中考数学几何图形专题训练50题含答案

合集下载

中考复习数学《几何图形中的相关计算》专项检测题(含答案)

中考复习数学《几何图形中的相关计算》专项检测题(含答案)

几何图形中的相关计算类型一与折叠、最值有关针对演练1.将一张宽为4 cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A. 83 3 cm2 B. 8 cm2 C. 163 3 cm2 D. 16 cm2第1题图第2题图2. 如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,折痕为BE、BF,则∠EFB的大小为()A. 45°B. 60°C. 65°D. 67.5°3. 小王把一张矩形纸片沿BC折叠,顶点A落在点A′,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是()A. 24B. 30C. 60D. 90 第3题图4.如图,在一张矩形纸片ABCD中,AD=4 cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为()A. 2 cmB. 2 3 cmC. 4 cmD. 4 3 cm 第4题图5.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B′F 的长为( )A. 35B. 45C. 23D. 32第5题图 第6题图6. 如图,已知在矩形ABCD 中,AB =4,BC =2,点M ,E 在AD 上,点F 在边AB 上,并且DM =1,现将△AEF 沿着直线EF 折叠,使点A 落在边CD 上的点P 处,则当PB +PM 的和最小时,ME 的长度为( )A. 13B. 49C. 23D. 597. 如图,△ABC 中,AB =AC ,∠BAC =64°,∠BAC 的平分线与AC 的垂直平分线交于点O ,将∠B 沿EF(E 在BC 上,F 在AB 上)折叠,点B 与点O 恰好重合,则∠OEB 的度数为( )A. 108°B. 120°C. 126°D. 128°第7题图 第8题图8. 如图,已知点D 是等腰直角△ABC 斜边AB 的中点,M 是边BC 上的点,将△DBM 沿DM 折叠,点B 的对称点E 落在直线AC 的左侧,EM 交边AC 于点F ,ED 交边AC 于点G .若△FCM 的周长为16,则斜边AB 的长为( ) A. 4 2 B. 8 2 C. 16 2 D. 32 29. 如图,菱形ABCD 中,E 是AD 的中点,将△CDE 沿CE 折叠后,点A 和点D 恰好重合,若菱形ABCD 的面积为43,则菱形ABCD 的周长为( ) A. 8 2 B. 16 2 C. 8 3 D. 16 310.如图,在△ABC 中,∠ACB =90°,AB =5,BC =3,P 是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是________.第10题图第11题图11.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F 是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B 落在B′处.若△CDB′恰为等腰三角形,则DB′的长为________.12. 如图,在完全重合放置的两张矩形纸片ABCD中,AB=4,BC=8,将上面的矩形纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分的面积为________第12题图类型二与旋转有关1. 如图,已知平行四边形ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )A. 130°B. 150°C. 160°D. 170°2. 如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.将Rt△ABC绕点B旋转90°至△DBE的位置,连接EC交BD于F,则CF∶FE 的值是( )A. 3∶4B. 3∶5C. 4∶3D. 5∶3第2题图第3题图3. 如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP 绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为( )A. 105°B. 112.5°C. 120°D. 135°4.如图,在矩形ABCD中,AB=,AD=10.连接BD,∠DBC的角平分线BE交DC于点E.现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当射线BE′和射线BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为_____.第4题图类型三与动点、最值有关1. 如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( ) A. 3 B. 2 3 C. 2 6 D. 6第1题图 第3题图2在平面直角坐标系中,点A(2,2),点B(32,32),动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为( )A. 2B. 3C. 4D. 53. 如图,△ABC 中,CA =CB ,AB =6,CD =4,E 是高线CD 的中点,CE 为⊙C 的半径.G 是⊙C 上一动点,P 是AG 的中点,则DP 的最大值为( )A. 72B. 352C. 2 3D. 4124. 如图,矩形ABCD 中,AD =2AB ,E 、F 分别是AD 、BC 上的点,且线段EF 过矩形对角线AC 的中点,PF∥AC ,则EF ∶BF 的最小值是( ) 第4题图A. 255B. 25C. 2525D. 125. 如图四边形ABCD ,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,BC =3,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD,则对角线PQ的长的最小值是()A. 3B. 4C. 5D.6第5题图第6题图6. 如图:已知P是线段AB上的动点(P不与A,B重合),AB=4,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF、PG,设EF的中点为G,当动点P从点A运动到点B时,设PG=m,则m的取值范围是________.7. 如图,在矩形ABCD中,对角线AC、BD交于点O,AC=2AB=4,E是AD边的中点,点P是CD边上一动点,则△OEP周长的最小值是_____第7题图【答案】类型一 与折叠、最值有关1. B 【解析】如解图,当AC ⊥AB 时,三角形面积最小,∵∠BAC =90°,∠ACB =45°,∴AB =AC=4 cm ,∴S △ABC =12×4×4=8 cm 2. 第1题解图2. D 【解析】∵将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,折痕为BE 、BF ,∴∠ABE =∠DBE =∠DBF =∠FBC ,BD 垂直平分EF ,∴∠EBF =12∠ABC =45°,BE =BF ,∴∠BFE =∠BEF =12(180°-45°)=67.5°.3. A 【解析】连接AA′,交BC 于点O ,如解图,由折叠的性质可得:AO =12AA′,∵DE ∥BC ,∴△ABC ∽△ADE ,AC ∶AE =AO ∶AA′=1∶2,∴S △ABC :S △ADE =(AC AE )2=14,∵AB =4,AC =3,∴S △ABC =12AB·AC =12×4×3=6,∴S △ADE=4S △ABC =24.4. B 【解析】∵点E ,F 分别是CD 和AB 的中点,∴EF ⊥AB ,∴EF ∥BC ,∴EG 是△DCH 的中位线,∴DG =HG ,由折叠的性质可得:∠AGH =∠ABH =90°,∴∠AGH =∠AGD =90°,在△AGH和△AGD 中,⎩⎪⎨⎪⎧HG =DG ∠AGH =∠AGD AG =AG,∴△AGH ≌△AGD(SAS),∴AH =AD ,∠HAG =∠DAG ,由折叠的性质可得:∠BAH =∠HAG ,∴∠BAH =∠HAG =∠DAG =13∠BAD =30°,在Rt △ABH 中,AH=AD =4 cm ,∠BAH =30°,∴AB =AH·cos ∠BAH =2 3 cm ,∴CD =AB =2 3 cm.5. B 【解析】根据折叠的性质可知CD =AC =3,B′C =BC =4,∠ACE =∠DCE ,∠BCF =∠B′CF ,CE ⊥AB ,∴B′D =4-3=1,∠DCE +∠B′CF =∠ACE +∠BCF ,∵∠ACB =90°,∴∠ECF =45°,∴△ECF 是等腰直角三角形,∴EF =CE ,∠EFC =45°,∴∠BFC =∠B′FC=135°,∴∠B′FD =∠B′FC -∠EFC =135°-45°=90°,∵S △ABC =12AC·BC =12AB·CE ,∴AC·BC =AB·CE ,根据勾股定理求得AB =5,∴CE =125,∴EF =125,ED =AE =AC 2-CE 2=95,∴DF =EF -ED =35,∴B′F =B′D 2-DF 2=45.6. B 【解析】延长AD 到M′,使得DM′=DM =1,连接PM′,如解图.当PB +PM 的和最小时,M′、P 、B 三点共线.∵四边形ABCD 是矩形,AB =4,BC =2,∴DC =AB =4,AD =BC =2,AD ∥BC ,∴△DPM′∽△CPB ,∴DP CP =DM′CB =12,∴DP =12CP ,∴DP =13DC =43,设AE =x ,则PE =x ,DE =2-x ,在Rt △PDE 中,∵DE 2+DP 2=PE 2,∴(2-x)2+(43)2=x 2,解得x =139,∴ME =AE -AM =139-1=49.7.D 【解析】如解图,连接OB 、OC ,∵∠BAC =64°,AO 为∠BAC 的平分线,∴∠CAO =12∠BAC =12×64°=32°,又∵AB =AC ,∴∠ABC =12(180°-∠BAC)=12(180°-64°)=58°,∵DO 是AC 的垂直平分线,∴OA =OC ,∴∠CAO =∠ACO =32°,∴∠OCE =∠ACB -∠ACO =58°-32°=26°,在△AOB 和△AOC 中,⎩⎪⎨⎪⎧AB =AC ∠BAO =∠CAO AO =AO,∴△AOB ≌△AOC(SAS),∴OB =OC ,∴∠OCB =∠OBC =26°,∵将∠B 沿EF(E 在BC 上,F 在AC 上)折叠,点B 与点O 恰好重合,∴OE =BE ,∴∠BOE =∠OBE =26°,∴∠OEB =180°-∠BOE -∠OBE =128°.8. C 【解析】如解图,连接CD 、DF 、CE.∵点D 为AB 的中点,∠ACB =90°,∴CD =12AB ,BD =12AB,∴CD =BD.∵△ACB 为等腰直角三角形,∴∠ABC =45°,∵CD =DB ,∴∠DCB =45°.∴∠ACD =45°,由折叠的性质可知:∠DEM =∠DBM =45°,BD =DE ,∴CD =ED ,∴∠DCE =∠DEC.∴∠DEF +∠FEC =∠DCF +∠FCE ,∴∠FEC =∠FCE.∴EF =FC.△FCM 的周长=FC +FM +CM =FE +FM +CM =EM +CM =MB +CM =CB ,∴BC =16.在Rt △ACB 中,由勾股定理得:AB =AC 2+BC 2=162+162=16 2.9. A 【解析】∵四边形ABCD 是菱形,∴AD =CD ,又∵CD =AC ,∴AD =CD =AC ,即△ADC 是等边三角形,∴∠D =60°,∴CE =CD·sin60°=32CD ,∵菱形ABCD 的面积=AD·CE =32CD 2=43,∴CD =22,∴菱形ABCD 的周长为22×4=8 2.10. 1【解析】在Rt △ABC 中,由勾股定理可知AC =AB 2-BC 2=52-32=4,由折叠的性质可知BC =CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A 、B′、C 三点在一条直线上时,AB′有最小值,∴AB′=AC -B′C =4-3=1.11. 16或45 【解析】根据题意,若△CDB′恰为等腰三角形需分三种情况讨论:(1)当DB′=DC 时,则DB′=16(易知点F 在BC 上且不与点C 、B 重合);(2)当CB′=CD 时,∵EB =EB′,FB =FB′,∴点E 、F 在BB′的垂直平分线上,∴EF 垂直平分BB′,由折叠的性质可知点F 与点C 重合,不符合题意,舍去;(3)如解图,当CB′=DB′时,作B′G ⊥AB 于点G ,交CD于点H.∵AB ∥CD ,∴B′H ⊥CD ,∵CB′=DB′,∴DH =12CD =8,∴AG =DH =8,∴GE =AG -AE =5,∴B′E =BE =BG+EG =13,在Rt △B′EG 中,由勾股定理得B′G =B′E 2-GE 2=132-52=12,∴B′H =GH -B′G =4,在Rt △B′DH 中,由勾股定理得DB′=DH 2+B′H 2=45,综上所述,DB′=16或4 5.12. 185【解析】由题意知,AF =FC ,AB =CD =AG=4,BC =AD =8,在Rt △ABF 中,由勾股定理知AB 2+BF 2=AF 2,即42+(8-AF)2=AF 2,解得AF =5,∵∠BAF +∠FAE =∠FAE +∠EAG =90°,∴∠BAF =∠EAG ,又∵∠B =∠AGE =90°,AB =AG ,∴△ABF ≌△AGE(ASA),∴AE =AF =5,∴ED =AD -AE =8-5=3,∵S △GAE =12AG·GE =12AE·AE 边上的高,∴AE 边上的高=125,∴S △GED =12ED·AE 边上的高=12×3×125=185. 类型二 与旋转有关1. C 【解析】∵四边形ABCD 是平行四边形 ,∴∠ABC =∠ADC =60°,AD ∥BC ,∴∠ADA′=∠CA′D ,∴∠ADA′+∠DA′B =180°,∴∠DA′B =180°- ∠ADA′=180°-50°=130°,∵AE ⊥BC ,∴∠EAB =90°-∠ABC =90°-60°=30°,由旋转可知∠BA′E′=∠EAB =30°,∴∠DA′E′=∠DA′B +∠BA′E′=130°+30°=160°,故选C.2. A 【解析】∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=8,∵Rt △ABC 绕点B 旋转90°至△DBE 的位置,∴BC =BE =6,AC =DE =8,∠CBE =90°,∠BED =∠ACB =90°,∴△BCE 为等腰直角三角形,∴∠BCE =∠BEC =45°,∴∠DEF =90°-∠BEF =45°,而∠BFC =∠EFD ,∴△BFC ∽△DFE ,∴CF FE =BC DE =68=34.3. D 【解析】连接PP′,如解图,∵四边形ABCD 为正方形,∴∠ABC =90°,BA =BC ,∴△ABP 绕点B 顺时针旋转90°得到△CBP′,∴BP=BP′,∠BPA =∠BP′C ,∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′=2PB =22,在△APP′中,∵PA =1,PP′=22,AP′=3,∴PA 2+PP′2=AP′2,∴△APP′为直角三角形,∠APP′=90°,∴∠BPA =∠BPP′+∠APP′=45°+90°=135°,∴∠BP′C =135°. 4. 9817 【解析】矩形ABCD 中,AB =46,AD =10,∴BD =(46)2+102=14.∵△DFB 为等腰三角形,∴∠FDB =∠FBD ,∴FD =FB.设FD =x ,则AF =10-x ,BF =x ,在Rt △ABF 中,(46)2+(10-x)2=x 2,解得x =9.8,∴DF =BF =9.8.∵AD ∥BC ,∴∠FDB =∠DBC ,∵∠FBD =∠FDB ,∴∠FBD =∠DBC.由题意知BE 平分∠DBC ,∠FBG =∠EBC ,∴∠FBG =∠DBG .如解图,过点D 作DH ∥BF 交BG 的延长线于H 点,则∠H =∠FBG ,∴∠H =∠HBD ,∴BD =DH =14.∵BF ∥DH ,∴FG DG =BF DH ,∴FG +DG DG =BF +DH DH ,即FD DG =9.8+1414,∴9.8DG=9.8+1414,∴DG =9817.类型三 与动点、最值有关1. B 【解析】由题意可知,点D 与点B 关于AC 对称,设BE 与AC 交于点P′,连接P′D ,如解图,则此时P′D+P′E 取得最小值,即P′D +P′E =BE ,而BE 与AB 相等,再由正方形ABCD 的面积为12,可得正方形边长为2 3.2. B 【解析】分三种情况:(1)AB =AC ;(2)BC=BA ;(3)CA =CB.画出图形,即可得到答案.∵点A(2,2),点B(32,32),∴AB =4,如解图,以点A 为等腰三角形的顶点时,符合条件的动点C 有两个,C 1(2-14,0),C 2(2+14,0);以点B 为等腰三角形的顶点时,由于B 到x 轴的距离为32>4,此时不存在x 轴上的点使得BC =BA ;以点C 为等腰三角形的顶点时,C 点为AB 的垂直平分线与x 轴的交点,此时只有唯一一个点(42,0)符合条件.由上可知,共有三个点符合条件,即解图中的C 1,C 2,C 3点.3. A 【解析】连接BG ,如解图,∵CA =CB ,CD ⊥AB ,AB =6,∴AD =BD =12AB =3.又∵CD =4,∴BC =5.∵E 是高线CD 的中点,∴CE =12CD =2,∴CG =CE =2.根据两点之间线段最短可得:BG≤CG +CB =2+5=7.当B 、C 、G 三点共线时,BG 取最大值为7.∵P 是AG 的中点,D 是AB 的中点,∴DP =12BG ,∴DP 的最大值为72.4. A 【解析】如解图,过点O 作OH ⊥BC 于点H ,设AB =x ,BF =y ,∵AD =2AB ,∴AD =2x ,∵线段EF 过矩形对角线AC 的中点,∴H 是BC 的中点,∴FH=x -y ,OH =12x ,由勾股定理得,OF =(x -y )2+(12x )2,由矩形的对称性得,EF =2(x -y )2+(12x )2,设EF ∶BF =m ,则m 2=4(x -y )2+x 2y 2,整理得,(m 2-4)y 2+8xy -5x 2=0,∵y 有正解,∴Δ=(8x)2-4(m 2-4)×(-5x 2)≥0,解得m 2≥45,∴m≥255,∴m 的最小值是255,即EF ∶BF的最小值是255.5. B 【解析】在平行四边形PCQD 中,设对角线PQ与DC 相交于点O ,则O 是DC 的中点,如解图,过点Q 作QH ⊥BC ,交BC 的延长线于点H ,∵AD ∥BC ,∴∠ADC =∠DCH ,即∠ADP +∠PDC =∠DCQ +∠QCH ,∵PD ∥CQ ,∴∠PDC=∠DCQ ,∴∠ADP =∠QCH ,又∵PD =CQ ,在Rt △ADP 和Rt △HCQ 中,⎩⎪⎨⎪⎧∠ADP =∠QCH ∠A =∠QHCPD =CQ ,∴Rt △ADP ≌Rt △HCQ(AAS),∴AD =HC ,∵AD =1,BC =3,∴BH =4,∴当PQ ⊥AB 时,PQ 的长最小,即为4. 6. 3≤m <2 【解析】如解图,分别延长AE 、BF 交于点H ,∵∠A =∠FPB =60°,∴AH ∥PF ,∵∠B =∠EPA =60°,∴BH ∥PE ,∴四边形EPFH 为平行四边形,∴EF 与HP 互相平分.∵G 为EF 的中点,∴G 正好为PH 的中点,即在P 的运动过程中,G 始终为PH 的中点,∴G 的行动轨迹为△HAB 的中位线MN ,∴MN ∥AB ,PG <AM ,∵当P 在AB 中点时,PH ⊥AB ,∴当P 在AB 中点时,PG 的值最小,∵△AEP 和△PFB 是等边三角形,∴∠A =∠B =60°,∴△AHB 是等边三角形,∴AH =AB =4,∴当P 在AB 中点时,PH =23,∴PG =3,∴PG 的最小值是3,∴3≤m <2.7. 1+13 【解析】∵2AB =4,∴AB =2,∵四边形ABCD 是矩形,∴∠ADC =90°,CD =AB =2, AO =CO,在Rt △ACD 中,AC =4,CD =2,根据勾股定理,得AD =42-22=23,∵点E 是AD 的中点,∴AE =DE =3,又∵AO =CO ,∴OE是△ACD 的中位线,∴OE =12CD =1,OE ∥CD ,∴∠OED =90°,∵△OPE 的周长=OE +OP +EP =1+OP +EP ,∴求△OPE 的周长的最小值就是求OP +EP 的最小值.如解图,延长ED 至E′,使DE′=DE,连接OE′,交CD于点P′,此时OP′+EP′=OP′+E′P′=OE′,即OE′为OP+EP的最小值,在Rt△OEE′中,OE=1,EE′=2ED=23,根据勾股定理,得OE′=12+(23)2=13,即OP+EP的最小值为13,∴△OEP的周长的最小值为1+13.。

初三数学几何试题及答案

初三数学几何试题及答案

初三数学几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是直角三角形的判定条件?A. 两边相等B. 两边的夹角为90°C. 两边的夹角为60°D. 三边相等答案:B2. 一个圆的半径为5,那么它的直径是多少?A. 10B. 15C. 20D. 25答案:A3. 一个矩形的长是宽的两倍,如果宽是4厘米,那么矩形的面积是多少平方厘米?A. 16B. 32C. 64D. 128答案:B4. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,那么它的高是多少厘米?A. 4B. 5C. 6D. 7答案:A5. 一个正方体的体积是27立方厘米,那么它的表面积是多少平方厘米?A. 54B. 108C. 216D. 486答案:A6. 一个圆的周长是2πr,那么它的面积是多少?A. πrB. πr²C. 2πr²D. 4πr²答案:B7. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是多少?A. 5B. 7C. 8D. 9答案:A8. 一个平行四边形的对角线互相垂直且相等,那么这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 梯形答案:B9. 一个三角形的三个内角分别是40°、50°和90°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B10. 一个圆的面积是π,那么它的半径是多少?A. 1B. 2C. 3D. 4答案:A二、填空题(每题4分,共20分)1. 如果一个圆的直径是8厘米,那么它的半径是______厘米。

答案:42. 一个三角形的三个内角之和是______度。

答案:1803. 一个矩形的长是10厘米,宽是5厘米,那么它的对角线长度是______厘米。

答案:134. 如果一个等腰三角形的顶角是80°,那么它的底角是______度。

答案:505. 一个正五边形的内角和是______度。

中考数学复习《几何图形初步》专项提升训练题-附答案

中考数学复习《几何图形初步》专项提升训练题-附答案

中考数学复习《几何图形初步》专项提升训练题-附答案学校:班级:姓名:考号:一、单选题1.一个四边形截去一个角后,可以变成()A.三角形B.四边形C.五边形D.以上都有可能2.已知,从顶点O引一条射线,若,则()A.20°B.40°C.80°D.40°或80°3.如图所示,∠BOC=40°,OD平分,则的度数是()A.B.C.D.4.已知点在同一条直线上,若线段,BC=3,AC=2,则下列判断正确的是()A.点在线段上B.点在线段上C.点在线段上D.点在线段的延长线上5.如图,已知线段a,b,画一条射线,在射线上依次截取,在线段上截取.则()A.B.C.D.6.如图,将正方体相邻的两个面上分别画出的正方形网格,并分别用图形“”和“〇”在网格内的交点处做上标记,则该正方体的表面展开图是A. B. C. D.7.如图,线段AB的长为m,点C为AB上一动点(不与A,B重合),D为AC中点,E为BC中点,随着点C的运动,线段DE的长度()A.随之变化B.不改变,且为C .不改变,且为D .不改变,且为8.如图,在同一平面内90AOB COD ∠=∠=︒,COE BOE ∠=∠点F 为OE 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①AOE DOE ∠=∠;②180AOD COB ∠+∠=︒;③90COB AOD ∠∠=︒-;④180COE BOF ∠+∠=︒.其中正确结论的个数有( ).A .4个B .3个C .2个D .1个 二、填空题9.如图,已知C 、D 是AB 上两点,且AB=20cm ,CD=6cm ,M 是AD 的中点,N 是BC 的中点,则线段MN 的长为 .10.已知直线,垂足为O ,OE 在内部,于点O ,则度.11.已知点 在直线 上,且线段 的长度为 ,线段 的长度为 , E 、 F 分别为线段 OA 、 OB 的中点,则线段 的长度为 . 12.已知线段AB ,延长AB 至点C ,使,反向延长AB 至点D ,使,若,则t 的值为 . 13.如图所示,是直线上一点,是一条射线,平分,在内,则的度数是 .三、解答题14.如图,点O 在直线上,已知,且射线平分,∠EOD=30°,求的度数.15.如图,A 、B 、C 三点在同一条直线上,点是线段的中点,点是线段的中点.(1)如图1,点在线段上,若,BC=4,求线段的长;(2)如图2,点在线段的延长线上,若,求线段的长.16.已知长方形的长为4cm、宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体(1)求此几何体的表面积.(结果保留π)(2)求此几何体的体积;(结果保留π)17.如图,∠AOB=90°,∠AOC=50°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当∠AOC= 时,∠MON等于多少度?18.如图,点O为数轴原点,点A对应的数为-5,点B对应的数为10.(1)点C是数轴上A、B之间的一个点,且,求线段CA的长及点C对应的数.(2)点P从点A出发以每秒2个单位的速度沿数轴正方向运动,点Q从点B出发以每秒1个单位的速度沿数轴负方向运动.P、Q两点同时出发,设运动时间为t秒.当满足,求运动时间t.参考答案:1.D2.D3.A4.C5.D6.C7.D8.B9.7cm10.50或13011.或12.13.90°14.解:∵∴,即∵射线平分∴,则∵∴∴.15.(1)解:是线段的中点,是线段的中点;(2)解:是线段的中点,是线段的中点.16.(1)解:长方形绕一边旋转一周,得圆柱.分两种情况:①绕以长为轴进行旋转,则π×3×2×4+π×32×2=24π+18π=42π(cm2);②绕以宽为轴进行旋转,则π×4×2×3+π×42×2=24π+32π=56π(cm2).(2)解:分两种情况:①绕以长为轴进行旋转,则π×32×4=36π(cm3);②绕以宽为轴进行旋转,则π×42×3=48π(cm3);17.(1)解:∵∠AOB是直角,∠AOC=50°∴∠BOC=∠AOB+∠AOC=90°+50°=140°∵ON是∠AOC的平分线,OM是∠BOC的平分线∴∠COM= 12∠BOC=12×140°=70°∠CON= 12∠AOC=12×50°=25°∴∠MON=∠COM-∠CON=70°-25°=45°(2)解:当∠AOC= α时,∠BOC=∠AOB+∠AOC=90°+ α∵ON是∠AOC的平分线,OM是∠BOC的平分线∴∠COM= 12∠BOC=12(90°+ α)∠CON= 12∠AOC=12α∴∠MON=∠COM-∠CON= 12(90°+ α)-12α =45°18.(1)解:对应的数为02(2)解:点P表示的数为,点Q表示的数为.又,且解得:或10。

