小学圆知识点总结

合集下载

圆的知识点总结

圆的知识点总结

圆的相关知识点1、圆心:圆中心一点叫做圆心。

用字母“O"来表示。

半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r"来表示.画圆时,圆规两脚间的距离就是半径.直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

直径是圆中最长的线段。

2.圆心确定圆的位置,半径确定圆的大小。

圆是轴对称图形,直径所在的直线是圆的对称轴。

3.在同一个圆内,所有的半径都相等,所有的直径都相等。

在同一个圆内,有无数条半径,有无数条直径。

在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =d÷24、正方形中画最大的圆:先画正方形的两条对角线,交点就是圆心,再以边长的一半作半径画圆.边长也就是圆的直径。

5、圆中画最大的正方形:先画两条互相垂直的直径,直径和圆相交的四个点连接起来就成了一个圆。

在长方形中画最大的圆,宽就是圆的直径。

6、扇形:由两条半径和一段弧围成的图形就是扇形.顶点在圆心的角是圆心角。

圆上两点间的一段叫弧。

7、在同一个圆中,扇形的大小与圆心角的大小有关.在不同的圆中,扇形的大小与圆心角的大小和半径的长短有关。

8.圆的周长:围成圆的曲线的长度叫做圆的周长。

圆的周长总是直径的3倍多一些,这个比值是一个固定的数.我们把圆的周长和直径的比值叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数.在计算时,π取3。

14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之.周长是直径的π倍,是半径的2π倍。

6.圆的周长公式:C=πd 或C=2πr 周长等于直径乘π,等于半径乘2π。

直径等于周长除以π,或等于半径乘2,半径等于周长除以π再除以2,或等于直径除以2。

圆的直径、半径扩大或缩小几倍,周长也扩大或缩小相同的倍数,周长、直径、半径间的变化相同。

两个圆的直径、半径和周长之间的倍数关系完全相同。

7、圆的面积:圆所占平面的大小叫圆的面积.8.把一个圆割拼成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= πr×r=πr²,要求圆的面积必须知道圆的半径(或知道半径的平方)。

《圆》知识点及练习题

《圆》知识点及练习题

《圆》知识点及练习题一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

圆的知识点总结

圆的知识点总结

圆的知识点总结(一)圆的有关性质[知识归纳]1.圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆; 圆心角、圆周角、圆内接四边形的外角。

2.圆的对称性圆是轴对称图形,经过圆心的每一条直线都長它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有族转不变性。

3.圆的确定不在同一条直线上的三点确定一个圆。

4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不長直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不長直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2圆的两条平行弦所夹的弧相等。

5.圆心角、弧、弦.弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

圆心角的度数等于它所对的弧的度数。

6.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90。

的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

人教版圆知识点总结

人教版圆知识点总结

人教版圆知识点总结一、基本概念1. 圆的定义圆是指平面上到一个点的距离等于定长的所有点的集合。

这个定长就是圆的半径,记为R。

圆上的每一个点到圆心的距离都等于R。

2. 圆的元素圆的元素有圆心、半径、直径和弧。

圆心是圆的中心点,通常用O表示;半径是圆心到圆上任意一点的距离,记为R;直径是通过圆心并且两端在圆上的一条线段,长度等于2R;弧是圆上的一段弧线,两端的端点分别是弧的起点和终点。

