2023年高考数学:高中数学常用二级结论

合集下载

高考数学二级结论总结

高考数学二级结论总结

高考数学二级结论总结
以下是高考数学二级结论的总结,供参考:
1. 圆锥曲线的切线方程:若点P(x0,y0)在曲线y=f(x)上,则切线方程为y-
y0=f'(x0)(x-x0)。

2. 圆的切线判定定理:若直线上的任一点到圆心的距离等于半径,则直线是圆的切线。

3. 三角形的面积公式:若三角形ABC的面积为S,则S=1/2 absinC=1/2 acsinB=1/2 bcsinA。

4. 三角形的余弦定理:若三角形ABC中,角A、B、C的对边分别为a、b、c,则a^2=b^2+c^2-2bccosA。

5. 三角形的正弦定理:若三角形ABC中,角A、B、C的对边分别为a、b、c,则a/sinA=b/sinB=c/sinC。

6. 等差数列的通项公式:若等差数列的首项为a1,公差为d,则通项公式
为an=a1+(n-1)d。

7. 等差数列的求和公式:若等差数列的前n项和为Sn,则Sn=n/2(a1+an)或Sn=na1+n(n-1)/2d。

8. 等比数列的通项公式:若等比数列的首项为a1,公比为q,则通项公式
为an=a1q^(n-1)。

9. 等比数列的求和公式:若等比数列的前n项和为Sn,则当q=1时,Sn=na1;当q≠1时,Sn=a1(1-q^n)/(1-q)。

希望这些总结能对您有所帮助。

高中高考数学所有二级结论《[完整版]》

高中高考数学所有二级结论《[完整版]》

高中高考数学所有二级结论《[完整版]》一、几何结论1、关于点1.1 同一直线上三点,若其中两点间距相等,则三点共线;1.2 直线平分线定理:若直线Ⅰ平分线段AB,则AM/MB=1;1.3 直线的垂直平分线定理:若直线Ⅰ对AB的垂直平分线,则M是A、B中点;1.4 同一直线出发点,夹萝卜角度相等,终足点也在同一直线上;1.5 同一直线上三点,至少有2点共线;1.6 若任意一点位于AB的延长线上,则距AB同侧的距离相等;2、关于直线2.1 齐次直线:若直线上所有点满足y=ax+b,则直线称为齐次直线;2.2 相交线定理:若两条直线相交,则它们的夹角一定是锐角;2.3 相等的夹角可以定位:若两条直线的夹角为有限尺寸夹角,则它们可以定位;2.4 两平行线定理:若两条直线平行,则它们过同一直线上的任意一点都相等;2.5 同一实轴向非相交点所在直线定理:由两条实轴向非相交的直线,所形成的不规则四边形,相较相邻的两边的夹角度数之和为180°;3、关于三角形3.1 相等的边角定理:若两角的大小相等,则它们两理封闭的边也相等;3.2 对角线定理:若一个多边形的对角线相交,则其论线的和为360°;3.3 相等的三角形定理:若三角形的两边和它们之间的夹角相等,则三角形中的任何一点到另外两点的距离也相等;3.4 含有相同角的三角形定理:若两个三角形包含有相同大小的角,则其面积之比,与相应边的比值的平方成正比;3.5 三角形角度和定理:若三角形的三边的长度都不相等,那么它的三内角之和等于180°;3.6 斜边长度定理:若一个三角形的两边长度相等,那么它们所构成的内角一定是锐角;4、关于圆4.1 直径定理:若任意直线与圆相交,则此直线必经过圆心;4.2 垂足定理:若圆上存在一点,使得其到圆心的距离(即圆上点P到垂足M)尽可能的小,则M为圆上某一点P的垂足;4.3 旋转定理:把椭圆上的任意一点A旋转一定的角度,得到的椭圆上的点B,满足AB距离的平方等于AB分别到圆点的距离的积;二、代数结论1、关于一元二次方程1.1 一元二次方程的解:解一元二次方程ax2+bx+c=0(a≠0)的两个解是:x1=(-b+√(b2-4ac))/2a,x2=(-b-√(b2-4ac))/2a;1.2 求解实数解:若b2-4ac>0,那么它有实数解,若b2-4ac=0,那么它有重根,若b2-4ac<0,则无实数解;2、关于一元三次方程2.1 三次方程的解:一元三次方程ax3+bx2+cx+d=0(a ≠ 0)的三个实数解为:x1 = [-b + √(b2-3ac)]/3ax2 = [-b - √(b2-3ac)]/6a + i√3/6ax3 = [-b - √(b2-3ac)]/6a - i√3/6a;2.2 求解实数解:若b2-3ac>0,它有三个不同的实数解;若b2-3ac=0,它有重根;若b2-3ac<0,它有三个不同的实数解;3、关于系数代数方程3.1 二次代数方程:若一个二次代数方程ax2+bx+c=0有实数解,则它的解为x1=(-b+√(b2-4ac)/2a,x2=(-b-√(b2-4ac)/2a;3.2 三次代数方程:若一个三次代数方程ax3+bx2+cx+d=0有实数解,则它的解为x1=(-b+√(b2-3ac)/3a,x2=(-b-√(b2-3ac)/6a + i√3/6a,x3=(-b-√(b2-3ac)/6a - i√3/6a;4、关于函数4.1 闭区间:函数定义域上下端点其值皆有效,叫闭区间;4.2 周期:当变量满足周期函数关系,即变量与函数之间存在正反循环吻合关系时,称其为“周期函数”;4.3 偶函数:若变量x在定义域内变换了一倍角度,f(x)应等于自己,叫作偶函数;4.4 奇函数:若变量x在定义域内变换了一倍定义域,而f(x)值改变了符号,叫作奇函数;5、关于初等函数5.1 线性函数的定义:当关系式为y=ax+b,a、b为有理常数,b≠0时,它称为“线性函数”;5.2 二次曲线的定义:当关系式为y=ax2+bx+c(a≠0),a、b、c 为有理常数时,它称为“二次曲线”;5.3 对称性:定义域内一点同它的对称点在函数图像上所对应的点总是具有相同的函数值,称为函数具有“对称性”;5.4 反函数定义:当函数f(x)在它的定义域内是一一對應的,可以反求f(x)的值的函数,称为“反函数”;。

高中数学常用二级结论汇总

高中数学常用二级结论汇总

高中数学常用二级结论汇总1.数列相关的二级结论:(1)等差数列的常用二级结论:-等差数列的前n项和公式:Sn = (a1 + an) * n / 2;-等差数列通项公式:an = a1 + (n - 1)d;-等差数列前n项和与末项的关系:Sn = (a1 + an) * n / 2 = an * n - (n - 1) * d / 2(2)等比数列的常用二级结论:-等比数列的前n项和公式:Sn=a1*(q^n-1)/(q-1),其中q≠1;-等比数列前n项和与末项的关系:Sn=a1*(1-q^n)/(1-q)。