中考数学图形与几何专题知识易错题50题含答案

中考数学图形与几何专题知识易错题50题含答案

中考数学图形与几何专题知识易错题50题含答案一、单选题1.检查一条直线和一个非水平面是否垂直,正确的方法是用()A.长方形纸片B.梯形纸片C.铅垂线D.合页型折纸2.一个圆锥形的零件,底面积为19cm2,高是12cm,这个零件的体积是()A.76cm3B.114cm3C.228cm3D.684cm33.两个圆的半径相差1cm,则周长相差().A.1cm B.2cm C.3.14cm D.6.28cm4.如图,反比例函数的一个分支与O有两个交点,且平分这个圆,以下说法正确的是()A.劣弧AB等于120︒B.反比例函数的这个分支平分圆的周长C.反比例函数的这个分支平分圆的面积D.反比例函数图象必过圆心O5.一个圆的半径为2cm,则它的面积是()(π取3.14).A.6.28cm B.12.56cm C.26.28cm12.56cm D.2 6.一个扇形,如果半径缩小2倍,圆心角扩大2倍,那么扇形的面积()A.扩大2倍B.缩小2倍C.缩小4倍D.不变7.草坪上有一个洒水龙头,它最远洒水至30米处,可以作150°的旋转,那么可以被这个龙头洒到水的草坪的面积是()A.375π平方米B.380π平方米C.385π平方米D.390π平方米8.下列说法正确的是()A.圆柱和圆锥都只有一条高B.圆的半径扩大到原来的2倍,直径就扩大到原来的4倍C.圆柱体体积是圆锥表面积的三倍D.正数和负数可以表示两种相反意义的量9.用两个半径为1cm的圆和长与宽分别为6.28cm和3.14cm的长方形组成一个圆柱,该圆柱的高是( )A .6.28cmB .3.14cmC .1cmD .6.28cm 或3.14cm10.以下表述中不正确的是( )A .长方体中任何一条棱都与两个面平行B .长方体中相对的两个面的面积相等C .长方体中任何一个面都与四个面垂直D .长方体中棱与棱不是相交就是异面11.如图是某几何体从不同方向看所得到的的图形,根据图中数据,求得该几何体的侧面积为( )A .πB .2πC .32πD .812.下列立体图形中,从上面和正面看到的形状图不同的是( )A .B .C .D . 13.一个圆至少对折( )次,就可以找到圆心.A .1B .2C .3D .414.一个圆形井盖的半径为30厘米,它能盖住的井口面积可能是( )A .2800平方厘米B .2830平方厘米C .2850平方厘米D .2880平方厘米 15.如图,沿半圆形草坪外铺一条1米宽的小路,小路的面积是多少?列式正确的是( )A .23.1412⨯÷B .23.14122⨯÷C .()223.1413122⨯-÷D .23.14132⨯÷16.下列说法正确的有( )个①如果:4:3a b =,那么a 与b 的和一定是7;①一种商品先提价15,在降价15,则现价和原价一样; ①两圆周长相等,则这两个圆面积也相等;①女生人数是男生人数的35,则男生人数比女生人数多14. A .1 B .2 C .3 D .417.一个雷达圆形屏幕的直径是20厘米,则它的面积是( )平方米.A .100πB .0.1πC .0.01π18.某足够大的草地正中拴着一只羊,绳长10米,这只羊最多可以吃到草地上多少平方米的草?正确的算式是( )A .3.14102⨯⨯B .3.141010⨯⨯C .3.1410⨯ D .3.1410102⨯⨯÷ 19.以圆O 的半径OA 为边长画正方形OABD .若正方形OABD 的面积为3平方厘米,则圆O 的面积是( )A .3.14平方厘米B .6.28平方厘米C .9.42平方厘米D .11平方厘米 20.想要求圆的周长,就必须知道( )A .圆心B .圆周率C .直径和半径D .直径或半径二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.一个扇形的半径是5厘米,圆心角是60°,则此扇形的面积是______平方厘米,周长是______厘米.(π取3.14)23.在长方体ABCD EFGH -中,与棱EF 和棱EH 都异面的棱是______.24.一张光盘的刻录面为环形内圆的直径是4厘米,外圆直径是12厘米,这张光盘刻录面的面积是___平方厘米.25.如图,把一个半径为r厘米的圆分成若干等份,然后把它剪开,照如图的样子拼起来,拼成新的图形的周长比原来圆的周长多10厘米,则该圆的半径为___厘米.26.如图所示,它是一个正方体六个面的展开图,那么原正方体中与平面B互相平行的平面是_______.(用图中字母表示)27.等底等高的圆柱和圆锥的体积相差183dm.dm,则圆锥的体积是_____3∠的度数为______.28.如图所示,扇形OAB的面积是圆的六分之一,则图中AOB29.把一个圆剪成两个扇形,如果其中较小扇形的圆心角为135度,那么较小扇形的弧长是较大扇形的弧长的__________(填几分之几).-中,与平面BCGF垂直的棱有_____条______(填数30.在长方体ABCD EFCH字).31.已知扇形面积是212cm,半径为8cm,则扇形周长为_______.32.圆柱的侧面展开图是一个长6cm ,宽4cm 长方形,则这个圆柱的底面半径是____cm .(结果保留π)33.将6个棱长为1厘米的正方体拼成一个长方体,则表面积减少了_______平方厘米.34.长方体1111ABCD A B C D -中,与平面11AA D D 平行的棱共有________条.35.一个圆形花坛的直径是40米,那么它的半径是_________米.36.一个圆柱和一个圆锥等底等高,它们的体积之和是48立方分米,那么圆锥的体积是________立方分米,圆柱的体积比圆锥大________立方分米.37.半圆形的周长等于它所在圆的周长的一半,______(判断对错)38.在长方体中,任意一条棱与它既不平行也不相交的棱有________条.39.如果一个扇形的圆心角扩大为原来的2倍,半径长缩小为原来的一半,那么变化后所得扇形面积与原来的扇形面积的比值为______.40.如图所示,直径为单位1的圆从表示1-的点沿着数轴无滑动的向右滚动一周到达A 点,则A 点表示的数是______.三、解答题41.将一边长为6cm 正方形绕其一边所在直线旋转一周得到一个立体图形.(1)得到的立体图形名称为 .(2)求此立体图形的表面积.(结果保留π)42.如图,AB =a ,P 是线段AB 上一点,分别以AP ,BP 为直径作圆.(1)设AP =x ,求两个圆的面积之和S ;(2)当AP 分别为13a 和12a 时,比较S 的大小. 43.看图列式计算(1)列式计算__________(2)求阴影部分面积(单位:分米,结果保留 );列式计算__________44.如图,长方体ABCD-EFGH,根据图形回答下列问题.(1)与棱CB相等的棱有哪几条?(2)与面ADHE相对的面有哪几个?(3)经过点A的面有哪几个?(4)从点D出发的棱有哪几条?45.如图所示的圆柱底面直径为4cm,高为5cm,请计算它的侧面积和体积.(结果保留π)46.如图所示是某森林公园二期改造工程的部分规划图.以“爱在方圆”为主题的设计中,正方形不与圆重叠的部分建造林地,圆不与正方形重叠的部分建造草地,重叠部分修建池塘.(1)若正方形ABCD面积的45是林地,圆C面积的34是草地,池塘的面积是125平方米,则林地和草地的面积分别是多少平方米?池塘面积占规划区域总面积的几分之几?(2)若正方形边长AB与圆半径CE的比为2:1,且池塘周长为71.4米.则林地的周长是多少米?47.已知,如图,正方形ABCD的边长为4厘米,点P从点A出发,经A→B→C沿正方形的边以2厘米/秒的速度运动;点Q在CD上,CQ=1.设运动时间为t秒,△APQ 的面积为S平方厘米.(1)当t=2时,△APQ的面积为平方厘米;(2)求BP的长(用含t的代数式表示);(3)当点P在线段BC上运动,且△APQ为等腰三角形时,求此时t的值;(4)求S与t的函数关系式.48.如图①是一个组合几何体,右边是它的两种从不同方向看的图形,根据两种图形中尺寸,计算这个组合几何体表面积和体积.(结果保留 )49.求出如图图形的体积.50.某家具厂的设计师根据1:10的比例尺,并按斜二侧画法在图纸上设计了一套柜子,柜子由一个框架、三个抽屉、两扇门组成.一个工人每天可以制作2个框架、或者制作3个抽屉、或者制作5扇门.(1)由刻度尺在图纸上测量可得,4cm AB =、 1.5cm BC =、6cm BD =,所以这个柜子的表面积是______2dm ,体积是______3dm .(2)工人有38名工人,如何分配工人的工作才能使每天恰好配套完成一定数量的柜子,并写出每天完成的柜子数量是多少只?参考答案:1.D【分析】根据长方体的概念直接排除选项即可.【详解】因为检查一条直线和一个非水平面是否垂直是用合页型折纸这个方法; 故选D .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键. 2.A【分析】根据圆锥体积计算公式即可得答案.【详解】311912763S cm =⨯⨯=锥 故选A【点睛】本题考查圆锥的体积计算,掌握公式是关键.3.D【分析】大圆半径为R ,小圆半径为r ,根据题意得到1R r -=,再表示出周长差,从而得到结果.【详解】解:设大圆半径为R ,小圆半径为r ,则1R r -=,①()2222 6.28R r R r ππππ-=-==,即周长相差6.28cm ,故选D .【点睛】本题考查了圆的周长,解题的关键是熟练掌握圆的周长公式.4.B【分析】由题意可知A ,B 两点连线为圆的直径,弧AB 为半圆,所对圆心角为180︒,由此可对各项进行判断.【详解】A .A ,B 两点连线为圆的直径,弧AB 为半圆,所对圆心角为180︒,不是120︒,故这个选项错误;B .反比例函数的这个分支平分O ,即反比例函数的这个分支把O 的周长平分,故这个选项正确;C .反比例函数的这个分支能平分周长,所以A ,B 两点连线为圆的直径,这个分支就不能把O的面积平分,故这个选项错误;D.反比例函数的这个分支不可能过圆心O,否则无法平分圆,故这个选项错误.故选B.【点睛】本题考查的是反比例函数的性质的运用,分别讨论可判断正误.5.C【分析】根据圆的面积公式求解即可.【详解】解:这个圆的面积=23.1422=12.56cm⨯⨯,故选:C.【点睛】本题主要考查了圆的面积,解题的关键是熟知圆面积公式.6.B【分析】根据题意可以分别表示出原来和后来扇形的面积,从而可以计算出这个扇形的面积扩大的倍数.【详解】解:设原来扇形的圆心角为α,半径为r,则原来扇形的面积为:2 360rαπ⋅,后来扇形的圆心角为2α,半径为12r,则后来扇形的面积为:2212()123602360r rαπαπ⋅⋅⋅=⨯,①扇形的面积缩小2倍.故选B.【点睛】本题考查了扇形的面积计算,熟记扇形的面积公式是解答本题的关键.7.A【分析】直接根据扇形面积:2S360n rπ=即可求解.【详解】解:215030S375360ππ==平方米.故选:A.【点睛】此题主要考查扇形的面积,正确理解扇形面积与所在圆的面积关系是解题关键.8.D【分析】根据圆柱和圆锥的意义、圆的半径与直径、正负数的意义逐一判断即可.【详解】解:A、圆柱有无数条高,圆锥只有一条高,原说法错误,该选项不符合题意;B、圆的半径扩大到原来的2倍,直径也扩大到原来的2倍,原说法错误,该选项不符合题意;C、圆柱体体积是圆锥表面积没有直接的关系,原说法错误,该选项不符合题意;D、正数和负数可以表示两种相反意义的量,原说法正确,该选项符合题意;故选:D.【点睛】本题考查了正数和负数,圆柱和圆锥的意义,注意基础知识的积累是解题的关键.9.B【分析】根据圆柱侧面展开图的特征,圆柱的侧面沿高展开是一个长方形,这个长方形的长等于圆柱的底面周长,宽等于圆柱的高.首先根据圆的周长公式:C=2πr,求出半径为1cm的圆的周长,然后与长方形的长、宽进行比较,如果圆的周长等于长方形的长,那么长方形的宽就是圆柱的高,如果圆的周长等于长方形的宽,那么长方形的乘等于圆柱的高,据此解答.【详解】解:3.14×1×2=6.28(cm),圆的周长是6.28cm,6.28cm=6.28cm,所以该圆柱的高是3.14cm.故选:B.【点睛】此题考查的目的是理解掌握圆柱侧面展开图的特征及应用.10.D【分析】根据长方体中棱与面的关系判断即可;【详解】长方体中任何一条棱都与两个面平行,正确;长方体中相对的两个面的面积相等,正确;长方体中任何一个面都与四个面垂直,正确;长方体中棱与棱不是相交就是异面,不正确;故答案选D.【点睛】本题主要考查了长方体的棱与面的关系,准确分析是解题的关键.11.B【分析】根据题意,得出该几何体为圆柱,再根据图中的数据,得出圆柱的高和底面半径,再根据圆柱的侧面积的计算公式,计算即可.【详解】解:根据图形,可得:该几何体为圆柱,从正面看高为2,从上面看圆的直径为1,①圆柱的高为2,即2h =,底面直径为1,即1d =,①该几何体的侧面积为:122dh πππ=⨯⨯=.故选:B【点睛】本题考查了几何体的识别、圆柱的侧面积,解本题的关键在熟练掌握圆柱的侧面积计算方法.12.C【分析】根据三视图的定义,逐一判断选项,即可.【详解】A 、正方体从上面和正面看到的形状是正方形,不符合题意B 、圆柱体从上面和正面看到的形状是长方形,不符合题意C 、圆锥从上面的是中间有一个点的圆,正面看到的形状是三角形,符合题意,D 、球体从上面和正面看到的形状均为圆,不符合题意,故选:C .【点睛】本题主要考查几何体的三视图的定义,掌握三视图中的定义是解题的关键. 13.B【分析】一个圆对折实际上我们是沿直径对折的,对折后两条直径会出现一个交叉点,这个点就是圆心.【详解】解:如图所示:两条折痕交叉与O 点,这个点就是圆的圆心.故选:B .【点睛】本题考查了圆的对称性,掌握圆的基本概念是解题的关键.14.A【分析】根据圆的面积公式S =πr 2,代入数据,求出圆形井盖的面积即可得出结论.【详解】解:3.14×302=3.14×0.25=2826(平方米).选项A 中2800<2826.故它能盖住,而选项BCD 的面积均大于圆形井盖的面积,故不能盖住.故选:A【点睛】此题主要考查了圆的面积计算,代入数据即可解答.15.C【分析】根据圆环的面积公式22()R r π-求出圆环面积,再除以2即可求出小路面积.【详解】解:根据题意,沿半圆形草坪外铺一条1米宽的小路,则小路的面积为22223.14[(121)12]2 3.14(1312)2⨯+-÷=⨯-÷.故选:C .【点睛】本题主要考查了有关圆的应用题,解题关键是灵活运用圆的面积公式解决问题. 16.A【分析】根据比的定义可对①进行判断;根据分数的定义可对①①进行判断;根据圆的周长与面积公式可对①进行判断;综上即可得答案.【详解】①8:6=4:3,8+6=14,①如果:4:3a b =,那么a 与b 的和不一定是7,故①错误,设商品的原价为x ,①先提价15,在降价15后的价格为(1+15)(1-15)x =2425x ≠x ,故①错误, ①半径=周长÷π÷2,①两圆周长相等,半径也相等,①圆的面积=半径×半径×π,①两圆周长相等,则这两个圆面积也相等;故①正确,把男生人数看作单位“1”,①女生人数是男生人数的35, ①女生人数为35, ①男生人数比女生人数多(1-35)÷35=23,故①错误, 综上所述:正确的说法有①,共1个,故选:A .【点睛】本题考查比的定义、分数的定义及圆的周长与面积,熟练掌握定义及公式是解题关键.17.C【分析】利用圆的面积公式计算即可.【详解】解:一个雷达圆形屏幕的直径是20厘米,则它的面积是:220()1002ππ=(平方厘米),100π平方厘米=0.01π平方米;故选:C .【点睛】本题考查了圆的面积的计算和单位转换,解题关键是熟记圆面积公式. 18.B【分析】这只羊最多可以吃到草地上的面积是:以10米为半径的圆的面积.【详解】这只羊最多可以吃到草地上的面积是: 223.1410r π=⨯故选:B【点睛】考核知识点:圆的面积.把问题转化为求圆的面积是关键.19.C【分析】圆的面积S=2r π,即要求2r ,已知以圆O 的半径OA 为边长所画正方形面积为3,即2r =3,代入面积公式求解即可.【详解】S=2r π=3.14×3=9.42(平方厘米).故选:C .【点睛】本题主要考查圆的面积公式,熟记圆的面积公式是解题关键.20.D【分析】根据周长公式求解即可.【详解】C πd 或2C r π=.故选:D .【点睛】此题考查了周长公式,解题的关键是熟记圆的周长公式.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22. 13.08 15.23【分析】根据扇形的面积以及周长公式即可求解.【详解】解:扇形的面积为:60 3.145536013.08⨯⨯⨯÷=平方厘米 ;此扇形的周长为:60 3.1451805215.23⨯⨯÷+⨯=厘米.故答案为:13.08;15.23.【点睛】本题考查扇形面积及周长的计算,注意扇形的周长还包含了两条半径的长. 23.CG ##GC【分析】直接根据异面直线的概念即可求解.【详解】解:从长方体中,可以得到与棱EF 和棱EH 都异面的棱是CG ,故答案为:CG【点睛】本题考查了异面直线的概念,理解掌握不在同一平面内的直线是异面直线,或者说既不平行,也不相交的直线.24.32π【分析】圆环的面积()22R r π=-,由此代入数据即可作答. 【详解】解:22124()()22ππ⨯-⨯364ππ=-232()cm π=, 故答案为:32π.【点睛】此题考查了圆环的面积公式的计算应用.25.5【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知,这个长方形的周长比原来圆的周长多出了两个半径的长度,据此即可求解.【详解】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,也就是10厘米,所以圆的半径为5厘米【点睛】本题考查认识平面图形,理解图形周长的意义和拼图前后之间的关系是解决问题的关键.26.平面D【分析】只需要找出平面B 的对面即可;【详解】根据题意可知:平面B 的相对面是平面D ,所以平面D 与平面B 平行; 故答案是平面D .【点睛】本题主要考查了正方体的展开图,准确分析是解题的关键.27.9【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆柱与圆锥的体积差相当于圆锥体积的(3−1)倍,根据已知一个数的几倍是多少,求这个数,用除法解答.【详解】解:18÷(3−1)=18÷2=93dm ()答:圆锥的体积是93dm .故答案为:9.【点睛】此题考查的目的是理解掌握等底等高的圆柱与圆锥体积之间的关系及应用. 28.60︒【分析】根据扇形和圆形的面积公式,结合题意即可求出AOB ∠的大小.【详解】设圆的半径为R ,圆心角AOB α∠=, ①2=360R S απ⨯⨯︒扇形, 根据题意可知1=6S S 扇形圆形,即: 221360=6R R αππ⨯⨯︒⨯. ①=60α︒,即60AOB ∠=︒.故答案为60︒.【点睛】本题考查扇形和圆形的面积公式.掌握已知圆心角的扇形的面积公式是解答本题的关键.29.3 5【分析】先求出较小扇形的弧长为328rπ⨯,较大扇形的弧长为528rπ⨯,根据分数的除法32 8rπ⨯÷528rπ⨯=383855⨯=即可.【详解】解:①1353= 3608,①较小扇形的弧长为328rπ⨯,①较大扇形的弧长为528rπ⨯,①328rπ⨯÷528rπ⨯()=383855⨯=①较小扇形的弧长是较大扇形的弧长35.故答案为:35.【点睛】本题考查圆的周长,圆心角、扇形弧长与圆的周长的关系,分数的除法,掌握圆的周长,圆心角、扇形弧长与圆的周长的关系,分数的除法是解题关键.30.4【分析】在长方体中,棱与面之间的关系有平行和垂直两种.【详解】与平面BCGF垂直的棱有AB、DC、EF、HG.共四条.故答案为4.【点睛】本题考查的知识点为:与一个平面内的任一条直线垂直的直线就与这个平面垂直.31.19cm【分析】根据扇形的面积公式求出弧长,然后根据周长的定义即可求出结论.【详解】解:12×2÷8=3cm扇形的周长=3+8×2=19cm故答案为:19cm.【点睛】此题考查的是求扇形的周长,掌握扇形的面积公式和周长的定义是解决此题的关键.32.32ππ或【分析】分两种情况进行讨论:当以长6cm 为底面圆的周长时;当以长4cm 为底面圆的周长时;根据圆的周长公式求解即可.【详解】解:当以长6cm 为底面圆的周长时,底面圆的半径为:6÷2÷π=3πcm ; 当以长4cm 为底面圆的周长时,底面圆的半径为:4÷2÷π=2πcm ; 故答案为:3π或2π. 【点睛】题目主要考查圆的周长公式及圆柱的展开图,理解题意,列出式子是解题关键. 33.10或14【分析】根据题意可得拼接方法有两种:一种是23⨯,一种是16⨯,然后进行分类求解即可.【详解】解:①如果是23⨯的拼法,拼法之前是6636⨯=(平方厘米),拼之后是()121323222⨯+⨯+⨯⨯=(平方厘米),减少了14平方厘米,①如果是16⨯的拼法,拼之前是36平方厘米,拼之后是()11616226+⨯+⨯⨯=(平方厘米),减少了10平方厘米.故答案为10或14.【点睛】本题主要考查长方体的表面积,关键是根据题意得到拼接方式,然后进行求解即可.34.4【分析】根据题意,画出图形,即可得出结论.【详解】解:如图所示,与平面11AA D D 平行的棱有BC 、1111BB CC B C 、、,共有4条 故答案为:4.【点睛】此题考查的是长方体中棱和平面位置关系的判断,掌握长方体的特征是解决此题的关键.35.20【分析】根据圆的半径等于直径的一半即可求解.【详解】解:一个圆形花坛的直径是40米,那么它的半径是20米,故答案为:20.【点睛】本题考查了求圆的半径,掌握圆的半径等于直径的一半是解题的关键.36.1224【分析】等底等高的圆柱的体积是圆锥体积的3倍,它们体积的和是圆锥体积的3+1=4倍,已知它们的之和是48立方分米,据此可求出圆锥的体积,进而可求了圆柱的体积,用圆柱的体积再减圆锥的体积即可.【详解】解:圆锥的体积是48÷(3+1)=48÷4=12(立方分米)48-12=36(立方分米)36-12=24(立方分米)答:圆锥的体积比圆柱少24立方分米.故答案为:12,24.【点睛】此题主要考查圆锥和圆柱的体积计算,根据等底等高的圆锥的体积是圆柱体积的1是解题的关键.337.错##【分析】根据半圆周长的意义,半圆的周长等于该圆周长的一半加上直径,据此作出判断即可.【详解】解:因为半圆的周长等于该圆周长的一半加上直径,所以半圆形的周长不等于它所在圆的周长的一半,因此,题干中的说法是错误的.故答案为:错.【点睛】本题主要考查的是理解掌握半圆周长的意义及应用.38.4【分析】直接根据长方体棱与棱的位置关系直接求解即可.【详解】如图所示:假设不与棱AB既不平行也不相交的棱有:EH、FG、HD、GC;共4条;故答案为4.【点睛】本题主要考查长方体中棱与棱的位置关系,正确理解概念是解题的关键.39.12【分析】πR2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角扩大到原来的2倍,面积扩大到原来的2倍,(圆心角扩大的基础上)半径缩小为原来的一半,面积缩小为14,总的算起来面积缩小为到原来12.【详解】原扇形面积=圆心角÷360°×π×R2,新扇形面积=(圆心角×2)÷360°×π×(12R)2=圆心角÷360×2×π×14R2=圆心角÷360°×π×R2×12,所以新扇形面积:原扇形面积=12:1=12.故答案为:12【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.40.1π-【分析】根据直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A点,可得圆的周长,根据两点间的距离是大数减小数,可得答案.【详解】解:由直径为单位1的圆从数轴上表示−1的点沿着数轴无滑动的向右滚动一周到达A点,得:A点与−1之间的距离是π.由两点间的距离是大数减小数,得:A点表示的数是1π-,故答案为:1π-.【点睛】本题考查了数轴和圆的周长,掌握数轴上两点间的距离是大数减小数是解题关键.41.(1)圆柱;(2)144π平方厘米.【分析】(1)根据面动成体可知将正方形围绕它的一条边为轴旋转一周,得到的是圆柱; (2)根据圆柱的高和圆柱的底面半径都是正方形的边长,由此数据利用圆柱的表面积=上下底面面积+侧面积解答即可.【详解】解:(1)将正方形围绕它的一条边为轴旋转一周,得到的是圆柱,故答案为:圆柱(2)立体图形的表面积=266+266=144πππ⨯⨯⨯⨯(平方厘米);答:这个图形的表面积是144π平方厘米.【点睛】解答此题的关键是找出旋转所得到的图形与原图形之间的数据关系,然后根据圆柱的表面积公式进行解答.42.(1)22111422a ax x πππ-+ (2)AP=13a 时的面积大于AP =12a 时的面积【分析】(1)用圆形的面积公式求解;(2)根据AP 的长度,分别计算两个圆形的面积之和,比较即可.(1)解:①AP =x ,①S =221()()22a x x ππ-+ 22111422a ax x πππ=-+. (2)当AP =13a 时,BP =23a , 22111()()63S a a ππ=+ 2536a π=, 当AP =12a 时,BP =12a ,2221144S a a ππ=+()()218a π=, ①2536a π218a π> ①AP=13a 时的面积大于AP =12a 时的面积. 【点睛】本题考查了动点问题的解决方法圆形的面积公式,完全平方公式,正确进行计算是解决本题的关键.43.(1)180204⨯=(棵) (2)()22π32π316π+-⨯=(平方分米)【分析】(1)把苹果树的数量看作单位“1”,梨树的数量比苹果树少14,根据一个数乘分数的意义,用乘法解答;(2)大圆面积减小圆面积即为所求圆环面积.(1) 解:180204⨯=(棵), 故答案为:180204⨯=(棵) (2)解:()22π32π316π+-⨯=(平方分米)故答案为:()22π32π316π+-⨯=(平方分米)【点睛】此题考查分数乘法应用题和求圆环的面积.解答图文应用题的关键是根据图、文所提供的信息,弄清条件和问题,然后再选择合适的方法列式、解答.44.(1)棱AD 、棱EH 、棱FG(2)面BCGF(3)面ABCD 、面ADHE 、面ABFE(4)棱DA 、棱DC 、棱DH .【分析】(1)找与棱CB 相等的棱,可找到与棱CB 平行的棱即是所求.(2)与面ADHE 相对的面是BCGF(3)找经过点A 的面,可找出所以经过A 点的棱组成的面即是所求.。

