S A S A Z Z c Y Y b X X a Z Z c Y Y b X X a fy -+-+--+-+--=其中参数分别为:κωϕκϕsin sin sin cos cos 1-=aκωϕκϕsin sin sin sin cos 2--=a ωϕcos sin 3-=aκωsin cos 1=b κωcos cos 2=b ωsin 3-=bκωϕκϕsin sin cos cos sin 1+=c κωϕκϕcos sin cos sin sin 2+-=c ωϕcos cos 3=c旋转矩阵R 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321321321c c c b b b a a a R2、 由于外方位元素共有6个未知数,根据上述公式可知,至少需要3个不在一条直线上的已知地面点坐标就可以求出像片的外方位元素。

3、由于共线方程是非线性方程,为了便于迭代计算,需要按泰勒级数展开,取小值一次项,使之线性化,得κκωωϕϕd xd x d x dZ Z x dY Y x dX X x x x S S S S S S ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+=)( κκωωϕϕd yd y d y dZ Z y dY Y y dX X y y y S S S S S S ∂∂+∂∂+∂∂+∂∂+∂∂+∂∂+=)(式中,(x),(y)为函数的近似值,κωϕd d d dZ dY dX S S S ,,,,,为6个外方位元素的改正数。

它们的系数为函数的偏导数。

矩阵形式为:[]κωϕd d d dZ dY dX X S S S=⎥⎦⎤⎢⎣⎡=262524232221161514131211a a a a a a a a a a a aA为了书写方便,令)()()(111S A S A S A Z Z c Y Y b X X a X -+-+-=)()()(222S A S A S A Z Z c Y Y b X X a Y -+-+-=)()()(333S A S A S A Z Z c Y Y b X X a Z -+-+-=则有公式:[][][][][][]111312131313212322232323111111s s s s s s x a a f a x X Z x a b f b x Y Z x a c f c x Z Z y a a f a y X Z y a b f b y Y Z y a a f c y Z Z∂==+∂∂==+∂∂==+∂∂==+∂∂==+∂∂==+∂141516242526sin (cos sin )cos cos sin (sin cos )sin (cos sin )sin cos cos (sin cos )xx a y x k y k f k f x x a f x k y k f x a y yy a x x k y k f k f y ya f x k y k f y a x ωωϕκωκωωϕκωκ⎡⎤∂==--+⎢⎥∂⎣⎦∂==--+∂∂==∂⎡⎤∂==----⎢⎥∂⎣⎦∂==--+∂∂==-∂4、 计算中,通常将控制点的地面坐标视为真值,而把相应的像点坐标视为观测值,加入相应的改正数 ,得 ,可列出每个点的误差方程式:xS S S x l d a d a d a dZ a dY a dX a V -+++++=κωϕ161514131211yS S S y l d a d a d a dZ a dY a dX a V -+++++=κωϕ2625242322215、 最后由X L =-V A 、T 1T ()()X L -=A A A 求得外方法元素,得到外方位元素的近似值:012012012012012012s s s s s s s s s s s s X X X X Y Y Y Y Z Z Z Z ϕϕϕϕωωωωκκκκ=+∆+∆+=+∆+∆+=+∆+∆+=+∆+∆+=+∆+∆+=+∆+∆+y x V V ,y x V y V x ++,三、基于MATLAB程序代码1、旋转矩阵代码function [R] = Rotation(P, W, K)TO_RAD = pi/180;P = P*TO_RAD;W = W*TO_RAD;K = K*TO_RAD;a1 = cos(P)*cos(K)-sin(P)*sin(W)*sin(K); a2 = -cos(P)*sin(K)-sin(P)*sin(W)*cos(K); a3 = -sin(P)*cos(W);b1 = cos(W)*sin(K);b2 = cos(W)*cos(K);b3 = -sin(W);c1 = sin(P)*cos(K)+cos(P)*sin(W)*sin(K); c2 = -sin(P)*sin(K)+cos(P)*sin(W)*cos(K); c3 = cos(P)*cos(W);R = [a1 a2 a3;b1 b2 b3;c1 c2 c3];2、空间后方交会代码clear all;clc;%输入控制点坐标x=[-86.15,-53.40,-14.78,10.46]/1000;y=[-68.99,82.21,-76.63,64.43]/1000;X=[36589.41,37631.08,39100.97,40426.54];Y=[25273.32,31324.51,24934.98,30319.81];Z=[2195.17,728.96,2386.50,757.31];%输入焦距f,外方位元素以及内方位元素初始值,n为迭代次数x0=0.0;y0=0.0;phi=0.0;omiga=0.0;k=0.0;m=44811.00;f=153.24/1000;X0=mean(X);Y0=mean(Y);Z0=mean(Z)+m*f;%定义最小二乘所需变量;XG=zeros(6,1);A=zeros(8,6);L=zeros(8,1);n=0;phi=phi*pi/180;omiga=omiga*pi/180;k=k*pi/180;n=n+1;%计算旋转矩阵Ra1=cos(phi)*cos(k)-sin(phi)*sin(omiga)*sin(k);a2=-cos(phi)*sin(k)-sin(phi)*sin(omiga)*cos(k);a3=-sin(phi)*cos(omiga);b1=cos(omiga)*sin(k);b2=cos(omiga)*cos(k);b3=-sin(omiga);c1=sin(phi)*cos(k)+cos(phi)*sin(omiga)*sin(k);c2=-sin(phi)*sin(k)+cos(phi)*sin(omiga)*cos(k);c3=cos(phi)*cos(omiga);R=[a1 a2 a3;b1 b2 b3;c1 c2 c3];%求取最小二乘中的系数矩阵内各个值以及L矩阵的值for i=1:1:4j=2*i-1;Z_Ava=a3*(X(1,i)-X0)+b3*(Y(1,i)-Y0)+c3*(Z(1,i)-Z0);A(j,1)=(a1*f+a3*x(1,i))/Z_Ava;A(j,2)=(b1*f+b3*x(1,i))/Z_Ava;A(j,3)=(c1*f+c3*x(1,i))/Z_Ava;A(j+1,1)=(a2*f+a3*y(1,i))/Z_Ava;A(j+1,2)=(b2*f+b3*y(1,i))/Z_Ava;A(j+1,3)=(c2*f+c3*y(1,i))/Z_Ava;A(j,4)=y(1,i)*sin(omiga)-(x(1,i)/f*(x(1,i)*cos(k)-y(1,i)*sin(k))+f*co s(k))*cos(omiga);A(j,5)=-f*sin(k)-x(1,i)/f*(x(1,i)*sin(k)+y(1,i)*cos(k));A(j,6)=y(1,i);A(j+1,4)=-x(1,i)*sin(omiga)-(y(1,i)/f*(x(1,i)*cos(k)-y(1,i)*sin(k))-f *sin(k))*cos(omiga);A(j+1,5)=-f*cos(k)-y(1,i)/f*(x(1,i)*sin(k)+y(1,i)*cos(k));A(j+1,6)=-x(1,i);L(j,1)=x(1,i)-(x0-f*(a1*(X(1,i)-X0)+b1*(Y(1,i)-Y0)+c1*(Z(1,i)-Z0))/Z_ Ava);L(j+1,1)=y(1,i)-(y0-f*(a2*(X(1,i)-X0)+b2*(Y(1,i)-Y0)+c2*(Z(1,i)-Z0))/ Z_Ava);end;%根据最小得到的公式求取观测值XG=(inv(A'*A))*(A'*L);%求取地面点坐标X0=X0+XG(1,1);Y0=Y0+XG(2,1);Z0=Z0+XG(3,1);phi=phi+XG(4,1);omiga=omiga+XG(5,1);k=k+XG(6,1);、%对计算误差进行判断,在误差范围内,则继续迭代,不在误差范围内,则推出循环。

相关文档
最新文档