2.几何相关的二级结论:(1)平行线与三角形的二级结论:-平行线分割三角形的比线段互等;-平行线分割三角形的比面积互等;-平行线分割三角形的比任意两条边互等。

(2)相似三角形的二级结论:-三角形内部的直线与角平分线的交点分割三角形的比线段互等;-三角形内部的直线与角平分线的交点分割三角形的比面积互等。

(3)圆的二级结论:-圆心角的度数等于其所对弧的度数;-同弧所对的圆心角相等;-两圆相交弧的度数等于相对的圆心角的度数。

3.解析几何相关的二级结论:(1)直线的方程二级结论:-斜率相等的两条直线平行;-两直线相交于一点的充要条件是斜率不相等。

(2)圆的方程二级结论:-到圆心距离等于半径的点在所述圆上;-圆心到直线的距离等于半径的相交点所对的弦的中点到圆心的距离。

(3)抛物线的二级结论:-在对称轴上等距离的两点与焦点和顶点的距离相等;-抛物线的顶点坐标为(h,k),则焦点的坐标为(h,k+p),其中p为焦距。

4.概率与统计相关的二级结论:(1)事件的二级结论:-随机事件A的对立事件记为A',则P(A')=1-P(A);-若A与B互斥,则P(AUB)=P(A)+P(B)。

(2)条件概率的二级结论:-若事件B发生的条件下,事件A发生的概率为P(A,B),则P(A,B)=P(A∩B)/P(B);(3)独立事件的二级结论:-若事件A与事件B相互独立,则P(A∩B)=P(A)*P(B)。

高中数学解题必备的50个二级结论

高中数学解题必备的50个二级结论

高中数学解题必备的50个二级结论高中数学是数学的一个重要阶段,涉及到各种数学概念、定理和方法。

在高中数学中,我们常常会遇到一些常用的二级结论,这些结论在解题时经常会起到关键的作用。

下面是高中数学解题必备的50个二级结论:1.直线与平面的交点个数:直线与平面交于一点、无交点、交于无穷远点。

2.平面与平面的交线情况:平面与平面相交于一条直线、平行、重合。

3.两直线夹角为锐角或钝角,其对应的两对平行线夹角也为锐角或钝角。

4.两相交直线的一对对应角互补,则两相交直线平行。

5.两相交直线的一对对应角互补,则这两条直线必不互相垂直。

6.锐角两边垂直平分线之交点在锐角内部。

7.直线垂直平分线与直线相交,则相交点到直线的两个端点的距离相等。

8.平行线两边的夹角相等。

9.平行线与一直线的交角相等。

10.两直线平行,那么它们的垂直平分线也平行。

11.两平行线之间的距离是不变的。

12.两垂直平分线的交点为原线段的中点。

13.锐角两边垂直平分线的交点到顶点的连线为高。

14.在一个等腰三角形中,底边上的高和底边中点的连线垂直,且互相垂直平分。

15.在一个等腰三角形中,底边上的高和与底边垂直的平分线互相垂直。

16.一个三角形内部的任意一条直线与三角形边平行或垂直,则这条直线分割出的小三角形与原始三角形的形状相似。

17.利用辅助线,可以将一个图形分割为几个形状相似的图形,从而简化计算。

18.在一个等腰三角形中,底边上的中线和高互相垂直。

19.在一个等腰三角形中,底边上的中线和与底边平行的高互相垂直。

20.两个互补角,它们的正弦值、余弦值、正切值互为相反数。

21.两个互补角,它们的正弦值、余弦值、正切值互为倒数。

22.在一个直角三角形中,两条直角边的平方和等于斜边的平方。

23. sinA是锐角,那么cosA就是钝角。

24.在一个三角形中,两个角的和等于第三个角的补角。

25.任意一个角的余弦的绝对值小于等于1。

26.钝角的正弦的绝对值小于等于1。

高考数学必备的98个二级结论

高考数学必备的98个二级结论

,k N *
22 2
4 cos sin nA cos nB cos nC , n 4k 3 22 2
(2)若 A B C ,则
① sin 2 A sin 2B sin 2C 8sin A sin B sin C
sin A sin B sin C
222
② cos A cos B cosC 1 4sin A sinB sinC 222
③ tan 2 A tan 2 B tan 2 C 9 ④ cot2 A cot2 B cot2 C 1
39、帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆,双曲线,抛物线),那么 它的三对对边的焦点在同一条直线上 40、三余弦定理:设 A 为面上一点,过 A 的斜线 AO 在面上的射影为 AB,AC 为面上的一 条直线,那么∠OAC,∠BAC,∠OAB 三角的余弦关系为 cos∠OAC=cos∠BAC·cos∠OAB( ∠BAC 和∠OAB 只能是锐角)
an f an1,n 1,则 an p a an1 p ,即 a n p 是公比为 a 的等比数列。
定理
2:设
f
x
ax b cx d
c
0, ad
bc
0
, an 满足递推关系
an
f
an1,n 1初
值条件 a1 f a1
(1)若 f
x
有两个相异的不动点
p, q ,则
an an
a 双曲线第二定义:平面内,到给定一点及一直线的距离之比大于 1 且为常数 e 的点的
轨迹称为双曲线
29、反比例函数 y k (k 0) 为双曲线,其焦点为 x
2k,2k 和 2k,- 2k , k 0
30、到角公式:若把直线 l1依逆时针方向旋转到与l2第一次重合时所转得角是 ,则

高中数学常用二级结论

高中数学常用二级结论

高中数学常用二级结论在高中数学的学习中,掌握一些常用的二级结论,往往能够帮助我们在解题时节省时间,提高效率。

下面就为大家介绍一些常见且实用的高中数学二级结论。

一、函数部分1、若函数\(f(x)\)的图像关于直线\(x = a\)对称,则\(f(a + x) = f(a x)\);反之,若\(f(a + x) = f(a x)\),则函数\(f(x)\)的图像关于直线\(x = a\)对称。

这个结论在解决函数对称性问题时非常有用,例如判断函数的对称轴或者根据对称性来简化函数表达式。

2、若函数\(f(x)\)是偶函数,则\(f(x) = f(x)\);若函数\(f(x)\)是奇函数,则\(f(x) = f(x)\)。

利用奇偶性可以简化函数的运算和分析函数的性质。

3、对于函数\(f(x) = ax^2 + bx + c\)(\(a \neq 0\)),当\(a > 0\)时,函数在\(x =\frac{b}{2a}\)处取得最小值;当\(a < 0\)时,函数在\(x =\frac{b}{2a}\)处取得最大值。

这有助于快速找到二次函数的最值点。

二、三角函数部分1、在三角形\(ABC\)中,\(A + B + C =\pi\),则\(sin(A + B) = sinC\),\(cos(A + B) = cosC\)。