中考数学几何图形专题训练50题含参考答案

中考数学几何图形专题训练50题含参考答案

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图是一正方体展开图,则有、志、者三面的对面分别是()A.事竟成B.事成竟C.成竟事D.竟成事2.下列四个图中,每个都是由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.3.如图,下列说法正确的是()A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.线段OM与线段ON是同一条线段D.射线NO与射线MO是同一条射线4.如图是某同学在数学实践课上设计的正方体纸盒的展开图,每个面上都有一个汉字,其中与“明”字相对的面上的字是()A.诚B.信C.友D.善5.图是一个正方体的表面展开图,将它折成正方体后,“法”字在上面,那么在下面的一定是()A .明B .诚C .信D .制 6.如图,在直线l 上的点是( )A .点AB .点BC .点CD .点D 7.如图,C 为线段AB 上一点,点D 为AC 的中点,且2AD =,10AB =.若点E 在直线AB 上,且1BE =,则DE 的长为( )A .7B .10C .7或9D .10或11 8.已知3725α∠=︒',则α∠的补角是( )A .14235︒'B .15235︒'C .14275︒'D .15275︒' 9.能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( ) A .垂线段最短B .两点确定一条直线C .两点之间线段最短D .同角的补角相等10.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .90°B .75°C .65°D .60° 11.用度、分、秒表示21.24为( )A .211424'''B .212024'''C .21144'''D .2114' 12.在下面的四个几何体中,它们各自的主视图、左视图与俯视图都一样的是( )A .正方体B .正四棱台C .有正方形孔的正方体D .底面是长方形的四棱锥 13.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A ,B ,C ,D 中的( )位置拼接正方形.A .AB .BC .CD .D14.下列立体图形中,俯视图与主视图不同的是( )A .B .C .D .15.下列图形中,不可以作为一个正方体的表面展开图的是A .B .C .D . 16.如图,将ABC 绕点C 顺时针旋转得到DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列四个结论:∠AC CD =;∠A BEC ∠=∠;∠AB EB ⊥;∠CD 平分ADE ∠;其中一定正确的是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠17.下列说法中,正确的是( )∠射线AB 和射线BA 是同一条射线;∠等角的余角相等;∠若AB BC =,则点B 为线段AC 的中点;∠点C 在线段AB 上,M ,N 分别是线段AC ,CB 的中点,若5MN =,则线段10AB =.A .∠∠B .∠∠C .∠∠D .∠∠ 18.已知射线OC 是∠AOB 的平分线,若∠AOC=30°,则∠AOB 的度数为( ) A .15 B .30 C .45 D .60 19.用两把常用三角板不可能拼成的角度为( )A .45B .105C .125D .150 20.如图,在∠ABC 中,BF 平分∠ABC ,过A 点作AF∠BF ,垂足为F 并延长交BC 于点G ,D 为AB 中点,连接DF 延长交AC 于点E .若AB=12,BC=20,则线段EF 的长为( )A .2B .3C .4D .5二、填空题21.已知2437α'∠=︒,那么α∠的补角等于______.22.已知∠α=60°,则∠α的余角等于____度.23.在空间搭4个大小一样的等边三角形,至少要_______根游戏棒.24.已知线段14cm AB =,点C 是直线AB 上一点,4cm BC =,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是___________cm .25.下午12:20 分,钟表上时针与分针所夹角的度数为_____度(所求夹角小于180︒).26.和都是 的余角,则______.27.图,∠AOC =∠BOD =90°,OB 在∠AOC 的内部,OC 在∠BOD 的内部,OE 是∠AOB 的一条三等分线.请从A ,B 两题中任选一题作答.A.当∠BOC=30°时,∠EOD的度数为__________.B.当∠BOC=α°时,∠EOD的度数为__________(用含α的代数式表示).28.将一副三角尺如图所示叠放在一起,则∠AEC=______度.29.对几何体分类时,首先确定标准,即:(1)从形状方面,按柱体、________、球划分;(2)从面的方面,按组成的面有无__________划分;(3)从顶点方面,按有无________划分.30.几个同学在公园玩,发现一个漂亮的“古董”. 甲:它有10个面;乙:它有24条棱;丙:它有8个面是正方形,2个面是多边形;丁:如果把它的侧面展开,是一个长方形,这个长方形有八种颜色,挺好看. 通过这四个同学的对话,从几何体的名称来看,这个“古董“的形状是_____________.31.如图,一艘船由A港沿北偏东65︒方向航行30km至B港,然后再沿北偏西40︒方向航行至C港,C港在A港北偏东20︒方向,则A,C两港之间的距离为______km.32.如图是一个正方体的展开图,将它折叠成正方体后,字母B的对面是________.(用图中字母表示)33.甲、乙两艘客轮同时离开港口,航行的速度都是40m /min ,甲客轮沿北偏东30°的方向航行15min 到达点A ,乙客轮沿南偏东60°的方向航行20min 到达点B .则A 、B 两点的直线距离为______m .34.平行四边形ABCD 中,AE 平分∠BAD 交BC 与点E ,且将BC 分成4cm 和6cm 两部分,则平行四边形ABCD 的周长为_____________.35.如图,AB 是∠O 的直径,点C 、D 是AB 两侧∠O 上的点,若∠CAB =34°,则∠ADC =_____°.36.点C 在直线AB 上,若AB =3,BC =2,则AC 为_____.37.由O 点引出的7条射线如图,若OA OE ⊥,OC OG ⊥,BOC FOG ∠>∠,则图中以O 为顶角的锐角共有________个.38.一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个正方体,把大正方体中相对的两面打通,结果如图,则图中剩下的小正方有______个.39.如图,∠α=120°,∠β=90°,则∠γ的度数是________ °.40.Rt△ABC中,∠ACB=90°,AC=20,BC=10,D、E分别为边AB、CA上两动点,则CD+DE的最小值为______.三、解答题41.如图,AD为△ABC的角平分线,点E在AC上,点F在BC上,连接BE交AD于点G,连接EF,∠1=∠2.(1)求证:∠BEF与∠AGB互补;(2)若∠C=75°,EF∠BC,求∠ABC的度数.42.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.求出∠D0E及其补角的度数.43.小明用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的∠和∠.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的∠重新粘贴到∠上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,请你帮助小明在∠上补全.(作图要求:先用尺和铅笔画图,再用黑色的签字笔描一遍)(3)小明说:已知这个长方形纸盒高为3cm ,底面是一个正方形,并且这个长方形纸盒所有棱长的和是92cm ,请计算,这个长方体纸盒的体积是___________cm 3.44.如图1,已知AB //CD ,点G 在AB 上,点H 在EF 上,连接CG 、CH ,CG CH ⊥,90CHE CGA ∠+∠=︒.(1)求证:AB //EF ;(2)如图2,若90BAE ∠=︒,延长HC 交BA 的延长线于点M ,请直接写出图2中所有与AGC ∠互余的角.45.如图,100AOB ∠=︒,射线OC 以2/s ︒的速度从OA 位置出发,射线OD 以10/s ︒的速度从OB 位置出发,设两条射线同时绕点O 逆时针旋转s t .(1)当10t =时,求COD ∠的度数;(2)若015t ≤≤.∠当三条射线OA 、OC 、OD 构成的三个度数大于0︒的角中,有两个角相等,求此时t 的值;∠在射线OD ,OC 转动过程中,射线OE 始终在BOD ∠内部,且OF 平分AOC ∠,当110EOF ∠=︒,求BOE AOD∠∠的值. 46.如图:点A ,B ,E 在同一条直线上,AD AC ⊥,且BD AD AE EC ⊥⊥,,垂足分别为A ,D ,E .(1)求证:ABD ∽CAE ;(2)若1356AB BD AC ===,,,求CE 的值.47.如图,AF BC ∥.72FAC ∠=︒,CD 平分ACB ∠,4CDE BCD ∠=∠.(1)求CDE ∠的度数.(2)求证:AED B ∠=∠.48.(1)如图1,已知点C ,D 在线段AB 上,P 是BD 的中点,线段AB ,CP 的长度m ,n 满足227(15)0m n -+-=,AD :BC =5:7,求线段CD 的长度;(2)已知∠AOB =140°,将射线OB 绕着点O 逆时针旋转一定的角度α(0°<α<140°)得到射线OD ,作∠BOD 的平分线OP ,将射线OP 绕着点O 逆时针旋转60°得到射线OC .∠AOD :∠BOC =1:t .∠如图2,若t <1,请直接用含有t 的式子表示出∠AOD 的度数;∠若∠COD =12∠AOC ,求t 的值. 49.问题提出(1)如图1,点A ,B 在直线l 的同侧,在直线l 上作一点P ,使得AP BP +的值最小.问题探究(2)如图2,正方形ABCD 的边长为6,点M 在DC 上,且2DM =,N 是AC 上的一动点,则DN MN +的最小值是_________.问题解决(3)现在各大景区都在流行“真人CS ”娱乐项目,其中有一个“快速抢点”游戏,游戏规则如图3,在用绳子围成的一个边长为12m 的正方形ABCD 场地中,游戏者从AB 边上的点E 处出发,分别先后赶往边,,BC CD DA 上插小旗子,最后回到点E .求游戏者所跑的最少路程.50.如图,已知,在Rt ABC 中,斜边10AB =,4sin 5A = ,点P 为边AB 上一动点(不与A ,B 重合),PQ 平分CPB ∠交边BC 于点Q ,QM AB ⊥于M QN CP ⊥,于N .(1)当AP=CP 时,求QP ;(2)若CP AB ⊥ ,求CQ ;(3)探究:AP 为何值时,四边形PMQN 与BPQ 的面积相等?参考答案:1.A【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“有”与面“事”相对,面“志”与面“竟”相对,“者”与面“成”相对.故选A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.C【详解】试题解析:A、折叠后,没有上下底面,故不能围成正方体;B、折叠后,缺少一个底面,故也不能围成正方体;C、折叠后能围成正方体;D、折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故选C.考点:展开图折叠成几何体.3.A【分析】根据直线、射线、线段的概念求解即可【详解】解:同一条直线可由这条直线上任意两点的大写字母表示,选项A正确;同一条射线必须满足端点相同,延伸方向相同,选项B,D错误;同一条线段的两个端点相同,选项C错误.故选:A.【点睛】本题考查的知识点是线段、射线以及直线的概念,熟记概念定义是解题的关键. 4.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,在正方体盒子上与“明”字相对的面上的字是“信”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.C【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,这一特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∠与“法”字相对的面上的汉字是“信”.故应选:C .【点睛】本题主要考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键6.B【分析】根据图像点与线的关系可直接得出答案.【详解】解:由图像可知点A 、C 、D 在直线l 外,点B 在直线l 上故选B .【点睛】本题考查了点线关系,比较简单.7.C【分析】由题意根据线段中点的性质,可得AD 、DC 的长,进而根据线段的和差,可得DE 的长.【详解】解:∠点D 为AC 的中点,且2AD =,∠2AD DC ==,∠10AB =,∠6BC AB AD DC =--=,∠1BE =,当E 在B 左侧,2617DE DC BC BE =+-=+-=,当E 在B 右侧,2619DE DC BC BE =++=++=.∠DE 的长为7或9.故选:C.【点睛】本题考查两点间的距离,解题的关键是利用线段的和差以及线段中点的性质. 8.A【分析】根据互补两角之和180°计算即可.【详解】∠3725α∠=︒'∠α∠的补角=1803725︒-︒'=14235︒',故选A .【点睛】本题考查补角定义和角度计算,需要注意角度度分秒计算时进制时60. 9.B【分析】根据两点确定一条直线解答即可.【详解】解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,故选B .【点睛】本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键. 10.B【分析】根据平行线的性质可得∠FDC =∠F =30°,然后根据三角形外角的性质可得结果.【详解】解:如图,∠EF ∠BC ,∠∠FDC =∠F =30°,∠∠1=∠FDC +∠C =30°+45°=75°,故选:B .【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.11.A【分析】根据度、分、秒之间的进制,先将度中的小数部分转化为分,再将分的小数部分转化为秒即得.【详解】解:21.24210.2460︒'︒=+⨯2114.4︒'=+21140.460'''=︒++⨯211424'''=︒++211424'''=︒.故选:A .【点评】本题考查了度、分、秒运算,熟练掌握度、分、秒之间的六十进制是解题关键,六十进制与十进制易混淆.12.A【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,找到三个图形一致的几何体即可.【详解】解:A、正方体的三视图是全等的正方形,符合题意;B、正四棱台的三视图分别为梯形,梯形,两个正方形的组合图形,不符合题意;C、有正方孔的正方体的左视图与主视图都是正方形里面有两条竖直的虚线,俯视图是两个正方形的组合图形,不符合题意;D、四棱锥的三视图分别是三角形,三角形,四边形及中心,不符合题意;故选A.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意看不到的棱用虚线表示.13.A【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【详解】解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.【点睛】此题主要考查了应用与设计作图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.14.C【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.【详解】A .俯视图与主视图都是正方形,故该选项不合题意;B .俯视图与主视图都是矩形,故该选项不合题意;C .俯视图是圆,左视图是三角形;故该选项符合题意;D .俯视图与主视图都是圆,故该选项不合题意;故选C .【点睛】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.15.B【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A .可以作为一个正方体的展开图,B .不可以作为一个正方体的展开图,C .可以作为一个正方体的展开图,D .可以作为一个正方体的展开图,故选B .【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.16.A【分析】根据旋转的性质得到AC CD =,BC CE =,A EDC ∠=∠,故∠正确;得到ACD BCE ∠=∠,CBE BEC ∠=∠,根据三角形的内角和得到1802ACD A ADC ︒-∠∠=∠=,1802BCE CBE BEC ︒-∠∠=∠=,求得A BEC ∠=∠,故∠正确;由于A ABC ∠+∠不一定等于90︒,于是得到ABC CBE ∠+∠不一定等于90︒,故∠错误,可求得ADC EDC ∠=∠,故可判定∠.【详解】解:∠ABC 绕点C 顺时针旋转得到DEC ,∠AC CD =,BC CE =,A EDC ∠=∠,ACB ECD ∠=∠,故①正确;∴A ADC EDC ∠=∠=∠,ACD DCB DCB BCE ∠+∠=∠+∠,∠CD 平分ADE ∠,ACD BCE ∠=∠,故∠正确;∠BC CE =,∠CBE BEC ∠=∠,∠根据三角形内角和定理可知1802ACDA ADC︒-∠∠=∠=,1802BCECBE BEC ︒-∠∠=∠=,∠A BEC∠=∠,故∠正确;∠A ABC∠+∠不一定等于90︒,ABC CBE∴∠+∠不一定等于90︒,故∠错误.综上,正确的由①②④,故选:A.【点睛】本题考查了旋转的性质,等腰三角形的性质、、三角形的内角和定理、角平分线的定义,正确的识别图形是解题的关键.17.C【分析】根据射线及线段的定义及特点可判断各项,从而得出答案.【详解】∠射线AB和射线BA不是同一条射线,错误;∠同角的余角相等,正确;∠若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;∠点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确.故选:C.【点睛】本题考查射线及线段的知识,注意基本概念的掌握是解题的关键.18.D【分析】根据角平分线的定义即可求解.【详解】解:∠射线OC是∠AOB的平分线,∠AOC=30°,∠∠AOB=60°.故答案选:D.【点睛】此题考查了角的计算,以及角平分线的定义,关键是熟练掌握角平分线的定义.19.C【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∠三角板的度数为30°,60°,90°;45°,45°,90°∠可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.20.CAB,由角平分线的定义可证得【分析】由直角三角形的性质可求得DF=BD=12DE∠BC,利用三角形中位线定理可求得DE的长,则可求得EF的长.【详解】解:∠AF∠BF,D为AB的中点,∠DF=DB=1AB=6,2∠∠DBF=∠DFB,∠BF平分∠ABC,∠∠DBF=∠CBF,∠∠DFB=∠CBF,∠DE∠BC,∠DE为∠ABC的中位线,∠DE=1BC=10,2∠EF=DE−DF=10−6=4,故选C.【点睛】本题考查直角三角形斜边上的中线的性质,角平分线的性质,等腰三角形的判定与性质,三角形中位线定理.根据直角三角形斜边上的中线是斜边是斜边的一半可得∠DBF 为等腰三角形,通过角平分线的性质和等角对等边可得DF//BC,即DE为∠ABC的中位线,从而计算出DE,继而求出EF.21.155°23′【分析】根据补角的概念,直接作答即可.【详解】解:根据题意,∠α=24°37′,则∠α的补角=180°-24°37′=155°23′.故答案为:155°23′.【点睛】此题考查补角的问题.解题的关键是掌握补角的定义,涉及角度问题时,需要特别注意题干中是否带有单位.22.30【详解】∠互余两角的和等于90°,∠α的余角为:90°-60°=30°.故答案为:3023.6【分析】根据题意可知在同一平面内用游戏棒搭4个大小一样的等边三角形(两个菱形),至少要9根游戏棒,在空间搭4个大小一样的等边三角形,如三棱锥,至少要6根游戏棒.【详解】由题可知:因为4个等边三角形需12根游戏棒,但可共用3根,所以至少要9根游戏棒;因为空间可以共棱,所以至少要6根游戏棒.【点睛】此题涉及到规律型:数字的变化类.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.24.7【分析】本题需要分两种情况讨论,∠当点C在线段AB上时,∠当点C在线段AB的延长线上时,根据线段中点的定义,计算即可.【详解】如图,当点C在线段AB上时,则14410AC=-=∠M是AC的中点,N是BC的中点,∠1152722MN MC CN AC BC=+=+=+=;如图,当点C在线段AB的延长线上时,则14418AC=+=,∠M是AC的中点,N是BC的中点,∠1192722MN MC CN AC BC=-=-=-=,综上所述,段MN的长度是7cm,故答案为:7【点睛】本题考查了两点间的距离,关键是利用了线段的中点的定义,分情况讨论.25.110【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:∠时针在钟面上每分钟转0.5°,分针每分钟转6°,∠钟表上12时20分钟时,时针与分针的夹角可以看成时针转过12时0.5°×20=10°,分针在数字4上.∠钟表12个数字,每相邻两个数字之间的夹角为30°,∠12时20分钟时分针与时针的夹角4×30°-10°=110°.故答案为:110.【点睛】本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.26.=【详解】解:∠α=90°-∠AOB ,∠β=90°-∠AOB ,故∠α=∠β.故答案为=. 27. 110°或130° 1203α⎛⎫-︒ ⎪⎝⎭或21503α⎛⎫-︒ ⎪⎝⎭ 【分析】A 、根据角的和差得到∠AOB =90°-30°=60°,根据OE 是∠AOB 的一条三等分线,分类讨论,当∠AOE =13∠AOB =20°,∠当∠BOE ′=13∠AOB =20°,根据角的和差即可得到结论;B 、根据角的和差得到∠AOB ,根据OE 是∠AOB 的一条三等分线,分类讨论,当∠AOE =13∠AOB ,∠当∠BOE ′=13∠AOB ,根据角的和差即可得到结论. 【详解】解:A 、如图,∠∠AOC =90°,∠BOC =30°,∠∠AOB =90°-30°=60°,∠OE 是∠AOB 的一条三等分线,∠∠当∠AOE =13∠AOB =20°, ∠∠BOE =40°,∠∠BOD=90°,∠∠EOD=∠BOD+∠BOE=130°,∠当∠BOE′=13∠AOB=20°,∠∠DOE′=90°+20°=110°,综上所述,∠EOD的度数为130°或110°,故答案为:130°或110°;B、∠∠AOC=90°,∠BOC=α°,∠∠AOB=90°-α°,∠OE是∠AOB的一条三等分线,∠∠当∠AOE=13∠AOB=30°-13α°,∠∠BOE=90°-α-(30-13α)°=60°-23α°,∠∠BOD=90°,∠∠EOD=∠BOD+∠BOE=150°-23α°,∠当∠BOE′=13∠AOB=30°-13α°,∠∠DOE′=90°+30°-13α°=120°-13α°,综上所述,∠EOD的度数为150°-23α°或120°-13α°,故答案为:150°-23α°或120°-13α°;【点睛】本题考查了余角和补角的定义,角的倍分,熟练掌握余角和补角的性质是解题的关键.28.75【分析】由∠BAC=∠ACD=90°,可得AB∠CD,所以∠BAE=∠D=30°,利用三角形的外角关系即可求出∠AEC的度数.【详解】解:∠∠BAC=∠ACD=90°,∠AB∠CD,∠∠BAE=∠D=30°,∠∠AEC=∠B+∠BAE=75°,故答案为:75.【点睛】此题主要三角形的外角的性质,平行线的性质与判定,三角板中角度的计算,判断出AB ∠CD 是解本题的关键.29. 锥体 曲的面 顶点【分析】根据不同的分类标准的要求即可求解.【详解】解:(1)从形状方面,按柱体、__锥体______、球划分;(2)从面的方面,按组成的面有无____曲的面______划分;(3)从顶点方面,按有无____顶点____划分.故答案为(1)锥体,(2)曲的面,(3)顶点.【点睛】本题考查立体图形的不同分类方法,掌握各种分类标准及要求是解题关键. 30.八棱柱【分析】棱柱有两个面互相平行,其余各面都是多边形,并且每相邻两个四边形的公共边都互相平行;据此,再结合“这个‘古董’有8个面是正方形,2个面是多边形”,即可确定答案.【详解】根据甲:它有10个面;乙:它有24条棱;丙:它有8个面是正方形,2个面是多边形;丁:如果把它的侧面展开,是一个长方形.可知它符合棱柱的特征,可知是一个八棱柱.故答案为八棱柱.【点睛】本题考查了认识立体图形,解题的关键是熟练掌握棱柱的特征.31.【分析】根据题意得,6520CAB ∠=︒-︒,402060ACB ∠=︒+︒=︒,30AB =,过B 作BE AC ⊥于E ,解直角三角形即可得到结论.【详解】解:根据题意得,652045CAB ∠=︒-︒=︒,402060ACB ∠=︒+︒=︒,30AB =, 过B 作BE AC ⊥于E ,90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,45ABE ∠=︒,30AB =,AE BE ∴== 在Rt CBE ∆中,60ACB ∠=︒,CE ∴=AC AE CE ∴=+=∴,C两港之间的距离为km,A故答案为:【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.32.D【分析】由平面图形的折叠及立体图形的表面展开图的特点解答即可.【详解】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以字母B的对面是D.故答案为D.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.33.1000【分析】先画出草图,根据∠COA=30°,∠EOB=60°,∠EOC=180°,得到∠AOB=90°,根据路程=速度×时间,得到OA=40×15=600,OB=40×20=800,利用勾股定理计算AB即可.【详解】画出草图如下,∠∠COA=30°,∠EOB=60°,∠EOC=180°,∠∠AOB=90°,∠路程=速度×时间,∠OA =40×15=600,OB =40×20=800,∠AB =1000,故答案为:1000.【点睛】本题考查了方位角,勾股定理,正确理解方位角的意义,熟练掌握勾股定理是解题的关键.34.32cm 或28cm【分析】根据角平分线性质,得BAE DAE ∠=∠;根据平行四边形及平行线性质,得BEA DAE ∠=∠,从而得BAE BEA ∠=∠;根据等腰三角形性质,得BA BE =;根据题意,分两种情况分析,通过计算即可得到答案.【详解】根据题意,如图:∠AE 平分∠BAD 交BC 与点E ,∠BAE DAE ∠=∠∠平行四边形ABCD∠//AD BC∠BEA DAE ∠=∠∠BAE BEA ∠=∠∠BA BE =AE 将BC 分成4cm 和6cm 两部分,当6cm BE =时,得6cm BA BE ==∠10cm BC BE EC =+=∠平行四边形ABCD 的周长为2232cm BA BC +=当4cm BE =时,得4cm BA BE ==∠平行四边形ABCD 的周长为2228cm BA BC +=故答案为:32cm 或28cm .【点睛】本题考查了角平分线、平行四边形、平行线、等腰三角形的知识;解题的关键是熟练掌握角平分线、平行四边形、等腰三角形的性质,从而完成求解.35.56【分析】先由圆周角定理得∠ACB =90°,求得∠ABC 的度数,然后由圆周角定理,即可求得∠ADC 的度数.【详解】解:∠AB 为∠O 的直径,∠∠ACB =90°,∠∠CAB =34°,∠∠ABC =90°﹣∠CAB =56°,∠∠ADC =∠ABC =56°.故答案为:56.【点睛】本题考查了圆周角定理以及直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.36.1或5【分析】分为两种情况,画出图形,根据线段的和差即可得出答案.【详解】解:当C 在线段AB 上时,AC=AB-BC=3-2=1,当C 在线段AB 的延长线时,AC=AB+BC=3+2=5,即AC=1或5,故答案为:1或5.【点睛】本题考查了线段的和差,能求出符合的所有情况是解此题的关键,注意要进行分类讨论.37.15【分析】分别以OA 、OB 、OC 、OD 、OE 、OF 为一边,数出所有角,找出其中的非锐角,相减即可得答案.【详解】解:以OA 、OB 、OC 、OD 、OE 、OF 为始边,分别有角6个,5个,4个,3个,2个,1个,图中共有角21个,OA OE ⊥,所以以OA 为边的非锐角有3个,分别为,,AOG AOF AOE ,,OC OG ,BOC FOG∠∠COF +∠BOC >90°,∠∠FOB >90°.所以以OB 为边的非锐角有2个,分别为,BOG BOF ,以OC 为边的非锐角有1个,为COG ∠.于是图中共有锐角21-(3+2+1)=15个.故答案为15.【点睛】此题考查了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数,要注意去掉非锐角.38.73【分析】根据题意:我们把相对面打通需要去掉的小正方体分三种情况,按一定的顺序数去掉的小正方体数量,如前后面,上下面,左右面分别去数数,然后用总数125减掉数出来的三部分即可,注意:前面数过的后面的一定去掉,否则会重复的.【详解】解:前后面少(3+2)×5=25(个),上下面少的(去掉与前后面重复的)(5-3)+2×3+1×5=13(个),左右面少的(去掉与前后,上下重复的)(5-3)+(5-1)+(5-2)+(5-2-1)+(5-2)=14(个), 125-(25+13+14)=73(个),答:图中剩下的小正方体有73个.故答案为:73.【点睛】本题考查了正方体的对面上的数字,要注意不能重复和遗漏.39.150.【分析】根据周角的定义,利用360度减去∠α和∠β即可求解.【详解】由题意可得,∠γ=360°-∠α-∠β=360°-120°-90°=150°.故答案是:150.【点睛】本题考查了角度的计算,正确得到图中三个角之间的关系是解决问题的关键.40.16【分析】作点C关于AB的对称点C',过点C'作C'E∠AC,交AB于点D',即可确定C'E 就是CD+DE的最小值,然后运用勾股定理和相似三角形的知识求解即可.【详解】作点C关于AB的对称点C',过点C'作C'E∠AC,交AB于点D',则CD+DE的最小值为C'E的长;∠∠ACB=90°,AC=20,BC=10,,∠∠A=∠C',∠''C E AC CC AB,∠C'E=16;故答案为16;【点睛】本题考查了相似三角形、勾股定理和最短距离问题,其中运用作对称点确定最短距离是解答的关键.41.(1)证明见解析(2)∠ABC=75°【分析】(1)先利用角平分线的定义得到∠DAC=∠1,则∠DAC=∠2,于是可判断。

中考数学总复习《几何图形初步》专项测试卷-带有参考答案

中考数学总复习《几何图形初步》专项测试卷-带有参考答案

中考数学总复习《几何图形初步》专项测试卷-带有参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.已知A,B两地的位置如图所示,且∠BAC=150∘,那么下列语句正确的是( )A.A地在B地的北偏东60∘方向B.A地在B地的北偏东30∘方向C.B地在A地的北偏东60∘方向D.B地在A地的北偏东30∘方向2.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是A.∠1=∠3B.∠1=180∘−∠3C.∠1=90∘+∠3D.以上都不对3.如果A,B,C三点在同一直线上,且线段AB=6cm,BC=4cm若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5cm B.1cm C.5或1cm D.无法确定4.如图,已知线段AB=10cm,M是AB中点,点N在AB上NB=2cm,那么线段MN的长为( )A.5cm B.4cm C.3cm D.2cm5.如图,若∠AOB是直角∠AOC=38∘,∠COD:∠COB=1:2则∠BOD等于( )A.38∘B.52∘C.26∘D.64∘6.下列图中是正方体的展开图的有( )A.1个B.2个C.3个D.4个7.如图,将甲乙丙丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是( )A.甲B.乙C.丙D.丁8.已知线段AB=10cm,PA+PB=20cm则下列说法正确的是( )A.点P一定在线段AB的延长线上B.点P一定在线段BA的延长线上C.点P一定不在线段AB上D.点P一定不在直线AB外二、填空题(共5题,共15分)9.请仿照示例在如下图写出下列射线表示的方位:例:射线OA表示的方向为:北偏西30∘.(1)射线OB表示的方向是(2)射线OC表示的方向是.注意:角必须以正北和正南方向作为基准,“北偏东60∘”不能说成“东偏北30∘”;“南偏西30∘”不能说成“西偏南60∘”.10.如图,已知OM平分∠AOB,ON平分∠BOC,∠AOB=90∘且∠BOC=30∘,则∠MON 的度数为度.11.如图,在数轴上点A表示数−3,点B表示数−1,点C表示数5.点A,B,C同时开始在数轴上运动,点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒2个单位长度和每秒3个单位长度的速度向右运动,t s后,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC(1)AB=,BC=.(用含t的代数式表示)(2)经计算,3BC−AB为定值,这个定值是.12.如图,一个正方体由27个大小相同的小立方块搭成.现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.13.(1)如图①,射线OA,OB把∠POQ三等分,若图中所有小于平角的角的度数之和是300∘,则∠POQ的度数为°.(2)如图②,OM平分∠AOB,ON平分∠COD,∠MON=90∘∠BOC=26∘则∠AOD的度数为°.三、解答题(共3题,共45分)14.如图,点A,O,B在一条直线上∠AOC=80∘和∠COE=50∘,OD是∠AOC的平分线.(1) 求∠AOE和∠DOE的度数.(2) OE是∠COB的平分线吗?为什么?(3) 请直接写出∠COD的余角和补角.15.如图,直线AB,CD交于点O,∠AOE=4∠DOE∠AOE的余角比∠DOE小10∘(题中所说的角均是小于平角的角).(1) 求∠AOE的度数;(2) 请写出∠AOC在图中的所有补角;(3) 从点O向直线AB的右侧引出一条射线OP,当∠COP=∠AOE+∠DOP时,求∠BOP的度数.16.如图,线段AB被点C,D分成2:4:7的三部分,M,N分别是AC,DB的中点,且MN=17cm,求AB的长.参考答案1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】D8. 【答案】C9. 【答案】南偏东70∘;南偏西45∘10. 【答案】6011. 【答案】3t+2t+61612. 【答案】1613. 【答案】9015414. 【答案】(1) ∵∠AOC=80∘,∠COE=50∘∴∠AOE=∠AOC+∠COE=80∘+50∘=130∘.∵OD是的平分线×80∘=40∘.∴∠AOD=∠AOC=12∴∠DOE=∠AOE−∠AOD=130∘−40∘=90∘.(2) 结论:OE是∠COB的平分线.理由如下:∵∠BOE=180∘−∠AOE=180∘−130∘=50∘∠COE=50∘∴∠BOE=∠COE即OE是∠COB的平分线.(3) ∠COD的余角为:∠COE,∠BOE;补角为:∠BOD15. 【答案】(1) 设∠DOE=x,则∠AOE=4x∵∠AOE的余角比∠DOE小10∘∴90∘−4x=x−10∘∴x=20∘∴∠AOE=80∘.(2) ∠AOC在图中的所有补角是∠AOD,∠BOC和∠BOE.(3) ∵∠AOE=80∘∠DOE=20∘∴∠AOD=100∘∴∠AOC=80∘如答图①,当OP在CD的上方时设∠AOP=x∴∠DOP=100∘−x∵∠COP=∠AOE+∠DOP∴80∘+x=80∘+100∘−x∴x=50∘∴∠AOP=∠DOP=50∘∵∠BOD=∠AOC=80∘∴∠BOP=80∘+50∘=130∘.如答图②,当OP在CD的下方时设∠DOP=x∴∠BOP=80∘−x∵∠COP=∠AOE+∠DOP∠COB=∠AOD=100∘∴100∘+80∘−x=80∘+x∴x=50∘∴∠BOP=80∘−50∘=30∘.综上所述,∠BOP的度数为130∘或30∘.16. 【答案】由线段AB被点C,D分成2:4:7的三部分,可设AC=2k(k>0)则CD=4k BD=7k则AB=2k+4k+7k=13k.∵M,N分别是AC,DB的中点∴CM=12AC=k DN=12BD=72k.又∵MN=17cm,MN=MC+CD+DN ∴k+4k+72k=17解得k=2.∴AB=13k=26cm.。