3. 圆的相关量与圆相关的量还有圆的周长和面积。

圆的周长是圆上一周的长度,记为L=2πR;圆的面积是圆内部的面积,记为S=πR^2。

二、相关性质1. 圆周角和弧长的关系圆周角是指以圆心为顶点,圆周上的两条射线的夹角。

圆周角对应的弧长等于圆周角的度数除以360°再乘以圆周长。

2. 圆心角和弧长的关系圆心角是指以圆心为顶点,圆周上的两条射线的夹角。

圆心角对应的弧长等于圆心角的度数除以360°再乘以圆周长。

3. 圆的切线和切点圆的切线是指与圆只有一个公共点的直线。

切点是切线与圆的唯一交点。

4. 圆内接四边形和外接四边形圆内接四边形是指四条边都切到圆的四边形,其对角线相互垂直。

圆外接四边形是指四个顶点都在圆上的四边形。

5. 圆锥曲线圆锥曲线是指圆的切割线,它有椭圆、双曲线和抛物线三种不同的形态。

三、定理和公式1. 圆周角定理圆周角等于其对应的弧的度数。

2. 圆心角定理圆心角等于其对应的弧的度数。

3. 弧长公式弧长等于圆心角的度数除以360°再乘以圆周长。

4. 弦的性质一个圆上的弦把圆划分为两个部分,弦上所有点到圆心的距离都相等。

5. 弦切线定理一个圆上的切线和一个弦的切点处连线所夹的角等于弦上与此切点相对的幅角。

6. 切线定理一条切线和一条切点处的弧所构成的角等于直径对应的半圆弧的度数。

7. 弧与弧长的关系弧的长短与弧所对的圆心角成正比。

8. 弦的中位线性质一个三角形的中位线等于其对应的弦。

9. 圆锥曲线公式椭圆的公式是x²/a²+y²/b²=1,双曲线的公式是x²/a²-y²/b²=1,抛物线的公式是y²=4ax。

六年级《圆》知识点归纳

六年级《圆》知识点归纳

六年级《圆》知识点归纳圆是数学中的一个重要概念,它在几何学和代数学中都有广泛运用。

本文将对六年级学生应该掌握的圆的知识点进行归纳总结,以帮助学生更好地理解和应用这些概念。

一、圆的定义和性质1. 圆的定义:圆是由平面上距离一个固定点的距离相等的点所组成的图形。

2. 圆心和半径:圆的中心点称为圆心,圆心到圆上任意点的距离称为半径。

3. 直径和周长:直径是通过圆心的两个点之间的距离,周长是圆的边界长度。

4. 弧和扇形:圆的一部分称为弧,圆心角对应的弧称为扇形。

5. 弦和切线:弦是圆上两点间的线段,切线是与圆只有一个交点的直线。

二、圆的计算公式1. 圆的周长计算:周长等于直径乘以π(pi)或者直径乘以2。

2. 圆的面积计算:面积等于半径的平方乘以π。

三、圆的重要定理1. 圆的直径是最长的弦,半径是弦中垂线的中线,且直径等于两倍的半径。

2. 半径垂直于弦,且半径和切线之间的夹角为直角。

3. 圆的内接四边形的对角线相互垂直,且交点在圆心上。

4. 在同一个圆中,圆心角相等的弧相等,弧对应的圆心角相等。

5. 在同一个圆中,圆心角与其所对应的弧的关系为弧度制的定义:圆心角等于弧长与半径的比值。

四、圆的相关练习题1. 求圆的周长和面积的练习题。

2. 判断给定的图形是不是圆或圆的一部分的练习题。

3. 计算给定圆的直径、半径或者弦的长度的练习题。

4. 根据给定的条件,画出符合要求的圆和弧的练习题。

5. 判断给定的两个圆是相交、相切还是相离的练习题。

通过学习和理解上述圆的知识点,六年级的学生可以更好地掌握圆的定义、性质、计算公式和重要定理,能够灵活运用这些知识解决与圆相关的问题。

同时,通过做相关的练习题,能够提高对圆的理解和应用能力。

希望本文对学生们的学习有所帮助。

圆的所有知识点总结

圆的所有知识点总结

圆的所有知识点总结圆是一个非常基础且重要的几何图形。

它在数学、物理、工程以及日常生活中都有广泛的应用。

下面是关于圆的一些知识点总结。

1. 定义和性质:圆是由平面上距离中心点相等的所有点组成的集合。

圆有以下性质:- 圆心:圆的中心点称为圆心,通常用大写字母表示,如O。

- 半径:圆心到圆上任意一点的距离称为半径,通常用小写字母r表示。

- 直径:通过圆心两个端点的线段称为直径,通常用字母d表示。

- 弧长:圆的一段弧的长度称为弧长,通常记作s。

- 圆周:圆的边界称为圆周或圆周线。

2. 圆的元素关系:- 相切:两个圆的圆周上有且只有一个公共点时,称这两个圆相切。

- 相离:两个圆没有公共点时,称这两个圆相离。

- 内含:一个圆完全包含于另一个圆内部时,称这两个圆内含。

- 相交:两个圆有公共点但不相切时,称这两个圆相交。