这对于在三角形中求解三角函数值很有帮助。

2、\(sin^2\alpha + cos^2\alpha = 1\),\(tan\alpha =\frac{sin\alpha}{cos\alpha}\)(\(cos\alpha \neq 0\))。

这是三角函数中最基本的恒等式,许多问题的解决都基于此。

3、\(sin(2k\pi +\alpha) = sin\alpha\),\(cos(2k\pi +\alpha) = cos\alpha\)(\(k \in Z\))。

周期性是三角函数的重要性质之一,这个结论可以帮助我们快速化简一些复杂的三角函数表达式。

高中数学常用二级结论大全

高中数学常用二级结论大全

高中数学常用二级结论大全引言:在高中数学学习中,掌握一些常用的二级结论是非常重要的。

这些二级结论能够帮助我们更好地理解和应用各种数学概念,解决问题。

本文将总结和介绍高中数学常用的二级结论,帮助同学们更好地掌握数学知识。

一、三角形相关结论1. 角平分线定理:三角形内角的平分线上的点与对边上的延长线相交,并且与三角形对应的外角相等。

证明:先证明角平分线上的点与对边上的延长线相交,可通过投影定理证明。

假设有一个角A的平分线与对边上的延长线BC相交于点D。

由于AD是角A的平分线,所以∠DAB = ∠DAC,同时由于点D 在角A的平分线上,所以∠DAB = ∠DAC = ∠DCA。

再利用三角形内角和为180°可得∠BAC + ∠ACD = 180°,即角A与角ACD的外角相等,得证。

2. 三角形内角和定理:三角形的内角和为180°。

证明:假设三角形ABC的三个内角分别为∠A、∠B、∠C。

构造辅助线AD,使得∠DAB = ∠DAC,由于角DAB与角DAC是等角,所以∠BAD = ∠CAD。

同理可证得∠ACB = ∠ABC。

由于∠BAD +∠DAC + ∠ACB = 180°,可得∠A + ∠B + ∠C = 180°,得证。

二、平行四边形相关结论1. 对角线平分定理:平行四边形的对角线互相平分。

证明:设平行四边形ABCD的对角线AC和BD相交于点O。

由于ABCD是平行四边形,所以∠ABC = ∠BCD,同时由于AO和CO是直线,所以∠OAB = ∠OCA。

同理可证得∠OBA = ∠ODA。

根据夹角余弦定理,可得AO = CO,BO = DO。

因此,对角线互相平分,得证。

2. 平行四边形性质:平行四边形的对边相等且对角线互相平分。

证明:设平行四边形ABCD的对边AB和CD相等,对角线AC和BD互相平分。

由于ABCD是平行四边形,所以AB ∥ CD,AC ∥ BD。

高中数学常用二级结论

高中数学常用二级结论

引言概述:高中数学是学生学习数学的重要阶段,掌握一些常用的二级结论对于解决数学问题起到积极的推动作用。

本文将详细介绍高中数学常用的二级结论,包括平方差公式、平方和公式、正弦定理、余弦定理以及勾股定理。

通过学习和理解这些结论,学生可以更加灵活地应用于数学问题的解决中,并提高数学思维能力。

正文内容:1.平方差公式:1.1平方差公式的基本形式:(ab)^2=a^22ab+b^21.2平方差公式的应用举例:常用于化简和展开式子,求解特殊等式等。

2.平方和公式:2.1平方和公式的基本形式:(a+b)^2=a^2+2ab+b^22.2平方和公式的应用举例:常用于求两数之和的平方,证明等式等。

3.正弦定理:3.1正弦定理的基本形式:a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆的半径)3.2正弦定理的应用举例:常用于求解三角形的边长和角度,计算三角形的面积等。

4.余弦定理:4.1余弦定理的基本形式:c^2=a^2+b^22abcosC4.2余弦定理的应用举例:常用于求解三角形的边长和角度,判断三角形的形状等。

5.勾股定理:5.1勾股定理的基本形式:c^2=a^2+b^25.2勾股定理的应用举例:常用于判断三角形是否为直角三角形,求解直角三角形的边长等。

总结:通过学习高中数学中常用的二级结论,我们可以更加灵活地应用于解决数学问题。

平方差公式和平方和公式可以帮助我们化简和展开式子,求解特殊等式;正弦定理和余弦定理可以帮助我们求解三角形的边长和角度,计算面积;勾股定理可以帮助我们判断三角形的形状和求解直角三角形的边长。

掌握这些二级结论对于提高数学思维能力和解决实际问题都有着积极的影响。

因此,在学习高中数学的过程中,我们应该充分理解和巩固这些常用的二级结论,为进一步的学习和应用打下坚实的基础。

完整版)高中数学常用二级结论大全

完整版)高中数学常用二级结论大全

完整版)高中数学常用二级结论大全高中数学常用二级结论大全一、基础常用结论在数学研究中,基础常用结论是我们必须要掌握的。

以下是几个常用的基础结论:1.两个不等式相加,其左边的和大于右边的和。

2.两个不等式相乘,其左边的积大于右边的积。

3.两个相等的式子同时加上或减去一个相同的式子,仍然相等。

二、圆锥曲线相关结论圆锥曲线是高中数学中的重要内容,以下是一些常用的结论:1.椭圆的离心率小于1,双曲线的离心率大于1,抛物线的离心率等于1.2.椭圆的长轴在x轴上,短轴在y轴上;双曲线的长轴在x轴上,短轴在y轴上;抛物线的对称轴在x轴上或y轴上。

3.椭圆的焦点到中心的距离为c,半轴长为a和b,满足c²=a²-b²;双曲线的焦点到中心的距离为c,半轴长为a和b,满足c²=a²+b²;抛物线的焦点到顶点的距离为p,满足p=1/4a。

三、与角相关结论角是数学中的重要概念,以下是一些与角相关的结论:1.两条互相垂直的直线的斜率之积为-1.2.一条直线与过原点的直线的夹角等于该直线的斜率。

3.余弦函数的定义域为实数集,值域为[-1,1];正弦函数和余切函数的定义域为实数集,值域为[-1,1];正切函数的定义域为实数集,值域为R。

四、数列相关结论数列是数学中的重要内容,以下是一些常用的数列结论:1.等差数列的通项公式为an=a1+(n-1)d;等比数列的通项公式为an=a1q^(n-1)。