初中数学几何图形专题训练50题含答案

初中数学几何图形专题训练50题含答案

初中数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知∠AOC=∠BOD=90º,∠AOD=150º,则∠BOC 的度数为( )A .30ºB .45ºC .50ºD .60º 2.下列图形属于立体图形的是( )A .正方形B .三角形C .球D .梯形 3.已知∠AOB =75°,以O 为端点作射线OC ,使∠AOC =48°,则∠BOC 的度数为( )A .123°B .123°和27°C .23°D .27°4.如图,已知点C 是线段AB 的中点,2AC cm =, 1.5DC cm =,则BD =( )A .0.5cmB .1cmC .1.5cmD .2cm 5.已知A ,B ,C ,D 四点,任意三点都不在同一直线上,以其中的任意两点为端点的线段的数量是( )A .5B .6C .7D .8 6.如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若2110∠=︒,那么1∠的度数是( )A .10°B .20°C .30°D .40° 7.如图,已知∠ACB=90°,CD∠AB ,垂足是D ,则图中与∠A 相等的角是( )A.∠1B.∠2C.∠B D.∠1、∠2和∠B 8.在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和互补的角为()A.B.C.D.9.下列说法正确的是()A.连接两点的线段,叫做两点间的距离B.射线OA与射线AO表示的是同一条射线C.经过两点有一条直线,并且只有一条直线D.从一点引出的两条直线所形成的图形叫做角10.我军在海南举行了建国以来海上最大的军事演习,位于点O处的军演指挥部观测到军舰A位于点O的北偏东65︒方向(如图),同时观测到军舰B位于点O处的南偏西20︒方向,则AOB∠=()A .85︒B .105︒C .125︒D .135︒ 11.如图,小玮从A 处沿北偏东40°方向行走到点B 处,又从点B 处沿东偏南23°方向行走到点C 处,则∠ABC 的度数为( )A .99°B .107°C .127°D .129° 12.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,30B ∠=︒,100ACD ∠=︒,则E ∠的度数为( )A .10°B .15°C .20°D .25° 13.如图所示,正方体的展开图为( )A .B .C .D .14.如图方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上,点P 也在小正方形的顶点上.某人从点P 出发,沿图中已有的格点所连线段走一周(即不能直接走线段AC 且要回到P ),则这个人所走的路程最少是( )A .7B .14C .10D .不确定 15.如图,等边∠ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若AE =2,则EM +CM 的最小值为( )AB .C .D .16.已知A ,B ,C 三点在同一条直线上,M ,N 分别为线段AB ,BC 的中点,且AB =60,BC =40,则MN 的长为( )A .10B .50C .10或50D .无法确定 17.如图,从4点钟开始,过了40分钟后,分针与时针所夹角的度数是( )A .090B .0100C .0110D .0120 18.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒ 19.一把直尺和一块三角板ABC (含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°20.如图,直线AB MN∥,点C为直线MN上一点,连接AC、BC,∠CAB=40°,∠ACB=90°,∠BAC的角平分线交MN于点D,点E是射线AD上的一个动点,连接CE、BE,∠CED的角平分线交MN于点F.当∠BEF=70°时,令ECMα∠=,用含α的式子表示∠EBC为().A.52αB.10α︒-C.1102α︒-D.1102α-︒二、填空题21.如图,将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD,若∠AOB=15°,则∠AOD 的度数是______°.22.若∠A与∠B互余,则∠A+∠B=_____;若∠A与∠B互补,则∠A+∠B=_____. 23.如图,点A、O、B在一条直线上,且∠AOD=35°,OD平分∠AOC,则图中∠BOC=______度.24.如图,在直线AB 上有一点O ,OC ∠OD ,OE 是∠DOB 的角平分线,当∠DOE =20°时,∠AOC =___°.25.一个直棱柱有12条棱,则它是__棱柱.26.如图,EF 是ABC 的中位线,BD 平分ABC ∠交EF 于D ,若6,10AB BC ==,则DF =______.27.已知5526α∠=︒',则α∠的余角为____________28.在墙上钉一根细木条至少要钉2根钉才稳,根据是_________________________; 29.在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______.30.如图所示,//AB CD ,CE 平分ACD ∠,并且交AB 于E ,118A ∠=︒,则AEC ∠等于______.31.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若45BOD ∠=︒,20C ∠=︒,则ADC ∠=___________.32.一副三角板按如图放置,则下列结论:∠如果230∠=︒,则有AC DE ∥;∠如果BC AD ∥,则有245∠=︒;∠如果445∠=︒,那么160∠=︒;∠ BAE CAD ∠+∠ 随着2∠的变化而变化,其中正确的是____.33.已知C 是线段AB 的中点,AB=10,若E 是直线AB 上的一点,且BE=3,则CE=_____34.如图,C ,D 是线段AB 上两点,已知AC :CD :DB=1:2:3,M 、N 分别为AC 、DB 的中点,且AB=8cm ,求线段MN 的长_____.35.已知OC 为一条射线,OM 平分AOC ∠,ON 平分BOC ∠.(1)如图1,当60AOB ∠=︒,OC 为AOB ∠内部任意一条射线时,MON ∠=_____; (2)如图2,当60AOB ∠=︒,OC 旋转到AOB ∠的外部时,MON ∠=_____; (3)如图3,当AOB α∠=,OC 旋转到AOB ∠(120BOC ∠<︒)的外部时,求MON ∠,请借助图3填空.解:因为OM 平分AOC ∠,ON 平分BOC ∠ 所以1122COM AOC CON BOC ∠=∠∠=∠,(依据是____________) 所以MON COM ∠=∠-_________12AOC =∠-_______12=________. 36.如图,已知60BAC ∠=︒,AD 是角平分线且20AD =,作AD 的垂直平分线交AC 于点F ,作DE AC ⊥,则DEF 的周长为 ______.37.平面内,已知AOB 90∠=,20,BOC OE ∠=平分,AOB OF ∠平分BOC ∠,则EOF ∠=______.38.如图所示,设L AB AD CD =++,M BE CE =+,N BC =.试比较M 、N 、L 的大小:________.39.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.(1)若18AB =,点D 与点A 重合,8DE =,则EC =_________;(2)若2AB DE =,线段DE 在直线AB 上移动,且满足关系式32AD EC BE +=,则CD AB =_______.三、解答题40.如图所示,在长方形ABCD 中,6cm BC ,8cm CD =,现绕这个长方形的一边所在直线旋转一周得到一个几何体.请解决以下问题:(1)说出旋转得到的几何体的名称?(2)如果用一个平面去截旋转得到的几何体,那么截面有哪些形状(至少写出3种)?(3)求旋转得到的几何体的表面积?(结果保留π)41.将一个正方体的表面沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?42.如图,OB 为AOC ∠的平分线,OD 是COE ∠的平分线.(1)如果40AOB ∠=︒,30DOE ∠=︒,那么BOD ∠为多少度?(2)如果140AOE ∠=︒,30COD ∠=︒,那么AOB ∠为多少度?(3)如果AOC α∠=︒,COE β∠=︒,则BOD ∠=______°,如果AOE θ∠=︒,则BOD ∠=______︒.43.如图,点C 是线段AB 上的一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果12,5AB cm AM cm ==,求BC 的长;(2)如果8MN cm =,求AB 的长.44.如图,一只蚂蚁沿长方体的表面从顶点A 爬到另一顶点M ,已知AB =3,AD = 4,BF = 5.求这只蚂蚁爬行的最短距离.45.已知AB CD ∥,点M 、N 分别在直线AB 、CD 上,AME ∠与CNE ∠的平分线所在的直线相交于点F .(1)如图1,点E 、F 都在直线AB 、CD 之间且70MEN ∠=︒时,MFN ∠的度数为___________;(2)如图2,当点E在直线AB、CD之间,F在直线CD下方时,写出MEN∠与MFN∠之间的数量关系,并证明;∠与(3)如图3,当点E在直线AB上方,F在直线AB与CD之间时,直接写出MEN∠之间的数量关系.MFN46.O为直线AB上的一点,OC∠OD,射线OE平分∠AOD.(1)如图∠,判断∠COE和∠BOD之间的数量关系,并说明理由;(2)若将∠COD绕点O旋转至图∠的位置,试问(1)中∠COE和∠BOD之间的数量关系是否发生变化?并说明理由;(3)若将∠COD绕点O旋转至图∠的位置,探究∠COE和∠BOD之间的数量关系,并说明理由.47.已知,P是线段AB的中点,点C是线段AB的三等分点,线段CP的长为4 cm.(1)求线段AB的长;(2)若点D是线段AC的中点,求线段DP的长.48.【提出问题】如图1,在直角ABC中,∠BAC=90°,点A正好落在直线l上,则∠1、∠2的关系为【探究问题】如图2,在直角ABC中,∠BAC=90°,AB=AC,点A正好落在直线l 上,分别作BD∠l于点D,CE∠l于点E,试探究线段BD、CE、DE之间的数量关系,并说明理由.【解决问题】如图3,在ABC中,∠CAB、∠CBA均为锐角,点A、B正好落在直线l 上,分别以A、B为直角顶点,向ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分别过点E、F作直线l的垂线,垂足为M、N.∠试探究线段EM、AB、FN之间的数量关系,并说明理由;∠若AC=3,BC=4,五边形EMNFC面积的最大值为49.如图,两个形状、大小完全相同的含有3060︒︒、的三角板如图∠放置,PA PB 、与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转.(1)求DPC ∠;(2)如图∠,若三角板PBD 保持不动,三角板PAC 的边PA 从PN 绕点P 逆时针旋转一定角度,PF 平分,APD PE ∠平分CPD ∠,求EPF ∠.(3)如图∠,在图∠基础上,若三角板PAC 的边PA 从PN 开始绕点P 逆时针旋转,转速为3︒/秒,同时三角板PBD 的边PB 从PM 绕点P 逆时针旋转,转速为2︒/秒,(当PC 转到与PM 重合时,两三角板都停止转动),求CPD BPN∠∠的值. (4)如图∠,在图∠基础上,若三角板PAC 开始绕点P 逆时针旋转,转速为5︒/秒,同时三角板PBD 绕点P 逆时针旋转,转速为1︒/秒,(当PA 转到与PM 重合时,两三角板都停止转动),在旋转过程中,PC PB PD 、、三条射线中,当其中一条射线平分另两条射线的夹角时,直接写出旋转的时间.参考答案:1.A【详解】试题分析:根据∠AOC=∠BOD=90º,∠AOD=150º,可得∠COD的度数,从而求得结果.∠∠AOC=∠BOD=90º,∠AOD=150º∠∠COD=∠AOD-∠AOC=60°∠∠BOC=∠BOD-∠COD=30°故选A.考点:本题考查的是角的计算点评:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.2.C【分析】依据立体图形的定义回答即可.【详解】解:正方形、三角形、梯形是平面图形,球是立体图形.故选:C.【点睛】本题主要考查的是立体图形的认识,掌握相关概念是解题的关键.3.B【分析】讨论:当OC在∠AOB的内部,如图1,则∠BOC=∠AOB-∠AOC;OC在∠AOB的外部,如图2,则∠BOC=∠AOB+∠AOC.【详解】解:当OC在∠AOB的内部,如图1,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB-∠AOC=75°-48°=27°;当OC在∠AOB的外部,如图2,∠∠AOB=75°,∠AOC=48°,∠∠BOC=∠AOB+∠AOC=75°+48°=123°,综上所述,∠BOC的度数为27°或123°.【点睛】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.4.A【分析】根据线段中点和线段之间的关系计算即可.【详解】解:点C是线段AB的中点,∴2==,BC AC cm∴2 1.50.5=-=-=.BD BC CD cm故选:A.【点睛】本题考查线段中点和线段的长度关系,掌握线段中点的性质是解答关键.5.B【分析】根据题意画出示意图,即可得答案.【详解】解:如图所示,有四个点,且每三点都不在同一直线上,每两点连一条线段,则可以连6条线段,故选:B.【点睛】本题主要考查了直线、线段、射线数量问题,能正确根据题意画出图形是解决问题的关键.6.D【分析】利用平行线的性质和平角的性质可以求得结果得出答案.【详解】解:如图示∠=︒,将一块含有30︒的直角三角板的顶点放在直尺的一边上,2110∠32110∠=∠=︒,∠11802301801103040∠=︒-∠-︒=︒-︒-︒=︒【点睛】本题主要考查了平行线的性质,正确得出3∠的度数是解题关键.7.B【分析】【详解】∠∠ACB= 90°,即∠1+∠2= 90°又∠在Rt∠ACD 中,∠A+∠1=90°∠∠A=∠2故选:B.8.D【详解】析:根据图形估计∠AOB 的大致度数,然后根据互为补角的和等于180°进行解答即可.解答:解:根据图形可得∠AOB 大约为135°,∠与∠AOB 互补的角大约为45°,综合各选项D 符合.故选D .9.C【分析】根据线段、射线、直线的定义即可解题.【详解】解:A. 连接两点的线段长度,叫做两点间的距离B. 射线OA 与射线AO 表示的是同一条射线,错误,射线具有方向性,C. 经过两点有一条直线,并且只有一条直线,正确,D. 错误,应该是从一点引出的两条射线所形成的图形叫做角,故选C.【点睛】本题考查了线段、射线、直线的性质,属于简单题,熟悉定义是解题关键. 10.D【分析】根据方向角的定义以及角的和差关系进行计算即可.【详解】解:由方向角的定义可知,65NOA ∠=︒,20SOB ∠=︒,∠906525AOE ∠=︒-︒=︒,∠AOB AOE EOS SOB ∠=∠+∠+∠,259020=︒+︒+︒故选:D .【点睛】本题考查方向角,理解方向角的定义是解决问题的前提.11.B【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】如图:∠小明从A 处沿北偏东40︒方向行走至点B 处,又从点B 处沿东偏南23︒方向行走至点C 处,∠40DAB ∠=︒,23CBF ∠=︒,∠向北方向线是平行的,即AD BE ∥,∠40ABE DAB ∠=∠=︒,∠90EBF ∠=︒,∠902367EBC ∠=︒-︒=︒,∠4067107ABC ABE EBC ∠=∠+∠=︒+︒=︒,故选B .【点睛】本题考查方位角,解题的关键是画图正确表示出方位角.12.C 【分析】先根据角平分线的定义求出1502ECD ACD ∠=∠=︒,再由三角形外角的性质求解【详解】解:∠CE平分∠ACD,∠ACD=100°,∠1502ECD ACD∠=∠=︒,∠∠B=30°,∠∠E=∠ECD-∠B=20°,故选C.【点睛】本题主要考查了角平分线的定义,三角形外角的性质,熟知角平分线的定义和三角形外角的性质是解题的关键.13.A【分析】根据正方体的展开图的性质判断即可;【详解】A中展开图正确;B中对号面和等号面是对面,与题意不符;C中对号的方向不正确,故不正确;D中三个符号的方位不相符,故不正确;故答案选A.【点睛】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.14.B【分析】根据题意作图得到运动的轨迹,根据矩形的周长特点即可求解.【详解】如图,这个人所走的路程是图中的矩形,周长为2(3+4)=14故选B.【点睛】此题主要考查网格的作图,解题的关键是根据题意作出图形求解.15.C【分析】连接BE,交AD于点M,过点E作EF∠BC交于点F,此时EM+CM的值最小,求出BE即可.【详解】解:连接BE,交AD于点M,过点E作EF∠BC交于点F,∠∠ABC是等边三角形,AD是BC边上的中线,∠B点与C点关于AD对称,∠BM=CM,∠EM+CM=EM+BM=BE,此时EM+CM的值最小,∠AC=6,AE=2,∠EC=4,在Rt∠EFC中,∠ECF=60°,∠FC=2,EF=在Rt∠BEF中,BF=4,∠BE=故选:C.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题的关键.16.C【分析】根据题意画出图形,再根据图形求解即可.【详解】解:(1)当C在线段AB延长线上时,如图1,∠M、N分别为AB、BC的中点,∠BM=12AB=30,BN=12BC=20;∠MN=50.(2)当C在AB上时,如图2,同理可知BM =30,BN =20,∠MN =10;所以MN =50或10,故选C .【点睛】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.17.B【分析】4点时,分针与时针相差四大格,即120°,根据分针每分钟转6°,时针每分钟转0.5°,则40分钟后它们的夹角为40×6°﹣4×30°﹣40×0.5°.【详解】4点40分钟时,钟表的时针与分针形成的夹角的度数=40×6°﹣4×30°﹣40×0.5°=100°.故选B .【点睛】本题考查了钟面角:钟面被分成12大格,每大格30°;分针每分钟转6°,时针每分钟转0.5°.18.D【分析】根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.19.A【分析】先根据∠CED =50°,DE ∠AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∠DE ∠AF ,∠CED =50°,∠∠CAF =∠CED =50°,∠∠BAC =60°,∠∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.20.D【分析】先求出∠ABC,再延长CE,交AB于点G,结合平行线的性质表示出∠BCE,然后根据三角形内角和定理表示∠CED,再根据角平分线得定义表示出∠CEB,最后根据三角形内角和定理得出答案.【详解】在∠ABC中,∠CAB=40°,∠ACB=90°,∠∠ABC=50°.延长CE,交AB于点G,∠MN BA∥,∠EGBα∠=,∠ACM=∠BAC=40°,∠∠ACE=α-40°,∠∠BCE=90°-(α-40°)=130°-α.∠∠CEA=180°-∠CAE-∠ACE,∠∠CED=180°-∠CEA=∠CAE+∠ACE=20°+(α-40°)=α-20°.∠EF平分∠CED,∠∠CEF=111022CEDα∠=-︒,∠∠CEB=1110706022αα-︒+︒=+︒,∠∠EBC=11180(60)(130)10 22ααα︒-+︒-︒-=-︒.故选:D.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,平行线的性质,将待求角转化到适合的三角形是解题的关键.21.55°##55度【分析】根据将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD ,可得∠BOD = 40° 即可得∠AOD =∠BOD +∠AOB = 55°.【详解】∠将∠AOB 绕点O 按逆时针方向旋转40°后得到∠COD .∠∠BOD = 40°,∠∠AOB = 15°∠∠AOD =∠BOD +∠AOB = 40°+ 15°= 55°,故答案为:55°.【点睛】本题考查三角形的旋转变换,解题的关键是掌握旋转的性质.22. 90°##90度 180°##180度【分析】根据互余,互补的定义即可得到结果.【详解】若∠A 与∠B 互余,则∠A +∠B =90°;若∠A 与∠B 互补,则∠A +∠B =180°.故答案为:90°,180°【点睛】解答本题的关键是熟记和为90°的两个角互余,和为180°的两个角互补. 23.110【分析】根据角平分线可得270AOC AOD ∠=∠=︒,再利用补角的性质求解即可得.【详解】解:∵OD 平分AOC ∠,35AOD ∠=︒,∴223570AOC AOD ∠=∠=⨯︒=︒,∵AOC ∠与BOC ∠是邻补角,∴180AOC BOC ∠+∠=︒,∴18070110BOC ∠=︒-︒=︒.故答案为:110.【点睛】题目主要考查角平分线的计算及补角的性质,理解题意,结合图形求角度是解题关键.24.50【分析】先求出∠BOD ,根据平角的性质即可求出∠AOC .【详解】∠OE 是∠DOB 的角平分线,当∠DOE =20°∠∠BOD =2∠DOE =40°∠OC ∠OD ,∠∠AOC =180°-90°-∠BOD =50°故答案为:50.【点睛】此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质. 25.四【详解】试题解析:设该棱柱为n 棱柱,根据题意得:3n =12.解得:n =4.所以该棱柱为四棱柱,故答案是:四.26.2【分析】根据中位线的性质可得EF BC ∥,EF =12BC =5,则有∠CBD =∠BDE ,AE =BE =12AB =3,再根据BD 平分∠ABC ,有∠ABD =∠CBD ,即有∠ABD =∠BDE ,则可得DE =BE =3,问题得解.【详解】∠EF 是∠ABC 的中位线,∠EF BC ∥,EF =12BC =5,E 点为AB 中点, ∠∠CBD =∠BDE ,AE =BE =12AB =3. ∠BD 平分∠ABC ,∠∠ABD =∠CBD ,∠∠ABD =∠BDE ,∠DE =BE =3.∠DF =EF −DE =EF −BE =5−3=2.故答案为:2.【点睛】本题考了三角形中位线的性质、角平分线的性质以及等角对等边的知识,求出DE =BE 是解答本题的关键.27.3434'︒【分析】直接利用互余两角的关系,结合度分秒的换算得出答案.【详解】解:∠5526α∠=︒',∠α∠的余角为:9055263434'=︒'︒-︒.故答案为:3434'︒.【点睛】此题主要考查了余角的定义和度分秒的转换,正确把握相关定义是解题关键. 28.两点确定一条直线【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线. 故答案为两点确定一条直线.【点睛】当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定在直线上,才能射中目标等等;它们都是运用了“两点确定一条直线”的直线的性质.29. 棱, 侧棱;【分析】由棱柱的组成部分的定义直接填空即可.【详解】在棱柱中,任何相邻的两个面的交线都叫做棱,相邻的两个侧面的交线叫做侧棱. 故答案为棱;侧棱.【点睛】熟记面与面相交成线,在棱柱中,任何相邻的两个面的交线都叫做棱. 30.31°【分析】要求AEC ∠的度数,根据平行线的性质,只需求得2∠的度数.显然结合平行线的性质以及角平分线的定义就可解决.【详解】解://AB CD ,CE 平分ACD ∠交AB 于E ,118A ∠=︒,1112(180)(180118)3122A ∴∠=∠=︒-∠=︒-︒=︒, 231AEC ∴∠=∠=︒,故答案为:31°.【点睛】本题考查的是角平分线的性质及平行线的性质,比较简单,需同学们熟练掌握.31.70︒##70度【分析】根据三角形外角的定义和性质可知ADC A ABD ∠=∠+∠,利用轴对称的性质求出A ∠与ABD ∠的大小并进行计算即可. 【详解】解:AOB 与COB △关于边OB 所在的直线成轴对称∴20A C ∠=∠=︒,2ABD ABO ∠=∠,根据三角形外角的性质可知:在AOB 中,452025ABO BOD A ∠=∠-∠=︒-︒=︒222550ABD ABO ∴∠=∠=⨯︒=︒∴ 在ABD △中,205070ADC A ABD ∠=∠+∠=︒+︒=︒.故答案为:70︒.【点睛】本题考查轴对称的性质和三角形外角的性质,熟练运用三角形的外角性质进行计算是本题的解题关键.32.∠∠∠【分析】根据平行线的判定与性质即可逐一进行证明.【详解】解:∠∠230∠=︒,∠190260∠=︒-∠=︒,∠60AED ∠=︒,∠1AED ∠=∠,∠AC DE ∥;所以∠正确;∠∠BC AD ∥,∠345B ∠=∠=︒,∠290345∠=︒-∠=︒;所以∠正确;∠如图,∠445,60EGF GEF ∠=∠=︒∠=︒,∠4560105GFA ∠=︒+︒=︒,∠1GFA C ∠=∠+∠,∠45C ∠=︒,∠160∠=︒.所以∠正确.∠∠123290∠+∠=∠+∠=︒,∠21239090180BAE CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒,∠BAE CAD ∠+∠随着2∠的变化不会发生变化;所以∠错误;所以其中正确的是∠∠∠.故答案为:∠∠∠.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.33.2或8【分析】由已知C 是线段AB 中点,AB=10,求得BC'= 5,进一步分类探讨:E 在BC 内;E 在BC 的延长线上;由此画图得出答案即可.【详解】C 是线段AB 的中点, AB= 10,BC= AB= 5,如图,当E 在BC 内,CE= BC- BE= 5- 3=2;∠如图,E 在BC 的延长线上,CE= BC+ BE= 5+3=8 ;所以CE= 2或8;故本题答案为:2或8.【点睛】解决本题的关键突破口是分类讨论,本题考查了学生综合分析的能力,要求学生掌握线段中点的意义,线段的和与差.34.153cm 【分析】根据线段的比例,可得线段的长度,根据线段的和差,可得答案.【详解】∠AC :CD :DB=1:2:3,设AC=a ,CD=2a ,DB=3a ,∠AB=AC+CD+DB=a+2a+3a=6a=8,解得:a=43, ∠AC=43,DB=3×43=4, ∠M 、N 分别为AC 、DB 的中点, ∠AM=12AC=23,BN=12DB=2, ∠MN=AB-AM-BN=8-23-2=513(cm ). 故答案为:153cm 【点睛】本题考查了与线段中点有关的计算,根据比例关系列出方程求出各线段的长是关键.35. 30° 30° 角平分线定义 ∠CON 12BOC ∠ α 【分析】对于(1),根据角平分线定义得12COM AOC ∠=∠,12CON BOC ∠=∠,再结合12MON COM CON AOB ∠=∠+∠=∠,可得答案; 对于(2),仿照(1),根据12MON COM CON AOB ∠=∠-∠=∠求解; 对于(3),仿照(2)解答即可.(1)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠+∠=∠=⨯︒=︒. 故答案为:30°.(2) 因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠, 所以11603022MON COM CON AOB ∠=∠-∠=∠=⨯︒=︒. 故答案为:30°.(3)因为OM 平分∠AOC ,ON 平分∠BOC , 所以12COM AOC ∠=∠,12CON BOC ∠=∠(依据的角平分线定义), 所以111222MON COM CON AOC BOC α∠=∠-∠=∠-∠=. 故答案为:角平分线定义,∠CON ,12BOC ∠,α. 【点睛】本题主要考查了角的和差的计算,角平分线定义,掌握角平分线定义是解题的关键.36.10+【分析】根据含30°角的直角三角形的性质求出DE 、根据勾股定理求出AE ,根据线段垂直平分线的性质、三角形的周长公式计算,得到答案.【详解】解:∠60BAC ∠=︒,AD 是角平分线,∠30DAE ∠=︒,在Rt DAE 中,20,30AD DAE =∠=︒, ∠1102DE AD ==,由勾股定理得:AE =∠AD 的垂直平分线交AC 于点F ,∠FA FD =,∠DEF 的垂直10DE EF FD DE EF FA DE AE =++=++=+=+故答案为:10+【点睛】本题考查的是直角三角形的性质、勾股定理、线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.37.35︒或55︒【分析】分OC 在AOB ∠的内部和外部进行讨论,运用角平分线性质及角的和差进行运算即可.【详解】解:∠AOB 90∠=,OE 平分,AOB ∠ ∠∠BOE=12∠AOB=45°∠20,BOC ∠=OF 平分BOC ∠ ∠∠FOC=∠FOB =12∠BOC=10°当OC 在AOB ∠的内部时,如图∠∠EOF=∠BOE-∠BOF=45-10=35︒︒︒当OC 在AOB ∠的外部时,如图∠∠EOF=∠BOE+∠BOF=45+10=55︒︒︒故答案为:35︒或55︒【点睛】本题考查了角平分线的定义,先求出∠BOC 的度数,再求出∠FOC 的度数,最后求出答案,有两种情况,以防漏掉.38.L M N >>【分析】根据连接两点的所有线中,线段最短的性质解答.【详解】∠AB+AE >BE ,CD+DE >CE ,∠AB+AE+CD+DE >BE+CE ,即l >m ,又BE+CE >BC ,即m >n ,∠L M N >>.【点睛】本题考查了知识点两点之间线段最短,解题的关键是熟记性质.39. (1)4 (2)116或1742. 【分析】(1)画出符合题意的图形,由18,2AB AC BC ==,求解BC ,再利用线段的和差关系求解EC 即可得到答案;(2)根据AC=2BC ,AB=2DE ,线段DE 在直线AB 上移动,满足关系式32AD EC BE +=,再分六种情况讨论,∠当DE 在点A 左侧时,∠当A 在DE 之间时,∠当DE 在线段AC 上时,∠当C 在DE 之间时,∠当D 在CB 之间时,∠当D 在B 的右边时,可以设CE=x ,DC=y ,用含x 和y 的式子表示,,AD EC BE 的长,从而得出x 与y 的等量关系,即可求出 CD AB的值. 【详解】解:(1)如图,18AB DB ==,2,AC BC = 163BC AB ∴==, 8DE =,1886 4.EC AB DE BC ∴=--=--=(2)∠AC=2BC ,AB=2DE ,满足关系式32AD EC BE +=, ∠当DE 在点A 左侧时,如图,设CE=x ,DC=y , 则DE y x =-,∠()()242,33AB y x AC AB y x =-==-,()12222,333BC y x y x =-=-∠41,33AD DC AC x y =-=- ∠2133BE BC CE y x =+=+ ∠7133AD EC x y +=- ∠32AD EC BE +=, ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 解得,811x y =, ∠ ()11.826211CD y y AB y x y y ===-⎛⎫- ⎪⎝⎭ ∠当A 在DE 之间时,如图,设,,CE x CD y == 则DE y x =-, 同理可得:11.6CD AB = ∠当DE 在线段AC 上时,设,,CE x CD y == 则DE y x =-,,222,DE y x AB DE y x ∴=-==-24422,,33333AC AB y x BC y x ∴==-=- 1411,,3333AD AC CD y x AD CE y x ∴=-=-+=- 21+,33BE BC CE y x ==+ AD CE ∴+<,BE32AD EC BE +=, AD CE ∴+>,BE∴ 不合题意舍去;∠当C 在DE 之间时,如图,设CE=x ,DC=y , 则DE=x+y ,∠()()242,,33AB x y AC AB x y =+==+ ()()112333BC AB x y x y ==+=+, ∠41,33AD AC DC x y =-=+ ∠7133AD EC x y +=+ ∠21,33BE BC CE y x =-=- ∠32AD EC BE += ∴ ()23,AD EC BE += ∠7121233333x y y x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭, 解得,417x y =, ∠ ()174242217CD y y AB x y y y ===+⎛⎫+ ⎪⎝⎭. ∠当D 在CB 之间时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==- 4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y = 与图形条件x >y 不符舍去, ∠当D 在B 的右边时,设,,CD y CE x == 则,222,DE x y AB DE x y =-==-4422,,3333AC x y BC x y ∴=-=- 4112,,3333AD AC CD x y BE CE BC x y ∴=+=-=-=+ 71,33AD CE x y ∴+=- ∠32AD EC BE += ∴ ()23,AD EC BE += 同理可得:8,11x y =与图形条件x >y 不符,舍去, 综上:CD AB 的值为:116或1742. 故答案为116或1742. 【点睛】本题考查的是线段的和差关系,二元一次方程思想,与线段相关的动态问题,分类讨论的思想,掌握以上知识是解题的关键.40.(1)圆柱(2)长方形、圆形或梯形(3)168π平方厘米或224π平方厘米【分析】(1)由图形旋转性质可知旋转后得到的几何体是圆柱;(2)用一个平面截圆柱,从不同角度截取的形状不同;(3)分情况讨论,找出圆柱的底面半径和高,即可求解.【详解】(1)解:由图形旋转性质可知,绕长方形的一边所在直线旋转一周后所得立方体为柱体、底面为圆,因此得到的几何体是圆柱.故答案为圆柱.(2)解:用一个平面截圆柱,截面形状可能为长方形、圆形或梯形.(3)解:分情况讨论,若绕BC 边旋转,则所得圆柱的表面积为:228286=224S S S 侧底平方厘米;若绕CD 边旋转,则所得圆柱的表面积为:226268=168S S S 侧底平方厘米.故旋转得到的几何体的表面积为168π平方厘米或224π平方厘米.【点睛】本题考查了点、线、面、体,截几何体,圆柱的表面积计算等知识点,解题关键是理解点动成线、线动成面、面动成体.41.【解析】略42.(1)70BOD ∠=︒(2)40AOB ∠=︒ (3)()12αβ+;12θ【分析】(1)根据角平分线的定义得出40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,再根据角度之间的关系求出BOD ∠的度数即可;(2)先根据角平分线的定义,30COD ∠=︒,得出260COE COD ∠=∠=︒,根据140AOE ∠=︒,求出80AOC ∠=︒,根据角平分线的定义即可得出答案; (3)根据角平分线的定义得出1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒,根据角度之间的关系得出()12BOD ∠=+︒;根据角平分线的定义得出12BOD AOE ∠=∠. 【详解】(1)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠40BOC AOB ∠=∠=︒,30DOC DOE ∠=∠=︒,∠403070BOD BOC DOC ∠=∠+∠=︒+︒=︒.(2)解:∠OD 是COE ∠的平分线,30COD ∠=︒,∠260COE COD ∠=∠=︒,∠140AOE ∠=︒,∠80AOC AOE COE ∠=∠-∠=︒,∠OB 为AOC ∠的平分线,∠4120AOB AOC ∠=∠=︒. (3)解:∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,AOC α∠=︒,COE β∠=︒,∠1122BOC AOC ∠=∠=︒,1122COD COE ∠=∠=︒, ∠()111222BOD BOC COD ∠=∠+∠=︒+︒=+︒; ∠OB 为AOC ∠的平分线,OD 是COE ∠的平分线,∠1BOC AOB 2∠=∠,12COD COE ∠=∠, ∠BOD BOC COD ∠=∠+∠1122AOC COE =∠+∠ ()12AOC COE =∠+∠ 12AOE =∠ 12=. 故答案为:()12αβ+;12θ. 【点睛】本题主要考查了角平分线的定义,几何图形中的角度计算,解题的关键是熟练掌握角平分线的定义,数形结合.43.(1)2BC cm =;(2)16AB cm =【分析】(1)先求出AC ,根据BC=AB-AC ,即可求出BC ;(2)求出BC=2CN, AC=2CM,把MN=CN+MC=8cm 代入求出即可.【详解】解: (1) ∠点M 是线段AC 的中点,∠AC=2AM,∠AM=5cm,∠AC=10cm,∠AB=12cm ,∠BC=AB-AC=12-10=2cm,(2)∠点M 是线段AC 的中点,点N 是线段BC 的中点.∠BC=2NC ,AC=2MC,∠MN=NC+MC=8cm ,∠AB=BC+AC=2NC+2MC==2(NC+MC)=2MN=28⨯cm=16cm .【点睛】本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力.44【分析】由AB=3,AD=4,BF=5长宽高三种长度不同,蚂蚁走的折面不同,距离也不同,要按不同的棱展开两个面,(1)长方形沿着棱ND展开,(2)长方形沿着棱DC展开,(3)长方形沿着棱BC展开,用勾股定理求出对角线的长度,再比较取最短者.【详解】∠AB=3,AD=4,BF=5∠MC =BF=AE=5,BC=AD=MF=4,MN= CD=AB=3(1)长方形沿着棱ND展开如图∠所示时,在Rt∆AEM中AM2=AE2+EM2= AE2+(NE+MN)2=52+(3+4)2=25+49=74,(2)长方形沿着棱DC展开如图∠所示时,AM2=AB2+( BC+CM)2=32+(4+5)2=9+81=90,(3)长方形沿着棱BC展开如图∠所示时,AM2=MF2+( AB+BF)2=42+(3+5)2=16+64=80,∠ AM=∠【点睛】本题考查蚂蚁所走最短路径问题,涉及长方体的侧面展开问题,要会分析最短路径涉及几个面展开,展开后走的哪条路径为最短,分别求出经比较才能解决问题.45.(1)145°(2)∠MEN=2∠MFN,证明见解析(3)1∠MEN+∠MFN=180°,证明见解析2【分析】分析:(1)过E作EH∠AB,FG∠AB,根据平行线的性质得到结论;(2)根据三角形的外角的性质得,平行线的性质,角平分线的定义即可得到结论;(3)根据平行线的性质得到∠MGE∠∠ENC,根据角平分线的定义得到∠MGE∠∠ENC∠2∠FNG∠∠AME∠2∠1∠∠E∠∠MGE∠∠E∠2∠FNG,根据三角形的外角的性质和四边形的内角和即可得到结论.(1)解:如图1,过E作EH∠AB,FG∠AB。