3. 圆的重要公式:- 圆的周长:圆的周长是圆周上的线段的长度,可以用公式C = 2πr表示,其中π是一个数学常数,约等于3.14159,r是圆的半径。

- 圆的面积:圆的面积是圆内部的所有点所构成的区域的大小,可以用公式A = πr^2表示。

4. 圆的相关性质和定理:- 圆与直线的关系:如果一个直线与一个圆相交于两个不同的点,那么这条直线被称为圆的切线。

如果一个直线只与一个圆相切于一个点,那么这条直线被称为圆的切线。

- 切线的性质:切线与半径的关系是垂直的,即切线与半径的相交点是直角。

这个性质可以用于解决一些几何问题。

- 弦的性质:弦是圆上连接两个不同点的线段。

弦的性质包括:半径和弦垂直相交,相等弦对应的弧相等,且两个半径将相等的弧等分。

5. 圆的应用:- 圆是建模现实世界中很多问题的重要工具。

例如,轮胎、圆形房间、圆形池塘等都可以通过圆来进行建模和计算。

- 在物理学中,圆的运动是一种重要的运动方式。

例如,行星绕太阳的运动、钟摆的运动等都可以用圆的运动来描述和计算。

- 在工程学中,圆可以用于设计和构造,例如汽车工程、建筑设计中经常用到的圆形结构。

小学六年级上册圆知识点

小学六年级上册圆知识点

小学六年级上册圆知识点圆知识点在小学六年级上册数学中,圆是一个重要的知识点。

下面将介绍圆的定义、性质以及相关的应用。

一、圆的定义圆是由一个平面上所有到一个固定点的距离相等的点构成的图形。

这个固定点叫做圆心,用字母O表示。

到圆心的距离叫做半径,用字母r表示。

圆上的任意一条线段,都称为圆的直径,用字母d表示。

二、圆的性质1. 圆的直径是圆上任意两点的距离中最远的,它等于两个半径的和,即d = 2r。

2. 圆的直径把圆分成两个等分,这两个等分的部分称为半圆。

3. 圆的半径是圆上任意两点的距离中最近的,它等于圆的直径的一半,即r = d/2。

4. 圆的周长是圆周的长度,它等于直径乘以圆周率π,即C = πd或C = 2πr。

5. 圆的面积是圆内部的部分,它等于半径平方乘以圆周率π,即A = πr²。

三、圆的应用1. 在日常生活中,我们经常会接触到圆形的物体,如圆盘、圆桌、饼干等。

了解圆的性质能够帮助我们更好地认识和使用这些物体。

2. 圆在几何图形的构造和分析中起着重要的作用。

对于建筑、工程和设计等领域的专业人士来说,熟练掌握圆的知识是必不可少的。

3. 圆的周长和面积的计算在日常生活和商业中也有广泛的应用。

例如,购买地毯、纸张、布料等时,需要根据圆的面积来计算所需的数量。

小结:圆是由一个平面上所有到一个固定点的距离相等的点构成的图形。

圆的直径是圆上任意两点的距离中最远的,圆的半径是圆上任意两点的距离中最近的。

圆的周长等于直径乘以π,圆的面积等于半径平方乘以π。

掌握圆的性质和应用,对于数学学习和实际生活都有重要的意义。

六年级上册 圆 知识点总结

六年级上册   圆  知识点总结

六年级上册圆知识点总结一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次;折痕相交于圆中心的一点;这一点叫做圆心。

一般用字母O表示。

它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r表示。

把圆规两脚分开;两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置;半径确定圆的大小。

6、在同圆或等圆内;有无数条半径;有无数条直径。

所有的半径都相等;所有直径都相等。

7、在同圆或等圆内;直径的长度是半径的2倍;半径的长度是直径的1/2。

用字母表示为:d=2r或r=d/28、轴对称图形:如果一个图形沿着一条直线对折;两侧的图形能够完全重合;这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C表示。

2、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数;我们把它叫做圆周率。

用字母π(pai)表示。

圆周率π是一个无限不循环小数。

在计算时;一般取π≈3.14。

3、圆的周长公式:C= πd →d = C ÷π或C=2πr →r = C ÷2π已知直径求周长:C=πd 已知半径求周长:C=2πr已知周长求直径:d=C÷π已知周长求半径:r=C÷π÷2三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。

