毕业设计中的外文翻译
毕设三项文档之-外文翻译
![毕设三项文档之-外文翻译](https://img.taocdn.com/s3/m/be89908484868762caaed5f8.png)
本科生毕业设计 (论文)
外文翻译
原文标题
Worlds Collide:
Exploring the Use of Social Media Technologies for
Online Learning
译文标题
世界的碰撞:
探索社交媒体技术在在线学习的应用
作者所在系别计算机科学与工程系作者所在专业计算机科学与技术作者所在班级
作者姓名
作者学号
指导教师姓名
指导教师职称讲师
完成时间2013年2月
北华航天工业学院教务处制
注:1. 指导教师对译文进行评阅时应注意以下几个方面:①翻译的外文文献与毕业设计(论文)的主题是否高度相关,并作为外文参考文献列入毕业设计(论文)的参考文献;②翻译的外文文献字数是否达到规定数量(3 000字以上);③译文语言是否准确、通顺、具有参考价值。
2. 外文原文应以附件的方式置于译文之后。
毕业设计论文外文文献翻译
![毕业设计论文外文文献翻译](https://img.taocdn.com/s3/m/7a1b7022ae45b307e87101f69e3143323968f527.png)
毕业设计(论文)外文文献翻译院系:财务与会计学院年级专业:201*级财务管理姓名:学号:132148***附件: 财务风险管理【Abstract】Although financial risk has increased significantly in recent years risk and risk management are not contemporary issues。
The result of increasingly global markets is that risk may originate with events thousands of miles away that have nothing to do with the domestic market。
Information is available instantaneously which means that change and subsequent market reactions occur very quickly。
The economic climate and markets can be affected very quickly by changes in exchange rates interest rates and commodity prices。
Counterparties can rapidly become problematic。
As a result it is important to ensure financial risks are identified and managed appropriately. Preparation is a key component of risk management。
【Key Words】Financial risk,Risk management,YieldsI. Financial risks arising1.1What Is Risk1.1.1The concept of riskRisk provides the basis for opportunity. The terms risk and exposure have subtle differences in their meaning. Risk refers to the probability of loss while exposure is the possibility of loss although they are often used interchangeably。
现代包装机械设备毕业课程设计外文文献翻译、中英文翻译
![现代包装机械设备毕业课程设计外文文献翻译、中英文翻译](https://img.taocdn.com/s3/m/7f50d2abb9f3f90f76c61bcb.png)
1 英文文献翻译1.1 Modern PackagingAuthor:Abstract1. Changing Needs and New RolesLooking back, historical changes are understandable and obvious. That all of them have had an impact on the way products are brought, consumed and packaged is also obvious. What is not so obvious is what tomorrow will bring. Yet, it is to the needs, markets, and conditions of tomorrow that packaging professionals must always turn their attention.The forces that drove packaging during the Industry Revolution continue to operate today. The consumer society continues to grow and is possibly best described by a 1988s bumper sticker, “Born to Shop”. We consume goods today at a rate 4 to 5 times greater than we did as recently as 1935. Most of these goods are not essential to survival; they constitute what we may call “the good life”.In the second half of the 20th century, the proliferation of goods was so high that packaging was forced into an entirely new role, that of providing the motivation rather than presenting the goods itself. On a shelf of 10 competing products, all of them similar in performance and quality, the only method of differentiating became the package itself. Marketer aimed at lifestyles, emotional values, subliminal images, features, and advantages beyond the basic product rather than the competitor’s. In some in instances, the package has become the product, and occasionally packaging has become entertainment.A brand product to carry the product manufacturer or product sales of theretailer’s label, usually by the buyer as a quality assessment guidance. In some cases, competing brands of product quality is almost no difference, a difference is the sale of its packaging. An interesting visually attractive packaging can give a key marketing advantage and convince impulse spending. However, the packaging should accurately reflect the quality of products/brand value in order to avoid the disappointment of consumers, encourage repeat purchases and build brand loyalty. Ideally, the product should exceed customer expectations.2. Packaging and the Modern Industrial SocietyThe importance of packaging to a modern industrial society is most evident when we examine the food-packaging sector. Food is organic in nature, having an animal or plant source. One characteristic of such organic matter is that, by and large, it has a limited natural biological life.A cut of meat, left to itself, might be unfit for human consumption by the next day. Some animal protein products, such as seafood, can deteriorate within hours.The natural shelf life of plant-based food depends on the species and plant involved. Pulpy fruit portions tend to have a short life span, while seed parts, which in nature have to survive at least separated from the living plant are usually short-lived.In addition to having a limited natural shelf life, most food is geographically and season-ally specific. Thus, potatoes and apples are grown in a few North American geographical regions and harvest during a short maturation period. In a world without packaging,we would need to live at the point of harvest to enjoy these products, and our enjoyment of them would be restricted to the natural biological life span of each. It is by proper storage, packaging and transport techniques that we are able to deliver fresh potatoes and apples, or the products derived from them, throughout the year and throughout the country. Potato-whole,canned, powdered, flaked, chipped, frozen, and instant is available, anytime, anywhere. This ability gives a society great freedom and mobility. Unlike less-developed societies, we are no longer restricted in our choice of where to live, since we are no longer tied to the food-producing ability of an area. Food production becomes more specialized and efficient with the growth of packaging. Crops and animal husbandry are moved to where their production is most economical, without regard to the proximity of a market. Most important, we are free of the natural cycles of feast and famine that are typical of societies dependent on natural regional food-producing cycles.Central processing allows value recovery from what would normally be waste by products of the processed food industry from the basis of other sub-industries. Chicken feathers are high in protein and, properly mill and treated, can be fed back to the next generation of chickens. Vegetable waste is fed to cattle or pigs. Bagasse, the waste cane from sugar pressing, is a source of fiber for papermaking. Fish scales are refined to make additives for paints and nail polish.The economical manufacture of durable goods also depends on good packaging.A product's cost is directly related to production volume. The business drive to reduce costs in the supply chain must be carefully balanced against the fundamental technical requirements for food safety and product integrity, as well as the need to ensure an. efficient logistics service. In addition, there is a requirement to meet the aims of marketing to protect and project brand image through value-added pack design. The latter may involve design inputs that communicate distinctive, aesthetically pleasing, ergonomic, functional and/or environmentally aware attributes. But for a national or international bicycle producer to succeed, it must be a way of getting the product to a market, which may be half a world away. Again, sound packaging, in this case distributionpackaging, is a key part of the system.Some industries could not exist without an international market. For example, Canada is a manufacturer of irradiation equipment, but the Canadian market (which would account for perhaps one unit every several years) could not possibly support such a manufacturing capability. However, by selling to the world, a manufacturing facility becomes viable. In addition to needing packaging for the irradiation machinery and instrumentation, the sale of irradiation equipment requires the sale packaging and transport of radioactive isotopes, a separate challenge in itself. In response to changing consumer lifestyles, the large retail groups and the food service industry development. Their success has been involved in a competition fierce hybrid logistics, trade, marketing and customer service expertise, all of which is dependent on the quality of packaging. They have in part led to the expansion of the dramatic range of products offered, technology innovation, including those in the packaging. Supply retail, food processing and packaging industry will continue to expand its international operations. Sourcing products around the world more and more to assist in reducing trade barriers. The impact of the decline has been increased competition and price pressure. Increased competition led to the rationalization of industrial structure, often in the form of mergers and acquisitions. Packaging, it means that new materials and shapes, increased automation, packaging, size range extension of lower unit cost. Another manufacturer and mergers and acquisitions, the Group's brand of retail packaging and packaging design re-evaluation of the growing development of market segmentation and global food supply chain to promote the use of advanced logistics and packaging systems packaging logistics system is an integral part of, and played an important role in prevention in the food supply or reduce waste generation.3. World Packaging.This discussion has referred to primitive packaging and the evolution of packaging functions. However, humankind's global progress is such that virtually every stage in the development of society and packaging is present somewhere in the world today. Thus, a packager in a highly developed country will agonize over choice of package type, hire expensive marketing groups to develop images to entice the targeted buyer and spend lavishly on graphics. In less-developed countries, consumers are happy to have food, regardless of the package. At the extreme, consumers will bring their own packages or will consume food on the spot, just as they did 2000 years ago.Packagers from the more developed countries sometimes have difficulty working with less-developed nations, for the simple reason that they fail to understand that their respective packaging priorities are completely different. Similarly, developing nations trying to sell goods to North American markets cannot understand our preoccupation with package and graphics.The significant difference is that packaging plays a different role in a market where rice will sell solely because it is available. In the North American market, the consumer may be confronted by five different companies offering rice in 30 or so variations. If all the rice is good and none is inferior, how does a seller create a preference for his particular rice? How does he differentiate? The package plays a large role in this process.The package-intensive developed countries are sometimes criticized for over packaging, and certainly over-packaging does exist. However, North Americans also enjoy the world's cheapest food, requiring only about 11 to 14% of our disposable income. European food costs are about 20% of disposable income, and in the less-developed countries food can take 95%of family income.4. The status and development trend of domestic and international packaging machineryWorldwide, the history of the development of