中考数学图形与几何专题知识易错题50题含参考答案

中考数学图形与几何专题知识易错题50题含参考答案

中考数学图形与几何专题知识易错题50题含答案一、单选题1.两个圆的半径相差1cm,则周长相差().A.1cm B.2cm C.3.14cm D.6.28cm 2.周长相等的图形,图形面积最大的是()A.长方形B.正方形C.圆形3.在长方体中,与一个面平行的棱有()A.2条B.3条C.4条D.6条4.如图1所示,一只封闭的圆柱形水桶内盛了半桶水(桶的厚度忽略不计),圆柱形水桶的底面直径与母线长相等,现将该水桶水平放置后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2,则S1与S2的大小关系是()A.S1≤S2B.S1<S2C.S1>S2D.S1≥S25.小圆半径是4cm,大圆半径是8cm,小圆面积是大圆面积的()A.12B.14C.16D.186.如图,蒙古包可以近似地看作是由圆锥和圆柱组成,若用毛毡搭建一个底面半径为5米,圆柱高3米,圆锥高2米的蒙古包,则需要毛毡的面积为()A.(30π+米2B.40π米2C.(30π+米2D.55π米27.一条弧所对的圆心角是72︒,则这条弧长与这条弧所在圆的周长之比为()A.13B.14C.15D.1683A .3B .6C .99.甲、乙两个圆柱的体积相等,如果甲圆柱的底面直径扩大2倍,乙圆柱的高扩大3倍;那么这时甲、乙两个圆柱体积的大小关系是( ) A .V 甲>V 乙B .V 甲=V 乙C .V 甲<V 乙D .不能确定10.圆的周长总是它直径的( )倍. A .3.14B .2πC .πD .311.若圆环的外圆直径是10厘米,内圆直径是8厘米,这个圆环的面积是( ) A .29cm πB .2cm πC .210cm πD .22cm π12.在一个长4cm ,宽2cm 的长方形中,画一个最大的圆,这个圆的面积是( )2cmA .9.42B .50.24C .3.14D .12.5613.在一个直径为16米的圆形花坛周围有一条宽为1米的小路(黑色),则这条小路的面积是多少平方米?( )A .πB .17πC .33πD .64π14.把一个圆剪成10个面积相等的扇形,每个扇形的圆心角的度数为( ) A .18°B .36°C .45°D .60°15.现有一圆心角为90︒ ,半径为12cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为( )AB .C .D .16.一个雷达圆形屏幕的直径是20厘米,则它的面积是( )平方米. A .100πB .0.1πC .0.01π17.一个圆柱的底面半径是4厘米,它的侧面展开正好是一个正方形,这个圆柱的高是( )厘米. A .4B .8C .12.56D .25.1218.下列说法中,正确的是( ) A .过圆心的线段叫直径 B .长度相等的两条弧是等弧C .与半径垂直的直线是圆的切线D .圆既是中心对称图形,又是轴对称图19.一根长3米的圆柱形木料,横着截4分米,和原来相比,剩下的圆柱形木料的表面积减少12.56平方分米,原来这根圆柱形木料截面周长为()分米A.0.314B.31.4C.3.14D.6.2820.圆柱的高不变,底面半径扩大3倍.则圆柱的体积扩大()倍.A.9B.3C.27D.6二、填空题21.①25m³=( )L;①7.2L=( )cm³;①56cm³=( )mL22.在如图的长方体中,既与平面ABCD垂直,又与平面11ABB A平行的平面是面______.23.在比例尺为10:1的零件图纸上,一个圆形部件在图纸上的直径为40厘米,则该部件的实际半径是______厘米,实际周长是______厘米.24.在同一个圆中,100°的圆心角所对的弧的弧长与20°的圆心角所对的弧的弧长之比是________.25.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.26.用圆规画圆时,若圆规两脚之间的距离为2厘米,则所画圆的周长是__________.27.三角形ABC是直角三角形,阴影部分①的面积比阴影部分①的面积小28平方厘米,AB长40cm,BC 长为___________厘米?( 3.14π=)28.如图所示,有一块边长为3米的正方形草地,在点B处用一根木桩牵住了一头小羊.已知牵羊的绳子长2米,那么草地上不会被羊吃掉草的部分是________平方米.(π取3.14)29.若圆规的两脚分开后,两脚间的距离为3厘米,那么所画出的圆的面积为___________平方厘米.(π取3.14)30.检验平面与平面平行的方法:(1)____________:(2)____________31.圆的周长是62.8米,这个圆的面积是_________平方米.32.等底等高的圆柱和圆锥,若圆柱的体积比圆锥多8立方分米,则圆锥的体积是______立方分米.=,则高等于_______cm.33.长方体的总棱长是64cm,长:宽:高5:1:234.两个圆的半径的比是2①1,则这两个圆的周长之比是( ),这两个圆的面积之比是( ).35.用一根长12.56米的绳子围成一个圆,这个圆的半径是( )米,它的面积是( )平方米.(π取3.14)36.在同一个圆中,有两个扇形A、B,已知扇形A的圆心角等于12°,扇形B的圆心角等于90°,则面积较大的是__________,扇形B的面积占整个圆面积的__________.37.扇形的圆心角为210︒,弧长是28π,则扇形的面积为_______.38.长方体中,最少可以看到____________条棱,最多可以看到____________个面.39.某长方体中,有一个公共顶点的三条棱的长的比是5:8:10,最小的一个面的面积为360平方厘米,则这个长方体的__________条棱长总和是__________厘米.三、解答题40.面积为296cm,形状不同,长和宽都为整厘米的长方形有多少种?41.有一个圆环形装饰纸片,内圆周长是31.4厘米,外圆周长是37.68厘米,圆环的面积是多少平方厘米?42.动物园打算新挖一个直径是4米,深0.3米的圆形水池.(1)如果用水泥把池底和侧壁粉刷,粉刷的面积有多大?(2)这个水池能蓄多少立方米水?43.如图,把一个半径为4的圆分成A、B两部分,其中较小部分为A,且较小部分的面积与较大部分的面积比为5:11.(1)求A、B两部分的面积;(2)若将较大部分分出一部分给较小的部分,且使此时两部分面积的比为9:7,则应从较大部分分出去多大面积?44.长方体相邻的三个面的面积分别是6平方厘米、8平方厘米、12平方厘米,求长方体的体积?45.如图是直角梯形ABCD,如果以AB边为轴旋转一周,得到一个立体图形,这个立体图形的体积是多少立方厘米?(π取3.14).46.求下面阴影部分的周长和面积,(单位:厘米)47.如图所示,一个呼啦圈的截面是圆环形.已知大圆的周长 3.14C=米,小圆的直径0.92d=米,求该圆环的面积(结果保留两位小数).48.顺迈学校准备新建一个花坛,花坛的示意图,如图1所示,它是由5个大小相等的正方形和4个大小相等的扇形组成,每一个小正方形的边长是4米.(π取3)(1)这个花坛的周长是多少米?(2)这个花坛的面积是多少平方米?(3)如图2所示,学校准备在花坛里种植花草,其中阴影内种植红色花草,空白部分内种植黄色花草,已知每平方米红色花草的价格为20元,每平方米黄色花草价格的34比每平方米红色花草的价格多12,求学校购买花草的总费用为多少元?49.如图长方形的长BC为8,宽AB为4.以BC为直径画半圆,以点D为圆心,CD 为半径画弧.求阴影部分的周长和面积.参考答案:1.D【分析】大圆半径为R ,小圆半径为r ,根据题意得到1R r -=,再表示出周长差,从而得到结果.【详解】解:设大圆半径为R ,小圆半径为r , 则1R r -=,①()2222 6.28R r R r ππππ-=-==, 即周长相差6.28cm , 故选D .【点睛】本题考查了圆的周长,解题的关键是熟练掌握圆的周长公式. 2.C【分析】在所有几何图形中,周长相等的情况下,圆形的面积最大. 【详解】在周长相等的情况下,面积:圆>正方形>长方形. 故选:C .【点睛】在周长相等的情况下,在所有几何图形中,圆的面积最大,应当做常识记住. 3.C【分析】根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与平面ABCD 平行的棱有:棱EF 、棱HG 、棱EH 、棱FG 四条; 故答案选C .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键. 4.B【分析】分别求出图1和图2的表面积,比较即可.【详解】设圆柱的底面半径为r ,图1水的表面积为:S 1=2πr 2+2πr •r =4πr 2. 对于图2,上面的矩形的长是2r ,宽是2r .则面积是4r 2. 曲面展开后的矩形长是πr ,宽是2r .则面积是2πr 2.上下底面的面积的和是:π×r 2. 图2水的表面积S 2=(4+3π)r 2. 显然S 1<S 2. 故选:B .【点睛】此题主要考查了圆柱的有关计算,解决此题的关键是掌握化曲为平的思想. 5.B【分析】分别求出大圆和小圆的面积即可得到答案.【详解】解:由题意得:大圆的面积28864cm ππ=⨯⨯=,小圆的面积24416cm ππ=⨯⨯=, ①小圆面积是大圆面积的161=644ππ, 故选B .【点睛】本题主要考查了圆的面积,求一个数是另一个数的几分之几,熟知圆面积公式是解题的关键. 6.A【分析】由底面圆的半径=5米,根据勾股定理求出母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和. 【详解】解:①底面半径=5米,圆锥高为2米,圆柱高为3米,①圆锥的母线长①圆锥的侧面积=π5⨯, 圆柱的侧面积=底面圆周长×圆柱高, 即2π5330π⨯⨯=,故需要的毛毡:(30π+米2, 故选:A .【点睛】此题主要考查勾股定理,圆周长公式,圆锥侧面积,圆柱侧面积等,分别得出圆锥与圆柱侧面积是解题关键. 7.C【分析】利用这条弧所对的圆心角的度数除以360°即可求出结论.【详解】解:72÷360=15即这条弧长与这条弧所在圆的周长之比为15故选C .【点睛】此题考查的是弧长与圆的周长,掌握弧长与这条弧所在圆的周长之比等于这条弧所对的圆心角与360°的比是解题关键. 8.C【分析】根据圆的面积公式:S =πr ²计算即可.【详解】解:一个圆的半径扩大为原来的3倍,面积就扩大为原来的3×3=9倍. 故选:C .【点睛】本题考查了认识平面图形,解题的关键是掌握圆的面积公式:S =πr ². 9.A【分析】利用圆柱体积公式v =sh 进行计算,比较结果即可.【详解】解:设两圆柱的体积相等为V ,底面直径为2r ,高为h ,掌握V =()2224r h r h ππ= 若甲圆柱的底面直径扩大2倍,则体积为()224r 16h r h ππ= ,; 若乙圆柱的高扩大3倍,则此时乙圆柱的体积就是()222r 312h r h ππ=; 221612r h r h ππ> ,故选:A .【点睛】本题考查圆柱的计算,牢记体积公式是解决问题的关键. 10.C【分析】根据圆周率的定义即可得出答案.【详解】解:设圆周长为C ,直径为d ,由C πd ,可得Cdπ=, 故选:C .【点睛】本题考查认识平面图形,掌握圆周长的计算公式是正确解答的关键. 11.A【分析】此题是求圆环面积,要根据“直径÷2=半径”先求出半径,然后根据圆环面积公式:S =π(R 2-r 2),代入数字,进行解答即可. 【详解】解:10÷2=5(厘米),8÷2=4(厘米), π×(2254-) =9π(平方厘米)答:它的面积是9π平方厘米. 故选:A .【点睛】此题考查圆的面积公式,圆环面积公式:S =π(R 2-r 2),代入数字,进行解答即可得出结论. 12.C【分析】先确定这个圆的位置情况,再利用圆的面积公式求解.【详解】如图,当画的圆的圆心与长方形的三条边距离相等时,这个圆最大,半径为1, 面积=21 3.14ππ⨯=≈, 故选:C .【点睛】本题考查了长方形中的最大圆及其面积的问题,解题关键是能画出这个最大圆,并利用圆的面积公式进行求解. 13.B【分析】阴影部分面积可以看作是一个圆环的面积,只需要利用外圆面积减去内圆面积即可得到答案【详解】解:①圆形花坛的直径为16米, ①圆形花坛的半径为8米, ①圆形小路的宽度为1米,①这个圆环的外圆半径为8+1=9米,①229817S πππ=⨯-⨯=阴影,故选B .【点睛】本题主要考查了求圆环的面积,熟知圆面积公式是解题的关键. 14.B【分析】由于扇形面积相等,则扇形的圆心角相等,然后求360°的十分之一即可. 【详解】每个扇形的圆心角=110×360°=36°. 故选:B .【点睛】本题考查了圆的认识:熟练掌握圆心角与扇形的概念.15.C【分析】利用底面周长=展开图的弧长可得. 【详解】解:90122180R ππ⨯=, 解得3cm R =,再利用勾股定理可知,高==.故选:C .【点睛】本题考查了圆锥的展开图,弧长公式以及勾股定理,解答本题的关键是确定底面周长=展开图的弧长这个等量关系,然后再利用勾股定理可求得值.16.C【分析】利用圆的面积公式计算即可.【详解】解:一个雷达圆形屏幕的直径是20厘米,则它的面积是:220()1002ππ=(平方厘米),100π平方厘米=0.01π平方米;故选:C .【点睛】本题考查了圆的面积的计算和单位转换,解题关键是熟记圆面积公式. 17.D【分析】根据圆柱侧面展开图的形状解答.【详解】解:侧面展开后长方形的长(底面周长)=2πr =2×3.14×4=25.12(厘米); 又因为侧面展开后是正方形所以:宽=长=25.12厘米;侧面展开后长方形的宽又是圆柱的高,即高=25.12厘米;这个圆柱的高是25.12厘米.故答案为:D .【点睛】根据圆柱的侧面展开是一个长方形,其长为底面周长,宽为高来计算后解答即可.18.D【分析】根据直径的定义对A 进行判断;根据等弧的定义对B 进行判断;根据切线的判定定理对C 进行判断;根据圆的性质对D 进行判断.【详解】解:A 、过圆心的弦叫直径,所以此项错误;B 、在同圆或等圆中,长度相等的两条弧是等弧,所以此项错误;C 、过半径的外端,与半径垂直的直线是圆的切线,所以此项错误;D 、圆既是中心对称图形,又是轴对称图形,所以此项正确.故选:D .【点睛】本次考查了圆中直径、等弧、切线的定义以及圆的对称性,准确把握定义和圆的对称性是解答此题的关键.19.C【分析】剩下的圆柱体木料的表面积相比之前减少的面积为截下的圆柱体的侧面积,据此即可作答.【详解】如图,剩下的圆柱体木料的表面积减少12.56平方分米,就是图中虚线部分圆柱体的侧面积, 设虚线部分圆柱体的底面周长为a ,则其侧面积为:12.56=4×a ,即:a =3.14分米,故选:C .【点睛】本题考查了圆柱体的计算,几何体的表面积等知识,理解“剩下的圆柱体木料的表面积相比之前减少的面积为截下的圆柱体的侧面积”是解答本题的关键.20.A【分析】圆柱的底面半径扩大3倍,则它的底面积就扩大9倍,在高不变的情况下,体积就扩大9倍,所以应选A ,也可用假设法通过计算选出正确答案.【详解】因为2V r h π=当r 扩大3倍时,22(3)9V r h r h ππ=⨯=⨯所以体积扩大9倍;或:假设底面半径是1,高也是121 3.1411 3.14V =⨯⨯=当半径扩大3倍时,r =322 3.1431 3.149V =⨯⨯=⨯所以体积扩大9倍故选:A【点睛】本题考查了圆柱的体积公式,解答具有灵活性,可灵活选择作答方法. 21. 400 7200 56【详解】解:①25m³=400dm 3=400L ; ①7.2L=7200cm 3; ①56cm³=56mL . 故答案为:400;7200;56. 【点睛】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.22.11CC D D【分析】根据平面与平面垂直和平面和平面平行的定义即可求解.【详解】既与平面ABCD 垂直,又与平面11ABB A 平行的平面是面11CC D D .故答案为:11CC D D .【点睛】本题考查长方体中平面与平面的的位置关系的认识.理解平面与平面的垂直和平行的位置关系是本题解题的关键.23. 2 4π【分析】设该部件的实际半径是r 厘米,根据比例的性质可求出该部件的实际半径,再由圆的周长公式计算,即可求解.【详解】解:设该部件的实际半径是r 厘米,根据题意得:4010:1:2r =, 解得:2r =,即该部件的实际半径是2厘米,①实际周长是224ππ⨯=厘米.故答案为:2;4π【点睛】本题主要考查了比例尺的应用,求圆的周长,熟练掌握比例的基本性质,圆的周长公式是解题的关键.24.5:1【分析】根据弧长公式进行计算再求比即可.【详解】100°的圆心角所对的弧的弧长:10051809r r ππ=, 20°的圆心角所对的弧的弧长:201809r r ππ=, ①59r π:9r π=5:1. 故答案为:5:1.【点睛】本题考查了弧长,熟练掌握弧长公式是解题的关键.25.16π【分析】长方形绕长边旋转一周以后,得到高为4cm ,半径为2cm 的圆柱,根据圆柱的体积公式:V Sh =,即可求解.【详解】①长方形绕它的长边所在的直线旋转一周,①旋转后的图形为高为4cm ,半径为2cm 的圆柱,①圆柱的体积公式:V Sh =,①22416V sh π==⨯=π3cm .故答案为:16π.【点睛】本题考查图形的旋转,解题的关键是掌握旋转后得到的图形,根据体积公式,进行计算.26.12.56厘米【分析】依据圆的周长计算公式解答即可.【详解】所画圆的周长=23.14212.56⨯=(厘米),故答案为:12.56厘米.【点睛】本题考查了圆的周长计算公式,理解圆规两脚之间的距离为半径是解题的关键. 27.32.8【分析】设半圆中空白部分用①表示,先求出半圆的面积,①与①的面积和为628,①-①=28,求出①、①部分的面积和62828656+=是直角三角形面积.利用面积公式求即可.【详解】设半圆中空白部分用①表示,图中半圆的直径为AB ,AB =40cm , 所以半圆面积为:2120200 3.146282π⨯⨯≈⨯=. 由空白部分①与①的面积和为628,又①-①=28,所以①、①部分的面积和62828656+=.由直角三角形ABC的面积为:1140656 22AB BC BC⨯⨯=⨯⨯=.所以32.8BC=(厘米).故答案为:32.8.【点睛】本题考查圆有关的面积问题,掌握圆的面积公式,会用半圆面积表示三角形面积是解题关键.28.5.86【分析】根据题意可得能够被羊吃到的部分是以B为圆心,2米为半径的14圆,利用扇形的面积公式求解即可.【详解】2133 3.142 5.864⨯-⨯⨯=(平方米),故答案为:5.86.【点睛】本题考查扇形面积的实际应用,掌握求扇形的面积公式是解题的关键.29.28.26【分析】首先根据题意得出圆的半径,再根据圆的面积公式,计算即可得出结果.【详解】解:①圆规的两脚分开后,两脚间的距离为3厘米,①圆的半径为3厘米,①圆的面积为223.14328.26rπ=⨯=平方厘米.故答案为:28.26【点睛】本题考查了圆的认识、圆的面积,解本题的关键在熟练掌握圆的面积公式.30.铅垂线法长方形纸片法【分析】在平面的三个不同点(不共线)放下铅垂线,使铅垂线的下端刚好接触到地面,如果从这三个不同点到铅垂线的下端的线段的长度相等,那么平面与水平面平行;或长方形纸片放在两个平面之间,按交叉的方向检验两次,两遍都与被检验的面紧贴,那么被检验的两个平面平行.【详解】解:检验平面与平面互相平行的方法有铅垂线法,长方形纸片法,铅垂线法:在平面的三个不同点(不共线)放下铅垂线,使铅垂线的下端刚好接触到地面, 如果从这三个不同点到铅垂线的下端的线段的长度相等,那么平面与水平面平行; 长方形纸片法:长方形纸片放在两个平面之间,按交叉的方向检验两次,两遍都与被检验的面紧贴,那么被检验的两个平面平行.故答案为:铅垂线法,长方形纸片法.【点睛】本题主要考查了长方体中平面与平面的位置关系,掌握检验平面与平面互相平行的方法是解题的关键.31.314【分析】先根据圆的周长求出圆的半径,再根据圆的面积公式求解.【详解】解:设该圆的半径为r ,则62.82πr =,62.8102 3.14r ∴==⨯(米), 2π 3.14100314S r ∴==⨯=(平方米). 故答案为:314.【点睛】本题考查圆的周长与面积,掌握圆的周长公式与面积公式是解题的关键. 32.4【分析】等底等高的圆柱的体积是圆锥的体积的3倍,所以等底等高的圆柱的体积比圆锥的体积多2倍,由此即可求出圆锥的体积.【详解】解:8÷(3−1),=8÷2=4(立方分米)即圆锥的体积是4立方分米.故答案为:4.【点睛】本题主要考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用.等底等高的圆柱的体积是圆锥的体积的3倍,所以等底等高的圆柱的体积比圆锥的体积多2倍,由此即可求出圆锥的体积.33.4【分析】长方体的棱长总和=(长+宽+高)×4,用棱长总和÷4=长、宽、高的和,长、宽、高的比是5:1:2,根据按比例分配的方法,求出高.【详解】解:长、宽、高的和=()64416cm ÷=,()()165122cm ÷++=.则高为:()224cm ⨯=.故答案为:4【点睛】此题考查了长方体的棱,解答关键是利用按比例分配的方法求出高34. 2①1 4①1【分析】设小圆的半径为r ,则大圆的半径为2r ,再分别求解两个圆的周长与面积,再列比例式进行计算即可.【详解】解:设小圆的半径为r ,则大圆的半径为2r ,小圆的周长=2r π, 大圆的周长=224r r , 周长比:4r π:2r π=2:1;小圆的面积=2r π, 大圆的面积=2224r r , 面积比:24r π:2r π=4:1;故答案为:2:1;4:1.【点睛】本题主要考查圆的周长和面积的计算方法的灵活应用,比值的计算,列出正确的比例式进行计算是解本题的关键.35. 2 12.56【分析】利用周长公式求出半径,再利用面积公式计算.【详解】解:这个圆的半径为:12.5622π÷÷=米,面积为:2212.56π=平方米,故答案为:2,12.56.【点睛】本题考查了圆的周长和面积与半径的关系,熟记公式是解题的关键.36. 扇形B 14【分析】根据扇形的面积公式2360n r S π=,半径相等的条件下,圆心角大的面积更大;一个圆的圆心角是360°,圆的半径和扇形的半径相等,只要求出扇形的圆心角是360°的几分之几,则扇形的面积就是所在圆面积的几分之几.【详解】根据扇形的面积公式2360n r S π=,半径相等的条件下,圆心角大的面积更大, 因为扇形A 的圆心角等于12°,扇形B 的圆心角等于90°,所以面积较大的是B ;因为扇形B 的圆心角等于90°,9013604=, 所以扇形B 的面积占整个圆面积的14, 故答案为:B ;14. 【点睛】本题考查了扇形面积的知识,理解扇形的圆心角的度数比等于扇形的面积比是解答本题的关键.37.1055.04 【分析】根据弧长公式180n r l π=求出扇形的半径,再根据扇形的面积公式12S lr =即可求解.【详解】解:因为扇形的圆心角为210︒,弧长是28π, 所以扇形的半径1802824210r ππ⨯==, 所以扇形的面积为1128241055.0422S lr π==⨯⨯≈,故答案为:1055.04. 【点睛】本题考查弧长公式、扇形的面积公式,掌握弧长180n r l π=和扇形的面积12S lr =是解题的关键.38. 4 3【分析】由长方体的特征可知,长方体最多可以看到3个面,最少可以可以看到4条棱;我们可以把一个长方体放在桌子上进行观察,从而得到最多能看到几个面.【详解】解:一个长方体最多可以看到3个面,最少可以可以看到4条棱.故答案为:4,3.【点睛】本题考查了长方体的特征以及从不同方向观察物体和几何体.39. 12 276【分析】先根据三条棱长的比例关系以及最小的一个面的面积求出较小的两条棱的长度,再用比例关系求出最长的棱,最后求棱长总和.【详解】根据三条棱长比是5:8:10,且最小面的面积是360平方厘米,设较短的两条棱分别是5k 和8k ,列式58360k k ⋅=,解得3k =,则较短的两条棱分别长15厘米和24厘米,最长的棱为31030⨯=(厘米),长方体的12条棱长和=()1524304276++⨯=(厘米).故答案是:12;276.【点睛】本题考查比例和长方体的棱长和,解题的关键是先根据比例求出三条棱长,再去根据长方体的性质求棱长和.40.共6种【分析】根据长方形的面积S=ab ,即ab=72,由此分别求出a 与b 的整数情况即可.【详解】①96196=⨯,①96248=⨯,①96332=⨯,①96424=⨯,①96616=⨯,①96812=⨯,共计有6种.【点睛】考查了长方形面积的计算,解题关键利用长方形的面积公式解决问题. 41.圆环的面积为34.54平方厘米【分析】根据圆的周长公式C =2πr ,知道r =C ÷π÷2,分别求出内、外圆的半径,再用外圆的半径减去内圆的半径即得圆环的宽是多少;根据圆环的面积公式S =π(R 2﹣r 2)可求得圆环的面积;把内圆和外圆的周长相加即得此圆环的周长.【详解】解:31.4 3.1425÷÷=(厘米),37.68 3.1426÷÷=(厘米),()22223.146 3.145 3.1465⨯-⨯=⨯-3.141134.54=⨯=(平方厘米).答:圆环的面积为34.54平方厘米.【点睛】本题主要考查了圆的周长公式C =2πr 和圆环的面积公式S =π(R 2﹣r 2)的灵活应用.42.(1)用水泥把池底和侧壁粉刷,粉刷的面积是16.328平方米;(2)这个水池能蓄3.768立方米水.【分析】(1)根据题意,涂水泥的面积即是这个圆柱形水池的表面积,圆柱形水池的表面积=底面积+侧面积;代入S 侧=πdh ,S 圆=πr 2,即可求出;(2)水池里边存水的体积,可利用圆柱的体积公式=底面积×高进行计算即可得到答案. (1)解:圆柱侧面积:3.14×4×0.3=3.768(平方米),4÷2=2(米),3.14×2×2=12.56(平方米),3.768+12.56=16.328(平方米),答:用水泥把池底和侧壁粉刷,粉刷的面积是16.328平方米;(2)解:3.14×22×0.3=12.56×0.3=3.768(立方米),答:这个水池能蓄3.768立方米水.【点睛】此题主要考查的是圆柱的表面积公式和圆柱的体积公式的灵活应用. 43.(1)A 、B 两部分的面积分别是5π、11π.(2)应从较大部分分出去的面积为4π或2π.【分析】(1)用圆的面积分别乘以各自的比率即可;(2)根据B 变化前后占整个圆的面积的分率分两种情况进行解答即可.【详解】(1)解:2545511ππ⨯⨯=+,211411511ππ⨯⨯=+. 答:A 、B 两部分的面积分别是5π、11π.(2)解:1174151197164-==++, 21444ππ⨯⨯=. 或1192151197168-==++, 21428ππ⨯⨯=.答:应从较大部分分出去的面积为4π或2π.【点睛】本题考查了圆的面积,解题的关键是掌握圆的面积公式.44.长方体的体积是24cm².【分析】设长宽高分别为a ,b ,h 则:ab=6,ah=8,bh=12;根据“长方体的体积=长×宽×高”进行解答即可.【详解】设长宽高分别为a 、b 、h ,则ab=6,ah=8,bh=12.a²b²h²=6×8×12abh=24答:长方体的体积是24cm².【点睛】本题考查了长方形面积公式和长方体体积公式.45.141.3立方厘米【分析】如果以AB 边为轴旋转一周,得到的立体图形是由1个圆柱和1个圆锥组成的,上面得到一个圆锥,(7﹣4)是圆锥的高,BC 的长度是圆锥的底面圆的半径,下面是一个圆柱,高是4厘米,底面圆的半径是3厘米,根据圆锥的体积=213r πh 1+πr 2h 2代入数据计算即可.【详解】解:以AB 边为轴旋转一周,得到一个圆锥和一个圆柱, 该几何体的体积为:13πr 2h 1+πr 2h 2 =13×3.14×32×(7﹣4)+3.14×32×4, =28.26+113.04,=141.3(立方厘米).答:这个立体图形的体积是141.3立方厘米.【点睛】此题主要考查圆柱、圆锥体积公式的灵活运用,关键是弄清楚计算所需要的数据.46.周长:()64cm π+;面积:26cm π.【分析】观察图形可知,阴影部分的周长分为三个部分,大圆周长的一半,加上大圆的半径,加上小圆周长的一半,根据圆的周长公式:C d π=,进行计算;根据圆的面积公式:2S r π=,面积用大圆的面积减去空白处小圆的面积,即为阴影部分的面积.【详解】阴影部分的周长:。