用字母S表示。

2、圆面积公式的推导:用逐渐逼近的转化思想:体现化圆为方;化曲为直;已知半径求面积:S=πr²已知直径求面积:S= π(d÷2) ²3、环形的面积:一个环形;外圆的半径是R;内圆的半径是r。

(R=r+环的宽度.)S环= πR2-πr2或S环= π(R2-r2)。

4、一个圆;半径扩大或缩小多少倍;直径和周长也扩大(缩小)相同的倍数。

(完整版)小学六年级圆的知识点总结

(完整版)小学六年级圆的知识点总结

一、圆的认识1、日常生活中的圆2、画图、感知圆的基本特征(1)实物画图(2)系绳画图3、对比,感知圆的特征:我们以前学过的长方形、正方形、平行四边形、梯形、三角形等,都是曲线段围成的平面图形,而圆是由曲线围成的一种平面图形。

【归纳】:圆是由一条曲线围成的封闭图形二、圆的各部分名称1、圆心:用圆规画出圆以后,针尖固定的一点就是圆心,通常用字母O表示,圆心决定圆的位置2、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

3、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d表示。

直径是一个圆内最长的线段三、圆的主要特征1、在同圆或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

2、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。

用字母表示为:d=2r或r=d/23、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

圆是轴对称图形且有无数条对称轴一、圆的周长的认识1、围成圆的曲线的长叫做圆的周长2、周长与圆的直径有关,圆的直径越长,圆的周长就越大二、圆周率的意义及圆的周长公式1、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai) 表示。

4、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

圆周率π是一个无限不循环小数。

在计算时,一般取π≈ 3.14。

5、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

6、圆的周长公式:C= πd —→d = C ÷π或C=2πr —→r = C ÷2π7、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法:2πr ÷ 2 即πr(2)半圆的周长:等于圆的周长的一半加直径。

小学数学圆的知识点归纳复习

小学数学圆的知识点归纳复习

小学数学圆的知识点归纳复习1、基本知识点 (1)圆的初步认识圆中心的一点叫圆心,用o 表示。

一端在圆心,另一端在圆上的线段叫半径,用r 表示。

两端都在圆上,并过圆心的线段叫直径,用d 表示。

圆有无数条半径,无数条直径,所有的半径都相等,所有的直径也都相等 ,在同圆或等圆中,直径是半径的2倍,字母关系式为2d r =。

或半径是直径的一半,字母关系式为12r d =。

圆规两脚尖所叉开的距离为圆的半径。

在圆内最长的线段是直径。

将一张圆形纸片至少对折2次,就能确定圆心的位置 。

圆是轴对称图形,直径所在的直线是圆的对称轴。

圆有无数条对称轴。

圆心决定圆的位置,半径决定圆的大小。

(2)圆的周长(用C 来表示)圆一周的长度就是圆的周长。

任何圆的周长除以它的直径的商是一个固定的数,我们把它叫做圆周率, 所以任何一个圆的圆周率,都不随圆的大小而变化。

用字母π表示,计算时通常取3.14,注意π是一个固定值,而3.14是一个近似值。

公式:==÷圆的周长圆周率圆的周长圆的直径圆的直径。

圆的周长公式:C=πd 或 C=2πr一个圆的周长是直径的π倍,是半径的2π倍。

(3)圆的面积(用S 来表示)圆所占地方的大小就是圆的面积。

把一个圆,经若干等分后,再拼成一个近似的长方形:长方形的长 = 圆周长的一半 = πr ,长方形的宽=半径= r 。

长方形的面积= πr 2即圆的面积圆的面积公式: S=πr 2(4)半圆的周长和面积将一个圆沿着任何一条直径剪开分成两个相同的半圆,其中的一个就叫做半圆。

半圆是由一条半圆弧和一条直径围成。

那么半圆C 半圆的周长公式:C =22dd r rππ+=+半圆半圆C 半圆的面积公式:2=2C r π÷半圆(5)圆环的周长和面积两个同心圆形成一个圆环。

设小圆和大圆(或内圆和外圆)的半径和直径分别为r 和R 。

(R ﹥r ) 圆环的周长:=22C r Rππ+圆环圆环的面积:()2222=R -R S r r πππ=-圆环(6)圆的相关结论一个圆的半径扩大若干倍,则它的直径也扩大相同的倍数,周长也扩大相同 的倍数,而面积扩大倍数的平方倍。