the packaging machinery industry is relatively short, science and technology developed in Europe and America in general started in the 20th century until the 1950s the pace greatly accelerated.From the early 20th century, before the end of World War II World War II,medicine,food, cigarettes,matches,household chemicals and other industrial sectors, the mechanization of the packaging operations; the 1950s, the packaging machine widely used common electric switches and tube for the main components of the control system to achieve the primary automation; 1960s, Electrical and optical liquid-gas technology is significantly increased in the packaging machine, machines to further expand on this basis a dedicated automated packaging line; the 1970s, the micro- electronic technology into the automation of packaging machines and packaging lines, computer control packing production process; from the 1980s to the early 1990s, in some field of packaging, computer, robot application for service, testing and management, in preparation for the over-flexible automatic packaging lines and "no" automatic packaging workshop.Actively promoted and strong co-ordination of all aspects of society, and gradually establish a packaging material, packaging, printing, packaging machinery and other production sectors, and corresponding to the research, design, education, academic, management and organization, and thus the formation of independent and complete. The packaging of light industrial system, and occupies an important place in the national economy as a whole.Based on recent years data that members of the World Packaging Alliance output value of the packaging industry accounts for about 2% of the total output value of the national economy; in which the proportion of packaging machinery, though not large, but the rapid development of an annual average of almost growing at a rate of about 10%. Put into use at the packaging machine is now more than thousand species of packaging joint machines and automated equipment has been stand-alone equate. According to the new technological revolution in the world development trend is expected to packaging materials and packaging process and packaging machinery will be closely related to obtain the breakthrough of a new step, and bring more sectors into the packaging industry.China Packaging Technology Association was established in 1980. Soon, the China National Packaging Corporation have been born. Since then, one after another in the country organized a national and international packaging machinery exhibition, seminars, also published I had the first ever "China Packaging Yearbook and other packaging technology books. All this indicates that China is creating a new packaging historical perio d.1.2中文翻译现代包装1、不断变化的需求和新的角色,回顾以往,包装所带来明显的历史性变化是可以理解的, 一个产品包装方式的给他们的销量带来的影响也是显而易见的。
毕业设计外文文献翻译范文
![毕业设计外文文献翻译范文](https://img.taocdn.com/s3/m/9da18f6a767f5acfa1c7cdd9.png)
毕业设计外文文献翻译专业学生姓名班级学号指导教师优集学院外文资料名称:Knowledge-Based Engineeri--ng Design Methodology外文资料出处:Int.J.Engng Ed.Vol.16.No.1附件: 1.外文资料翻译译文2.外文原文基于知识工程(KBE)设计方法D. E. CALKINS1.背景复杂系统的发展需要很多工程和管理方面的知识、决策,它要满足很多竞争性的要求。
设计被认为是决定产品最终形态、成本、可靠性、市场接受程度的首要因素。
高级别的工程设计和分析过程(概念设计阶段)特别重要,因为大多数的生命周期成本和整体系统的质量都在这个阶段。
产品成本的压缩最可能发生在产品设计的最初阶段。
整个生命周期阶段大约百分之七十的成本花费在概念设计阶段结束时,缩短设计周期的关键是缩短概念设计阶段,这样同时也减少了工程的重新设计工作量。
工程权衡过程中采用良好的估计和非正式的启发进行概念设计。
传统CAD工具对概念设计阶段的支持非常有限。
有必要,进行涉及多个学科的交流合作来快速进行设计分析(包括性能,成本,可靠性等)。
最后,必须能够管理大量的特定领域的知识。
解决方案是在概念设计阶段包含进更过资源,通过消除重新设计来缩短整个产品的时间。
所有这些因素都主张采取综合设计工具和环境,以在早期的综合设计阶段提供帮助。
这种集成设计工具能够使由不同学科的工程师、设计者在面对复杂的需求和约束时能够对设计意图达成共识。
那个设计工具可以让设计团队研究在更高级别上的更多配置细节。
问题就是架构一个设计工具,以满足所有这些要求。
2.虚拟(数字)原型模型现在需要是一种代表产品设计为得到一将允许一产品的早发展和评价的真实事实上原型的过程的方式。
虚拟样机将取代传统的物理样机,并允许设计工程师,研究“假设”的情况,同时反复更新他们的设计。
真正的虚拟原型,不仅代表形状和形式,即几何形状,它也代表如重量,材料,性能和制造工艺的非几何属性。
本科毕业设计外文文献翻译
![本科毕业设计外文文献翻译](https://img.taocdn.com/s3/m/28659c6d763231126fdb1115.png)
(Shear wall st ructural design ofh igh-lev el fr ameworkWu Jiche ngAbstract : In t his pape r the basic c oncepts of man pow er from th e fra me sh ear w all str uc ture, analy sis of the struct ur al des ign of th e c ont ent of t he fr ame she ar wall, in cludi ng the seism ic wa ll she ar spa本科毕业设计外文文献翻译学校代码: 10128学 号:题 目:Shear wall structural design of high-level framework 学生姓名: 学 院:土木工程学院 系 别:建筑工程系 专 业:土木工程专业(建筑工程方向) 班 级:土木08-(5)班 指导教师: (副教授)nratiodesign, and a concretestructure in themost co mmonly usedframe shear wallstructurethedesign of p oints to note.Keywords: concrete; frameshearwall structure;high-risebuildingsThe wall is amodern high-rise buildings is an impo rtant buildingcontent, the size of theframe shear wall must comply with building regulations. The principle is that the largersizebut the thicknessmust besmaller geometric featuresshouldbe presented to the plate,the force is close to cylindrical.The wall shear wa ll structure is a flatcomponent. Itsexposure to the force along the plane level of therole ofshear and moment, must also take intoaccountthe vertical pressure.Operate under thecombined action ofbending moments and axial force andshear forcebythe cantilever deep beam under the action of the force levelto loo kinto the bottom mounted on the basis of. Shearwall isdividedinto a whole walland theassociated shear wall in theactual project,a wholewallfor exampl e, such as generalhousingconstruction in the gableor fish bone structure filmwalls and small openingswall.Coupled Shear walls are connected bythecoupling beam shear wall.Butbecause thegeneralcoupling beamstiffness is less thanthe wall stiffnessof the limbs,so. Walllimb aloneis obvious.The central beam of theinflection pointtopay attentionto thewall pressure than the limits of the limb axis. Will forma shortwide beams,widecolumn wall limbshear wall openings toolarge component atbothen ds with just the domain of variable cross-section ro din the internalforcesunder theactionof many Walllimb inflection point Therefore, the calcula tions and construction shouldAccordingtoapproximate the framestructure to consider.The designof shear walls shouldbe based on the characteristics of avariety ofwall itself,and differentmechanical ch aracteristicsand requirements,wall oftheinternalforcedistribution and failuremodes of specific and comprehensive consideration of the design reinforcement and structural measures. Frame shear wall structure design is to consider the structure of the overall analysis for both directionsofthehorizontal and verticaleffects. Obtain theinternal force is required in accordancewiththe bias or partial pull normal section forcecalculation.The wall structure oftheframe shear wall structural design of the content frame high-rise buildings, in the actual projectintheuse of themost seismic walls have sufficient quantitiesto meet thelimitsof the layer displacement, the location isrelatively flexible. Seismic wall for continuous layout,full-length through.Should bedesigned to avoid the wall mutations in limb length and alignment is notupand down the hole. The sametime.The inside of the hole marginscolumnshould not belessthan300mm inordertoguaranteethelengthof the column as the edgeof the component and constraint edgecomponents.Thebi-direc tional lateral force resisting structural form of vertical andhorizontalwallconnected.Each other as the affinityof the shear wall. For one, two seismic frame she ar walls,even beam highratio should notgreaterthan 5 and a height of not less than400mm.Midline columnand beams,wall midline shouldnotbe greater tha nthe columnwidthof1/4,in order toreduce thetorsional effect of the seismicaction onthecolumn.Otherwisecan be taken tostrengthen thestirrupratio inthe column tomake up.If theshear wall shearspan thanthe big two. Eventhe beamcro ss-height ratiogreaterthan 2.5, then the design pressure of thecut shouldnotmakeabig 0.2. However, if the shearwallshear spanratioof less than two couplingbeams span of less than 2.5, then the shear compres sion ratiois notgreater than 0.15. Theother hand,the bottom ofthe frame shear wallstructure to enhance thedesign should notbe less than200mmand notlessthanstorey 1/16,otherpartsshouldnot be less than 160mm and not less thanstorey 1/20. Aroundthe wall of the frame shear wall structure shouldbe set to the beam or dark beamand the side columntoform a border. Horizontal distributionofshear walls can from the shear effect,this design when building higher longeror framestructure reinforcement should be appropriatelyincreased, especially in the sensitiveparts of the beam position or temperature, stiffnesschange is bestappropriately increased, thenconsideration shouldbe givento the wallverticalreinforcement,because it is mainly from the bending effect, andtake in some multi-storeyshearwall structurereinforcedreinforcement rate -likelessconstrained edgeofthecomponent or components reinforcement of theedge component.References: [1 sad Hayashi,He Yaming. On the shortshear wall high-rise buildingdesign [J].Keyuan, 2008, (O2).高层框架剪力墙结构设计吴继成摘要: 本文从框架剪力墙结构设计的基本概念人手, 分析了框架剪力墙的构造设计内容, 包括抗震墙、剪跨比等的设计, 并出混凝土结构中最常用的框架剪力墙结构设计的注意要点。
毕业设计论文 外文文献翻译
![毕业设计论文 外文文献翻译](https://img.taocdn.com/s3/m/82f6a1e5102de2bd960588c8.png)
毕业设计(论文)外文参考文献翻译计算机科学与信息工程系系(院)2008 届题目企业即时通Instant Messaging for Enterprises课题类型技术开发课题来源自选学生姓名许帅专业班级 04计算机科学与技术指导老师王占中职称工程师完成日期:2008年4 月 6 日目录I NSTANT M ESSAGING FOR E NTERPRISE (1)1. Tips (1)2. Introduction (1)3. First things first (2)4.The While-Accept loop (4)5. Per-Thread class (6)6. The Client class (7)企业即时通 (9)1.提示 (9)2.简介 (9)3.首先第一件事 (10)4.监听循环 (11)5.单线程类 (13)6.用户端类 (14)Instant Messaging for Enterprise1. TipsIf Java is, in fact, yet another computer programming language, you may question why it is so important and why it is being promoted as a revolutionary step in computer programming. The answer isn’t immediately obvious if you’re coming from a tr aditional programming perspective. Although Java is very useful for solving traditional standalone programming problems, it is also important because it will solve programming problems on the World Wide Web. What is the Web?The Web can seem a bit of a mys tery at first, with all this talk of “surfing,”“presence,” and “home pages.” It’s helpful to step back and see what it really is, but to do this you must understand client/server systems, another aspect of computing that is full of confusing issues. The primary idea of a client/server system is that you have a central repository of information,some kind of data, often in a database。
毕业设计(论文)外文资料翻译(学生用)
![毕业设计(论文)外文资料翻译(学生用)](https://img.taocdn.com/s3/m/809c04778e9951e79b8927f5.png)
毕业设计外文资料翻译学院:信息科学与工程学院专业:软件工程姓名: XXXXX学号: XXXXXXXXX外文出处: Think In Java (用外文写)附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文网络编程历史上的网络编程都倾向于困难、复杂,而且极易出错。
程序员必须掌握与网络有关的大量细节,有时甚至要对硬件有深刻的认识。
一般地,我们需要理解连网协议中不同的“层”(Layer)。
而且对于每个连网库,一般都包含了数量众多的函数,分别涉及信息块的连接、打包和拆包;这些块的来回运输;以及握手等等。
这是一项令人痛苦的工作。
但是,连网本身的概念并不是很难。
我们想获得位于其他地方某台机器上的信息,并把它们移到这儿;或者相反。
这与读写文件非常相似,只是文件存在于远程机器上,而且远程机器有权决定如何处理我们请求或者发送的数据。
Java最出色的一个地方就是它的“无痛苦连网”概念。
有关连网的基层细节已被尽可能地提取出去,并隐藏在JVM以及Java的本机安装系统里进行控制。
我们使用的编程模型是一个文件的模型;事实上,网络连接(一个“套接字”)已被封装到系统对象里,所以可象对其他数据流那样采用同样的方法调用。
除此以外,在我们处理另一个连网问题——同时控制多个网络连接——的时候,Java内建的多线程机制也是十分方便的。
本章将用一系列易懂的例子解释Java的连网支持。
15.1 机器的标识当然,为了分辨来自别处的一台机器,以及为了保证自己连接的是希望的那台机器,必须有一种机制能独一无二地标识出网络内的每台机器。