中考数学图形与几何专题知识易错题50题-含参考答案

中考数学图形与几何专题知识易错题50题-含参考答案

中考数学图形与几何专题知识易错题50题含答案一、单选题1.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从点A出发爬到点B,只考虑路径、时间、路程等因素,下列结论正确的为()A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定哪只蚂蚁先到2.一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,下面关于这个圆柱描述正确的是()A.底面直径6厘米,高10厘米B.底面直径10厘米,高6厘米C.底面半径6厘米,高10厘米D.底面半径10厘米,高6厘米3.下列说法正确的是()A.213的倒数是52B.计算弧长的公式是2180πnl r=⨯C.1是最小的自然数D.1的因数只有14.在长方体中,与一条棱异面的棱有()A.2条B.3条C.4条D.5条5.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π6.将下图沿着虚线折起来,可折成一个正方体,这时正方体的5号面所对的面是()A.1B.2C.3D.47.如图,线段AB是图中最大的半圆的直径,而AA1、A1A2、A2A3、A3A4、A4B分别是另外五个小的半圆的直径,有两只小虫以相同的速度同时从点A出发到点B,甲虫沿着用实线表示的大的半圆爬行,乙虫沿用虚线表示的五个小的半圆爬行,则下列结论正确的是()A.甲先到点B B.乙先到点BC.甲、乙同时到点B D.无法确定8.一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥高的2倍,则圆锥的体积是圆柱体积的()A.12B.13C.16D.2倍9.比较下图长方形内阴影部分面积的大小,甲()乙A.>B.<C.=D.无法确定10.下列语句中正确的是()A.线段AB就是A、B两点间的距离B.如果AB=BC,那么B是线段AC的中点C.比较两个角的大小的方法只有度量法D.长方形纸片能检测平面与平面平行11.如图,一圆柱形油桶中恰好装有半桶油,现将油桶由直立状态放倒成水平放置状态,在整个过程中,桶中油面的形状不可能是()A.B.C.D.12.已知小圆半径是2cm,大圆半径是4cm,小圆周长是大圆周长的()A.12B.14C.16D.1813.与长方体中任意一条棱既不平行也不相交的棱有()A.2条B.4条C.6条D.8条14.小圆的半径是2,大圆的半径是4,小圆的面积是大圆面积的()A.18B.14C.12D.215.用同样长的铁丝分别围成长方形、圆形和正方形,围成()的面积最大.A.长方形B.正方形C.圆D.无法确定16.圆的半径由3厘米增加了6厘米,圆的面积增加了()平方厘米A.72πB.27πC.36πD.82π17.一个拧紧瓶盖的瓶子里装有一些水(如右图),根据图中的数据,可以计算瓶子的容积是()立方厘米.A.24πB.28πC.32πD.40π18.如果一个扇形的半径扩大到原来的3倍,圆心角缩小到原来的13,那么这个扇形的面积()A.扩大到原来的3倍B.不变C.缩小为原来的13D.扩大到原来的9倍19.一个铁环直径是60厘米,从操场东端滚到西端转了90圈,另一个铁环的直径是40厘米,它从东端滚到西端要转的圈数是().A.270B.135C.100D.12020.一个圆形花坛周围围上了一圈栅栏,栅栏长18.84米,又沿栅栏一周砌有一条宽1米的鹅卵石小路.若每平方米约需鹅卵石100颗,则共需鹅卵石()A.1570颗B.1884颗C.2198颗D.2512颗二、填空题21.用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是______厘米.(π取3.14)22.如图,是将一个长方体沿它的底面切去一刀后剩下的部分.(1)与棱HD 平行的棱有______________________________________. (2)与棱EF 异面的棱有______________________________________. (3)与棱NQ 相交的棱有______________________________________.23.数学老师的教具里有一个圆柱和一个圆锥,老师告诉大家,圆柱和圆锥的体积相等,底面积也相等,已知圆锥的高是2厘米.请你算一算,这个圆柱的高是_______厘米.24.如图所示,在长方体1111ABCD A B C D 中与棱BC 垂直的平面是_________.25.在一个边长为6cm 的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.26.将一个正方体放在桌面上,且已知正方体的边长为4厘米,那么与桌面垂直的平面面积之和为________.27.一个圆柱的侧面展开图是正方形,这个圆柱底面周长与高的比是__________. 28.将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形中最大的圆心角的度数为_________.29.半径为r ,圆心角为n°的扇形面积S 扇=______.30.一扇形面积是所在圆面积的23,扇形的圆心角是=_________.31.将一个长为4厘米,宽为3厘米的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是___________.32.一个圆锥的高不变,底面半径扩大到原来的2倍,底面积扩大到原来的( )倍,体积扩大到原来的( )倍.33.一个圆环,外圆的半径是内圆半径的3倍,这个圆环的面积和内圆面积的比是( ).34.一个正方体的棱长是12cm,把它削成一个最大的圆柱体,圆柱体的体积是_____ 3cm,再把这个圆柱体削成一个最大的圆锥体,圆锥体的体积是_____3cm.35.时钟的分针长3厘米,从9点到9点40分;分针扫过区域的面积是_______平方厘米,分针的针尖走的路程长_______厘米.36.如果一个扇形的圆心角扩大为原来的3倍,半径长缩小为原来的13,那么所得的扇形的面积与原来扇形的面积的比为____.37.如右下图所示,长方体按如图方式截去一个角之后,余下的几何体有_________个面,_________个顶点,_________条棱.38.如图,在长方体ABCD-EFGH中(1)长方体中棱AB与___________个面平行,分别是____________长方体中棱BC与___________个面平行,分别是____________长方体中棱AE与___________个面平行,分别是____________通过观察思考可以得到:长方体中每条棱都与__________个面平行.(2)长方体中面ABCD与___________条棱平行,分别是____________长方体中面ADHE与___________条棱平行,分别是____________长方体中面ABFE与___________条棱平行,分别是____________通过观察思考可以得到:长方体中每个面都与____________条棱平行(3)长方体中一共可以写出多少对棱与面的平行关系?39.如图,已知在矩形ABCD 中,AB =1,BC P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,连接C 1C .当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段C 1C 扫过的区域的面积是_______.三、解答题40.如图,在长方体ABCD EFGH 中,分别写出与棱EH 相交、平行、异面的所有的棱.41.补画长方体(被遮住的线段用虚线表示).42.小磊房间窗户的装饰物如图阴影部分所示,它们由两个半径相同的四分之一圆组成(单位:米).(1)请用字母表示装饰物的面积(结果保留π):_.(2)请用字母表示窗户能射进阳光的部分面积(结果保留π):_.(3)若23a=,2b=时,请求出窗户能射进阳光的面积(π取3).43.如图,准备在一个广场中心建一个直径为24m的圆形花坛,并将圆形花坛分割成面积相等的四个部分.(1)请你求出花坛中小圆部分的周长;(2)如果在花坛中小圆以外的三个区域内种上不同品种的花卉,已知A品种与B品种的费用之比为25:0.5,B品种和C品种的费用之比为2:3,如果购买C品种花卉比购买A品种花卉多花了7000元,那么购买三种花卉总费用多少元?44.求出如图图形的体积.45.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是62.8米,高2米,圆锥的高是1.2米.这个粮囤能装稻谷多少立方米?如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?46.如图是用两个正方形(边长如图所示)和一个直角三角形拼成的五边形,(1)用含a的代数式表示阴影部分的面积.(结果要化简)(2)求当a=2时,阴影部分的面积.47.如图,是一个长为x米,宽为y米的长方形休闲广场,在它的四角各修建一块半径均为r米的四分之一圆形的花坛(阴影部分),其余部分作为空地.(1)用代数式表示空地的面积;(2)若长方形休闲广场的长为50米,宽为20米,四分之一圆形花坛的半径为8米,求长方形广场空地的面积.( 取3)48.用斜二测画法画长方体直观图:(1)补全长方体ABCD﹣A1B1C1D1;(2)量得B1C1的长度是cm,所表示的实际长度是cm.(3)与平面A1ABB1,平行的平面是.49.(1)如图1,ABC是等边三角形,曲线CDEFGH……叫做“等边三角形的渐开线”,曲线的各部分均为圆弧.设ABC的边长为3厘米,求前5段弧长的和(即曲线CDEFGH的长)是多少厘米?(2)如图2,有一只狗被拴在一建筑物的墙角上,这个建筑物是边长为400厘米的正方形,拴狗的绳子长18米.现狗从点A出发,将绳子拉紧按顺时针方向跑,可跑多少米?参考答案:1.C【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【详解】根据平移可得出两蚂蚁行程相同,∵甲乙两只蚂蚁的行程相同,且两只蚂蚁的爬行速度也相同,∵两只蚂蚁同时到达点B.故选C.【点睛】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.2.D【分析】根据题意可知,以长方形的宽边为周旋转一周得到一个圆柱,这个圆柱的底面半径是10厘米,高是6厘米.据此解答.【详解】解:一张长方形纸片长10厘米、宽6厘米,以它的宽边为轴旋转一周得到一个圆柱体,关于这个圆柱描述正确的是底面半径是10厘米,高是6厘米.故选:D.【点睛】此题主要考查了圆柱的特征及应用.3.D【分析】依次对各选项进行分析.【详解】A选项:213的倒数是35,故错误;B选项:计算弧长的公式是180πnl r=⨯,故错误;C选项:0是最小的自然数,故错误;D选项:1的因数只有1,故正确.故选:D.【点睛】考查了倒数、弧长的公式、自然数和因数,解题关键是熟记相关概念、计算公式.答案第1页,共21页【分析】直接根据长方体棱与面的位置关系可直接排除选项.【详解】如图所示:假设与棱AB 异面的棱有:111111A D B C DD CC 棱、棱、棱、棱;所以棱在长方体中,与一条棱异面的棱有4条,故选C .【点睛】本题主要考查长方体的棱与棱之间的位置关系,熟记概念是解题的关键. 5.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米,∵横截面半径是3分米即0.3米,∵横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D .【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.6.B【分析】如图,属于正方体展开图的“1-3-2”型,折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.【详解】折成一个正方体后,1号面与4号面相对,2号面与5号面相对,3号面与6号面相对.故选:B .【点睛】正方体展开图分四种类型,11种情况,每种情况折成正方体后哪些面相对是有规律的,可自己动手操作一下并记住,能快速解答此类题.【详解】解:1123243411()22AA A A A A A A A B AB ππ++++=⨯,因此乙虫走的四段半圆的弧长正好和甲虫走的大半圆的弧长相等,因此甲、乙同时到点B .故选:C . 【点睛】本题考查的是弧长的计算,解题的关键是掌握弧长公式:180n R l π=(弧长为l ,圆心角度数为n ,圆的半径为R)是解题的关键.8.C【分析】由一个圆柱和一个圆锥的底面积相等,可设圆柱和圆锥的底面积为S ,由圆柱的高是圆锥高的2倍,可设圆锥的高为h ,圆柱的高为2h ,根据圆柱与圆锥的体积公式,分别求出它们的体积,利用比的意义,即可求解.【详解】解:设圆柱和圆锥的底面积为S ,设圆锥的高为h ,圆柱的高为2h , 圆柱的体积=S ×2h = 2Sh ,圆锥的体积=13Sh , 则圆锥的体积是圆柱体积的比是:11:2:61:636Sh Sh Sh Sh , 答:圆锥的体积是圆柱体积的16. 故选C .【点睛】本题考查了圆柱与圆锥的体积计算以及比的意义的应用,灵活应用圆柱与圆锥的体积计算公式是解题的关键.9.C【分析】如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据两个大三角形的面积相等,即甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,即可求得甲的面积等于乙的面积.【详解】解:如图,在三角形中,等底等高的两个三角形的面积相等,由此可得三角形1面积=三角形2面积,三角形3面积=三角形4面积,根据长方形的对边相等,则长方形对角线分成的两个三角形面积等相等,所以甲的面积加上三角形1和三角形3的面积等于乙的面积加上三角形2和三角形4的面积,则甲的面积等于乙的面积.故选:C.【点睛】此题考查了三角形的面积,等底等高的两个三角形的面积相等是解答此题的关键.10.D【分析】根据线段的性质,中点的性质,面与棱之间的关系,角的比较方法逐项分析判断即可.【详解】A选项:线段AB的长度就是A、B两点间的距离,则此选项语句错误,不符合题意,故A错误;B选项:如果AB=BC,且点B在线段AB上,那么B是线段AC的中点,则此选项语句错误,不符合题意,故B错误;C选项:比较两个角的大小的方法常用的有叠合法和度量法,则此选项语句错误,不符合题意,故C错误;D选项:长方形纸片有直角,则可以使用长方形纸片检测平面与平面是否平行,则此选项语句正确,符合题意,故D正确;故选D.【点睛】本题考查了线段的性质,中点的性质,面与棱之间的关系,角的比较方法,掌握以上知识是解题的关键.11.C【分析】根据油桶由直立状态放倒成水平放置状态的整个过程,从不同方向观察油桶中的油的形状,即可.【详解】A、油桶处于水平放置状态时,从油桶的上方向下看,得到,不符合题意;B、油桶处于倾斜状态,从油桶的开口观察,可以得到,不符合题意;C、油桶由直立状态放倒成水平放置状态,在整个过程中无法得到,符合题意;D、油桶处于直立状态时,可以得到,不合题意.故选:C.【点睛】本题考查圆柱的截面的认识,解题的关键是从油桶的不同状态,观察油桶中油面的形状.12.A【分析】根据圆的面积公式计算即可.【详解】∵小圆半径是2cm ,大圆半径是4cm ,∵小圆的周长是2×2π=4π(cm ),大圆周长的周长是2×4π=8π(cm ),∵小圆周长是大圆周长的4π÷8π=12, 故选:A .【点睛】本题考查了圆的面积的计算,熟练掌握圆的面积公式是解题的关键.13.B【分析】根据题意,画出图形即可得出结论.【详解】解:看图以AB 为例,与它既不平行也不相交的棱有HD 、GC 、HE 和GF ,共有4条,故选B .【点睛】此题考查的是长方体的特征,根据题意画出图形是解决此题的关键.14.B【分析】根据圆的面积公式分别计算出小圆和大圆的面积,从而得出答案.【详解】解:根据题意知,小圆的面积为22=4ππ⨯,大圆的面积为2416ππ⨯=, 所以小圆的面积是大圆的面积的41=164,故B 正确. 故选:B .【点睛】本题主要考查圆的面积公式的应用,比值的计算,解题的关键是掌握圆的面积公式2S r π=.15.C【分析】要比较周长相等的正方形、长方形和圆形,谁的面积最大,谁面积最小,可以先假设这三种图形的周长是多少,再利用这三种图形的面积公式,分别计算出它们的面积,最后比较这三种图形面积的大小.【详解】解:为了便于理解,假设正方形、长方形和圆形的周长都是16,则圆的半径为:()8162ππ÷=, 面积为:2864π20.38ππ⎛⎫⨯=≈ ⎪⎝⎭; 正方形的边长为:1644÷=,面积为:4416⨯=;长方形的长、宽越接近面积越大,就取长为5宽为3,面积为:5315⨯=,当长方形的长和宽最接近时面积也小于16;所以周长相等的正方形、长方形和圆形,圆面积最大.故选:C .【点睛】此题主要考查长方形、正方形、圆形的周长、面积公式,根据周长求出面积是解题的关键.16.A【分析】根据题意可得半径增加后圆增加的面积等于半径增加后圆的面积减去原来圆的面积,即可求解.【详解】解:根据题意得:圆的面积增加了22363 2293819 72.故选∵A【点睛】本题主要考查求圆环的面积,熟练掌握圆的面积公式是解题的关键.17.C【分析】由图可知瓶子底部的半径是2厘米,然后求出水的体积和空余部分的体积即可得出答案.【详解】解:由图得:瓶子底部的半径是2厘米,∵水的体积是:22624ππ⋅⨯=(立方厘米),空余部分的体积是:()221088ππ⋅⨯-=(立方厘米),∵瓶子的容积是24π+8π=32π(立方厘米),故选:C .【点睛】本题考查了圆柱的体积计算,有理数的混合运算,正确计算是解题的关键.18.A【分析】πR 2是圆的面积公式,圆可以当作非常特别的扇形(360°),扇形的面积公式根据圆的面积公式来算的,圆心角缩小到原来的13,面积缩小到原来的13,(圆心角缩小的基础上)半径扩大3倍面积扩大9倍,总的算起来面积扩大到原来3倍.【详解】原扇形面积=圆心角÷360°×π×R 2,新扇形面积=(圆心角×13)÷360°×π×(3R )2=圆心角÷360×13×π×9R 2 =圆心角÷360°×π×R 2×3,所以新扇形面积:原扇形面积=3:1=3.故选:A【点睛】考核知识点:扇形面积.理解扇形面积计算方法是关键.19.B【分析】已知一个铁环直径是60厘米,可计算的其周长,再结合滚动的圈数即可计算得操场东端滚到西端长度,再根据另一个铁环的直径,即可求出其周长和它从东端滚到西端要转的圈数.【详解】∵一个铁环直径是60厘米∵铁环周长=π⨯直径=60π∵铁环从操场东端滚到西端转了90圈∵操场东端滚到西端长度=6090=5400ππ⨯∵另一个铁环的直径是40厘米∵另一个铁环周长=π⨯直径=40π∵另一个铁环从东端滚到西端要转的圈数=操场东端滚到西长度÷铁环周长∵另一个铁环从东端滚到西端要转的圈数=540040135ππ÷=故选:B .【点睛】本题考查了圆的周长的知识;求解的关键是熟练掌握圆的周长计算方法,从而完成求解.20.C【分析】由题意知,要求这条小路的面积就是求圆环的面积,已知内圆的周长是18.84米,利用C=2πr 可求得内圆半径,用内圆半径加上环宽1米就是外圆半径,再利用S 圆环=π(R 2-r 2)求得环形的面积,最后再乘以100即可.【详解】内圆半径:18.84÷3.14÷2=3(米),外圆半径:3+1=4(米);小路的面积:3.14×(42-32)=3.14×(25-9)=3.14×7=21.98(平方米);⨯=(颗) .则共需鹅卵石:10021.982198答:共需鹅卵石2198颗.故选:C.【点睛】本题考查了圆环的面积公式的灵活应用,解答关键是把实际问题转化成数学问题中,再把对应的数据代入圆环公式计算即可.解答此题要注意:求圆环的面积要先知道内、外圆的半径,再用外圆面积减去内圆面积.21.2【分析】先求解圆的半径,从而可得答案.【详解】解:一个周长是12.56厘米的圆的半径为:12.562 3.14=12.56 6.28=2,所以用圆规画一个周长是12.56厘米的圆,圆规两脚间的距离是2厘米.故答案为:2【点睛】本题考查的是利用圆的周长求解圆的半径,理解圆的周长公式是解本题的关键. 22.(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ【分析】(1)根据长方体的棱与棱之间的位置关系解答即可;(2)根据长方体棱与面之间的位置关系直接解答即可;(3)根据长方体棱与棱之间的位置关系解答即可.【详解】由题意及图形可得:(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ、棱PQ;(3)棱MN、棱NF、棱BQ、棱PQ.故答案为(1)棱AE、棱BF、棱NQ、棱MP;(2)棱HD、棱MP、棱NQ、棱AD、棱BQ 、棱PQ ;(3)棱MN 、棱NF 、棱BQ 、棱PQ .【点睛】本题主要考查长方体的棱与面的位置关系,熟记概念是解题的关键.23.4【分析】根据圆锥的体积公式、圆柱的体积公式计算即可.【详解】解:设圆锥和圆柱的底面积都是s ,圆柱的高为h ,则圆锥的体积=13sh =13s ×12=4s ,圆柱的体积=sh , 由题意得,sh =4s ,解得,h =4,即圆柱的高是4厘米,故答案为:4.【点睛】本题考查的是圆锥、圆柱的计算,解题的关键是掌握圆锥的体积公式、圆柱的体积公式.24.面11ABB A 、面11CDD C【分析】根据长方体的认识,即可求解.【详解】解:由图可知,与棱BC 垂直的平面为面11ABB A 、面11CDD C .故答案为:面11ABB A ,面11CDD C【点睛】本题主要考查了长方体的认识,熟练掌握长方体的特征是解题的关键. 25.4π 【分析】在一个边长为6cm 的正方形纸片上剪下一个最大的圆,则这个最大的圆的直径就是这个正方形的边长即6厘米,由此利用圆的面积=πr 2和正方形的面积=a 2代入数据即可解决问题.【详解】解:π(6÷2)2÷(6×6)=9π÷364π=, 故答案为:4π 【点睛】本题考查了圆的面积与正方形的面积,掌握圆的面积公式与正方形的面积公式是解题的关键.26.64平方厘米【分析】根据正方体的边长为4厘米,可得到正方形的每个面的面积,而与桌面垂直的平面有4个,即可求解.【详解】解:∵正方体的边长为4厘米∵该正方形的每个面:S4416=⨯=(平方厘米)∵与桌面垂直的平面面积之和为:16464⨯=(平方厘米)故答案为:64平方厘米.【点睛】此题主要考查正方形的面积,正确理解与桌面垂直的平面有4个是解题关键.27.1:1【分析】根据圆柱的侧面展开图是正方形,即可知道圆柱底面周长与高相等,即可得出答案.【详解】解:设圆柱底面周长为a,高为h,∵圆柱的侧面展开图是正方形,∵a h=,∵:1:1a h=,故答案为:1:1.【点睛】本题考查了圆柱的展开图,求比值,数形结合得出圆柱的侧面展开图是本题的关键.28.160°【分析】根据面积之比即为圆心角度数之比进行求解即可.【详解】解:由题意可知,三个圆心角的和为360°,∵三个扇形的面积比为2:3:4,∵三个扇形的圆心角度数之比为2:3:4,∵最大的圆心角度数为:4360160234︒⨯=︒++.故答案为:160°.【点睛】本题考查了扇形圆心角的度数问题,掌握周角的度数即三个扇形圆心角的和是360°是解题关键.29.2 360 n rπ【分析】根据扇形的面积公式即可填写本题.【详解】解:半径为r ,圆心角为n°的扇形面积2360n r S π=扇. 故答案为:2360n r π. 【点睛】本题考查了扇形的面积公式的字母表示形式,熟记和掌握公式是解题的关键. 30.240° 【分析】扇形的面积是它所在圆面积的23,那么扇形的圆心角就是它所在圆的圆心角的23,圆的圆心角为360°,那么可用圆心角乘扇形的圆心角占它所在圆的圆心角的分率即可得到答案.【详解】解:360°×23=240°, 故答案为:240°.【点睛】此题主要考查的是:扇形面积与它所在圆的面积的比等于扇形的圆心角与它所在圆的圆心角的比,掌握知识点是解题关键.31.36π或48π立方厘米【分析】根据圆柱体的体积=底面积×高,由于没有说清楚是绕长方形的哪条边旋转,所以分两种情况讨论.【详解】解:绕长所在的直线旋转一周得到圆柱体积为:23436ππ⨯⨯=(立方厘米); 绕宽所在的直线旋转一周得到圆柱体积:24348ππ⨯⨯=(立方厘米).故得到的几何体的体积是36π或48π立方厘米,故答案为:36π或48π立方厘米.【点睛】本题考查圆柱体的体积的求法及面动成体的知识,注意分两种情况讨论,不要漏解.32. 4 4【分析】根据圆锥的体积公式:213V r h π=,圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,体积扩大到原来的4倍,据此解答即可.【详解】解:∵圆的面积公式为2S r π=,∵圆锥的高不变,底面半径扩大到原来的2倍,底面积就扩大到原来的4倍,∵圆锥的体积公式:213V r h π=,∵圆锥的体积扩大到原来的4倍. 故答案为:4;4.【点睛】本题主要考查圆锥体积公式和圆的面积公式的灵活运用,解题的关键关键是熟记圆的面积公式2S r π=和圆锥的体积公式213V r h π=.33.8∵1【分析】设内圆的半径为a ,则外圆的半径为3a ,圆环的面积等于外圆的面积减去内圆的面积,则问题得解.【详解】设内圆的半径为a ,则外圆的半径为3a , 则外圆的面积为:()2239S a a ππ==外圆,内圆的面积为:22S a a ππ==内圆,则圆环的面积为:22298S S S a a a πππ=-=-=圆环外圆内圆, ∵()22881S S a a ππ==圆环内圆:::, 故答案为:8:1.【点睛】本题考查了比的知识、圆的面积以及圆环面积的计算,掌握圆面积的计算公式是解答本题的关键. 34. 1356.48 452.16【分析】由题意知,削成的最大圆柱体的底面直径是12cm ,高也是12cm ,可利用V =sh 求出它的体积,再把圆柱削成最大的圆锥体,则圆锥是与圆柱等底等高的,圆锥的体积就是圆柱体积的13,其要求圆锥的体积可用圆柱的体积乘13即可.【详解】()233.1412212 3.1436121356.48cm ⨯÷⨯=⨯⨯= 311356.48452.16cm 3⨯=故答案为:1356.48;452.16.【点睛】本题考查圆柱、圆锥的体积计算,正确理解题意并熟练掌握体积公式是解题的关键.35. 18.84 12.56【分析】分析:因为从上午9点到9点40分,经过了40分钟,则分针的针尖扫过区域为。

中考数学复习《几何图形初步》专项练习题-带有答案

中考数学复习《几何图形初步》专项练习题-带有答案

中考数学复习《几何图形初步》专项练习题-带有答案一、选择题1.用一个平面去截一个几何体,截面不可能是圆的几何体的是()A.B.C.D.2.如图是一个正方体的展开图,则该正方体可能是()A.B.C.D.3.如图,点C,D在线段AB上,若AD=BC,则()A.AC=CD B.AC=BD C.AD=2BD D.CD=BC 4.下列说法错误的是()A.两个互余的角都是锐角B.锐角的补角大于这个角本身C.互为补角的两个角不可能都是锐角D.锐角大于它的余角5.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°6.若一个角的补角比这个角的余角3倍还多10∘,则这个角的度数为()A.140∘B.50∘C.130∘D.40∘7.一副三角板如图摆放,则∠ABC的度数是()A.90°B.75°C.60°D.15°8.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOC的度数是()A.125°B.115°C.135°D.145°二、填空题9.如图,剪去图中一个正方形,使剩余的部分恰好能折成一个正方体,应剪去号小正方形.10.已知∠α=60°36′,则∠α的余角是.(用度表示)AB,D为AC的中点,若DB=1,则AB的长是.11.如图,BC= 1212.计算:180°−45°20′=.13.如图,点O是直线AB上的点,OC平分∠AOD,∠BOD=40°,则∠AOC=三、解答题14.如图,在一个5×5正方形网格中有五个小正方形,每个面上分别标有一个数值,在网格中添上一个正方形,使之能折叠成一个正方体,且使相对面上的两个数字之和相等.(1)在图中画出添上的正方形;(要求:在网格中用阴影形式描出,并描出所有符合条件的正方形)(2)求添上的正方形面上的数值.15.如图,C是线段AB上一点,M,N分别是AC,BC的中点.(1)若AC=8cm,BC=6cm,求线段MN的长;(2)若线段CM与线段CN的长度之比为2∶1,且线段CN=4cm,求线段AB的长.16.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,OA是∠BOC的角平分线.OF是OB的反向延长线.求:(1)射线OC的方向.(2)∠COF的度数.17.如图,点O在直线AB上∠COD=60°,∠AOE=2∠DOE .(1)若∠BOD=60°,求∠COE的度数;(2)试猜想∠BOD和∠COE的数量关系,并说明理由.18.如图,三角尺ABP的直角顶点P在直线CD上,点A,B在直线CD的同侧.(1)如图①,若∠APC=40°,求∠BPD的度数.(2)如图②,若PM平分∠APC,PN平分∠BPD,求∠MPN的度数.(3)绕点P旋转三角尺ABP,使点A,B在直线CD的异侧,如图③,当∠APC=4∠BPD时,求∠BPC的度数.参考答案1.C2.C3.B4.D5.C6.B7.B8.A9.1或2或610.29.4°11.412.134°40′13.70°14.(1)解:如图,添加一个正方形,使之能折叠成一个正方体,有如下四个位置:(2)解:由相对面上的数字之和相等可得:2x−1+2=3x−5解得:x=6∴相对面的数字之和为3x−5=3×6−5=13∴添上的正方形面上的数值为13−6=7.15.(1)解:因为M,N分别是AC,BC的中点所以CM=12AC=4cm,CN=12BC=3cm所以MN=CM+CN=4+3=7(cm).答:线段MN的长为7cm(2)解:因为线段CM与线段CN的长度之比为2∶1,CN=4cm 所以线段CM=8cm.因为M,N分别是AC,BC的中点所以AC=2CM=16cm,BC=2CN=8cm所以AB=AC+BC=16+8=24(cm).答:线段AB的长为24cm16.(1)解:由图知:∠AOB=15°+40°=55°∵OA是∠BOC的角平分线∴∠AOC=55°∴∠NOC=∠NOA+∠AOC=15°+55°=70°∴射线OC在北偏东70°方向上.(2)解:∵∠BOC=∠AOB+∠AOC=55°×2=110°∴∠COF=180°−∠BOC=180°−110°=70°.17.(1)解:∵∠BOD=60°∴∠AOD=180°−∠BOD=120°∵∠AOE=2∠DOE∴∠DOE=13∠AOD=13×120°=40°又∵∠COD=60°∴∠COE=∠COD−∠DOE=20°∴∠COE的度数为20°(2)解:∠COE=13∠BOD,理由如下:设∠BOD=x,则∠AOD=180°−x∵∠AOE=2∠DOE∴∠DOE=13∠AOD=13(180°−x)又∵∠COD=60°∴∠COE=∠COD−∠DOE =60°−13(180°−x)=60°−60°+1x3x=13∠BOD即∠COE=13∠BOD∴∠BOD和∠COE的数量关系为∠COE=1318.(1)解:∵∠APB=90°∴∠BPD=180°−∠APB−∠APC=180°−90°−40°=50°(2)解:∵PM平分∠APC,PN平分∠BPD∴∠APM=∠CPM∵∠APB=90°∴2∠APM+2∠BPN=90°∴∠APM+∠BPN=45°∴∠MPN=∠APM+∠APB+∠BPN=45°+90°=135°(3)解:设∠BPD=x,则∠APC=4x∵∠APB=90°∴∠APD=90°−x由题意可知:4x+(90°−x)=180°得3x=90°解得x=30°∴∠BPC=180°−∠BPD=180°−30°=150°。

中考数学图形与几何专题知识易错题50题(含答案)

中考数学图形与几何专题知识易错题50题(含答案)

中考数学图形与几何专题知识易错题50题含答案一、单选题1.圆的半径扩大到原来的3倍,它的周长扩大到原来的3倍,它的面积扩大到原来的()倍.A.3倍B.6倍C.9倍D.12倍2.小圆的半径是4cm,大圆的半径是8cm,小圆面积是大圆面积的()A.12B.14C.34D.183.如果大圆的半径长是小圆半径长的2倍,那么大圆周长是小圆周长的多少倍?()A.2B.4C.2πD.4π4.学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要()平方米的铁皮.A.18πB.27πC.0.27πD.1.8π5.矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是().A.56πB.32πC.24πD.60π6.圆的半径扩大为原来的3倍()A.面积扩大为原来的9倍B.面积扩大为原来的6倍C.面积扩大为原来的3倍D.面积不变7.如图,直径为2个单位长度的圆从原点开始沿数轴向右无滑动地滚动一周到达点A,则点A表示的数是()A.1B.2C.πD.2π8.圆的面积扩大到原来的16倍,半径扩大到原来的()A.4倍B.8倍C.16倍D.32倍9.两个圆的直径比是1:2,其周长比是()A.1:2B.1:4C.1:πD.2:110.小明在计算一道求圆的面积的题时,错把半径当成直径的长度计算,这时只要把计算的结果乘()就能求出正确答案.A .4B .2C .圆周率11.一个圆柱体和一个圆锥体的底面周长之比是1:3,它们的体积比也是1:3,圆柱和圆锥的高的比是( ) A .1:1B .3:1C .1:9D .1:312.小圆半径是4cm ,大圆半径是8cm ,小圆面积是大圆面积的( ) A .12B .14C .16D .1813.在长方体中,下列说法错误的是( ) A .长方体中互相垂直的面共有12对 B .长方体中互相平行的面共有3对 C .长方体中相交的棱共有12对 D .长方体中异面的棱共有24对14.下列说法正确的是( ) A .半圆面积是圆面积的一半 B .半径为2的圆的面积和周长相等 C .周长相等的两个圆的面积也相等 D .两个圆的面积不相等是因为圆心位置不同15.如图,长方形的长是4厘米,宽是2厘米.分别以长边和宽边所在的直线为轴,旋转一周可以得到两个不同的圆柱.这两个圆柱的体积( )A .甲大B .乙大C .同样大D .无法判断谁大16.下列说法中不正确的是( ).A .用“长方形纸片”可以检查直线与平面平行B .用“三角尺”可以检查直线与平面垂直C .用“合页型折纸”可以检查平面与平面垂直D .空间两条直线有四种位置关系:平行、相交,垂直、异面17.如图,在矩形ABCD 中放入正方形AEFG ,正方形MNRH ,正方形CPQN ,点E 在AB 上,点M 、N 在BC 上,若4AE =,3MN =,2CN =,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为( )A.5B.6C.7D.8BC=,则O的面积为()18.如图,O为正方形ABCD的外接圆,若2A.2πB.3πC.4πD.8π19.下列说法:①一个圆的周长总是直径的π倍;①甲数除以乙数(不等于0)等于甲数乘乙数的倒数;①圆心角越大,扇形就越大;①一个非零自然数除以一个假分数,商一定小于被除数;①圆的对称轴是直径;错误的个数为()A.1个B.2个C.3个D.4个二、填空题20.门的转轴和地面的位置关系_______________.21.周长是720毫米的圆上,有一条长为360毫米的弧,这条弧所对的圆心角的度数为________.22.如图所示,在长方体ABCD EFGH-中:棱AD与平面ABFE的位置关系是__________;与棱CD平行的平面是_______________.23.长方体中棱与面的位置关系有________________________________.24.圆的半径为4厘米,它的周长是________厘米.25.如图,与棱AB平行的棱有__________________________;与棱FG相交的棱有__________________________;与棱AE异面的棱有__________________________;与棱HG相交的棱有__________________________.26.在一个边长为6cm的正方形里画一个最大的圆,这个圆的面积占正方形面积的____.27.如图,在长方体ABCD-EFGH中,1)与棱DH垂直的面是_________________________,2)与棱BC垂直的面是_________________________,3)与棱AB垂直的面是_________________________,4)与面ABCD垂直的棱有_________________________________,5)与面ABFE垂直的棱有_________________________________,6)与面BCGF垂直的棱有__________________________________,7)在长方体中的每一条棱有_________个面和它垂直,每一个面有________条棱和它垂直.28.半圆形的周长等于它所在圆的周长的一半,______(判断对错)29.用______________可以检验教室里黑板的边沿是否平行于地面.30.如图所示,平面BDHF垂直于平面_______.31.把一个底面直径4分米的圆柱体,截去一个高2分米的小圆柱体,原来的圆柱体表面积减少_____平方分米.(结果保留π)32.如图,在长方体ABCD EFGH中,既与平面ADHE垂直,又与棱AD异面的棱是______.33.若把一个圆分割成3个扇形,且各个扇形面积的比为3:2:1,则最小的扇形的圆心角的度数是___.34.如图,圆柱形容器的底面半径为0.5m,高为1.5m.其里面盛有1m深的水,将底面半径为0.3m,高为0.5m的圆柱形铁块沉入水中,此时容器内的水面高度上升了______m.35.扇形的圆心角是72°,则扇形的面积是其所在圆面积的________(填分数).36.如图1中的瓶子盛满了水,如果将这个瓶子中的水全部倒入图2的杯子中,那么一共需要________个这样的杯子(瓶子和杯子的厚度忽略不计).37.如图,阴影部分面积是小圆面积的23,是大圆面积的38,则大圆面积与小圆面积的比是________.38.一根圆柱形木料长200厘米,把它截成三段圆柱形,表面积增加了12平方厘米,原来木料的体积是__________立方厘米.39.如果两个扇形A 、B 的面积相等,A 的圆心角占B 的圆心角的14,则A 的半径与B 的半径的比为________.三、解答题40.直径为18cm 的圆中,圆心角40°的扇形面积是多少?41.一个装满稻谷的粮囤,上面是圆锥形,下面是圆柱形,量得圆柱底面的周长是20π米,高2米,圆锥的高是1.2米.221ππ3V r h V r h 圆柱圆锥,⎛⎫== ⎪⎝⎭(1)这个粮囤能装稻谷多少立方米?(结果保留π)(2)如果每立方米稻谷重500千克,这个粮囤最多能装稻谷多少吨?(结果保留π) 42.如图所示,将一个横截面是正方形(面BCGF )的长方体木料,沿平面AEGC (长方形)分割成大小相同的两块,表面积增加了230cm ,已知EG 长5cm ,分割后每块木料的体积是318cm ,问原来这块长方体木料的表面积是多少?43.一块正方形的草皮,边长为4米,在两个相对的角上各有一棵树,树上各拴一只羊,绳长4米,问两只羊都能吃到的草的草皮有多少?44.如图所示:正方形的边长为2,以各边为直径在正方形内画半圆,求所围成的图形(阴影部分)的面积.45.如图,一个半圆和一条直径组成的图形的周长为20.56厘米,它的面积是多少平方厘米?46.如图,,AB BC ⊥4cm,BC =45C ∠=︒,O 为圆心,求阴影部分的面积.47.如图,两个正方形的边长分别是6和5.求图形中阴影部分的面积.48.求图中AB 的长度.49.王明用长40cm ,宽20cm 的两张长方形纸围成了甲、乙两个圆柱(如图,粘接处重叠部分不计),再给每个圆柱配上一个底面,做成了两个圆柱形容器.(1)甲、乙两个圆柱谁的体积大?先提出你的猜想;(2)如何验证你的猜想?请你设计一个验证方案.(只需设计方案,写出主要步骤,不需要列式计算.)参考答案:1.C【分析】设圆的半径为r ,则圆的面积为2r π,半径扩大到原来的3倍后为3r ,然后得到面积为()2239r r ππ⨯=,相除即可得到答案. 【详解】解:设圆的半径为r ,则圆的面积为2r π, ①半径扩大到原来的3倍后为3r ,面积为()2239r r ππ⨯=, ①2299r r ππ÷=.①它的面积扩大到原来的9倍. 故选:C .【点睛】此题考查了圆的面积公式,除法运算,解题的关键是熟练掌握圆的面积公式. 2.B【分析】用小圆面积除以大圆面积,即可求解.【详解】解:根据题意得:小圆面积是大圆面积的()()2214816644ππππ⨯÷⨯=÷=.故选:B【点睛】本题主要考查了求圆的面积,熟练掌握圆的面积公式是解题的关键. 3.A【分析】设小圆的半径长为r ,则大圆的半径长为2r ,即可分别求得大圆、小圆的周长,据此即可解答.【详解】解:设小圆的半径长为r ,则大圆的半径长为2r , 故大圆的周长为:224r r ,小圆的周长为:2r π,422r r ππ÷=,∴大圆周长是小圆周长的2倍,故选:A .【点睛】本题考查了求圆的周长公式,根据题意,列出代数式是解决本题的关键. 4.D【分析】根据横截面的半径可求出地面圆的周长,用底面圆的周长乘以圆柱的高可得展开图形的面积.【详解】解:3分米=0.3米, ①横截面半径是3分米即0.3米,①横截面的圆的周长为:2×0.3×π=0.6π,故长方形铁皮的面积为:3×0.6π=1.8π,故选:D.【点睛】本题考查圆柱题的展开图,与侧面积,圆柱体的横截面,能够利用圆柱的横截面的半径以及高求出圆柱的侧面积是解决本题的关键.5.A【详解】①以直线AB为轴旋转一周得到的圆柱体,得出底面半径为4cm,母线长为3cm,①圆柱侧面积=2π•AB•BC=2π•3×4=24π(cm2),①底面积=π•BC2=π•42=16π(cm2),①圆柱的表面积=24π+2×16π=56π(cm2).故选A【点睛】此题主要考查了圆柱的表面积的计算公式,根据旋转得到圆柱体,利用圆柱体的侧面积等于底面圆的周长乘以母线长是解决问题的关键.6.A【分析】根据圆的面积公式判断即可.【详解】S=πr2,圆的半径扩大为原来的3,所以面积扩大为原来的9倍.故答案为:A.【点睛】本题主要考查了圆的面积问题,熟练掌握圆的面积公式是解题的关键.7.D【分析】根据圆的周长πd作答即可.【详解】解:圆旋转一周,周长为2π,①点A所表示的数为0+2π=2π.故选:D.【点睛】考查圆的周长及数轴上点的意义,解题关键是通过图形求得圆的周长.8.A【分析】设圆的半径为r,面积=πr2,由此可得:圆的面积与半径的平方成正比例,所以圆的面积扩大到原来的16倍,则圆的半径则扩大到原来的4倍,由此即可解答.【详解】解:设圆的半径为r,面积=πr2,π是一个定值,则:圆的面积与r2成正比例:即半径r扩大到原来的4倍,则r2就扩大4×4=16倍,所以圆的面积就扩大16倍,反之圆的面积扩大到原来的16倍,因为16=4×4,所以圆的半径就扩大到原来的4倍. 答:一个圆的面积扩大到原来的16倍,则这个圆的半径就扩大到原来的4倍. 故选:A .【点睛】本题考查了比例,关键是掌握圆的面积与半径的平方成正比例的灵活应用. 9.A【分析】设小圆直径为d ,则根据“两个圆的直径之比是1:2,”得出大圆直径为2d ,再根据圆的周长公式C =πd ,分别表示出它们的周长,写出相应的比,再化简即可. 【详解】解:设小圆直径为d ,则大圆直径为2d , 小圆的周长:C d π=,大圆的周长:22C d d ππ'⨯==, 周长的比:πd :2πd =1:2,故A 正确. 故选:A .【点睛】本题主要考查比的意义和圆的周长公式,解题的关键是熟练掌握圆的周长公式C =πd . 10.A【分析】根据直径是半径的2倍即可得出答案. 【详解】解:①直径是半径的2倍,①只要把计算的结果乘4就能求出正确答案,故A 正确. 故选:A .【点睛】本题主要考查了圆的面积的有关计算,解题的关键是熟练掌握圆的面积公式,以及圆的直径与半径的关系. 11.A【分析】根据圆的周长公式知道底面周长的比就是半径的比,设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,再根据圆柱的体积公式2V sh r h π==与圆锥的体积公式21133V sh r h π==得出圆柱的高与圆锥的高,进而根据题意,进行比即可.【详解】解:设圆柱的底面半径是1,则圆锥的底面半径是3,设圆柱的体积是1,则圆锥的体积是3,则:221[1(1)]:[3(3)]3ππ÷⨯÷÷⨯,11:ππ= 1:1=故选:A .【点睛】此题主要考查了圆柱的体积公式与圆锥的体积公式,关键在于熟悉圆柱的体积公式与圆锥的体积公式,利用公式推导出圆柱与圆锥的高的关系.12.B【分析】分别求出大圆和小圆的面积即可得到答案.【详解】解:由题意得:大圆的面积28864cm ππ=⨯⨯=,小圆的面积24416cm ππ=⨯⨯=,①小圆面积是大圆面积的161=644ππ, 故选B .【点睛】本题主要考查了圆的面积,求一个数是另一个数的几分之几,熟知圆面积公式是解题的关键.13.C【分析】直接根据长方体中棱、面之间的位置关系进行排除即可.【详解】A 、长方体中互相垂直的面共有12对,故正确;B 、长方体中互相平行的面共有3对,故正确;C 、长方体中相交的棱共有24对,故错误;D 、长方体中异面的棱共有24对,故正确.故选C .【点睛】本题主要考查长方体中棱、面之间的位置关系,熟练掌握概念是解题的关键. 14.C【分析】根据圆的面积及周长计算公式直接进行判断即可.【详解】A 、“半圆面积是圆面积的一半”缺少半径相等这个前提,所以错误;B 、半径为2的圆的面积和周长不相等,因为单位不一样,故错误;C 、周长相等的两个圆的面积也相等,故正确;D 、两个圆的面积不相等是由半径来决定的,圆心只决定圆的位置关系,故错误; 故选C .【点睛】本题主要考查圆的面积与周长,正确理解圆的面积及周长是解题的关键. 15.B【分析】根据题意可知,以长方形的长边为轴旋转一周得到的圆柱的底面半径是2厘米,高是4厘米;以长方形的宽边为轴旋转一周得到的圆柱的底面半径是4厘米,高是2厘米;根据圆柱的体积公式:2V r h π=,把数据分别代入公式求出它们的体积进行比较即可.【详解】解:甲:23.1424⨯⨯=3.14×4×4=50.24(立方厘米)乙:23.1442⨯⨯=3.14×16×2=100.48(立方厘米)100.48>50.24答:乙的体积大.故选:B 。