2.等差数列的前n项和公式为Sn=n/2(a1+an);等比数列的前n项和公式为Sn=a1(1-q^n)/(1-q)。

3.斐波那契数列的通项公式为an=1/√5[((1+√5)/2)^n-((1-√5)/2)^n]。

五、三角形与三角函数相关结论三角形和三角函数是高中数学中的重要内容,以下是一些常用的结论:1.三角形的内角和为180°。

2.正弦定理:a/sin A=b/sin B=c/sin C;余弦定理:a²=b²+c²-2bc cos A。

高中数学二级结论总结归纳

高中数学二级结论总结归纳

高中数学二级结论总结归纳数学作为一门学科,是一种严谨而美妙的知识体系。

在数学的学习过程中,结论的总结归纳是非常重要的一环。

通过总结归纳,我们可以更好地理解和掌握数学知识,提高解题能力和思维逻辑能力。

在本文中,我将对高中数学二级结论进行总结归纳,帮助大家更好地学习和掌握这一部分知识。

一、平面几何结论1. 垂直性结论:两条直线垂直的充分必要条件是它们的斜率互为负倒数。

证明:设直线L1的斜率为k1,直线L2的斜率为k2,则L1和L2垂直的充分必要条件是k1 * k2 = -1。

2. 平行性结论:两条直线平行的充分必要条件是它们的斜率相等。

证明:设直线L1的斜率为k1,直线L2的斜率为k2,则L1和L2平行的充分必要条件是k1 = k2。

3. 三角形中位线定理:三角形中位线的交点是三条中位线的共同中点。

证明:设三角形ABC的中位线AD、BE和CF交于点G,则AG = GB = CG。

4. 垂心结论:垂心是三角形三条高的交点。

证明:设三角形ABC的高AD、BE和CF交于点H,则H是三条高的交点。

二、立体几何结论1. 空间几何关系:两条直线垂直的充分必要条件是它们所在平面的法向量垂直。

证明:设直线L1所在平面的法向量为n1,直线L2所在平面的法向量为n2,则L1和L2垂直的充分必要条件是n1·n2 = 0。

2. 球面几何关系:切线和半径于切点垂直。

证明:设球面上一点P的坐标为(x0, y0, z0),球心的坐标为(a, b, c),则切线的方程为(x - x0) / (x0 - a) = (y - y0) / (y0 - b) = (z - z0) / (z0 - c)。

三、数列与数列极限结论1. 等差数列求和公式:等差数列前n项和的公式为Sn = (a1 + an) *n / 2。

证明:分别对等差数列的首项a1和末项an列出求和公式,然后相加得到Sn = (a1 + an) * n / 2。

2. 等比数列求和公式:等比数列前n项和的公式为Sn = a1 * (1 -q^n) / (1 - q),其中q ≠ 1。

高中数学常用二级结论

高中数学常用二级结论

高中数学常用二级结论在高中数学的学习中,掌握一些常用的二级结论可以大大提高解题的效率和准确性。

下面就为大家整理和介绍一些在解题中经常能用到的二级结论。

一、函数相关1、若函数\(f(x)\)的定义域为\(a,b\),且\(f(x)\)在\(a,c\)和\(c,b\)上均单调递增(减),则\(f(x)\)在\(a,b\)上不一定单调递增(减),但如果\(f(x)\)在\(a,c\)和\(c,b\)上均单调递增(减)且\(f(x)\)在\(x = c\)处连续,则\(f(x)\)在\(a,b\)上单调递增(减)。

2、对于函数\(f(x)\),若\(f(a + x) = f(b x)\),则函数\(f(x)\)的图象关于直线\(x =\frac{a + b}{2}\)对称。

3、函数\(y = f(x)\)的图象与直线\(x = a\),\(x = b\)及\(x\)轴所围成的曲边梯形的面积为\(S =\int_{a}^{b} |f(x)|dx\)。

4、若函数\(f(x)\)为奇函数,且\(f(0)\)有定义,则\(f(0) =0\)。

二、数列相关1、在等差数列\(\{a_{n}\}\)中,若\(m + n = p + q\)(\(m\),\(n\),\(p\),\(q \in N^\)),则\(a_{m} + a_{n} = a_{p} + a_{q}\);特别地,若\(m + n = 2p\),则\(a_{m} + a_{n} = 2a_{p}\)。

2、在等比数列\(\{a_{n}\}\)中,若\(m + n = p + q\)(\(m\),\(n\),\(p\),\(q \in N^\)),则\(a_{m} \cdot a_{n} = a_{p} \cdot a_{q}\);特别地,若\(m + n = 2p\),则\(a_{m} \cdot a_{n} = a_{p}^{2}\)。

3、若数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n} = An^{2} + Bn + C\)(\(A\neq 0\)),则当\(C =0\)时,数列\(\{a_{n}\}\)为等差数列;当\(C \neq 0\)时,数列\(\{a_{n}\}\)从第二项起为等差数列。

高中数学常用二级结论大全

高中数学常用二级结论大全

高中数学中常用的二级结论包括:
1.平行四边形对角线平方之和等于四条边平方之和。

2.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点。

3.圆锥曲线的切线方程求法:隐函数求导。

4.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程。

5.过椭圆上一点做斜率互为相反数的两条直线交椭圆于
A、B两点,则直线AB的斜率为定值。

6.抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦。

7.双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长)。

8.对任意圆锥曲线,过其上任意一点作两直线,若两直线斜率之积为定值,两直线交曲线于A,B两点,则直线AB 恒过定点。

9.角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例。

10.三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍。

这些二级结论可以帮助解决一些复杂的问题,提高解题效率。

然而,这些结论并非万能的,也不是每个问题都需要使用这些结论。

对于具体的问题,还需要具体分析,灵活运用所学知识。

同时,一定要注意,所有的结论都是基于一定条件的,不能随意套用。

备战2023高考数学考前必备4(二级结论)

备战2023高考数学考前必备4(二级结论)