早期网络只解决了如何在本地网络环境中为机器提供唯一的名字。
但Java面向的是整个因特网,这要求用一种机制对来自世界各地的机器进行标识。
为达到这个目的,我们采用了IP(互联网地址)的概念。
IP以两种形式存在着:(1) 大家最熟悉的DNS(域名服务)形式。
我自己的域名是。
所以假定我在自己的域内有一台名为Opus的计算机,它的域名就可以是。
电子电气类专业毕业设计外文翻译
![电子电气类专业毕业设计外文翻译](https://img.taocdn.com/s3/m/8973db637e21af45b307a845.png)
附录一:外文原文Super capacitors - An OverviewKey words: Electrostatic capacitor; Electrolytic capacitor; Ceramic capacitor;Electrical double layer capacitor; Super Capacitor1.INTRODUCTIONThis paper offers a concise review on the renaissance of a conventional capacitor toelectrochemical double layer capacitor or super capacitor. Capacitors are fundamental electrical circuitelements that store electrical energy in the order of microfarads and assist in filtering. Capacitors havetwo main applications; one of which is a function to charge or discharge electricity. This function isapplied to smoothing circuits of power supplies, backup circuits of microcomputers, and timer circuitsthat make use of the periods to charge or discharge electricity. The other is a function to block the flowof DC. This function is applied to filters that extract or eliminate particular frequencies. This isindispensable to circuits where excellent frequency characteristics are required. Electrolytic capacitorsare next generation capacitors which are commercialized in full scale. They are similar to batteries in cell construction but the anode and cathode materials remain the same. They are aluminum, tantalum and ceramic capacitors where they use solid/liquid electrolytes with a separator between two symmetrical electro des.An electrochemical capacitor (EC), often called a Super capacitor or Ultra capacitor, stores electrical charge in the electric double layer at a surface-electrolyte interface, primarily in high-surface-area carbon. Because of the high surface area and the thinness of the double layer, these devices can have very a high specific and volumetric capacitance. This enables them to combine a previously unattainable capacitance density with an essentially unlimited charge/discharge cycle life. The operational voltage per cell ,limited only by the breakdown potential of the electrolyte, is usually<1 or <3 volts per cell for aqueous or organic electrolytes respectively.The concept of storing electrical energy in the electric double layer that isformed at the interface between an electrolyte and a solid has been known since the late 1800s. The first electrical device using double-layer charge storage was reported in 1957 by H.I. Becker of General Electric (U.S. Patent 2,800,616).Unfortunately, Becker’s device was imp ractical in that, similarly to a flooded battery, both electrodes needed to be immersed in a container of electrolyte, and the device was never comercialised.Becker did, however, appreciate the large capacitance values subsequently achieved by Robert A. Rightmire, a chemist at the Standard Oil Company of Ohio (SOHIO), to whom can be attributed the invention of the device in the format now commonly used. His patent (U.S. 3,288,641), filed in 1962 and awarded in late November 1966, and a follow-on patent (U.S. Patent 3,536,963) by fellow SOHIO researcher Donald L. Boos in 1970, form the basis for the many hundreds of subsequent patents and journal articles covering all aspects of EC technology.This technology has grown into an industrywith sales worth severalhundred million dollars per year. It is an in dustry that is poised today for rapid growth in the near term with the expansion of power quality needs and emerging transportation applications.Following the commercial introduction of NEC’s Super Capacitor in 1978, under licence from SOHIO, EC have evolved through several generations of designs. Initially they were used as back-up power devices for v is for cells ranging in size from small millifarad size devices with exceptional pulse power performance up to devices rated at hundreds of thousands of farads, with systems in some applications operating at up to 1,500 volts. The technology is seeing increasingly broad use, replacing batteriesolatile clock chips and complementary metal-oxide-semiconductor (CMOS) computer memories. But many other applications have emerged over the past 30 years, including portable wireless communication, enhanced power quality for distributed power generation systems, industrial actuator power sources, and high-efficiency energy storage for electric vehicles(EVs) and hybrid electric vehicles (HEVs).Overall, the unique attributes of ECs often complement the weaknesses of other power sources like batteries and fuel cells.Early ECs were generally rated at a few volts and had capacitance values measured from fractions of farads up to several farads. The trend today in some cases and in others complementing their performance.The third generation evolution is the electric double layer capacitor, where the electrical charge stored at a metal/electrolyte interface is exploited to construct astorage device. The interface can store electrical charge in the order of 610Farad. The main component in the electrode construction is activated carbon. Though this concept was initialized and industrialized some 40 years ago, there was a stagnancy in research until recent times; the need for this revival of interest arises due to the increasing demands for electrical energy storage in certain current applications like digital electronic devices, implantable medical devices and stop/start operation in vehicle traction which need very short high power pulses that could be fulfilled by electric double layer capacitors. They are complementary to batteries as they deliver high power density and low energy density. They also have longer cycle life than batteries and possess higher energy density as compared to conventional capacitors. This has led to new concepts of the so-called hybrid charge storage devices in which electrochemical capacitor is interfaced with a fuel cell or a battery. These capacitors using carbon as the main electrode material for both anode and cathode with organic and aqueous electrolytes are commercialized and used in day to-day applications. Fig.1 presents the three types of capacitors depicting the basic differences in their design and construction.Figure 1.Schematic presentation of electrostatic capacitor, electrolytic capacitor and electrical double layer capacitor.EDLCs, however suffer from low energy density. To rectify these problems, recently researchers try to incorporate transition metal oxides along with carbon in the electrode materials. When the electrode materials consist of transition metal oxides, then the electrosorption or redox processes enhance the value of specific capacitance ca. 10 -100 times depending on the nature of oxides. In such a situation, the EDLC is called as super capacitor or pseudo capacitor . This is the fourth generation capacitor. Performance of a super capacitor combines simultaneously two kinds of energy storage, i.e. non-faradic charge as in EDLC capacitors and faradaic charge similar toprocesses proceeding in batteries. The market for EC devices used for memory protection in electronic circuitry is about $150-200 million annually. New potential applications for ECs include the portable electronic device market, the power quality market, due particularly to distributed generation and low-emission hybrid cars, buses and trucks. There are some published reviews on capacitors and super capacitors . In the present overview, the evolution of electrochemical double layer capacitors starting from simple electrostatic capacitors is summarized.2. EXPERIMENTAL PARTThe invention of Leiden jar in 1745 started the capacitor technology; since then, there has been tremendous progress in this field. In the beginning, capacitors are used primarily in electrical and electronic products, but today they are used in fields ranging from industrial application to automobiles, aircraft and space, medicine, computers, games and power supply circuits. Capacitors are made from two metallic electrodes (mainly Si) placed in mutual opposition with an insulating material (dielectric) between the electrodes for accumulating an electrical charge. The basic equation relating to the capacitors is:C = εS/d (1)where C(μF) is the electrostatic capacity, the dielectric constant of the dielectric, S (cm2) the surface area of the electrode and d (cm) the thickness of the dielectric. The charge accumulating principle can be described as follows: when a battery is connected to the capacitor, flow of current induces the flow of electrons so that electrons are attracted to the positive terminal of the battery and so they flow towards the power source. As a result, an electron deficiency develops at the positive side, which becomes positively charged and an electron surplus develops at the negative side, which becomes negatively charged. This electron flow continues until the potential difference between the two electrodes becomes equal to the battery voltage. Thus the capacitor gets charged. Once the battery is removed, the electrons flow from the negative side to the side with an electron deficiency; this process leads to discharging. The conventional capacitors yield capacitance in the range of 0.1 to 1 μF with a voltage range of 50 to 400 V. Various materials such as paper (ε, 1.2-2.6), paraffin (ε 1.9-2.4), polyethylene (2.2-2.4), polystyrene (ε, 2.5-2.7), ebonite (ε, 2-3.5), polyethylene tetraphtharate (ε,3.1-3.2), water (ε, 80) sulfur(ε, 2-4.2), steatite porcelain (ε, 6-7), Al porcelain (ε, 8-10), mica(ε, 5-7)and insulated mineral oil (ε, 2.2-2.4) are used as dielectrics in capacitors.The capacitance output of these silicon based capacitors is limited and has to cope with low surface-to volume ratios of these electrodes. To increase the capacitance, as per eq., one has to increase to ∂or S and decrease; however the ∂value is largely determined by the working voltage and cannot be tampered. When aiming at high capacitance densities, it is necessary to combine the mutual benefits achieved with a high permittivity insulator material and an increased effective surface area. With Si as the substrate material, electrochemical etching produces effective surface area. The surface area of this material gets enlarged by two orders of magnitude compared to unetched surface. Electrochemically formed macroporous Si has been used for the preparation of high aspect ratio capacitors with layered SiO2/Si3N4/SiO2 insulators. Research work on the modification of conventional capacitors to increase the specific capacitance is also in progress. Approximately 30 times higher capacitance densities are reported recently for Si/Al2O3/ZnO: Al capacitor where Si is electrochemically etched porous one. Another way identified to increase the surface area of the electrodes is to form anodically formed oxides (Al, Ta); however, ceramic capacitors are based on the high dielectric constant rather than the electrode area.3. ELECTROLYTIC CAPACITORSThe next generation capacitors are the electrolytic capacitors; they are of Ta, Al and ceramic electrolytic capacitors. Electrolytic capacitors use an electrolyte as conductor between the dielectrics and an