几何图形中考试题及答案

几何图形中考试题及答案

几何图形中考试题及答案一、选择题1. 下列几何图形中,哪一个是轴对称图形?A. 圆B. 正方形C. 等边三角形D. 所有选项答案:D2. 一个正五边形的内角和是多少度?A. 540°B. 720°C. 900°D. 1080°答案:B3. 如果一个三角形的两边长分别为3和4,第三边长x满足三角形不等式,则x的取值范围是?A. 1 < x < 7B. 1 < x < 5C. 2 < x < 6D. 3 < x < 7答案:C二、填空题1. 已知一个等腰三角形的底边长为6cm,两腰长为5cm,那么这个三角形的周长是____cm。

答案:162. 一个矩形的长为8cm,宽为4cm,那么这个矩形的对角线长为____cm。

答案:8√23. 一个圆的半径为7cm,那么这个圆的面积是____cm²。

答案:49π三、解答题1. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求斜边长。

答案:斜边长为5cm,根据勾股定理,斜边长=√(3²+4²)=√(9+16)=√25=5cm。

2. 一个圆的直径为14cm,求圆的周长和面积。

答案:周长=πd=π×14cm,面积=πr²=π×(14/2)²=π×49cm²。

3. 已知一个等腰梯形的上底为6cm,下底为10cm,高为4cm,求梯形的面积。

答案:面积=(上底+下底)×高÷2=(6+10)×4÷2=16×4÷2=32cm²。

初三数学几何测试题及答案

初三数学几何测试题及答案

初三数学几何测试题及答案一、选择题(每题3分,共15分)1. 若三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形2. 圆的半径为5,那么圆的周长是:A. 10πB. 15πC. 20πD. 25π3. 已知点A(-3, 4)和点B(6, -2),线段AB的长度是:A. 5B. 10C. 15D. 204. 正六边形的内角是:A. 60°B. 90°C. 120°D. 180°5. 一个长方体的长、宽、高分别为a、b、c,其表面积为:A. 2(ab + bc + ac)B. a^2 + b^2 + c^2C. 4(ab + bc + ac)D. 6(ab + bc + ac)二、填空题(每题2分,共10分)6. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是________。

7. 一个圆的直径是14,那么这个圆的面积是________。

8. 如果一个三角形的底边长为10,高为6,那么这个三角形的面积是________。

9. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是________。

10. 正五边形的每个内角是________。

三、计算题(每题10分,共20分)11. 已知一个圆的半径为7,求圆的面积。

12. 已知一个长方体的长、宽、高分别为5、4、3,求长方体的表面积和体积。

四、解答题(每题15分,共20分)13. 已知三角形ABC中,∠A=30°,∠B=45°,求∠C的大小。

14. 在平面直角坐标系中,点P(-2, 3)关于原点O(0, 0)对称的点Q 的坐标是什么?五、证明题(每题15分,共15分)15. 证明:直角三角形斜边上的中线等于斜边的一半。

答案:1. B2. C3. B4. C5. A6. 5(根据勾股定理)7. 49π(πr^2,其中r=7)8. 30(底×高÷2)9. 24(长×宽×高)10. 108°((5-2)×180°÷5)11. 圆的面积为49π。

中考数学几何图形专题训练50题-含答案

中考数学几何图形专题训练50题-含答案

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .球D .圆锥 2.如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A .30°B .45°C .60°D .75°3.如图是每个面上都标有一个汉字的正方体的表面展开图,在此正方体上与“爱”字相对的面上的汉字是( )A .保B .定C .古D .城 4.如图,已知AC BC ⊥,190A ∠+∠=︒,则2∠与A ∠的关系是( )A.2∠大C.相等D.无法确定∠大B.A5.若一个锐角的余角比这个角大30°,则这个锐角的度数是()A.30︒B.150︒C.60︒D.155︒6.图中的立方体展开后,应是下图中的()A.B.C.D.7.如图,直线与相交于点,,则与()A.是对顶角B.相等C.互余D.互补8.如图由四个相同的小立方体组成的立体图像,它的主视图是().A .B .C .D . 9.如图,钟表上10点整时,时针与分针所成的角是( )A .30︒B .60︒C .90︒D .120︒ 10.如图,将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是( )A .B .C .D . 11.如图,在长方形ABCD 中,点E ,点F 分别为BC 和AB 上任意一点,点B 和点M 关于EF 对称,EN 是MEC ∠的平分线,若60BFE ∠=︒,则MEN ∠的度数是( )A .30︒B .60︒C .45︒D .50︒12.如图是正方形纸盒展开图,那么在原正方体中,与“沉”字所在面相对面的汉字是()A.冷B.静C.应D.考13.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体14.如图,用平面去截一个正方体,所得截面的形状应是()A.A B.B C.C D.D15.如图,点O在直线AB上,∠COE=90°,OD平分∠AOE,∠COD=25°,则∠BOD=()A.110°B.115°C.120°D.135°16.下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是3cmC.直线,AB CD相交于点P D.两点确定一条直线17.如图,一个底面直径为30cm,高为20cm的糖罐子,一只蚂蚁从A处沿着糖罐的表面爬行到B处,则蚂蚁爬行的最短距离是()A .24cmB .C .25cmD .30cm 18.如图,等边ABC 的边长为1,过点B 的直线l AB ⊥,且ABC 与A BC ''△关于直线l 对称,D 为线段BC '上的一个动点,则AD CD +的最小值为( )A .1B .2C .3D .419.如图,在ABC 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上 D .:1:3DAC ABD S S =△△20.如图,在Rt 直角△ABC 中,45B ∠=︒,AB =AC ,点D 为BC 中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△ AE =CF ;△△BDE △△ADF ;△ BE +CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题21.在_______内填上适当的分数:135等于________平角.22.如图,AB △CD ,CB 平分△ABD ,若△ABC =40°,则△D 的度数为_______.23.如果△α=26°,那么△α的余角等于__________.24.如图,点A在点O北偏东32︒方向上,点B在点O南偏东43︒方向上,则AOB∠= ______.25.如图,是一副三角板拼成的图案,则AED=∠____.26.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是___________.27.如图是一个长方体的表面展开图,每个面上都标注了字母和数据,请根据要求回答(1)如果A面在长方体的底部,那么_________面会在上面;(2)这个长方体的体积为_________米3.28.若α∠的补角是它的3倍,则α∠的度数为________________.29.两根长度分别为8cm 和10cm 的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为________.30.已知,如图4090COD AOC BOD ∠∠∠=︒==︒,,则AOB ∠=_______度.31.若一个直棱柱共有10个面,所有侧棱长的和等于64,则每条侧棱的长为______.32.小红从O 点出发向北偏西32°17'方向走到A 点,小明从O 点出发向南偏西54°28'方向走到B 点,则∠AOB 的度数是_____.33.如图是一个正方体的展开图,它的六个面上分别写有“构建和谐社会”六个字,将其围成正方体后,与“社”在相对面上的字是_____.34.5400秒化成度数是____________度35.如图,OA 的方向是北偏东20°,OC 的方向是北偏西40°,若AOC AOB ∠=∠,则OB 的方向是______.36.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.37.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.38.如图,在△O 中,AB 是△O 的直径,10,AB AC CD DB ===,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:△60BOE ︒∠=;△12CED DOB ∠=∠;△DM CE ⊥;△CM DM +的最小值是10.上述结论中正确的个数是_________.39.如图,在Rt ABC △中,90ABC ∠=︒,以AC 为边,作ACD ,满足AD AC =,点E 为BC 上一点,连接AE ,12BAE CAD ∠=∠,连接DE .下列结论中正确的是__________.(填序号)△AC DE ⊥;△ADE ACB ∠=∠;△若//CD AB ,则AE AD ⊥;△2DE CE BE =+.40.如图,在△ABC 中,AB = AC = 8,S △ABC = 16,点P 为角平分线AD 上任意一点,PE △AB ,连接PB ,则PB+PE 的最小值为_____.三、解答题41.线段4AB =cm ,延长线段AB 到C ,使BC =14AB ,再反向延长AB 到D ,使AD=3cm ,E 是AD 中点,F 是CD 的中点,求EF 的长度.42.已知图为一几何体从不同方向看的图形.(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积. 43.如图△,点O 为直线MN 上一点,过点O 作直线OC ,使60NOC ︒∠=.将一把直角三角尺的直角顶点放在点O 处,一边 OA 在射线OM 上,另一边OB 在直线AB 的下方,其中30OBA ︒∠=()1将图△中的三角尺沿直线OC 翻折至''A B O ∆, 求'A ON ∠的度数;()2将图△中的三角尺绕点O 按每秒10︒的速度沿顺时针方向旋转,旋转角为()0360αα︒︒<<, 在旋转的过程中,在第几秒时,直线OA 恰好平分锐角NOC ∠. ()3将图△中的三角尺绕点O 顺时针旋转;当点A 点B 均在直线MN 上方时(如图△所示),请探究MOB ∠与AOC ∠之间的数量关系,请直接写出结论,不必写出理由.44.如图,在直线AB 上,线段20AB =,动点P 从A 出发,以每秒2个单位长度的速度在直线AB 上运动,M 为AP 的中点,N 为BP 的中点,设点P 的运动吋间为t 秒.(1)若点P 在线段AB 上运动,当7MP =时,NP = ;(2)若点P 在射线AB 上运动,当2MP NP =时,求点P 的运动时间t 的值;(3)当点P 在线段AB 的反向延长线上运动时,线段AB 、MP 、NP 有怎样的数量关系?请写出你的结论,并说明你的理由.45.已知:点M ,N ,P 在同一条直线上,线段MN a =,线段()PN b a b =>,点A 是MP 的中点.求线段MP 与线段AN 的长.(用含a ,b 的代数式表示) 46.如图所示,l 为河岸,B 处为草地,牧马人要将A 处的马牵到河边喝水,再牵到B 地吃草,问怎样走路程最短?47.如图,在ABC 中,CD 、CE 分别是ABC 的高和角平分线,,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒,求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.48.某产品的形状是长方体,长为8cm ,它的展开图如图所示,求长方体的体积.49.如图,已知线段AB 上有两点C ,D ,且AC△CD△DB =2△3△4,E ,F 分别为AC ,DB 的中点,EF =2.4 cm ,求线段AB 的长.50.综合与探究已知△AOB 、△BOC ,△AOB =90°,(1)若△BOC 为锐角,OE 、OD 分别平分△AOB 和△BOC ,△如图1,当射线OC 在△AOB 外部,△BOC =40°时,求△EOD 的度数;△当△BOC =α(090α︒<<︒)时,则△EOD 的度数是_____;(2)若△AOC 和△BOC 均为小于平角的角,OE 、OD 分别平分△AOC 和△BOC ,△当△BOC =40°,OC 位置如图2所示时,求△EOD 的度数.△当△BOC =α时(0°<α<180°),则△EOD 的度数是_____.参考答案:1.A【分析】侧面为三个长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱,故A 正确.故选:A .【点睛】本题考查的是三棱柱的展开图,熟练掌握三棱柱的展开图,是解题的关键. 2.C【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解. 【详解】解:30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.3.A【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【详解】正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以在此正方体上与“爱”字相对的面上的汉字是“保”,故选A .【点睛】本题考查正方体的展开图,解题的关键是掌握正方体相对两个面上的文字的知识.4.C【分析】由190A ∠+∠=︒,1290∠+∠=︒,可知2A ∠=∠,进而可得答案.【详解】解:△190A ∠+∠=︒,1290∠+∠=︒△2A ∠=∠故选C .【点睛】本题考查了余角.解题的关键在于明确同角的余角相等.5.A【分析】根据余角的定义解决此题.【详解】解:设这个角的度数为x .由题意得,9030x x -=+︒︒.△30x =︒.△这个角的度数为30︒.故选:A .【点睛】本题主要考查余角,熟练掌握余角的定义是解决本题的关键.6.D【详解】由正方体的展开图可知,D 项符合题意,故选D .7.C【详解】试题分析:因为CD 是一条直线,又,所以△AOE=90°所以△1+△2=180°-90°=90°,所以他们的关系是互余考点:角的互余关系点评:难度小,理解角与角的各种的关系是关键.8.A【分析】从正面看作出相应图象即可得.【详解】解:从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选A.【点睛】题目主要考查小正方体的主视图的作法,理解题意,掌握视图的作法是解题关键. 9.B【分析】根据钟面分成12个大格,每格的度数为30°即可解答.【详解】解:△钟面分成12个大格,每格的度数为30°,△钟表上10点整时,时针与分针所成的角是60°故选B .【点睛】考核知识点:钟面角.了解钟面特点是关键.10.B【分析】根据直角三角形绕直角边旋转是圆锥,即可解得.【详解】将直角三角形绕其一条直角边所在直线l 旋转一周,得到的几何体是圆锥;故答案为:B.【点睛】本题考查了点、线、面、体,熟记各种平面图形旋转得到的立体图形是解题的关键.11.B∠的平分线,可算出△MEN 【分析】根据对称的性质可得△MEF的度数,再由EN是MEC的度数.【详解】解:由题意可得:△B=90°,△△BFE=60°,△△BEF=30°,△点B和点M关于EF对称,△△BEF=△MEF=30°,△△MEC=180-30°×2=120°,∠的平分线,又△EN是MEC△△MEN=120÷2=60°.故选B.【点睛】本题考查了轴对称的性质和角平分线的性质,根据已知角利用三角形内角和、角平分线的性质计算相关角度即可,难度不大.12.B【分析】根据正方体的展开图的特点,确定出相对的面即可.【详解】解:根据正方体表面展开图可知,与“沉”字所在面相对面的汉字是“静”.故答案为B.【点睛】本题考查正方体的表面展开图的特征,掌握正方体展开图的对面的判定方法是解答本题的关键.13.D【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.14.B【详解】试题解析:正方体的截面,经过正方体的四个侧面,正方体中,对边平行,故可确定为平行四边形,交点垂直于底边,故为矩形.故选B.点睛:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.B【分析】先根据△COE=90°,△COD=25°,由角的和差关系求得△DOE=90°﹣25°=65°,再根据OD平分△AOE,由角平分线的定义得出△AOD=△DOE=65°,最后根据邻补角的定义得出△BOD=180°﹣△AOD=115°.【详解】△△COE=90°,△COD=25°,△△DOE=90°﹣25°=65°.△OD平分△AOE,△△AOD=△DOE=65°,△△BOD=180°﹣△AOD=115°.故选B.【点睛】本题考查了角的计算以及角平分线的定义的综合应用,解决问题的关键是运用角平分线以及直角的定义,求得△AOD的度数,再根据邻补角进行计算.16.D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.17.C【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:△有一圆柱,它的高等于20cm ,底面直径等于30πcm , △底面周长=3030ππ⋅=cm ,△BC =20cm ,AC =12×30=15(cm ),△AB 25=(cm ).答:它需要爬行的最短路程为25cm .故选:C .【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.18.B【分析】连接CA '交BC '于点E ,C ,A '关于直线BC '对称,推出当点D 与B 重合时,AD CD +的值最小,最小值为线段AA '的长2=.【详解】解:连接CA '交BC '于点E ,直线l AB ⊥,且ABC ∆与△A BC ''关于直线l 对称,A ∴,B ,A '共线,60ABC A BC ∠=∠''=︒,60CBC ∴∠'=︒,C BA C BC ∴∠''=∠',BA BC '=,'BE CA ∴⊥,CD DA =',C ∴,A '关于直线BC '对称,∴当点D与B重合时,AD CD+的值最小,最小值为线段AA'的长2=,故选B.【点睛】本题考查轴对称-最短问题,等边三角形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.19.D【分析】根据作图的过程可以判定AD是△BAC的角平分线;利用角平分线的定义可以推知△CAD=30°,则由直角三角形的性质来求△ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A、根据作图方法可得AD是△BAC的平分线,正确;B、△△C=90°,△B=30°,△△CAB=60°,△AD是△BAC的平分线,△△DAC=△DAB=30°,△△ADC=60°,正确;C、△△B=30°,△DAB=30°,△AD=DB,△点D在AB的中垂线上,正确;D、△△CAD=30°,△CD=12AD,△AD=DB,△CD=12DB,△CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,△S△ACD:S△ACB=1:3,△S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.20.C【分析】根据等腰直角三角形的性质可得△CAD=△B=45°,根据同角的余角相等求出△ADF=△BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出△正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出△正确;再求出AE=CF,判断出△正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出△错误.【详解】△△B=45°,AB=AC,△△ABC是等腰直角三角形,△点D为BC中点,△AD=CD=BD,AD△BC,△CAD=45°,△△CAD=△B,△△MDN是直角,△△ADF+△ADE=90°,△△BDE+△ADE=△ADB=90°,△△ADF=△BDE,在△BDE和△ADF中,CAD BAD BDADF BDE∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BDE△△ADF(ASA),故△正确;△DE=DF、BE=AF,又△△MDN是直角,△△DEF是等腰直角三角形,故△正确;△AE=AB-BE,CF=AC-AF,△AE=CF,故△正确;△BE+CF=AF+AE>EF,△BE+CF>EF,故△错误;综上所述,正确的结论有△△△;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、同角的余角相等的性质、三角形三边的关系;熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.21.3 4【分析】根据一平角等于180°解答即可.【详解】△135÷180=34,△135等于34平角.故答案为3 4 .【点睛】本题考查了平角的定义,熟练掌握一平角等于180°是解答本题的关键. 22.100°【分析】根据角平分线定义和平行线的性质即可求出△D的度数.【详解】解:△CB平分△ABD,△ABC=40°,△△ABD=2△ABC=80°,△AB△CD,△△ABD+△D=180°,△△D=180°﹣80°=100°,则△D的度数为100°.故答案为:100°.【点睛】本题主要考查了角平分线的定义,平行线的性质,熟练掌握角平分线的定义,平行线的性质是解题的关键.23.64°【详解】△△α=26°,△△α的余角=90°-26°=64°.故答案为:64°【点睛】本题考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.24.105°【分析】直接利用方向角结合互补的性质得出答案.【详解】解:如图所示:由题意可得,△1=32°,△2=43°,则△AOB=180°-△1-△2=105°.故答案为:105°.【点睛】此题主要考查了方向角,正确把握方向角的定义是解题关键.25.135°【详解】本题主要考查了三角板的知识及平角的定义根据三角板的知识可知△DEC的度数,再根据平角的定义即可求得结果.由题意得△DEC=45°,则△AED=180°-△DEC=135°.思路拓展:解答本题的关键是掌握好三角板的知识及平角的定义.26.明【分析】这种展开图是属于“1,4,1”的类型,其中,上面的1和下面的1是相对的2个面.【详解】由正方体的展开图特点可得:“建”和“明”相对;“设”和“丽”相对;“美”和“三”相对;故答案为:明.【点睛】此题考查正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.27.F6【分析】(1)根据展开图,可得几何体,、、A B C 是邻面,D F E 、、是邻面,根据A 面在底面,F 会在上面,可得答案;(2)由体积计算公式解答.【详解】解:(1)如图所示,A 与F 是对面,所以如果A 面在长方体的底部,那么 F 面会在上面;故答案是:F ;(2)这个长方体的体积是:1236⨯⨯=(米3).故答案是:6【点睛】本题考查了几何体的展开图,利用了几何体展开图组成几何体时面与面之间的关系.28.45︒##45度【分析】设α∠为x ,根据互为补角的两个角的和等于180︒表示出这个角的补角,然后列出方程求解即可.【详解】解:设α∠为x ,则α∠的补角为180x ︒-,根据题意得1803x x ︒-=,解得45x =︒,故答案为:45︒.【点睛】本题考查了互为补角的定义,根据题意表示出这个角的补角,然后列出方程是解题的关键.29.1cm 或9cm##9cm 或1cm【分析】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:BC 不在AB 上和BC 在AB 上时,分别代入数据进行计算即可得解.【详解】解:设较长的木条为AB =10cm ,较短的木条为BC =8cm ,△M 、N 分别为AB 、BC 的中点,△BM =5cm ,BN =4cm ,△如图1,BC 不在AB 上时,MN =BM +BN =5+4=9(cm),△如图2,BC 在AB 上时,MN =BM −BN =5−4=1(cm),综上所述,两根木条的中点间的距离是1cm 或9cm ,故答案为:1cm 或9cm .如图,【点睛】本题考查了两点间的距离,主要利用了线段的中点定义,难点在于要分情况讨论,作出图形更形象直观.30.140【分析】利用角的和差关系先求出50COB ∠=︒,,再利用角的和差关系求出AOB ∠的度数.【详解】解:△4090COD AOC BOD ∠∠∠=︒==︒,,△ 50COB BOD COD ∠∠∠=-=︒,△ 140AOB AOC COB ∠∠∠=+=︒.故答案为:140.【点睛】本题主要考查了角的和差,关键是熟练掌握角的运算中的和差关系.31.8【分析】先根据这个棱柱有10个面,求出这个棱柱是8棱柱,有8条侧棱,再根据所有侧棱的和为64cm ,即可得出答案.【详解】解:△这个棱柱有10个面,△这个棱柱是8棱柱,有8条侧棱,△所有侧棱的和为64cm ,△每条侧棱长为64÷8=8(cm );故答案为:8【点睛】本题主要利用了棱柱面的个数比侧棱的条数多2的关系求解,是一道基础题. 32.93°15'【分析】利用平角的定义计算即可.【详解】△从O 点出发向北偏西32°17'方向走到A 点,小明从O 点出发向南偏西54°28'方向走到B 点,△∠AOB =180°-54°28'-32°17'=93°15'.【点睛】本题考查了方位角,平角,角的和与差,熟练掌握方位角和平角的定义是解题的关键.33.和.【分析】本题考查了正方体的展开图,一般从相对面入手进行分析与解答;【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,所以“建”与“谐”是相对面,“社”与“和”是相对面,“会”与“构”是相对面,由此可知与“社”相对的面上的字是“和”.【点睛】本题主要考查学生对正方体展开图形的理解和掌握,解答本题的关键是根据相对的面相隔一个面得到相对的两个面.34.1.5【详解】试题解析:△5400÷60=90,90÷60=1.5,△5400″=1.5°.35.北偏东80°【分析】先根据角的和差得到△AOC 的度数,根据△AOC =△AOB 得到△AOB 的度数,再根据角的和差得到OB 的方向.【详解】解:△OA 的方向是北偏东20°,OC 的方向是北偏西40°,△△AOC =20°+40°=60°,△△AOC =△AOB ,△△AOB =60°,20°+60°=80°,故OB 的方向是北偏东80°.故答案为:北偏东80°.【点睛】考查了方位角,方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.利用角的和差得出OB 与正北方的夹角是解题关键.36. AOC ∠ COB ∠ 3∠和4∠ DOF ∠ 1∠和2∠ EOA ∠【分析】由角平分线的定义,补角、余角的定义,分别进行计算,即可得到答案.【详解】解:根据题意,(1)△12∠=∠△射线OD 是AOC ∠的角平分线;(2)△180AOC BOC ∠+∠=︒,△AOC ∠的补角是COB ∠;(3)△OF 平分AOB ∠,180AOB ∠=︒,△90AOF BOF ∠=∠=︒,△390AOC ∠+∠=︒,△3=4∠∠,△490AOC ∠+∠=︒;△AOC ∠的余角是3∠和4∠;(4)△12∠=∠,190DOF ∠+∠=︒,△290DOF ∠+∠=︒,△DOF ∠是2∠的余角;(5)△1180DOB ∠+∠=︒,12∠=∠△2180DOB ∠+∠=︒,△DOB ∠的补角是1∠和2∠;(6)△4180AOE ∠+∠=︒,4COF ∠=∠,△180COF EOA ∠+∠=︒,△EOA ∠是COF ∠的补角.故答案为:AOC ∠;COB ∠;3∠和4∠;DOF ∠;1∠和2∠;EOA ∠.【点睛】本题考查了角平分线的定义,补角、余角的定义,解题的关键是熟练掌握几何图形中角的运算.37.7.5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,△点C 在AB 上,且AC=13BC , △AC=14AB=3cm ,△BC=9cm ,又M 为BC 的中点, △CM=12BC=4.5cm ,△AM=AC+CM=7.5cm .故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.38.3【分析】△根据点E 是点D 关于AB 的对称点可知BD BE ,进而可得1180603DOB BOE COD ︒︒∠=∠=∠=⨯=; △根据一条弧所对的圆周角等于圆心角的一半即可得结论;△根据等弧对等角,可知只有当M 和A 重合时,60,30MDE CED ︒︒∠=∠=,DM CE ⊥; △作点C 关于AB 的对称点F ,连接CF ,DF ,此时CM DM +的值最短,等于DF 的长,然后证明DF 是O 的直径即可得到结论.【详解】解:AC CD DB ==,点E 是点D 关于AB 的对称点,BD BE ∴=, 1180603DOB BOE COD ︒︒∴∠=∠=∠=⨯=,△正确;1116030222CED COD DOB ︒︒∠=∠=⨯==∠,△△正确; BE 的度数是60°,AE ∴的度数是120°,△只有当M 和A 重合时,60,︒∠=MDE ,30︒∠=CED△只有M 和A 重合时,DM CE ⊥,△错误;作C 关于AB 的对称点F ,连接CF ,交AB 于点N ,连接DF 交AB 于点M ,此时CM DM +的值最短,等于DF 的长.连接,CD AC CD DB AF ===,并且弧的度数都是60°,1112060,6030,22︒︒︒︒∴∠=⨯=∠=⨯=D CFD 180603090,︒︒︒︒∴∠=--=FCDDF ∴是O 的直径,即10DF AB ==,△当点M 与点O 重合时,CM DM +的值最小,最小值是10,△△正确.故答案为:3.【点睛】本题考查了圆的综合知识,涉及圆周角、圆心角、弧、弦的关系、最短距离的确定等,掌握圆的基本性质并灵活运用是解题关键.39.△△△【分析】因为12BAE DAC ∠=∠,且90ABC ∠=︒,所以需要构造2倍的BAC ∠,故延长EB 至G ,使BE BG =,从而得到GAE CAD ∠=∠,进一步证明GAC EAD ∠=∠,且AE AG =,接着证明GAC EAD ≌,则ADE ACG ∠=∠,DE CG =,所以△是正确的,也可以通过线段的等量代换运算推导出△是正确的,设BAE x ∠=,则2DAC x ∠=,因为//CD AB ,所以90BAC ACD x ∠=∠=︒-,接着用x 表示出EAC ∠,再计算出=90DAE ∠︒,故△是正确的,当CAE BAE ∠=∠时,可以推导出AC DE ⊥,否则AC 不垂直于DE ,故△是错误的.【详解】解:如图,延长EB 至G ,使BE BG =,设AC 与DE 交于点M ,90ABC ∠=︒,AB GE ∴⊥,AB ∴垂直平分GE ,AG AE ∴=,12GAB BAE DAC ∠=∠=∠, 12BAE GAE ∠=∠, GAE CAD ∴∠=∠,GAE EAC CAD EAC ∴∠+∠=∠+∠,GAC EAD ∴∠=∠,在GAC 与EAD 中,AG AE GAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,GAC EAD ∴≌(SAS ),G AED ∴∠=∠,ACB ADE ∠=∠,故△是正确的;AG AE =,G AEG AED ∴∠=∠=∠,AE ∴平分BED ∠,当BAE EAC ∠=∠时,90AME ABE ∠=∠=︒,则AC DE ⊥,当BAE EAC ∠≠∠时,AME ABE ∠≠∠,则无法说明AC DE ⊥,故△是不正确的; 设BAE x ∠=,则2CAD x ∠=,1802902x ACD ADC x ︒-∴∠=∠==︒-, //AB CD ,90BAC ACD x ∴∠=∠=︒-,90902CAE BAC EAB x x x ∴∠=∠-∠=︒--=︒-,902290DAE CAE DAC x x ∴∠=∠+∠=︒-+=︒,AE AD ∴⊥,故△是正确的;GAC EAD ≌,CG DE ∴=,2CG CE GE CE BE =+=+,2DE CE BE ∴=+,DE BE BE CE ∴-=+,2DE CE BE ∴=+,故△是正确的.故答案为:△△△.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义,角度的计算,构造两倍的BAE ∠,是本题解题的关键.40.4【分析】利用角平分线定理确定当BF△AC 时,PB+PE 的值最小,再利用三角形面积公式,即可求得.【详解】如图,△AB = AC = 8,AD 平分CAB ∠△'''P E P F =△当BF△AC 时,PB+PE 的值最小=BF1162ABC S AC BF ∆== △BF=4 △PB+PE 的最小值为4.【点睛】本题考查了轴对称-最短路径问题,也可以用角平分线定理考虑,找到PE+PB 最小值的情况并画出图形,是解题的关键.41.2.5cm .【分析】结合图形和题意,利用线段的和差知CD =AD +AB +BC ,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF =DF−DE ,即可求得EF 的长度.【详解】△4AB =cm ,BC =14AB , △BC=1cm ,△CD =AD +AB +BC =3+4+1=8cm ;△E 是AD 中点,F 是CD 的中点,△DF =12CD =8×12=4cm ,DE =12AD =12×3=1.5cm .△EF =DF−DE =4−1.5=2.5cm .【点睛】本题主要考查了两点间的距离和中点的定义,解题的关键是运用数形结合思想. 42.(1)直三棱柱(2)见解析(3)这个几何体的侧面积为120cm 2【分析】(1)只有棱柱的主视图和左视图才能出现长方形,根据俯视图是三角形,可得到此几何体为直三棱柱;(2)画出三个长方形,两个三角形;(3)侧面积为长方形,计算出3个长方形的面积求和即可.【详解】(1)解:由主视图和左视图都是长方形,且俯视图是三角形,故该立体图形是直三棱柱;(2)解:展开图如图所示:;(3)解:这个几何体的侧面积23104120cm ⨯⨯=.【点睛】本题主要考查了由三视图判断几何体、几何体的展开图、棱柱的侧面积等知识点,根据题意得到该几何体是直三棱柱是解答本题的关键.43.(1) '60A ON ︒∠=;(2)15秒或33秒;(3)30MOB AOC ︒∠-∠=或30MOB AOC ︒∠+∠=【分析】(1)如图△中,延长CO 到C′.利用翻折不变性求出△A′O′C′即可解决问题; (2)设t 秒时,直线OA 恰好平分锐角△NOC .构建方程即可解决问题;(3)分两种情形分别求解即可解决问题,△当OB ,OA 在OC 的两旁时,△当OB ,OA 在OC 的同侧时,求出MOB ∠与AOC ∠之间的数量关系即可.【详解】解:(1)如图△中,延长CO 到C′,△三角尺沿直线OC 翻折至△A′B′O ,△△A′OC′=△AOC′=△CON=60°,△△A′ON=180°-60°-60°=60°;(2)设t 秒时,直线OA 恰好平分锐角△NOC ,由题意10t=150或10t=330,解得t=15或33s ,则第15或33秒时,直线OA 恰好平分锐角△NOC ;(3)△当OB ,OA 在OC 的两旁时,△△AOB=90°,△120°-△MOB+△AOC=90°,△△MOB-△AOC=30°;△当OB ,OA 在OC 的同侧时,△MOB+△AOC=120°-90°=30°.综上,30MOB AOC ︒∠-∠=或30MOB AOC ︒∠+∠=.【点睛】本题考查翻折变换,旋转变换,三角形的内角和定理等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.44.(1)3; (2)203或20; (3)12NP MP AB -=,理由见解析. 【分析】(1)由中点的含义先求解7AM MP ==,证明12PN BN BP ==,再求解6PB AB AB =-=,从而可得答案;(2)△当点P 在线段AB 上,2MP NP =, △当点P 在线段AB 的延长线上,2MP NP =,再建立方程求解即可;(3)先证明12MP AP t ==,()1102NP AB AP t =+=+,可得()1010NP MP t t -=+-=,从而可得结论.【详解】(1)解:△M 为AP 的中点,N 为BP 的中点,7MP =,△7AM MP ==,12PN BN BP ==, △14AP =,。