人教版六年级上数学《圆 》课堂笔记

人教版六年级上数学《圆 》课堂笔记

《圆》课堂笔记
以下是整理的关于人教版六年级数学《圆》的课堂笔记:
一、圆的认识
1.圆的概念:圆是由曲线围成的封闭图形,它可以看作是所有到
定点(圆心)的距离等于定长(半径)的点的集合。

2.圆心:圆的中心点叫做圆心,用字母“O”表示。

3.半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”
表示。

4.直径:通过圆心且两个端点都在圆上的线段叫做直径,用字母“d”表示。

5.半径与直径的关系:在同一个圆中,直径是半径的2倍,即d=2r。

二、圆的周长
1.圆的周长的概念:圆的周长是围成圆的曲线的长度,用字母“C”
表示。

2.周长公式:圆的周长等于2π乘以半径,即C=2πr。

其中π
是一个特殊的数,约等于3.14159。

3.圆周率:圆的周长与直径的比值叫做圆周率,用字母“π”表示。

4.周长的推导公式:根据周长公式和圆的直径与半径的关系,可
以推导出周长公式C=πd或C=2πr。

三、圆的面积
1.圆的面积的概念:圆的面积是圆所占平面的大小,用字母“S”
表示。

2.面积公式:圆的面积等于π乘以半径的平方,即S=πr²。

3.面积的推导公式:根据面积公式和圆的半径与直径的关系,可
以推导出面积公式S=π(d/2)²或S=π(r²)。

4.圆的大小比较:两个圆的大小可以通过它们的半径或直径来比
较。

两个圆的半径相等时,它们的直径也相等;直径相等时,它们的半径也相等。

以上是关于人教版六年级数学《圆》的课堂笔记整理,希望对您有所帮助。

圆的性质知识点总结

圆的性质知识点总结

圆的性质知识点总结圆是数学中一个非常重要的几何图形,具有众多独特而有趣的性质。

以下是对圆的性质知识点的详细总结。

一、圆的定义在平面内,到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

二、圆的基本元素1、圆心:确定圆的位置。

2、半径:决定圆的大小。

3、直径:通过圆心并且两端都在圆上的线段,直径是半径的2 倍。

三、圆的周长圆的周长是指绕圆一周的长度。

圆的周长公式为 C =2πr 或 C =πd (其中 C 表示周长,r 表示半径,d 表示直径,π 是一个常数,约等于 314)。

四、圆的面积圆的面积是指圆所占平面的大小。

圆的面积公式为 S =πr² 。

五、弧与圆心角1、弧:圆上任意两点间的部分叫做圆弧,简称弧。

2、圆心角:顶点在圆心的角叫做圆心角。

3、弧长公式:l =nπr / 180 (其中 l 表示弧长,n 表示圆心角度数,r 表示半径)。

六、扇形1、扇形:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。

2、扇形面积公式:S =nπr² / 360 或 S = 1/2 lr (其中 S 表示扇形面积,l 表示扇形弧长)。

七、圆的对称性1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

2、圆也是中心对称图形,其对称中心是圆心。

八、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:1、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

2、弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

3、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

九、圆周角1、圆周角:顶点在圆上,并且两边都与圆相交的角叫做圆周角。

2、圆周角定理:同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3、推论 1:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

4、推论 2:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。

(完整版)六年级圆知识点总结

(完整版)六年级圆知识点总结

一、圆的认识1、平时生活中的圆2、绘图、感知圆的基本特点(1)实物绘图(2)系绳绘图3、对照,感知圆的特点:我们从前学过的长方形、正方形、平行四边形、梯形、三角形等,都是曲线段围成的平面图形,而圆是由曲线围成的一种平面图形。

【概括】:圆是由一条曲线围成的关闭图形二、圆的各部分名称1、圆心:用圆规画出圆此后,针尖固定的一点就是圆心,往常用字母 O表示,圆心决定圆的地点2、半径:连结圆心到圆上随意一点的线段叫做半径。