备战2023高考数学考前必备4——二级结论1:子集的个数问题若一个集合A 含有n (n *∈N )个元素,则集合A 有2n 个子集,有()21n -个真子集,有()21n-个非空子集,有()22n-个非空真子集.理解:A 的子集有2n 个,从每个元素的取舍来理解,例如每个元素都有两种选择,则n 个元素共有2n 种选择,该结论需要掌握并会灵活应用.对解决有关集合的个数问题,可以直接利用这些公式进行计算.计算时要分清这个集合的元素是从哪里来的,有哪些,即若可供选择的元素有个,就转化为求这个元素集合的子集问题.另外要注意子集、真子集、子集、非空真子集之间的联系有区别.2:子集、交集、并集、补集之间的关系()()I I A B A A B B A B A C BA B I =⇔=⇔⊆⇔=∅⇔= ð(其中I 为全集).(1)当=A B 时,显然成立;(2)当A B Ö时,venn 图如图所示,结论正确.这个结论通过集合的交、并、补运算与集合的包含关系的转换解决问题.3.均值不等式链222++1122+a b a b ab a b ≤≤≤(>0,>0a b ,当且仅当=a b 时取等号)4.两个经典超越不等式(1)对数形式:1+ln (>0)x x x ≥,当且仅当=1x 时,等号成立.(2)指数形式:+1()x e x x R ≥∈,当且仅当=0x 时,等号成立.进一步可得到一组不等式链:>+1>>1+ln x e x x x (0x >且1x ≠)上述两个经典不等式的原型是来自于泰勒级数:()2+1=1+++++2!!+1!n xxn x x e e x x n n θ ,()()()23+1+1ln 1+=-+-+-1+23+1n n n x x x x x o x n ,截取片段:()()()+1R , ln 1+>-1x e x x x x x ≥∈≤,当且仅当=0x 时,等号成立;进而:()ln -1>0x x x ≤,当且仅当=1x 时,等号成立.1.奇函数的最值性质已知函数f(x)是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D 上有最值,则f(x)max+f(x)min=0,且若0∈D ,则f(0)=0.2.函数周期性问题【结论阐述】已知函数f(x)是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D 上有最值,则f(x)max+f(x)min=0,且若0∈D ,则f(0)=0.已知定义在R 上的函数f(x),若对任意x ∈R ,总存在非零常数T ,使得f(x+T)=f(x),则称f(x)是周期函数,T 为其一个周期.除周期函数的定义外,还有一些常见的与周期函数有关的结论如下:(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(2)如果f (x +a )=()1f x (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(4)如果f (x )=f (x +a )+f (x -a )(a ≠0),那么f (x )是周期函数,其中的一个周期T =6a .3.不同底的指数函数图像变化规律当底数大于1时,底数越大指数函数的图像越靠近y 轴;当底数大于0且小于1时,底数越小,指数函数的图像越靠近y 轴.即如图1所示的指数函数图像中,底数的大小关系为:01c d b a <<<<<,即图1中由y 轴右侧观察,图像从下至上,指数函数的底数依次增大.图14.不同底的对数函数图像变化规律当底数大于0且小于1时,底数越小,对数函数的图像越靠近x 轴;当底数大于1时,底数越大,对数函数的图像越靠近x 轴.即如图2所示的对数函数图像中,底数的大小关系为:01b a d c <<<<<,即图2中,在x 轴上侧观察,图像从左向右,对数函数的底数依次增大.图25.方程()x f x k +=的根为1x ,方程()1x f x k -+=的根若函数=()y f x 是定义在非空数集D 上的单调函数,则存在反函数1()y f x -=.特别地,x y a =与log a y x =(0a >且1a ≠)互为反函数.在同一直角坐标系内,两函数互为反函数图像关于=y x 对称,即()()00,x f x 与()()00,f x x 分别在函数()=y f x 与反函数()1y f x -=的图像上.若方程()x f x k +=的根为1x ,方程()1x f x k -+=的根为2x ,则12x x k +=.1.降幂扩角公式【结论阐述】()()221cos =1+cos2,21sin =1cos2.2ααα-α⎧⎪⎪⎨⎪⎪⎩2.升幂缩角公式【结论阐述】221+cos2=2cos ,1cos2=2sin .αα-αα⎧⎨⎩3.万能公式【结论阐述】①22tan2sin =1+tan 2ααα;②221tan 2cos =1+tan 2α-αα;③22tan2tan 1tan 2ααα=-.3.正切恒等式tan tan tan tan tan tan ++=A B C A B C若△为斜三角形,则有tan tan tan tan tan tan ++=A B C A B C (正切恒等式).4.射影定理在ABC 中,cos cos ,cos cos ,cos cos a b C c B b a C c A c a B b A =+=+=+.1.等差数列的性质设n S 为等差数列{}n a 的前n 项和,则有如下性质:项的性质在等差数列中,等距离取出若干项也构成一个等差数列,即2,,,n n m n m a a a ++ 为等差数列,公差为md从第二项起每一项是它前一项与后一项的等差中项,也是与它等间距的两项的等差中项:()()1122,2n n n n n k n k a a a n a a a n k -+-+=+≥=+>两和式项数相同,下标和相等,则两式和相等:即若m n r s +=+,则m n r s a a a a +=+;若,m n p r s t ++=++则m n p r s ta a a a a a ++=++若{}{},n n a b 为项数相同的等差数列,则{}n n ka lb ±仍为等差数列(,k l 为常数)等差数列的图像是直线上一列均匀分布的孤立点(当0d ≠时,()1na dn a d =+-是n的一次函数)和的性质①232,,,n n n n n S S S S S -- 也成等差数列,公差为2n d②当0d ≠时,2122n d d S n a n ⎛⎫=+- ⎪⎝⎭是n 的二次函数③n S n ⎧⎫⎨⎬⎩⎭是等差数列③n 为奇数时,121,,1n n S n S S a S na S n +--===+奇奇中偶偶;n 为偶数时,212,=2nna S nS S d S a +-=奇奇偶偶④若{}{},n n a b 为项数相同的等差数列,且前n 项和分别为n S 与,n T 则()()2121212121,21n m m n m m m m m S a S a b T b n T -----==-(处理方法分别设221122,n n S A n B n T A n B n=+=+)单调性在等差数列中,等距离取出若干项也构成一个等差数列,即2,,,n n m n m a a a ++ 为等差数列,公差为md2.等比数列的性质设n S 为等比数列{}n a 的前n 项和,则有如下性质:项的性质在等比数列中,等距离取出若干项也构成一个等比列,即2,,,n n m n m a a a ++ 为等比数列,公比为.mq 从第二项起每一项是它前一项与后一项的等比数列,也是与它等间距的两项的等比中项.两积式项数相同,下标和相等,则两式积相等:即若,m n r s +=+则m n r s a a a a =;若,m n p r s t ++=++则m n p r s ta a a a a a =若{}{},n n a b 为项数相同的等比数列,则①{}log c n a (其中0,n a c >为常数)为等差数列;②{}{}{}{}{}{}1,,,,,,,kn n n n nnmnnn n a ka a b a a a a a b ⎧⎫⎧⎫⎨⎬⎨⎬⎩⎭⎩⎭(其中0,n a k >为常数)为等比数列.