electrode. A typical aluminum electrolytic capacitor includes an anode foil and a cathode foil processed by surface enlargement and or formation treatments. Usually, the dielectric film is fabricated by anodizing high purity Al foil for high voltage applications in boric acid solutions. The thickness of the dielectric film is related to the working voltage of the aluminum electrolytic capacitor. After cutting to a specific size according to the design specification, a laminate made up of an anode foil, a cathode foil which is opposed to the dielectric film of the anode foil and a separator interposed between the anode and cathode foils, is wound to provide an element. The wound element does not have any electricalcharacteristics of electrolytic capacitor yet until completely dipped in an electrolyte for driving and housed in a metallic sheathed package in cylindrical form with a closed-end equipping a releaser. Furthermore, a sealing material made of elastic rubber is inserted into an open-end section of the sheathed package and the open-end section of the sheathed package by drawing, whereby an aluminum electrolytic capacitor is constituted. Electrolytic aluminum capacitors are mainly used as power supplies for automobiles, aircraft, space vehicles, computers, monitors, motherboards of personal computers and other electronics.There are two types of tantalum capacitors commercially available in the market; wet electrolytic capacitors which use sulfuric acid as the electrolyte and solid electrolytic capacitors which use MnO2 as the solid electrolyte. Though the capacitances derived from both Ta and Al capacitors are the same, Ta capacitors are superior to Al capacitors in temperature and frequency characteristics. For analog signal systems, Al capacitors produce a current-spike noise which does not happen in Ta capacitors. In other words, Ta capacitors are preferred for circuits which need high stability characteristics. The total world wide production of Al electrolytic capacitors amounts to US$ 3.8 billion, 99% of which are of the wet type. Unlike Ta solid electrolytic capacitors, the solid electrolyte materials used are of organic origin; polypyrrole, a functional polymer and TCNQ (7,7, 8, 8- tetracyanoquniodimethane) an organic semiconductor. Next, MnO2 solid electrolyte material is formed on the surface of that dielectric layer and on top of that a layer of polypyrrole organic solid electrolyte material is formed by electrolytic synthesis. Following this, the positive and negative electrodes are mounted to complete the electronic component. However, the capacitances of these electrolytic capacitors are in the range 0.1 to 10F with a voltage profile of 25 to 50 V.The history of development of electrolytic capacitors which were mass produced in the past as well as today is presented by S. Niwa and Y. Taketani . Many researchers try to improve the performance of these electrolytic capacitors by modifying the electrode or electrolyte. Generally, the increases in effective surface area (S) are achieved by electrolytic etching of aluminum substrate before anodization, but now it faces with the limit. It is also very difficult to decrease d because the d value is largely decided when the working voltages are decided. Increase in may be a possible routine to form composite dielectric layers by incorporating relatively large value compounds. Replacement of MnO2 by polypyrrole solid electrolyte was reported to reduce electrostatic resistance due to its higher conductivity; aromaticsulfonate ions were used as charge compensating dopant ions .A tantalum capacitor with Ta metal as anode, polypyrrole as cathode and Ta2O5 dielectric layer was also reported. In the Al solid electrolytic capacitors, polyaniline doped with inorganic and organic acids was also studied as counter electrode. In yet another work, Al solid electrolytic capacitor with etched Al foil as anode, polyaniline / polypyrrrole as cathode and Al2O3 as dielectric was developed. Ethylene carbonate based organic electrolytes and -butyrolactone based electrolytes have been tried as operating electrolytes in Al electrolytic capacitors. Masuda et al. have obtained high capacitance by electrochemically anodizing rapidly quenching Al-Ti alloy foil. Many researchers have tried the other combination of alloys such as Al-Zr, Al-Si, Al-Ti, Al-Nb and Al-Ta composite oxide films. Composite oxide films of Al2O3-(Ba0.5Sr0.5TiO3) and Al2O3- Bi4Ti3O12 on low-voltage etched aluminum foil were also studied. Nb-Ta-Al for Ta electrolytic capacitors was also tried as anode material .A ceramic capacitor is a capacitor constructed of alternating layers of metal and ceramic, with the ceramic material acting as the dielectric. Multilayer ceramic capacitors (MLCs) typically consist of ~100 alternate layers of electrode and dielectric ceramics sandwiched between two ceramic cover layers. They are fabricated by screen-printing of electrode layers on dielectric layers and co-sintering of the laminate. Conventionally, Ag-Pd is used as the electrode material and BaTiO3 is used as the dielectric ceramic. From 2000 onwards, the MLCs market has been growing in pace with the exponential development of communications. They are produced in the capacitance range of 10 F (normally the range of Ta and Al electrolytic capacitors); they are highly useful in high frequency applications. Historically, a ceramic capacitor is a two-terminal non-polar device. The classical ceramic capacitor is the disc capacitor. This device predates the transistor and was used extensively in vacuum-tube equipment (e.g radio receivers) from c. a. 1930 through the 1950s and in discrete transistor equipment from the 1950s through the 1980s. As of 2007, ceramic disc capacitors are in widespread use in electronic equipment, providing high capacity and small size at low price compared to the other types.The other ceramic materials that have been identified and used are CaZrO3, MgTiO3, SrTiO3 etc. A typical 10 F MLC is a chip of size (3.2 x 1.6 x 1.5 mm). Mn, Ca, Pd , Ag etc are some of the other internal electrodes used. Linear dielectrics and antiferroelectrics based o strontium titante have been developed for high voltage disk capacitors. These are applicable for MLCs with thinner layers because of their high coercive fields. One of the most critical material processing parameters is the degreeof homogeneous mixing of additive in the slurry. The binder distribution in the green ceramic sheet, the degree of surface roughness, fine size nickel powder, formation of green sheet, electrode deposition ad sheet stacking etc play a crucial role in the process technology. Any one of these facts if mishandled would result in the failure of the device. For instance, providing a roughess of 5 m thick green sheet to 0.5 m is mandatory so that a smooth contact surface with the inner nickel electrode can be established. This is a very important factor in avoiding the concentration of electric filed at asperities, where the charge emission from the electrode is accelerated, resulting in short failure. Conventional sheet/printing method has a technical limit of producing a thickness around 1 m dielectric; in order to decrease the thickness further, thin film technologies like CVD, sputtering, plasma-spray etc has to be used.The other types of capacitors are film capacitors which use thin polyester film and polypropylene film as dielectrics and meta-glazed capacitors which incorporate electrode plates made of film vacuum evaporated with metal such as Al. Films can be of polyester, polypropylene or polycarbonate make. Also capacitors are specified depending on the dielectric used such as polyester film capacitor, polypropylene capacitor, mica capacitor, metallized polyester film capacitor etc.4. DOUBLE LAYER CAPACITORSElectric/electrochemical double layer capacitor (EDLC) is a unique electrical storage device, which can store much more energy than conventional capacitors and offer much higher power densitythan batteries. EDLCs fill up the gap between the batteries and the conventional capacitor, allowing applications for various power and energy requirements i.e., back up power sources for electronic devices, load-leveling, engine start or acceleration for hybrid vehicles and electricity storage generated from solar or wind energy. EDLC works on the principle of double-layer capacitance at the electrode/electrolyte interface where electric charges are accumulated on the electrode surfaces and ions of opposite charge are arranged on the electrolyte side.Figure 2.Charge storage mechanism of an EDLC cell under idle and charged conditions.Fig. 2 shows the mechanism of charge storage in an EDLC cell and Fig. 3 shows the configuration of an typical EDLC cell. There are two main types of double layer capacitors as classified by the charge storage mechanism: (i) electrical double-layer capacitor; (ii) electrochemical double layer capacitor or super/pseudocapacitor. An EDLC stores energy in the double-layer at the electrode/electrolyte interface, whereas the supercapacitor sustains a Faradic reaction between the electrode and the electrolyte in a suitable potential window. Thus the electrode material used for the construction of the cell for the former is mainly carbon material while for the latter, the electrode material consist of either transition metal oxides or mixtures of carbon and metal oxides/polymers. The electrolytes can be either aqueous or non-aqueous depending on the mode of construction of EDLC cell.Figure 3.Typical configuration of an EDLC cellThere are two general directions of interest. One is the long term goal of the development of electrical propulsion for vehicles, and the other is the rapid growth of portable electronic devices that require power sources with maximum energy content and the lowest possible size and weight.5. CONCLUSIONSAccording to a market survey by Montana, super capacitors are becoming a promising solution for brake energy storage in rail vehicles. The expected technological development outside railway sector is also shown to be highly dynamic: diesel electric vehicles, catenary free operation of city light rail, starting system for diesel engines, hybrid-electric cars, industrial applications, elevators, pallet trucks etc. The time horizon expected for development is next 5 to 10 years. The main development goals will be,· long life time· increase of the rated voltage· improvements of the range of operating temperature· increase of the energy and power densitiesVery recently, hybrid car is introduced in the market but it is turned to be very expensive and out of common man’s reach. Shortage and cost of fossil fuels already instigated alternate technologies viable for traction purposes. In such a situation,EDLCs are also useful to store energy generated from non-conventional energy sources. A future possibility of service centers set up for EDLC supply similar to petrol (as on date) is not far as the main setbacks in technology development may take a decade for fruitful results.附录二:外文译文超级电容器-概述关键词:静电电容,电解电容器,陶瓷电容器,双电层 ,电容器,超级电容器1.引言本文为电化学双层电容器或超级电容器提供在一台常规电容器,简明的介绍新生的电化学双电层电容器或超级电容器。