一般用字母r 表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

3、直径:经过圆心而且两头都在圆上的线段叫做直径。

一般用字母 d 表示。

直径是一个圆内最长的线段三、圆的主要特点1、在同圆或等圆内,有无数条半径,有无数条直径。

全部的半径都相等,所有的直径都相等。

2、在同圆或等圆内,直径的长度是半径的 2 倍,半径的长度是直径的1/2 。

用字母表示为: d=2r 或 r=d/23、假如一个图形沿着一条直线对折,双侧的图形能够完整重合,这个图形是轴对称图形。

圆是轴对称图形且有无数条对称轴一、圆的周长的认识1、围成圆的曲线的长叫做圆的周长2、周长与圆的直径相关,圆的直径越长,圆的周长就越大二、圆周率的意义及圆的周长公式1、圆周率实验:在圆形纸片上做个记号,与直尺0 刻度对齐,在直尺上滚动一周,求出圆的周长。

发现一般规律,就是圆周长与它直径的比值是一个固定数 (π)。

3、圆周率:随意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai) 表示。

4、一个圆的周长老是它直径的 3 倍多一些,这个比值是一个固定的数。

圆周率π是一个无穷不循环小数。

在计算时,一般取π≈。

5、在判断时,圆周长与它直径的比值是π倍,而不是 3.14 倍。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

6、圆的周长公式:C= πd —→ d = C ÷π或 C=2π r —→ r = C ÷ 2π7、划分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷ 2 计算方法: 2π r ÷ 2 即π r(2)半圆的周长:等于圆的周长的一半加直径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学圆知识点总结
一、圆的基本概念
1.圆的定义:平面上所有到一个固定点的距离都相等的点的集合称为圆。

2.圆的要素:圆心、半径和直径。

圆心是圆上的一个点,半径是圆心
到圆上任意一点的距离,直径是通过圆心的一条直线段,且两端点都在圆上。

二、圆的性质
1.圆心角和弧:以圆心为顶点的角称为圆心角;圆心角所对的弧称为
圆心角弧。

2.圆周角和弦:圆上的两条弧所对的角称为圆周角;弦是圆上的一条
线段,其两个端点在圆上。

3.圆的周长和面积:圆的周长是圆周长的长度,公式为周长=2πr,
其中r为半径;圆的面积是圆内部区域的大小,公式为面积=πr²。

三、圆的位置关系
1.同心圆:具有相同圆心但半径不同的圆称为同心圆。

2.相交圆:具有不同圆心但有交点的圆称为相交圆。

3.内切圆和外切圆:一个圆与一个三角形、四边形等图形的内部相切,称为内切圆;一个圆与一个三角形、四边形等图形的外部相切,称为外切圆。

四、圆的构造和等分
1.通过半径构造圆:以一个点为圆心,以半径为线段,在平面上画一个圆。

2.通过圆心角构造圆:选择圆上一点,以该点为圆心,圆心角度数为圆心角,在平面上画一个圆。

3.圆的等分:可以使用直线段和圆弧进行圆的等分,如将圆分成2等份、3等份等。

五、判断圆与图形的性质
1.判断圆内、外、边:通过点到圆心的距离与半径的关系,可以判断一个点是在圆内、在圆外、还是在圆上。

2.判断一个点是否在线段上:若该点到线段的两个端点的距离之和等于线段的长度,则该点在线段上。

3.判断直线与圆的位置关系:圆与直线有三种位置关系,即相离、相切和相交。

相离是指直线与圆没有交点;相切是指直线与圆有且仅有一个切点;相交是指直线与圆有两个切点或者部分直线在圆内。

4.判断弧与直线的位置关系:弧与直线有三种位置关系,即离开线、部分在线上、完全在线上。

完全在线上是指弧上的所有点都在直线上;部分在线上是指弧上的一部分点在直线上;离开线是指弧上的所有点都不在直线上。

5.判断两个圆的位置关系:两个圆之间有四种位置关系,即相离、外切、相交和内切。

六、圆的应用
1.圆的几何定理:如切线定理、相切定理、切线长度定理等。

2.圆的应用问题:如树阴问题、自行车绕桩问题、水桶倒水问题等。

相关文档
最新文档