等比数列的图像是一列分布的孤立点(当0q ≠时,nn a Aq =是n 的指数型函数)1212221223,,k k k k k k k A a a a B a a a C a a a ++++=== ,则,,A B C 成等比数列和①若{}n a 是1q ≠-的等比数列,则数列232,,,n n n n n S S S S S -- 也成等比数列(其中n 为常数);的性质1q =-且n 为偶数时,数列232,,,nn n n n S S S S S -- 是常数列{}0,它不是等比数列;②m n m n m n n m S S q S S q S +=+=+;③在等比数列{}n a 中,当项数为偶数2n 时,S qS =奇偶;项数为奇数21n -时,1S a qS =+奇偶单调性①1q =时,数列{}n a 是常数列,如数列2,2,2,2, ;②0q <时,数列{}n a 是摆动数列,如数列1,2,4,8,16,-- ;③10,01a q ><<时,数列{}n a 是递减数列,如数列1111,,,,248 ;④10,1a q >>时,数列{}n a 是递增数列,如数列1,2,4,8, ;⑤10,01a q <<<时,数列{}n a 是递增数列,如数列1111,,,,248---- ;⑥10,1a q <>时,数列{}n a 是递减数列,如数列1,2,4,8,---- .1.极化恒等式(1)极化恒等式:()()2214⎡⎤⋅=+--⎣⎦a b a b a b ;(2)极化恒等式平行四边形型:在平行四边形ABCD 中,()2214AB AD AC BD ⋅=- ,即向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14;(3)极化恒等式三角形模型:在ABC 中,M 为边BC 中点,则;2214AB AC AM BC ⋅=- .说明:(1)三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决;(2)记忆规律:向量的数量积等于第三边的中线长与第三边长的一半的平方差.2.三角形“四心”向量形式的充要条件设O 为ABC ∆所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为ABC ∆的外心()()()02sin aOA OB OC OA OB AB OB OC BC OA OC AC A⇔===⇔+⋅=+⋅=+⋅= .(如图1)(2)如图2,O 为ABC ∆的重心⇔OA OB OC ++=0 .(3)如图2,O 为ABC ∆的垂心⇔OA OB OB OC OC OA ⋅=⋅=⋅.(4)如图3,O 为ABC ∆的内心sin sin sin aOA bOB cOC A OA B OB C OC ⇔++=⇔⋅+⋅+⋅=00.说明:三角形“四心”——重心,垂心,内心,外心(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等.3.奔驰定理奔驰定理:设O 是ABC ∆内一点,BOC ∆,AOC ∆,AOB ∆的面积分别记作A S ,B S ,C S 则0A B C S OA S OB S OC ⋅+⋅+⋅= .说明:本定理图形酷似奔驰的车标而得名.奔驰定理在三角形四心中的具体形式:①O 是ABC ∆的重心⇔::1:1:1A B C S S S =⇔0OA OB OC ++=.②O 是ABC ∆的内心⇔::::A B C S S S a b c =⇔0aOA bOB cOC ++=.③O 是ABC ∆的外心::sin 2:sin 2:sin 2sin 2sin 2sin 20A B C S S S A B C A OA B OB C OC ⇔=⇔⋅+⋅+⋅=.④O 是ABC ∆的垂心⇔::tan :tan :tan A B CS S S A B C =⇔tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=.奔驰定理是三角形四心向量式的完美统一.立体几何1.三余弦定理与三正弦定理三余弦定理(又称最小角定理):如图①,AB 是平面的一条斜线,BC 是平面内的一条直线,OA ⊥平面π于O ,OC BC ⊥于C ,则cos =cos cos ABC OBC OBA ∠∠⋅∠,即斜线与平面内一条直线夹角γ的余弦值等于斜线与平面所成角α的余弦值乘以射影与平面内直线夹角β的余弦值:cos =cos cos γα⋅β;说明:为方便记忆,我们约定γ为线线角,α为线面角,β为射影角,则由三余弦定理可得线面角是最小的线线角,即平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成角中的最小者.三正弦定理(又称最大角定理):如图②,设二面角--AB θδ的平面角为α,AC ⊂平面θ,CO ⊥平面δ,OB AB ⊥,设=,=CAB CAO ∠β∠γ,则sin =sin sin γα⋅β.说明:为方便记忆,我们约定α为二面角,β为线棱角,γ为线面角,则由三正弦定理可得二面角是最大的线面角,即对于一个锐二面角,在其中一个半平面内的任一条直线与另一个半平面所成的线面角的最大值等于该二面角的平面角.2.多面体的外接球和内切球类型一球的内切问题(等体积法)例如:如图①,在四棱锥P ABCD -中,内切球为球O ,求球半径.方法如下:------=++++P ABCD O ABCD O PBC O PCD O PAD O PABV V V V V V即:-11111=++++33333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r ⋅⋅⋅⋅⋅,可求出.类型二球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD ,AD=BC ,AC=BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥-P ABC 中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2=sin ar A);②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则==OP OA R ,利用公式22211=+OA O A OO 可计算出球半径R .4.双面定球心法(两次单面定球心)如图:在三棱锥-P ABC 中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ;②选定面PAB ∆,定PAB ∆外接圆圆心2O ;③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .解析几何1.焦点三角形的面积公式1.椭圆中焦点三角形面积公式在椭圆22221x y a b+=(0a b >>)中,1F ,2F 分别为左、右焦点,P 为椭圆上一点,12F PF θ∠=,12PF F ∆的面积记为12ΔPF F S ,则:①12Δ121=||||=||2PF F p p S F F y c y ;②12Δ121=|||||sin 2PF F S PF PF θ;③122Δ=tan 2PF F S b θ,其中12=F PF θ∠.2.双曲线中焦点三角形面积公式在双曲线22221x y a b-=(0a >,0b >)中,1F ,2F 分别为左、右焦点,P 为双曲线上一点,12F PF θ∠=,12PF F ∆的面积记为12ΔPF F S ,则:①12Δ121=||||=||2PF F p p S F F y c y ;②12Δ121=|||||sin 2PF F S PF PF θ;③122Δ=tan 2PF F b S θ.注意:在求圆锥曲线中焦点三角形面积时,根据题意选择适合的公式,注意结合圆锥曲线的定义,余弦定理,基本不等式等综合应用.2.圆锥曲线的切线问题1.过圆C :222()+()=x a y b R --上一点00(,)P x y 的切线方程为200()()+()()=x a x a y b y b R ----.2.过椭圆22221x y a b+=上一点00(,)P x y 的切线方程为00221x x y y a b +=.3.已知点00(,)M x y ,抛物线C :2=2(0)y px p ≠和直线l :00()y y p x x =+.(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线.(2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.3.圆锥曲线的中点弦问题1.在椭圆C :22221(0)x y a b a b+=>>中(特别提醒此题结论适用焦点在x 轴上椭圆):(1)如图①所示,若直线(0)y kx k =≠与椭圆C 交于A ,B 两点,过A ,B 两点作椭圆的切线l ,l ',有l //l ',设其斜率为0k ,则202=bk k a-.(2)如图②所示,若直线(0)y kx k =≠与椭圆C 交于A ,B 两点,P 为椭圆上异于A ,B 的点,若直线PA ,PB 的斜率存在,且分别为1k ,2k ,则2122=b k k a -.