毕业设计说明书外文翻译---时间和频率的基本原理
![毕业设计说明书外文翻译---时间和频率的基本原理](https://img.taocdn.com/s3/m/c6d7015bad02de80d4d840ac.png)
毕业设计说明书英文文献及中文翻译学院:信息与通信工程专业:电子信息科学与技术2011年 6月外文文献原文Fundamentals of Time and Frequency IntroductionTime and frequency standards supply three basic types of information:time-of-day,time interval,and frequency. Time-of-day information is provided in hours,minutes,and seconds,but often also includes the date (month,day,and year). A device that displays or records time-of-day information is called a clock. If a clock is used to label when an event happened,this label is sometimes called a time tag or time stamp. Date and time-of-day can also be used to ensure that events are synchronized,or happen at the same time.Time interval is the duration or elapsed time between two events. The standard unit of time interval is the second(s). However,many engineering applications require the measurement of shorter time intervals,such as milliseconds (1 ms = 10 -3 s) ,microseconds (1 μs = 10 -6 s) ,nanoseconds (1 ns = 10 -9 s) ,and picoseconds (1 ps = 10 -12 s). Time is one of the seven base physical quantities,and the second is one of seven base units defined in the International System of Units (SI). The definitions of many other physical quantities rely upon the definition of the second. The second was once defined based on the earth‟s rotational rate or as a fraction of the tropical year. That changed in 1967 when the era of atomic time keeping formally began. The current definition of the SI second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of the cesium-133 atom.Frequency is the rate of a repetitive event. If T is the period of a repetitive event,then the frequency f is its reciprocal,1/T. Conversely,the period is the reciprocal of the frequency,T = 1/f. Since the period is a time interval expressed in seconds (s) ,it is easy to see the close relationship between time interval and frequency. Thestandard unit for frequency is the hertz (Hz) ,defined as events or cycles per second. The frequency of electrical signals is often measured in multiples of hertz,including kilohertz (kHz),megahertz (MHz),or gigahertz (GHz),where 1 kHz equals one thousand (103) events per second,1 MHz equals one million (106) events per second,and 1 GHz equals one billion (109) events per second. A device that produces frequency is called an oscillator. The process of setting multiple oscillators to the same frequency is called synchronization.Of course,the three types of time and frequency information are closely related. As mentioned,the standard unit of time interval is the second. By counting seconds,we can determine the date and the time-of-day. And by counting events or cycles per second,we can measure frequency.Time interval and frequency can now be measured with less uncertainty and more resolution than any other physical quantity. Today,the best time and frequency standards can realize the SI second with uncertainties of ≈1×10-15.Physical realizations of the other base SI units have much larger uncertainties.Coordinated Universal Time (UTC)The world‟s major metrology laboratories routinely measure their time and frequency standards and send the measurement data to the Bureau International des Poids et Measures (BIPM) in Sevres,France. The BIPM averages data collected from more than 200 atomic time and frequency standards located at more than 40 laboratories,including the National Institute of Standards and Technology (NIST). As a result of this averaging,the BIPM generates two time scales,International Atomic Time (TAI),and Coordinated Universal Time (UTC). These time scales realize the SI second as closely as possible.UTC runs at the same frequency as TAI. However,it differs from TAI by an integral number of seconds. This difference increases when leap seconds occur. Whennecessary,leap seconds are added to UTC on either June 30 or December 31. The purpose of adding leap seconds is to keep atomic time (UTC) within ±0.9 s of an older time scale called UT1,which is based on the rotational rate of the earth. Leap seconds have been added to UTC at a rate of slightly less than once per year,beginning in 1972.Keep in mind that the BIPM maintains TAI and UTC as ……paper‟‟ time scales. The major metrology laboratories use the published data from the BIPM to steer their clocks and oscillators and generate real-time versions of UTC. Many of these laboratories distribute their versions of UTC via radio signals which section 17.4 are discussed in.You can think of UTC as the ultimate standard for time-of-day,time interval,and frequency. Clocks synchronized to UTC display the same hour minute,and second all over the world (and remain within one second of UT1). Oscillators simonized to UTC generate signals that serve as reference standards for time interval and frequency.Time and Frequency MeasurementTime and frequency measurements follow the conventions used in other areas of metrology. The frequency standard or clock being measured is called the device under test (DUT). A measurement compares the DUT to a standard or reference. The standard should outperform the DUT by a specified ratio,called the test uncertainty ratio (TUR). Ideally,the TUR should be 10:1 or higher. The higher the ratio,the less averaging is required to get valid measurement results.The test signal for time measurements is usually a pulse that occurs once per second (1 ps). The pulse width and polarity varies from device to device,but TTL levels are commonly used. The test signal for frequency measurements is usually at a frequency of 1 MHz or higher,with 5 or 10 MHz being common. Frequency signalsare usually sine waves,but can also be pulses or square waves if the frequency signal is an oscillating sine wave. This signal produces one cycle (360∞or 2πradians of phase) in one period. The signal amplitude is expressed in volts,and must be compatible with the measuring instrument. If the amplitude is too small,it might not be able to drive the measuring instrument. If the amplitude is too large,the signal must be attenuated to prevent overdriving the measuring instrument.This section examines the two main specifications of time and frequency measurements—accuracy and stability. It also discusses some instruments used to measure time and frequency.AccuracyAccuracy is the degree of conformity of a measured or calculated value to its definition. Accuracy is related to the offset from an ideal value. For example,time offset is the difference between a measured on-time pulse and an ideal on-time pulse that coincides exactly with UTC. Frequency offset is the difference between a measured frequency and an ideal frequency with zero uncertainty. This ideal frequency is called the nominal frequency.Time offset is usually measured with a time interval counter (TIC). A TIC has inputs for two signals. One signal starts the counter and the other signal stops it. The time interval between the start and stop signals is measured by counting cycles from the time base oscillator. The resolution of a low cost TIC is limited to the period of its time base. For example,a TIC with a 10-MHz time base oscillator would have a resolution of 100 ns. More elaborate Tics use interpolation schemes to detect parts of a time base cycle and have much higher resolution—1 ns resolution is commonplace,and 20 ps resolution is available.Frequency offset can be measured in either the frequency domain or time domain.A simple frequency domain measurement involves directly counting and displaying thefrequency output of the DUT with a frequency counter. The reference for this measuremen t is either the counter‟s internal time base oscillator , or an external time base. The counter‟s resolution , or the number of digits it can display , limits its ability to measure frequency offset. For example , a 9-digit frequency counter can detect a frequency offset no smaller than 0.1 Hz at 10 MHz (1×10-8). The frequency offset is determined asmeasure nominal nominal(f -f )f= f Where f measur is the reading from the frequency counter , and f nominal is the frequency labeled on the oscillator‟s nameplate , or specified output frequency.Frequency offset measurements in the time domain involve a phase comparison between the DUT and the reference. A simple phase comparison can be made with an oscilloscope. The oscilloscope will display two sine waves. The top sine wave represents a signal from the DUT , and the bottom sine wave represents a signal from the reference. If the two frequencies were exactly the same , their phase relationship would not change and both would appear to be stationary on the oscilloscope display. Since the two frequencies are not exactly the same , the reference appears to be stationary and the DUT signal moves. By measuring the rate of motion of the DUT signal we can determine its frequency offset. Vertical lines have been drawn through the points where each sine wave passes through zero. The bottom of the figure shows bars whose width represents the phase difference between the signals. In this case the phase difference is increasing , indicating that the DUT is lower in frequency than the reference.Measuring high accuracy signals with an oscilloscope is impractical , since the phase relationship between signals changes very slowly and the resolution of the oscilloscope display is limited. More precise phase comparisons can be made with a TIC. If the two input signals have the same frequency , the time interval will notchange. If the two signals have different frequencies , the time interval wills change , and the rate of change is the frequency offset. The resolution of a TIC determines the smallest frequency change that it can detect without averaging. For example , a low cost TIC with a single-shot resolution of 100 ns can detect frequency changes of 1 × 10 -7 in 1 s. The current limit for TIC resolution is about 20 ps , which means that a frequency change of 2 ×10 -11 can be detected in 1 s. Averaging over longer intervals can improve the resolution to <1 ps in some units [6].Since standard frequencies like 5 or 10 MHz are not practical to measure with a TIC , frequency dividers or frequency mixers are used to convert the test frequency to a lower frequency. Divider systems are simpler and more versatile , since they can be easily built or programmed to accommodate different frequencies. Mixer systems are more expensive , require more hardware including an additional reference oscillator , and can often measure only one input frequency (e.g., 10 MHz) , but they have a higher signal-to-noise ratio than divider systems.If dividers are used , measurements are made from the TIC , but instead of using these measurements directly , we determine the rate of change from reading to reading. This rate of change is called the phase deviation. We can estimate frequency offset as follows :tf=T ∆Where △t is the amount of phase deviation , and T is the measurement period. To illustrate , consider a measurement of +1 μs of phase deviation over a measurement period of 24 h. The unit used for measurement period (h) must be converted to the unit used for phase deviation (μs). The equation becomes11t 1us f