初中数学几何图形练习题库附答案

初中数学几何图形练习题库附答案

初中数学几何图形练习题库附答案1. 题目:在平面直角坐标系中,已知点A(3,4)和B(-2,1),求线段AB的长度和斜率。

解答:根据两点间距离公式,线段AB的长度为√[(x2-x1)²+(y2-y1)²],所以线段AB的长度为√[(-2-3)²+(1-4)²] = √[25+9] = √34。

斜率k = (y2-y1)/(x2-x1),所以斜率k = (1-4)/(-2-3) = -3/-5 = 3/5。

2. 题目:已知△ABC中,AB=AC,∠BAC=30°,求∠ABC和∠ACB的度数。

解答:由于AB=AC,所以△ABC是等腰三角形,∠BAC=∠CAB。

根据三角形内角和定理可知,∠ABC+∠BAC+∠ACB = 180°。

将题目中已知条件代入,得到∠ABC+30°+∠ABC = 180°,化简得到2∠ABC = 150°,再化简得到∠ABC = 75°。

由于∠BAC=∠CAB=30°,所以∠ACB = 180° - ∠BAC -∠ABC = 180° - 30° - 75° = 75°。

3. 题目:已知平行四边形ABCD中,AB=8cm,BC=6cm,求对角线AC的长度以及角ACD的度数。

解答:对角线AC把平行四边形分成两个全等三角形△ABC和△ACD。

根据勾股定理可以求得AC的长度,即AC²=AB²+BC²,所以AC = √(8²+6²) = √(64+36) = √100 = 10cm。

由于△ABC和△ACD是全等三角形,所以∠ACD = ∠ABC = 180° - ∠ACB = 180° - 75° = 105°。

4. 题目:已知等腰梯形ABCD中,AB∥CD,AB=CD=12cm,AD=9cm,求梯形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.【答案】C【分析】根据平面图形的折叠、正方体的展开图的特点即可得出答案.【详解】解:A.是正方体的展开图,经过折叠后能围成一个正方体,故A不符合题意;B.是正方体的展开图,经过折叠后能围成一个正方体,故B不符合题意;C.不是正方体的展开图,经过折叠后不能围成一个正方体,故C符合题意;D.是正方体的展开图,经过折叠后能围成一个正方体,故D不符合题意.故选:C.【点睛】本题主要考查了展开图折叠成几何体,属于基础题,要充分展开想象,注意培养自己的立体感.2.一副三角板按如图所示的方式摆放,则∠1补角的度数为()A.45︒B.135︒C.75︒D.165︒【答案】D【分析】根据题意得出∠1=15°,再求∠1补角即可.∠=︒-︒=︒【详解】由图形可得1453015∠∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.3.用一个放大10倍的放大镜看一个10°的角,这个角是()A .100°B .10°C .110°D .170° 【答案】B 【分析】根据放大镜看一个角只会改变边的长度,不会改变角本身的度数即可求解.【详解】解:用放大镜看一个角,不会改变角本身的度数,故选:B .【点睛】本题考查角的大小比较,放大镜看到的角不会改变角本身的度数. 4.如果点C 在线段AB 所在直线上,则下列各式中AC AB =,AC CB =,2AB AC =,AC CB AB +=,能说明C 是线段AB 中点的有( )A .1个B .2个C .3个D .4个 【答案】A【分析】根据线段中点的定义,能判断AC=CB 的条件都能说明C 是线段AB 中点.【详解】根据分析得:若AC=AB ,则不能判断C 是线段AB 中点;若AC=CB ,则可判断C 是线段AB 中点;若AB=2AC ,则不能判断C 是线段AB 中点;若AC+CB=AB ,则不能判断C 是线段AB 中点;综上可得共有1个正确.故选A.【点睛】本题考查线段中点的定义,解题的关键是掌握线段中点的定义.5.如图,已知BD CF =,B F ∠=∠,//AC DE 下列结论不正确的是( )A .FD BC =B .EF CB =C .//EF ABD .AE ∠=∠【答案】B 【分析】根据全等三角形的判定和性质、平行线的判定和性质以及线段的和差进行判断即可得解.【详解】解:∠//AC DE∠ACB EDF ∠=∠∠BD CF =∠BD CD CF CD +=+∠BC DF =∠在ABC 和EFD △中B F BC FDACB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∠()ABC EFD ASA ≌∠A E ∠=∠故说法D 正确;∠B F ∠=∠∠//EF AB故说法C 正确;∠BD CF =∠BD CD CF CD +=+∠BC DF =故说A 正确,说法B 错误.故选:B【点睛】本题考查了全等三角形的判定和性质、平行线的判定和性质以及线段的和差,熟悉各知识点是解题的关键.6.如图,OC 平分AOD ∠,30DOC AOB ∠-∠=︒,有下列结论:∠30BOC ∠=︒;∠BOC ∠的度数无法确定;∠若20AOB ∠=︒,则100AOD ∠=︒;∠若60AOB ∠=︒,则A ,O ,D 三点在同一条直线上.其中,正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据角平分线定义得出DOC AOC ∠=∠,根据30DOC AOB ∠-∠=︒,即可求出30BOC ∠=︒,判断出∠正确,∠错误;根据30BOC ∠=︒,20AOB ∠=︒,求出50AOC AOB BOC ∠=∠+∠=︒,根据角平分线定义求出100AOD ∠=︒,即可判断∠正确;求出180AOD ∠=︒,即可判断∠正确.【详解】解:∠OC 平分AOD ∠,∠DOC AOC ∠=∠,∠30DOC AOB AOC AOB BOC ∠-∠=∠-∠=∠=︒,故∠正确,∠错误.由∠知,30BOC ∠=︒,∠50AOC AOB BOC ∠=∠+∠=︒,∠2100AOD AOC ∠=∠=︒,故∠正确.∠30BOC ∠=︒,60AOB ∠=︒,∠90AOC BOC AOB ∠=∠+∠=︒,∠2180AOD AOC ∠=∠=︒,∠A 、O 、D 三点在一条直线上,故∠正确.综上,正确的为∠∠∠,共3个,故C 正确.故选:C .【点睛】本题主要考查了角平分线的定义,几何图形中角的计算,解题的关键是根据角平分线的定义和已知条件,求出30BOC ∠=︒.7.如图,120AOB ∠=︒,13AOC BOC ∠=∠,OM 平分BOC ∠,则AOM ∠的度数为( )A .45︒B .65︒C .75︒D .80︒故选C.【点睛】本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出∠AOC和∠COM的大小.8.如图,这是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“爱”相对的面上的汉字是()A.西B.电C.附D.中【答案】C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“电”是相对面,“爱”与“附”是相对面,“西”与“中”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为()A.1cmB.5cmC.1cm或5cmD.无法确定【答案】C【详解】试题解析:由题意可知,C点分两种情况,∠C点在线段AB延长线上,如图1,AC=AB+BC=3+2=5cm;∠C点在线段AB上,如图2,AC=AB-BC=3-2=1cm.综合∠∠A、C两点之间的距离为1cm或5cm.故选C.【点睛】由题意可知,点C分两种情况,画出线段图,结合已知数据即可求出结论.本题考查了两点间的距离,解题的关键是根据题意画出线段图,找准线段间的关系.10.如图,AD平分∠BAC,点E在AB上,EF∥AC交AD于点G,若∠DGF=40°,则∠BEF的度数为()A.20°B.40°C.50°D.80°【答案】D【分析】由EF∥AC,∠DGF=40°,得出∠DAC=∠DGF=40°,∠BEF=∠BAC,又AD 平分∠BAC,则∠BEF=∠BAC=2∠DAC=80°.【详解】解:∠EF∥AC,∠DGF=40°,∠∠DAC=∠DGF=40°,∠BEF=∠BAC,∠AD平分∠BAC,∠∠BEF=∠BAC=2∠DAC=80°.故选:D.【点睛】本题主要考查平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解决本题的关键.11.若钟表分针走30分钟,则钟表的时针转()A.5︒B.15︒C.30︒D.120︒【答案】B【分析】根据“整个钟面12小时,时针每小时转30︒”即可得..将一副直角三角尺按如图所示的不同方式摆放,则图中与不一定...相等的是( )A .B .C .D .【答案】B 【分析】A 选项由图形即直角三角形的性质即可判断;B 选项由两角互余即可的判断;C 选项由对顶角相等即可判断;D 选项由同角的余角相等即可判断.【详解】A 选项中,90,45αβα∠+∠=︒∠=︒,45βα∴∠=∠=︒,故不符合题意;B 选项中,90αβ∠+∠=︒,则α∠与∠β不一定相等,故符合题意;C 选项中,,αβ∠∠是对顶角,αβ∴∠=∠,故不符合题意;D 选项如图,190,190αβ∠+∠=︒∠+∠=︒,αβ∴∠=∠,故不符合题意;故选:B .【点睛】本题考查了对顶角相等,余角,同角的余角相等等知识点,熟练掌握这些知识是解题的关键.13.如下图的正方体,选项中哪一个图形是它的展开图( )A .B .C .D .【答案】A【分析】根据正方体相邻面及其表面展开图的特点解答即可.【详解】解:A 、展开图中,其三个相邻面上的线段位置,符合题意,B 、展开图中,其中有两个有线段的两个面相对,不符合题意;C 、展开图中,其中有两个面上的线段平行,不符合题意;D 、展开图中,其中有两个有线段的两个面相对,不符合题意,故选:A .【点睛】本题考查正方体的展开图,弄清正方体展开图中哪些面相邻,哪些面相对是解答的关键.14.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有花朵数是( )A .11B .13C .15D .17 【答案】D【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【详解】解:由题意可得,右一的立方体的下侧为白色,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故长方体的下底面共有17朵花.故选D .【点睛】本题考查生活中的立体图形与平面图形,同时考查了学生的空间思维能力.注意正方体的空间图形,从相对面入手,分析及解答问题.15.如图,在四边形ABCD 中,90A BCD ∠=∠=︒,BC DC =,CE AD ⊥,垂足为E ,若3AE CE ==.则四边形ABCD 的面积为( )A .9B .12C .272D .无法求出 【答案】A 【分析】过点C 作CF 垂直AB 的延长线于点F ,先证明四边形AFCE 是矩形,再证明FCB ECD △≌△,进而将四边形ABCD 的面积转化为矩形AFCE 的面积求解即可.【详解】解:如图,过点C 作CF 垂直AB 的延长线于点F ,∠90A BCD ∠=∠=︒, CE AD ⊥,CF AF ⊥,∠四边形AFCE 是矩形,90==︒CED F ∠∠,∠90FCE FCB BCE ∠=∠+∠=︒,3CF AE CE === ,∠90BCD BCE DCE ∠=∠+∠=︒,∠FCB ECD ∠=∠,在FCB 和ECD 中,CED F FCB ECD BC DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠FCB ECD △≌△,∠==339ABCD AFCE AE CE S S ⋅=⨯=四边形矩形,故选:A .【点睛】本题主要考查了全等三角形的判定及性质、同角的余角相等,垂直定义以及矩形的判定及性质,熟练掌握全等三角形的判定及性质是解题的关键.16.如图,在ABC 中,以A 为圆心,适当长为半径作弧,分别交AB 、AC 于点D 、E ,再分别以D 、E 为圆心,相同长为半径作弧,分别交DB、EC 于点F 、G ,连接EF 、DG ,交于点H ,连接AH 并延长交BC 于点I ,则线段AI 是( )A .ABC 的高B .ABC 的中线 C .ABC 的角平分线D .以上都不对【答案】C 【分析】根据题意利用SAS 可证AFE AGD △≌△,即可得EG DF =,再利用AAS 可证EHG DHF ≌△△,即可得EH DH =,用SSS 可证明AHE AHD △≌△,即可得EAH DAH ∠=∠,即可得.【详解】解:由作图可知,AE AD =,EG DF =,∠AE EG AD DF +=+,即AG AF =,在AFE △和AGD △中,AE AD EAF DAG AF AG =⎧⎪∠=∠⎨⎪=⎩,∠AFE AGD △≌△(SAS ),∠AFE AGD ∠=∠,在EHG 和DHF △中,EHG DHF EGH DFH EG DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠EHG DHF ≌△△(AAS ),∠EH DH =在AHE 和AHD 中,AE AD AH AH EH DH =⎧⎪=⎨⎪=⎩,∠AHE AHD △≌△(SSS ),∠EAH DAH ∠=∠,∠AI 是ABC 的角平分线.故选:C .【点睛】本题考查了全等三角形的判定与性质,角平分线的判定,解题的关键是掌握全等三角形的判定与性质.17.如图:∠AOB :∠BOC :∠COD =2:3:4,射线OM 、ON ,分别平分∠AOB 与∠COD ,又∠MON =84°,则∠AOB 为( )A .28°B .30°C .32°D .38°【答案】A 【分析】首先设∠AOB =2x °,则∠BOC =3x °,∠COD =4x °,然后利用角的和差关系和角平分线的定义列出方程,即可求出∠AOB 的度数.【详解】解:设∠AOB =2x °,则∠BOC =3x °,∠COD =4x °,∠射线OM 、ON 分别平分∠AOB 与∠COD ,18.如图,在ABCD 中,DAB ∠的平分线AE 交CD 于E ,6AB =,4BC =,则EC的长为( )A .2B .2.5C .3D .3.5【答案】A 【分析】根据平行四边形的性质及AE 为角平分线可知:BC=AD=DE=4,又有CD=AB=6,可求EC 的长.【详解】解:根据平行四边形的对边相等,得:CD=AB=6,AD=BC=4.根据平行四边形的对边平行,得:CD∠AB ,∠∠AED=∠BAE ,又∠DAE=∠BAE ,∠∠DAE=∠AED .∠ED=AD=4,∠EC=CD-ED=6-4=2.故选:A .【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.19.如图,直线EO∠CD ,垂足为点O ,AB 平分∠EOD ,则∠BOD 的度数为( )A.120°B.130°C.135°D.140°【答案】C【详解】试题分析:根据直线EO∠CD,可知∠EOD=90°,根据AB平分∠EOD,可知∠AOD=45°,再根据邻补角的定义即可求出∠∠BOD=180°-45°=135°考点:垂线、角平分线的性质、邻补角定义.二、填空题20.已知:∠AOC=146°,OD为∠AOC的平分线,∠AOB=90°,∠BOD的度数_____.21.2022年10月16日,党的第二十次全国代表大会在北京召开,这是一次在全党全国各族人民迈上全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的关键时刻召开的十分重要的大会.如图是一个正方体的展开图,请你判断,正方体上与“荣”字相对的面上的汉字是_______.【答案】祖【分析】根据正方体展开图中相对的面总是隔着一个面的特征解题即可.【详解】解:根据正方体展开图中相对的面总是隔着一个面的特征可得荣字相对的面上的汉字为“祖”,故答案为:祖.【点睛】本题主要考查正方体展开图的特征,能够根据特征得出结论是解题关键.22.用一个平面截圆锥,可以得到________、________及类似拱形形状.如图:【答案】圆等腰三角形【解析】略23.如图,要用一张长方形的纸片折成一个纸袋,两条折痕的夹角为80°(即∠POQ=80°),就可以做成一个纸袋,那么粘胶水部分所构成的这个角∠A'OB'=_____.【答案】20°【分析】根据折叠性质得出∠POA=∠POA′,∠QOB=∠QOB′,根据∠AOB为平角,∠POA+∠QOB=180°-∠POQ=100°,再利用∠A′OB′=∠POA′+∠QOB′-∠POQ=20°即可.【详解】解:∠OP为折痕,OQ为折痕,∠∠POA=∠POA′,∠QOB=∠QOB′,∠∠AOB为平角∠∠POA+∠QOB=180°-∠POQ=100°,∠∠A′OB′=∠POA′+∠QOB′-∠POQ=∠POA+∠QOB-∠POQ=100°-80°=20°.故答案为:20°.【点睛】本题考查折叠性质,平角,角的和差,掌握折叠性质,平角,角的和差是解题关键.24.下午三点半时,时针与分针所夹的锐角的大小为________.【答案】75︒##75度【分析】先求出时钟上,每一个大格的度数为30︒,再根据下午三点半时,时针与分针所夹的锐角为2.5个大格即可得.︒÷=︒,【详解】解:时钟上,共有12个大格,每一个大格的度数为3601230因为下午三点半时,时针与分针所夹的锐角为2.5个大格,⨯︒=︒,所以下午三点半时,时针与分针所夹的锐角的大小为2.53075故答案为:75︒.【点睛】本题考查了钟面角,熟练掌握时钟上,每一个大格的度数为30︒是解题关键.25.点C是线段AB上的一点,2=,点M、N分别是线段AC、BC的中点,BC ACMN BC等于_________.那么:26.已知∠a=50°18′,则∠a的余角是________°________′.【答案】3942【分析】互余的概念:和为90度的两个角互为余角.用90°减去一个角的余角就等于这个角的度数.【详解】根据余角的定义,知∠A的余角是90°﹣50°18'=39°42'.故答案为39,42.【点睛】本题考查了余角和角度的计算,关键是记住互为余角的两个角的和为90度.27.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心)若现在时间恰好是12点整,则经过__________秒钟后,∠OAB 的面积第一次达到最大. 【答案】151559##9005928.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,COB ∠为100︒,则AOE ∠=___________度识是解题的关键.29.小王从家出发向南偏东30°的方向走了100米到达小军家,此时小王家在小军家的_________方向. 【答案】北偏西30︒【分析】根据方向角的定义作出示意图,根据图形即可解答.【详解】解:如图所示,由题意知∠BAC =30°,则在∠ABC 中,∠BAC +∠ACB =90°,∠∠ACB =60°.又∠∠ACB +∠ACD =90°,∠∠ACD =30°,即小王家在小军家北偏西30°方向.故答案是:北偏西30°.【点睛】本题考查了方向角的定义,理解定义作出示意图是关键.30.如图所示,已知ABC 的周长为12,5BC =,在边AC 、AB 上有两个动点P 、Q ,它们同时从点A 分别向点C 、B 运动,速度分别为m 和n ,运动时间t 后,PC CB BQ ++=__________.【答案】()12m n t -+【分析】根据PC AC AP BQ AB AQ =-=-,,可得PC BQ AC AB AP AQ +=+--,进一步得到PC CB BQ ++,依此即可求解.【详解】解:PC AC AP BQ AB AQ =-=-,,()1257PC BQ AC AB AP AQ mt nt m n t ∴+=+--=---=-+,()()7512PC CB BQ m n t m n t ∴++=-++=-+.故答案为:()12m n t -+.【点睛】本题考查了列代数式,线段的和差关系,整式的加减运算,关键是得到PC BQ +的表达式.31.已知∠α=60°,则∠α的补角等于_______. 【答案】120°【分析】利用互为补角的两个角之和为180°,解题即可【详解】因为∠α=60°,所以∠α的补角是180°-60°=120°故填120°32.将三角尺按右图所示的方式放置在一张长方形纸片上,90EGF ∠=︒,30FEG ∠=︒,1130∠=︒,则BFG ∠的度数为___________.【答案】110°【分析】由长方形AD 与BC 平行,求出∠EFB ,由直角三角形求∠EFG ,再求两角的和即可.【详解】∠AD ∠BC ,∠∠1+∠EFB =180゜∠∠1=130゜∠∠EFB =180゜-130゜=50゜,∠∠EGF =90°,∠FEG =30°,∠∠EFG =180°-∠EGF -∠FEG =60°∠∠BFG =∠EFB +∠EFG =50°+60゜=110゜.故答案为:110゜.【点睛】本题考查角的度数问题,关键抓住平行线,同旁内角互补,三角形两锐角互余.33.若船A 在灯塔B 的北偏东30°方向上,则灯塔B 在船A 的_________方向上.【答案】南偏西30°【分析】本题画出A 、B 的位置,即分别以A 、B 为为原点,分别画出A 、B 的正北、正南、正西、正东方向,标出A 与B 的关系即可求解.【详解】从图中可以看出,B 在A 的南偏西30°.故答案为南偏西30°.【点睛】本题考查一个物体相对于另一物体的位置,注意这类题中“北偏东30°”的含义,是从正北方向开始,向东方向偏,偏角为30°.34.18°33′25″×3=_________.【答案】55°40′15″【分析】将度分秒分别乘以3后进位化简即可.【详解】1833253549975'''︒'"⨯==55°40′15″,故答案为:55°40′15″.【点睛】此题考查角度的计算,根据乘法法则进行计算,计算后每个单位满60向前一单位进一.35.如图,将一副三角板()90CAB DAE ∠=∠=︒按如图放置,则下列结论:∠13∠=∠;∠如果230∠=︒,则有//AC DE ;∠如果230∠=︒,则有//BC AD ;∠如果230∠=︒,必有4C ∠=∠.其中正确的有________.(填序号)【答案】∠∠∠【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:∠∠∠CAB=∠EAD=90°,∠∠1=∠CAB-∠2,∠3=∠EAD-∠2,∠∠1=∠3.∠∠正确.∠∠∠2=30°,∠∠1=90°-30°=60°,∠∠E=60°,∠∠1=∠E,∠AC∠DE.∠∠正确.∠∠∠2=30°,∠∠3=90°-30°=60°,∠∠B=45°,∠BC不平行于A D.∠∠错误.∠由∠得AC∠DE.∠∠4=∠C.∠∠正确.故答案为:∠∠∠.【点睛】此题主要考查学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.36.如图,OC是∠AOB的平分线,如果∠AOB=130°,∠BOD=24°48',那么∠COD=_____.【答案】40.2°【分析】由角平分线定义,求出∠BOC的度数,然后利用角的和差关系,即可得到答案.【详解】解:∠OC是∠AOB的平分线,∠AOB=130°,37.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.【答案】14 【分析】如图,作点A 关于CM 的对称点A ′,点B 关于DM 的对称点B ′,证明△A ′MB ′为等边三角形,即可解决问题.【详解】解:如图,作点A 关于CM 的对称点'A ,点B 关于DM 的对称点B'. 120CMD ∠=,60AMC DMB ∴∠+∠=,∴''60CMA DMB ∠+∠=,''60A MB ∴∠=,''MA MB =,''A MB ∴∆为等边三角形''''14CD CA A B B D CA AM BD ≤++=++=,CD ∴的最大值为14,故答案为14.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题38.如图,在四边形ABCD 中,DAB ∠的角平分线与ABC ∠的外角平分线相交于点P ,且240D C ∠+∠=°,则P ∠=______.【答案】30︒##30度39.如图,在边长为2的菱形ABCD 中,60ABC ∠=︒,将BCD △沿直线BD 平移得到B C D ''',连接AC '、AD ',则AC AD ''+的最小值为________.ABC∠=由对称性可得:三、解答题∠,40.按要求补全图形并证明.如图,150∠=︒,OC垂直OB,OD平分AOCAOB∠.OE平分BOC(1)利用三角板依题意补全图形(2)求DOE∠的度数75【分析】(190,根据150,得出60,根据∠∠,即可得出EOC BOC30AOC=,4575.)解:补全图形,如图所示:90,150,60,AOC ,30AOC ∠, 45, 75.【点睛】本题主要考查了角平分线的定义,垂线的定义,解题的关键是数形结合,熟练掌握角平分线的定义.41.已知,,,AE GF BC GF EF DC EF AB ∥∥∥∥,猜想A ∠与C ∠的关系如何?并说明理由.解:因为,AE GF BC GF ∥∥(已知)所以AE BC ∥(______)所以______180(______)A ∠+=︒;同理,______180C ∠+=︒;所以______(______).【答案】平行于同一条直线的两直线平行;∠B ;两直线平行,同旁内角互补;∠A =∠C ;同角的补角相等或等式性质【分析】根据平行线的判定和性质以及同角的补角相等求解即可.【详解】解:因为AE GF ∥,BC GF ∥(已知)所以AE BC ∥(平行于同一条直线的两直线平行);所以∠A+∠B=180°(两直线平行,同旁内角互补);同理,∠C+∠B=180°;∠∠A=∠C(同角的补角相等或等式的性质).故答案为:平行于同一条直线的两直线平行;∠B;两直线平行,同旁内角互补;∠A =∠C;同角的补角相等或等式的性质.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,熟知平行线的性质与判定是解题的关键.42.如图,点B在线段AC上,点E在线段DF上,EC,AF,DB∠EC,下面写出了说明“∠C=∠D”的过程.说明:∠∠A=∠F(已知),∠DF∠.根据:∠∠DEC+∠C=180°.根据:∠DB∠EC(已知),∠∠DEC+∠=180°.根据:∠∠C=∠D.根据:.【答案】AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.【分析】根据平行线的性质与判定进行求解即可.【详解】说明:∠∠A=∠F(已知),∠DF∥AC.根据:内错角相等,两直线平行;∠∠DEC+∠C=180°.根据:两直线平行,同旁内角互补;∠DB∥EC(已知),∠∠DEC+∠D=180°.根据:两直线平行,同旁内角互补;∠∠C=∠D.根据:同角的补角相等.故答案为:AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,解题的关键在于能够熟练掌握相关知识进行求解.43.如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD=13∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD=1n∠AOC,∠DOE=180n︒(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).44.如图,在△ABC中,AB∠BC,BE∠AC于E,AF平分∠BAC交BE于点F,DF∠BC.(1)试说明:BF=DF;(2)延长AF交BC于点G,试说明:BG=DF.【答案】(1)说明见解析;(2)说明见解析.【分析】(1)由角平分线的性质可得FE=FH,由“ASA”可证∠DEF∠∠BHF,可得BF=DF;(2)由等角的余角相等可得∠AFE=∠AGB=∠BFG,可得BF=BG=DF.【详解】解:(1)如图,延长DF交AB于H,延长AF交BC于G,∠AB∠BC,DF∠BC,∠DH∠AB,∠AF平分∠BAC,BE∠AC,DH∠AB,∠FE=FH,又∠∠DFE=∠BFH,∠DEF=∠BHF=90°,∠∠DEF∠∠BHF(ASA),∠BF=DF;(2)∠AF平分∠BAC,∠∠EAF=∠BAG,∠∠EAF+∠AFE=90°,∠BAG+∠AGB=90°,∠∠AFE=∠AGB,∠∠BFG=∠AGB,∠BF=BG,∠BG=DF.【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,直角三角形的性质,灵活运用全等三角形的性质是本题的关键.45.如图,在Rt∠ABC中,∠ACB=90°,∠A=40°,∠ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.(3)若把直线FD绕点F旋转,直线DF和直线BE相交于点M,当DF和三角形ABC的一边平行时,请直接写出∠FME的度数.【答案】(1)65°(2)25°(3)65°或115°.【分析】(1)根据三角形外角的性质得出∠CBD的度数,再根据角平分线定义即可求得∠CBE的度数;(2)先根据三角形外角的性质得出∠CEB的度数,再根据平行线的性质求出∠F的度数;(3)根据题意分别画出图形,再利用平行线的性质解决.(1)解:∠Rt∠ABC中,∠ACB=90°,∠A=40°,∠∠CBD=∠ACB+∠A=130°,∠BE是∠CBD的角平分线,46.已知a=﹣(﹣2)2×3,b=|﹣9|+7,c=1115 53⎛⎫-⨯⎪⎝⎭.(1)求3[a﹣(b+c)]﹣2[b﹣(a﹣2c)]的值.(2)若A=2212119272⎛⎫⎛⎫⎛⎫-÷-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭×(1﹣3)2,B=|a|﹣b+c,试比较A和B的大小.(3)如图,已知点D是线段AC的中点,点B是线段DC上的一点,且CB:BD=2:3,若AB=ab12ccm,求BC的长.∠BC =2cm .【点睛】本题主要考查了有理数的混合运算以及与线段的中点有关的计算,熟练掌握运算法则是解答本题的关键.47.如图1,已知直线EF 与直线AB 交于点E ,直线EF 与直线CD 交于点F ,EM 平分AEF ∠交直线CD 于点M ,且FEM FME ∠=∠,点G 是射线MD 上的一个动点(不与点M F 、重合),EH 平分FEG ∠交直线CD 于点H ,过点H 作HN EM ∥交直线AB 于点N ,设EHN a ∠=,EGF β∠=.(1)求证:AB CD ∥;(2)当点G 在点F 的右侧时,∠依据题意在图1中补全图形;∠若70β=︒,则α=________°;(3)当点G 在运动过程中,α和β之间有怎样的数量关系?直接写出你的结论. AB CD ;根据题目要求画出图形即可;110︒=,再根据,再根据ME )分两种情况进行讨论:当点G 在点F2248.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.【答案】见解析.【分析】根据常见的各种立体几何图形的展开图的特征即可得答案.【详解】∠三个长方形和两个三角形如图摆放是三棱柱的展开图,一个扇形和一个圆是圆锥如图摆放的展开图,六个长方形如图摆放是长方体的展开图,一个长方形和两个圆如图摆放是圆柱的展开图,∠连接如图:【点睛】本题考查常见立体几何图形的展开图,熟记各立体几何图形的展开图是解题关键.49.如图,把一个棱长8厘米的正方体的六个面都涂上红色,再将它的棱四等分,然后从等分点把正方体锯开.(1)能得到多少个棱长为2厘米的小正方体?(2)三个面有红色的小正方体有多少个?(3)两个面有红色的小正方体有多少个?(4)一个面有红色的小正方体有多少个?(5)有没有各面都没有红色的小正方体?如果有,那么有多少个?【答案】(1)64个(2)8个(3)24个(4)24个(5)有,8个【分析】(1)棱长是8cm的立方体体积512cm3,棱长为2cm的小正方体体积为8cm3,由此能求出共得到多少个棱长为2cm的小正方体;(2)三面涂色的小正方体是位于棱长是8cm的立方体的顶点处的小正方体,由此能求出三面涂色的小正方体有多少个;(3)二面涂色的小正方体是位于棱长是8cm的立方体的各边上的正方体,由此能求出二面涂色的小正方体有多少个;(4)一个面有红色的小正方体位于棱长是8cm的立方体的表面上既不是顶点又不是各边上的正方体,由此能求出二面涂色的小正方体有多少个;(5)六个面均没涂色的小正方体为棱长是8cm的立方体中心的正方体,由此能求出六个面均没有涂色的小正方体有多少个.【详解】(1)棱长是8cm的立方体体积为:8×8×8=512(cm3),棱长为2cm的小正方体体积为8cm3,∠共得到512÷8=64个小正方体.(2)三面涂色的小正方体是位于棱长是8cm的立方体的顶点处的小正方体,∠立方体共有8个顶点,∠三面涂色的小正方体有8个,(3)二面涂色的小正方体是位于棱长是8cm的立方体的各边上的正方体,∠立方体共有12条边,每边有2个正方体,∠二面涂色的小正方体有24个,(4)一面涂色的小正方体在棱长是8cm的立方体的表面上既不是顶点又不是各边上的正方体,∠立方体共有6个面,每个面有4个正方体,∠一面涂色的小正方体有24个,(5)六个面均没涂色的小正方体为棱长是8cm的立方体中心的正方体,共有64-8-24-24=8个,【点睛】本题考查大正方体分割成小正方体的计算,是中档题,解题时要认真审题,要熟练掌握正方体的结构特征.。

相关文档
最新文档