(3)如图③所示,若直线=+(0,0)y kx b k m ≠≠与椭圆C 交于A ,B 两点,P 为弦AB 的中点,设直线PO 的斜率为0k ,则202=b k k a-.2.在双曲线C :22221(0,0)x y a b a b -=>>中,类比上述结论有(特别提醒此题结论):(1)202=b k k a ;(2)2122b k k a =;(3)202=b k k a.3.在抛物线C :22(0)y px p =>中类比1(3)的结论有00=(0)pk y y ≠.4:圆锥曲线中的定值问题1.在椭圆中:已知椭圆22221(0)x y a b a b+=>>,定点00(,)P x y (000x y ≠)在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PBk k +=.则直线AB 的斜率2020=AB b x k a y .2.在双曲线C :22221(0,0)x y a b a b-=>>中,定点00(,)P x y (000x y ≠)在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PBk k +=.则直线AB 的斜率2020=AB b x k a y -.3.在抛物线C :22(0)y px p =>,定点00(,)P x y (000x y ≠)在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k +=.则直线AB 的斜率0=AB p k y -.5.圆锥曲线中的定点问题若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)对于椭圆22221x y a b+=(0a b >>)上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222()(,0)+a b aa b-.同理,当以AB 为直径的圆过左顶点(,0)a -时,直线AB l 过定点2222()(,0)+a b a a b --.(2)对于双曲线22221(0,0)x y a b a b-=>>上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222(+)(,0)a b a a b -.同理,对于左顶点(,0)a -,则定点为2222(+)(,0)a b a a b --.(3)对于抛物线22(0)y px p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则弦AB 所在直线过点(2,0)p .同理,抛物线22(0)x py p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则直线AB 过定点(0,2)p .6.圆锥曲线中的定直线问题1.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y y a b +=上;2.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y y a b +=上;3.已知抛物线22y px =(>0)p ,定点00(,)P x y 不在抛物线上,过点P 的动直线交抛物线于,A B 两点,在直线AB 上取点Q ,满足||||=.||||AP AQ PB QB则点Q 在定直线00()y y p x x =+上.7.抛物线的焦点弦长公式不妨设抛物线方程为()220y px p =>,如图1,准线2p x =-与x 轴相交于点P ,过焦点,02p F ⎛⎫⎪⎝⎭的直线l 与抛物线相交于()()1122,,,A x y B x y 两点,O 为原点,α为AB 与对称轴正向所成的角,则有如下的焦点弦长公式:21212122212=1+-,=1+-,=++,=sin pAB k x x AB y y AB x x p AB k α.8.抛物线中的三类直线与圆相切问题不妨设抛物线方程为()220y px p =>,如图1,准线2p x =-与x 轴相交于点P ,过焦点,02p F ⎛⎫⎪⎝⎭的直线l 与抛物线相交于()()1122,,,A x y B x y 两点,O 为原点,α为AB 与对称轴正向所成的角,AB 的中点为C ,又作111,,AA l BB l CC l ⊥⊥⊥,垂足分别为111,,A B C ,则有如下结论(图2):图1图2图3①以AB 为直径的圆M 与准线相切;②以AF 为直径的圆C 与y 轴相切;③以BF 为直径的圆D 与y 轴相切;④分别以,,AB AF BF 为直径的圆之间的关系:圆C 与圆D 外切;圆C 与圆D 既与y 轴相切,又与圆M 相内切.结合圆的几何性质易得有关直线垂直关系的结论,如图3有,①以AB 为直径的圆的圆心在准线上的射影1M 与,A B 两点的连线互相垂直,即11M A M B ⊥;②以AF 为直径的圆的圆心在y 轴上的射影1C 与,A F 两点的连线互相垂直,即11C A C F ⊥;③以BF 为直径的圆的圆心在y 轴上的射影1D 与,B F 两点的连线互相垂直,即11D B D F ⊥;④以11A B 为直径的圆必过原点,即11A F B F ⊥;⑤1M F AB ⊥.排列组合及二项式定理1:排列组合中的分组与分配①“非均匀分组”是指将所有元素分成元素个数彼此不相等的组,使用分步组合法;②“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组.不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是均匀的,都有A mm 种顺序不同的分法只能算一种分法;③对于非均匀编号分组采用分步先组合后排列法,部分均匀编号分组采用分组法;④平均分堆问题倍缩法采用缩倍法、除倍法、倍除法、除序法、去除重复法);⑤有序分配问题逐分法采用分步法);⑥全员分配问题采用先组后排法;⑦名额分配问题采用隔板法(或元素相同分配问题隔板法、无差别物品分配问题隔板法);⑧限制条件分配问题采用分类法.2、三项展开式中的特定项(系数)问题的处理方法:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项产生的所有可能情形;(3)也可以按照推导二项式定理的方法解决问题.二、几个多项式积的展开式中的特定项(系数)问题的处理方法:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.3.二项式系数和的性质若()2012...nn n ax b a a x a x a x +=++++,则设()()nf x ax b =+,有:()00a f =;②()0121n a a a a f ++++=L ;③()()012311nn a a a a a f -+-++-=-L ;④()()0246112f f a a a a +-++++=;⑤()()1357112f f a a a a --++++= .【应用场景】函数及其性质1.条件概率计算条件概率有两种方法.(1)定义法:利用定义()()()P AB P B A P A =;(2)压缩事件空间法:若()n A 表示试验中事件A 包含的基本事件的个数,则()()()n AB P B A n A =.【应用场景】(1)注意:利用定义求条件概率时,事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清()P AB 的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数()n A ,再在事件A 发生的条件下求事件B 包含的基本事件数,即()n AB ,2.常见分布的数学期望和方差典型分布数字特征两点分布:()0,1X ,成功概率为p二项分布:(),X B n p 超几何分布:(),,X H n M N 数学期望()E X p =()E X np=()nME X N=方差()()1D X p p =-()()1D X np p =-()()()()21nM N n N M D X N N --=-3.二项分布概率的最值下图是不同参数的二项分布的图象图1.不同参数下的二项分布的图象从图1中可以看出,对于固定的n 及p ,当k 增加时,概率()P X k =先是单调递增到最大值,随后单调减少.可以证明,一般的二项分布也具有这一性质,且:(1)当()1n p +不为整数时,概率()P X k =在()1k n p ⎡⎤=+⎣⎦时达到最大值;(2)当()1n p +为整数时,概率()P X k =在()1k n p =+和()11k n p =+-同时达到最大值.注:[]x 为取整函数,即为不超过x 的最大整数.。