offset ===1.1610T 86400000000us -∆⨯(),,,As shown,a device that accumulates 1 μs of phase deviation/day has a frequency offset of 1.16 × 10 -11 with respect to the reference. This simple example requires only two time interval readings to be made,and △t is simply the difference between the two readings. Often,multiple readings are taken and the frequency offset is estimated by using least squares linear regression on the data set,and obtaining △t from the slope of the least squares line. This information is usually presented as a phase plot,as shown in Fig. 17.6. The device under test is high in frequency by exactly 1×10 -9,as indicated by a phase deviation of 1 ns/s.Dimensionless frequency offset values can be converted to units of frequency (Hz) if the nominal frequency is known. To illustrate this,consider an oscillator with a nominal frequency of 5 MHz and a frequency offset of +1.16 ′10 -11. To find the frequency offset in hertz,multiply the nominal frequency by the offset:(5 ×106) (+1.16×10 -11) = 5.80×10 -5 =+0.0000580 Hz Then,add the offset to the nominal frequency to get the actual frequency:5,000,000 Hz + 0.0000580 Hz = 5,000,000.0000580 HzStabilityStability indicates how well an oscillator can produce the same time or frequency offset over a given time interval. It doesn‟t indicate whether the time or frequency is “right” or “wrong,” but only whether it stays the same. In contrast,accuracy indicates how well an oscillator has been set on time or on frequency. To understand this difference,consider that a stable oscillator that needs adjustment might produce a frequency with a large offset. Or,an unstable oscillator that was just adjusted might temporarily produce a frequency near its nominal value. Figure 17.7 shows the relationship between accuracy and stability.Stability is defined as the statistical estimate of the frequency or time fluctuations of a signal over a given time interval. These fluctuations are measured with respect to a mean frequency or time offset.Short-term stability usually refers to fluctuations over intervals less than 100 s. Long-term stability can refer to measurement intervals greater than 100 s , but usually refers to periods longer than 1 day.Stability estimates can be made in either the frequency domain or time domain , and can be calculated from a set of either frequency offset or time interval measurements. In some fields of measurement , stability is estimated by taking the standard deviation of the data set. However , standard deviation only works with stationary data , where the results are time independent , and the noise is white , meaning that it is evenly distributed across the frequency band of the measurement. Oscillator data is usually no stationary , since it contains time dependent noise contributed by the frequency offset. With stationary data , the mean and standard deviation will converge to particular values as more measurements are made. With no stationary data , the mean and standard deviation never converge to any particular values. Instead , there is a moving mean that changes each time we add a measurement. For these reasons , a non-classical statistic is often used to estimate stability in the time domain. This statistic is sometimes called the Allan variance , but since it is the square root of the variance , its proper name is the Allan deviation. The equation for the Allan deviation (σy (τ)) is2y i+i y -y στ1(() where y i is a set of frequency offset measurements containing y 1, y 2, y 3, and so on , M is the number of values in the y i series , and the data are equally spaced in segments τ seconds long. Or2x i+1i -2x +x στi+2((x ) Where x i is a set of phase measurements in time units containing x 1, x 2, x 3,and so on,N is the number of values in the xi series,and the data are equally spaced in segments τ seconds long. Note that while standard deviation subtracts the mean from each measurement before squaring their summation,the Allan deviation subtracts the previous data point. This differencing of successive data points removes the time dependent noise contributed by the frequency offset. An Allan deviation graph is shown in Fig. 17.8. It shows the stability of the device improving as the averaging period (τ) gets longer,since some noise types can be removed by averaging. At some point,however,more averaging no longer improves the results. This point is called the noise floor,or the point where the remaining noise consists of no stationary processes such as flicker noise or random walk. The device measured in Fig. 17.8 has a noise floor of ~5 × 10 -11at τ = 100 s.Practically speaking,a frequency stability graph also tells us how long we need to average to get rid of the noise contributed by the reference and the measurement system. The noise floor provides some indication of the amount of averaging required to obtain a TUR high enough to show us the true frequency where xi is a set of phase measurements in time units containing x1,x2,x3,and so on is the number of values in the xi series,and the data are equally s paced in segments τ seconds long. Note that while standard deviation subtracts the mean from each measurement before squaring their summation,the Allan deviation subtracts the previous data point. This differencing of successive data points removes the time dependent noise contributed by the frequency offset. An Allan deviation graph is shown in Fig. 17.8. It shows the stability of the device improving as the averaging period (τ) gets longer,since some noise types can be removed by averaging. At some point,however,more averaging no longer improves the results. This point is called the noise floor or the point where the remaining noise consists of no stationary processes such as flicker noise or random walk. The device measured in Fig. 17.8 has a noise floor of ~5 × 10 -11at τ = 100 s.Practically speaking,a frequency stability graph also tells us how long we needto average to get rid of the noise contributed by the reference and the measurement system. The noise floor provides some indication of the amount of averaging required to obtain a TUR high enough to show us the true frequency offset of the DUT. If the DUT is an atomic oscillator (section 17.4) and the reference is a radio controlled transfer standard (section 17.5) we might have to average for 24 h or longer to have confidence in the measurement result. Five noise types are commonly discussed in the time and frequency literature:white phase,flicker phase,white frequency,flicker frequency,and random walk frequency. The slope of the Allan deviation line can help identify the amount of averaging needed to remove these noise types (Fig. 17.9). The first type of noise to be removed by averaging is phase noise,or the rapid,random fluctuations in the phase of the signal. Ideally,only the device under test would contribute phase noise to the measurement,but in practice,some phase noise from the measurement system and reference needs to be removed through averaging. Note that the Allan deviation does not distinguish between white phase noise and flicker phase noise. Table 17.2 shows several other statistics used to estimate stability and identify noise types for various applications.Identifying and eliminating sources of oscillator noise can be a complex subject,but plotting the first order differences of a set of time domain measurements can provide a basic understanding of how noise is removed by averaging. Figure 17.10 was made using a segment of the data from the stability graph in Fig. 17.8. It shows phase plots dominated by white phase noise (1 s averaging) ,white frequency noise (64 s averages) ,flicker frequency noise (256 s averages),and random walk frequency (1024 s averages). Note that the white phase noise plot has a 2 ns scale,and the other plots use a 100 ps scale.外文文献中文翻译时间和频率的基本原理介绍时间和频率标准应用于三种基本信息类型:时间,时间间隔和频率.时间信息有小时,分,秒.通常还包括日期(年,月,日).用来显示和记录时间的器件叫做钟表,如果钟表标记了一件事的发生,那么这个标记叫做时间标签或时间印记.日期和时间能确保事情的同步或同时发生.时间间隔是两个事件持续或断续的时间,时间间隔的标准单位是秒,然而许多工程上应用要求更短的时间间隔,像毫秒,微秒,纳秒,和皮秒,时间是七个基本物理量之一,并且秒是国际单位体制制定七个基本单位之一.许多区其他物理量的定义是依靠秒而定义的.秒曾经定义根据地球回转率.原子时代正式开始在1967年目前SI定义秒为:秒是铯133原子(Cs133)基态的两个超精细能级之间跃迁所对应的辐射的9,192,631,770个周期所持续的时间。
毕业设计(论文)外文资料翻译【范本模板】
![毕业设计(论文)外文资料翻译【范本模板】](https://img.taocdn.com/s3/m/0acc4c2faa00b52acfc7cae9.png)
南京理工大学紫金学院毕业设计(论文)外文资料翻译系:机械系专业:车辆工程专业姓名:宋磊春学号:070102234外文出处:EDU_E_CAT_VBA_FF_V5R9(用外文写)附件:1。
外文资料翻译译文;2.外文原文.附件1:外文资料翻译译文CATIA V5 的自动化CATIA V5的自动化和脚本:在NT 和Unix上:脚本允许你用宏指令以非常简单的方式计划CATIA。
CATIA 使用在MS –VBScript中(V5.x中在NT和UNIX3。
0 )的共用部分来使得在两个平台上运行相同的宏。
在NT 平台上:自动化允许CATIA像Word/Excel或者Visual Basic程序那样与其他外用分享目标。
ATIA 能使用Word/Excel对象就像Word/Excel能使用CATIA 对象。
在Unix 平台上:CATIA将来的版本将允许从Java分享它的对象。
这将提供在Unix 和NT 之间的一个完美兼容。
CATIA V5 自动化:介绍(仅限NT)自动化允许在几个进程之间的联系:CATIA V5 在NT 上:接口COM:Visual Basic 脚本(对宏来说),Visual Basic 为应用(适合前:Word/Excel ),Visual Basic。
COM(零部件目标模型)是“微软“标准于几个应用程序之间的共享对象。
Automation 是一种“微软“技术,它使用一种解释环境中的COM对象。
ActiveX 组成部分是“微软“标准于几个应用程序之间的共享对象,即使在解释环境里。
OLE(对象的链接与嵌入)意思是资料可以在一个其他应用OLE的资料里连结并且可以被编辑的方法(在适当的位置编辑).在VBScript,VBA和Visual Basic之间的差别:Visual Basic(VB)是全部的版本。
它能产生独立的计划,它也能建立ActiveX 和服务器。
它可以被编辑。
VB中提供了一个补充文件名为“在线丛书“(VB的5。
软件工程专业毕业设计外文文献翻译
![软件工程专业毕业设计外文文献翻译](https://img.taocdn.com/s3/m/11757bdff9c75fbfc77da26925c52cc58bd690cb.png)
软件工程专业毕业设计外文文献翻译1000字本文将就软件工程专业毕业设计的外文文献进行翻译,能够为相关考生提供一定的参考。
外文文献1: Software Engineering Practices in Industry: A Case StudyAbstractThis paper reports a case study of software engineering practices in industry. The study was conducted with a large US software development company that produces software for aerospace and medical applications. The study investigated the company’s software development process, practices, and techniques that lead to the production of quality software. The software engineering practices were identified through a survey questionnaire and a series of interviews with the company’s software development managers, software engineers, and testers. The research found that the company has a well-defined software development process, which is based on the Capability Maturity Model Integration (CMMI). The company follows a set of software engineering practices that ensure quality, reliability, and maintainability of the software products. The findings of this study provide a valuable insight into the software engineering practices used in industry and can be used to guide software engineering education and practice in academia.IntroductionSoftware engineering is the discipline of designing, developing, testing, and maintaining software products. There are a number of software engineering practices that are used in industry to ensure that software products are of high quality, reliable, and maintainable. These practices include software development processes, software configuration management, software testing, requirements engineering, and project management. Software engineeringpractices have evolved over the years as a result of the growth of the software industry and the increasing demands for high-quality software products. The software industry has developed a number of software development models, such as the Capability Maturity Model Integration (CMMI), which provides a framework for software development organizations to improve their software development processes and practices.This paper reports a case study of software engineering practices in industry. The study was conducted with a large US software development company that produces software for aerospace and medical applications. The objective of the study was to identify the software engineering practices used by the company and to investigate how these practices contribute to the production of quality software.Research MethodologyThe case study was conducted with a large US software development company that produces software for aerospace and medical applications. The study was conducted over a period of six months, during which a survey questionnaire was administered to the company’s software development managers, software engineers, and testers. In addition, a series of interviews were conducted with the company’s software development managers, software engineers, and testers to gain a deeper understanding of the software engineering practices used by the company. The survey questionnaire and the interview questions were designed to investigate the software engineering practices used by the company in relation to software development processes, software configuration management, software testing, requirements engineering, and project management.FindingsThe research found that the company has a well-defined software development process, which is based on the Capability Maturity Model Integration (CMMI). The company’s software development process consists of five levels of maturity, starting with an ad hoc process (Level 1) and progressing to a fully defined and optimized process (Level 5). The company has achieved Level 3 maturity in its software development process. The company follows a set of software engineering practices that ensure quality, reliability, and maintainability of the software products. The software engineering practices used by the company include:Software Configuration Management (SCM): The company uses SCM tools to manage software code, documentation, and other artifacts. The company follows a branching and merging strategy to manage changes to the software code.Software Testing: The company has adopted a formal testing approach that includes unit testing, integration testing, system testing, and acceptance testing. The testing process is automated where possible, and the company uses a range of testing tools.Requirements Engineering: The company has a well-defined requirements engineering process, which includes requirements capture, analysis, specification, and validation. The company uses a range of tools, including use case modeling, to capture and analyze requirements.Project Management: The company has a well-defined project management process that includes project planning, scheduling, monitoring, and control. The company uses a range of tools to support project management, including project management software, which is used to track project progress.ConclusionThis paper has reported a case study of software engineering practices in industry. The study was conducted with a large US software development company that produces software for aerospace and medical applications. The study investigated the company’s software development process,practices, and techniques that lead to the production of quality software. The research found that the company has a well-defined software development process, which is based on the Capability Maturity Model Integration (CMMI). The company uses a set of software engineering practices that ensure quality, reliability, and maintainability of the software products. The findings of this study provide a valuable insight into the software engineering practices used in industry and can be used to guide software engineering education and practice in academia.外文文献2: Agile Software Development: Principles, Patterns, and PracticesAbstractAgile software development is a set of values, principles, and practices for developing software. The Agile Manifesto represents the values and principles of the agile approach. The manifesto emphasizes the importance of individuals and interactions, working software, customer collaboration, and responding to change. Agile software development practices include iterative development, test-driven development, continuous integration, and frequent releases. This paper presents an overview of agile software development, including its principles, patterns, and practices. The paper also discusses the benefits and challenges of agile software development.IntroductionAgile software development is a set of values, principles, and practices for developing software. Agile software development is based on the Agile Manifesto, which represents the values and principles of the agile approach. The manifesto emphasizes the importance of individuals and interactions, working software, customer collaboration, and responding to change. Agile software development practices include iterative development, test-driven development, continuous integration, and frequent releases.Agile Software Development PrinciplesAgile software development is based on a set of principles. These principles are:Customer satisfaction through early and continuous delivery of useful software.Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.Deliver working software frequently, with a preference for the shorter timescale.Collaboration between the business stakeholders and developers throughout the project.Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.Working software is the primary measure of progress.Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.Continuous attention to technical excellence and good design enhances agility.Simplicity – the art of maximizing the amount of work not done – is essential.The best architectures, requirements, and designs emerge from self-organizing teams.Agile Software Development PatternsAgile software development patterns are reusable solutions to common software development problems. The following are some typical agile software development patterns:The Single Responsibility Principle (SRP)The Open/Closed Principle (OCP)The Liskov Substitution Principle (LSP)The Dependency Inversion Principle (DIP)The Interface Segregation Principle (ISP)The Model-View-Controller (MVC) PatternThe Observer PatternThe Strategy PatternThe Factory Method PatternAgile Software Development PracticesAgile software development practices are a set ofactivities and techniques used in agile software development. The following are some typical agile software development practices:Iterative DevelopmentTest-Driven Development (TDD)Continuous IntegrationRefactoringPair ProgrammingAgile Software Development Benefits and ChallengesAgile software development has many benefits, including:Increased customer satisfactionIncreased qualityIncreased productivityIncreased flexibilityIncreased visibilityReduced riskAgile software development also has some challenges, including:Requires discipline and trainingRequires an experienced teamRequires good communicationRequires a supportive management cultureConclusionAgile software development is a set of values, principles, and practices for developing software. Agile software development is based on the Agile Manifesto, which represents the values and principles of the agile approach. Agile software development practices include iterative development, test-driven development, continuous integration, and frequent releases. Agile software development has many benefits, including increased customer satisfaction, increased quality, increased productivity, increased flexibility, increased visibility, and reduced risk. Agile software development also has some challenges, including the requirement for discipline and training, the requirement for an experienced team, the requirement for good communication, and the requirement for a supportive management culture.。
毕业设计(论文)外文翻译
![毕业设计(论文)外文翻译](https://img.taocdn.com/s3/m/e69359dbb14e852458fb5755.png)
华南理工大学广州学院本科生毕业设计(论文)翻译外文原文名Agency Cost under the Restriction of Free Cash Flow中文译名自由现金流量的限制下的代理成本学院管理学院专业班级会计学3班学生姓名陈洁玉学生学号200930191100指导教师余勍讲师填写日期2015年5月11日外文原文版出处:译文成绩:指导教师(导师组长)签名:译文:自由现金流量的限制下的代理成本摘要代理成本理论是资本结构理论的一个重要分支。
自由现金流代理成本有显着的影响。
在这两个领域相结合的研究,将有助于建立和扩大理论体系。
代理成本理论基础上,本研究首先分类自由现金流以及统计方法的特点。
此外,投资自由现金流代理成本的存在证明了模型。
自由现金流代理成本理论引入限制,分析表明,它会改变代理成本,进而将影响代理成本和资本结构之间的关系,最后,都会影响到最优资本结构点,以保持平衡。
具体地说,自由现金流增加,相应地,债务比例会降低。
关键词:资本结构,现金流,代理成本,非金钱利益1、介绍代理成本理论,金融契约理论,信号模型和新的啄食顺序理论,新的资本结构理论的主要分支。
财务con-道的理论侧重于限制股东的合同行为,解决股东和债权人之间的冲突。
信令模式和新的啄食顺序理论中心解决投资者和管理者之间的冲突。
这两种类型的冲突是在商业组织中的主要冲突。
代理成本理论认为,如何达到平衡这两种类型的冲突,资本结构是如何形成的,这是比前两次在一定程度上更多的理论更全面。
……Agency Cost under the Restriction of Free Cash FlowAbstractAgency cost theory is an important branch of capital structural theory. Free cash flow has significant impact on agency cost. The combination of research on these two fields would help to build and extend the theoretical system. Based on agency cost theory, the present study firstly categorized the characteristics of free cash flow as well as the statistical methodologies. Furthermore, the existence of investing free cash flow in agency cost was proved by a model. Then free cash flow was introduced into agency cost theory as restriction, the analysis shows that it will change agency cost, in turn, will have an impact on the relationship between agency cost and capital structure, finally, will influence the optimal capital structure point to maintain the equilibrium. Concretely, with the increasing free cash flow, correspondingly, debt proportion will decrease.Keywords:Capital Structure,Free Cash Flow,Agency Cost,Non-Pecuniary Benefit1. IntroductionAgency cost theory, financial contract theory, signaling model and new pecking order theory are the main branches of new capital structure theory. Financial con-tract theory focuses on restricting stockholders’ behavior by contract and solving the conflict between stockholders and creditors. Signaling model and new pecking order theory center on solving the conflict between investors and managers. These two types of conflict are the main conflict in business organizations. Agency cost theory considers how equilibrium is reached in both types of conflict and how capital structure is formed, which is more theory is more comprehensive than the previous two to some degree.……。
毕业设计论文外文文献翻译智能交通信号灯控制中英文对照
![毕业设计论文外文文献翻译智能交通信号灯控制中英文对照](https://img.taocdn.com/s3/m/b3eb90cfd05abe23482fb4daa58da0116c171fd3.png)