高中数学常用二级结论大全衡水

高中数学常用二级结论大全衡水

高中数学常用二级结论大全衡水一:立体几何的基本结论1、直线的空间位置:在空间内任意两点间存在唯一条直线;2、空间中任意三点不共线:三点不共线,则在他们三点外必存在一个平面;3、平面的空间位置:在空间内任意三点不共线,则这三点所在平面与空间中其他任何平面都要存在一条公共直线,或能作无限多次交互,或仅有一次交互;4、直线和平面的位置关系:空间内任意一条直线要么与某一平面垂直、要么在平面上,要么与平面相交且只有一个交点;5、空间点的共线性:三空间点共线,当且仅当它们恰好在一条直线上;6、平面和直线的共线性:一条直线与一平面共线,当且仅当它们恰好有一个重合的直线;7、空间中任意四点不共面:四点不共面,则它们所在的平面唯一地确定,则这四点所在平面要么唯一确定,要么在空间中存在无穷多个;8、空间立体的位置:三平面相交,即在空间内存在一个空间立体;9、立体四面体:四个空间点不共面,则存在四面体,且当且仅当它们同时共线。

二:圆的基本结论1、圆的定义:由一点O和大于零的实数r组成的圆心O,其所有的点都离它距离为r的圆;2、圆的方程形式:圆心坐标(x0,y0),半径r,圆心到圆周上任意一点(x,y)满足如下公式:(x-x0 ) ^2+ (y-y0) ^2=r^2;3、圆的轨迹:圆的轨迹是圆心O与任意一点A之间的距离,总是大于等于圆的半径r;4、圆形外接矩形:以圆心O为中心,每边长为2r,角为90度的矩形,叫做圆形外接矩形;5、切线和切点:任意一点P在圆上,则有一条直线,将圆分为两个圆弧,这条直线叫做以点P为切点的切线;6、圆的面积:圆的面积S=π r^2;7、弦与圆心连线的圆角:弦是圆上任意两点组成的线段,与圆心连线的角称为圆角;8、圆的弧长:圆弧的长度=2πr;9、圆的切线和切点:任意一点P在圆上,则有一条直线,将圆分为两个圆弧,则这条直线叫做以点P为切点的切线,其交点称为切点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学40条秒杀公式1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:1.等差数列中:S奇=na中,例如S13=13a72.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4.等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于a n+1=pa n+q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

二阶有点麻烦,且不常用。

所以不赘述。

希望同学们牢记上述公式。

当然这种类型的数列可以构造(两边同时加数)7.函数详解补充:(1)复合函数奇偶性:内偶则偶,内奇同外(2)复合函数单调性:同增异减(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。

它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。

另外,必有唯一一条过该中心的直线与两旁相切。

8.常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2记忆方法前面减去一个1,后面加一个,再整体加一个29.适用于标准方程(焦点在x轴)爆强公式k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo注:(xo,yo)均为直线过圆锥曲线所截段的中点。

10.强烈推荐一个两直线垂直或平行的必杀技已知直线L1:a1x+b1y+c1=0 直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!11.经典中的经典:相信邻项相消大家都知道。

下面看隔项相消:对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]注:隔项相加保留四项,即首两项,尾两项。

自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!12.爆强△面积公式S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题!13.你知道吗?空间立体几何中:以下命题均错:1.空间中不同三点确定一个平面2.垂直同一直线的两直线平行3.两组对边分别相等的四边形是平行四边形4.如果一条直线与平面内无数条直线垂直,则直线垂直平面5.有两个面互相平行,其余各面都是平行四边形的几何体是棱柱6.有一个面是多边形,其余各面都是三角形的几何体都是棱锥注:对初中生不适用。

14.一个小知识点所有棱长均相等的棱锥可以是三、四、五棱锥。

15.求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。

答案为:当n为奇数,最小值为(n²-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n²/4,在x=n/2或n/2+1时取到。

16.√〔(a²+b²)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b为正数,是统一定义域)17.椭圆中焦点三角形面积公式S=b²tan(A/2)在双曲线中:S=b²/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。

A为两焦半径夹角。

18.爆强定理:空间向量三公式解决所有题目cosA=|{向量a.向量b}/[向量a的模×向量b的模]|一:A为线线夹角二:A为线面夹角(但是公式中cos换成sin)三:A为面面夹角注:以上角范围均为[0,派/2]19.爆强公式1²+2²+3²+…+n²=1/6(n)(n+1)(2n+1);1²3+2²3+3²3+…+n²3=1/4(n²)(n+1)²20.爆强切线方程记忆方法写成对称形式,换一个x,换一个y。

举例说明:对于y²=2px可以写成y×y=px+px再把(xo,yo)带入其中一个得:y×yo=pxo+px21.爆强定理:(a+b+c)²n的展开式[合并之后]的项数为:C n+2222.[转化思想]切线长l=√(d²-r²)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。

23.对于y²=2px,过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。

爆强定理的证明:对于y²=2px,设过焦点的弦倾斜角为A.那么弦长可表示为2p/〔(sinA)²〕,所以与之垂直的弦长为2p/[(cosA)²],所以求和再据三角知识可知。

(题目的意思就是弦AB 过焦点,CD过焦点,且AB垂直于CD)24.关于一个重要绝对值不等式的介绍爆强∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣25.关于解决证明含ln的不等式的一种思路:举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)把左边看成是1/n求和,右边看成是Sn。

解:令an=1/n,令Sn=ln(n+1),则bn=ln(n+1)-lnn,那么只需证an>bn即可,根据定积分知识画出y=1/x的图。

an=1×1/n=矩形面积>曲线下面积=bn。

当然前面要证明1>ln2。

注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。

说明:前提是含ln。

26.爆强简洁公式:向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。

记忆方法:在哪投影除以哪个的模27.说明一个易错点:若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕,同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记!28.离心率爆强公式:e=sinA/(sinM+sinN)注:P为椭圆上一点,其中A为角F1PF2,两腰角为M,N29.椭圆的参数方程也是一个很好的东西,它可以解决一些最值问题。

比如x²/4+y²=1求z=x+y的最值。

解:令x=2cosay=sina再利用三角有界即可。

比你去=0不知道快多少倍!30.[仅供有能力的童鞋参考]]爆强公式:和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]积化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/231.爆强定理:直观图的面积是原图的√2/4倍。

32.三角形垂心爆强定理:1.向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心)2.若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。

33.维维安尼定理(不是很重要(仅供娱乐))正三角形内(或边界上)任一点到三边的距离之和为定值,这定值等于该三角形的高。

34.爆强思路如果出现两根之积x1x2=m,两根之和x1+x2=n,我们应当形成一种思路,那就是返回去构造一个二次函数,再利用△大于等于0,可以得到m、n范围。

35.常用结论:过(2p,0)的直线交抛物线y²=2px于A、B两点。

O为原点,连接AO.BO。

必有角AOB=90度36.爆强公式:ln(x+1)≤x(x>-1)该式能有效解决不等式的证明问题。

举例说明:ln(1/(2²)+1)+ln(1/(3²)+1)+…+ln(1/(n²)+1)<1(n≥2)证明如下:令x=1/(n²),根据ln(x+1)≤x有左右累和右边再放缩得:左和<1-1/n<1证毕!37.函数y=(sinx)/x是偶函数。

在(0,π)上它单调递减,(-π,0)上单调递增。

利用上述性质可以比较大小。

38.函数y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减。

另外y=x²(1/x)与该函数的单调性一致。

39.几个数学易错点:1.f`(x)<0是函数在定义域内单调递减的充分不必要条件2.在研究函数奇偶性时,忽略最开始的也是最重要的一步:考虑定义域是否关于原点对称!3.不等式的运用过程中,千万要考虑"="号是否取到!4.研究数列问题不考虑分项,就是说有时第一项并不符合通项公式,所以应当极度注意:数列问题一定要考虑是否需要分项!40.A、B为椭圆x²/a²+y²/b²=1上任意两点:若OA垂直OB,则有1/∣OA∣²+1/∣OB∣²=1/a²+1/b²。

相关文档
最新文档