英语原文Intelligent Traffic Light Controlby Marco Wiering The topic I picked for our community project was traffic lights. In a community, people need stop signs and traffic lights to slow down drivers from going too fast. If there were no traffic lights or stop signs, people’s lives would be in danger from drivers going too fast.The urban traffic trends towards the saturation, the rate of increase of the road of big city far lags behind rate of increase of the car.The urban passenger traffic has already become the main part of city traffic day by day and it has used about 80% of the area of road of center district. With the increase of population and industry activity, people's traffic is more and more frequent, which is unavoidable. What means of transportation people adopt produces pressure completely different to city traffic. According to calculating, if it is 1 to adopt the area of road that the public transport needs, bike needs 5-7, car needs 15-25, even to walk is 3 times more than to take public transits. So only by building road can't solve the city traffic problem finally yet. Every large city of the world increases the traffic policy to the first place of the question.For example,according to calculating, when the automobile owning amount of Shanghai reaches 800,000 (outside cars count separately ), if it distributes still as now for example: center district accounts for great proportion, even when several loop-lines and arterial highways have been built up , the traffic cannot be improved more than before and the situation might be even worse. So the traffic policy Shanghai must adopt , or called traffic strategy is that have priority to develop public passenger traffic of city, narrow the scope of using of the bicycle progressively , control the scale of growth of the car traffic in the center district, limit the development of the motorcycle strictly.There are more municipals project under construction in big city. the influence on the traffic is greater.Municipal infrastructure construction is originally a good thing of alleviating the traffic, but in the course of constructing, it unavoidably influence the local traffic. Some road sections are blocked, some change into an one-way lane, thus the vehicle can only take a devious route . The construction makes the road very narrow, forming the bottleneck, which seriously influence the car flow.When having stop signs and traffic lights, people have a tendency to drive slower andlook out for people walking in the middle of streets. To put a traffic light or a stop sign in a community, it takes a lot of work and planning from the community and the city to put one in. It is not cheap to do it either. The community first needs to take a petition around to everyone in the community and have them sign so they can take it to the board when the next city council meeting is. A couple residents will present it to the board, and they will decide weather or not to put it in or not. If not put in a lot of residents might be mad and bad things could happened to that part of the city.When the planning of putting traffic lights and stop signs, you should look at the subdivision plan and figure out where all the buildings and schools are for the protection of students walking and riding home from school. In our plan that we have made, we will need traffic lights next to the school, so people will look out for the students going home. We will need a stop sign next to the park incase kids run out in the street. This will help the protection of the kids having fun. Will need a traffic light separating the mall and the store. This will be the busiest part of the town with people going to the mall and the store. And finally there will need to be a stop sign at the end of the streets so people don’t drive too fast and get in a big accident. If this is down everyone will be safe driving, walking, or riding their bikes.In putting in a traffic light, it takes a lot of planning and money to complete it. A traffic light cost around $40,000 to $125,000 and sometimes more depending on the location. If a business goes in and a traffic light needs to go in, the business or businesses will have to pay some money to pay for it to make sure everyone is safe going from and to that business. Also if there is too many accidents in one particular place in a city, a traffic light will go in to safe people from getting a severe accident and ending their life and maybe someone else’s.The reason I picked this part of our community development report was that traffic is a very important part of a city. If not for traffic lights and stop signs, people’s lives would be in danger every time they walked out their doors. People will be driving extremely fast and people will be hit just trying to have fun with their friends. So having traffic lights and stop signs this will prevent all this from happening.Traffic in a city is very much affected by traffic light controllers. When waiting for a traffic light, the driver looses time and the car uses fuel. Hence, reducing waiting times before traffic lights can save our European society billions of Euros annually. To make traffic light controllers more intelligent, we exploit the emergence of novel technologies such as communication networks and sensor networks, as well as the use of more sophisticated algorithms for setting traffic lights. Intelligent traffic light control does not only mean thattraffic lights are set in order to minimize waiting times of road users, but also that road users receive information about how to drive through a city in order to minimize their waiting times. This means that we are coping with a complex multi-agent system, where communication and coordination play essential roles. Our research has led to a novel system in which traffic light controllers and the behaviour of car drivers are optimized using machine-learning methods.Our idea of setting a traffic light is as follows. Suppose there are a number of cars with their destination address standing before a crossing. All cars communicate to the traffic light their specific place in the queue and their destination address. Now the traffic light has to decide which option (ie, which lanes are to be put on green) is optimal to minimize the long-term average waiting time until all cars have arrived at their destination address. The learning traffic light controllers solve this problem by estimating how long it would take for a car to arrive at its destination address (for which the car may need to pass many different traffic lights) when currently the light would be put on green, and how long it would take if the light would be put on red. The difference between the waiting time for red and the waiting time for green is the gain for the car. Now the traffic light controllers set the lights in such a way to maximize the average gain of all cars standing before the crossing. To estimate the waiting times, we use 'reinforcement learning' which keeps track of the waiting times of individual cars and uses a smart way to compute the long term average waiting times using dynamic programming algorithms. One nice feature is that the system is very fair; it never lets one car wait for a very long time, since then its gain of setting its own light to green becomes very large, and the optimal decision of the traffic light will set his light to green. Furthermore, since we estimate waiting times before traffic lights until the destination of the road user has been reached, the road user can use this information to choose to which next traffic light to go, thereby improving its driving behaviour through a city. Note that we solve the traffic light control problem by using a distributed multi-agent system, where cooperation and coordination are done by communication, learning, and voting mechanisms. To allow for green waves during extremely busy situations, we combine our algorithm with a special bucket algorithm which propagates gains from one traffic light to the next one, inducing stronger voting on the next traffic controller option.We have implemented the 'Green Light District', a traffic simulator in Java in which infrastructures can be edited easily by using the mouse, and different levels of road usage can be simulated. A large number of fixed and learning traffic light controllers have already been tested in the simulator and the resulting average waiting times of cars have been plotted and compared. The results indicate that the learning controllers can reduce average waiting timeswith at least 10% in semi-busy traffic situations, and even much more when high congestion of the traffic occurs.We are currently studying the behaviour of the learning traffic light controllers on many different infrastructures in our simulator. We are also planning to cooperate with other institutes and companies in the Netherlands to apply our system to real world traffic situations. For this, modern technologies such as communicating networks can be brought to use on a very large scale, making the necessary communication between road users and traffic lights possible.中文翻译:智能交通信号灯控制马克·威宁我所选择的社区项目主题是交通灯。
毕业设计_外文文献翻译
![毕业设计_外文文献翻译](https://img.taocdn.com/s3/m/eea24e13cfc789eb172dc8d9.png)
毕业设计_外文文献翻译本科毕业设计外文文献翻译(题目:packethandlinghardwaresupport学生姓名:学院:系别:专业:班级:指导教师:二〇一四年六月packethandlinghardwaresupport参考文献:texasinstruments1101low-powersub-1ghzrftransceiver.ti.2013 the1101hasbuilt-inhardwaresupportforpacketorientedradioprotocols.intransmitmode,thepackethandlercanbeconfiguredtoaddth efollowingelementstothepacketstoredinthetxfifo:aprogrammablenumberofpreamblebytesatwobytesynchronization(sync)word.canbeduplicatedtogivea4-b ytesyncword(remended).itisnotpossibletoonlyinsertpreambleoronl yinsertasyncwordacrcchecksumputedoverthedatafield.theremendedsettingis4-bytepreambleand4-bytesyncword,exceptf or500kbauddataratewheretheremendedpreamblelengthis8bytes.in addition,thefollowingcanbeimplementedonthedatafieldandtheop tional2-bytecrcchecksum:whiteningofthedatawithapn9sequenceforwarderrorcorrection(fec)bytheuseofinterleavingandcodingo fthedata(convolutionalcoding)inreceivemode,thepackethandlingsupportwillde-constructtheda tapacketbyimplementingthefollowing(ifenabled):preambledetectionsyncworddetectioncrcputationandcrccheckonebyteaddresscheckpacketlengthcheck(lengthbytecheckedagainstaprogrammablemaxi mumlength)de-whiteningde-interleavinganddecodingoptionally,twostatusbytes(seetable27andtable28)withrssivalu e,linkqualityindication,andcrcstatuscanbeappendedintherxfif o.1.datawhiteningfromaradioperspective,theidealovertheairdataarerandomanddcf ree.thisresultsinthesmoothestpowerdistributionovertheoupied bandwidth.thisalsogivestheregulationloopsinthereceiverunifo rmoperationconditions(ondatadependencies).realdataoftencontainlongsequencesofzerosandones.inthesecase s,performancecanbeimprovedbywhiteningthedatabeforetransmitting,andde-whiteningthedatainthereceiver.with1101,thiscanbedoneautomatically.bysettingpktctrlo.white _data=1,alldata,exceptthepreambleandthesyncwordwillbexor-ed witha9-bitpseudo-random(pn9)sequencebeforebeingtransmitted. thisisshowninfigure16.atthereceiverend,thedataarexor-edwith thesamepseudorandomsequence.inthisway,thewhiteningisreverse d,andtheoriginaldataappearinthereceiver.thepn9sequenceisini tializedtoall1’s.2.packetformattheformatofthedatapacketcanbeconfiguredandconsistsofthefoll owingitems(seefigure17):preamblesynchronizationwordoptionallengthbyteoptionaladdressbytepayloadoptional2bytecrcthepreamblepatternisanalternatingsequenceof onesandzeros(10101010…).theminimumlengthofthepreambleispro grammablethroughthevalueofmdmcfg1.num_preamble.whenenabling tx,themodulatorwillstarttransmittingthepreamble.whentheprog rammednumberofpreamblebyteshasbeentransmitted,themodulatorwillsendthesyncwordandthendatafromt hetxfifoifdataisavailable.ifthetxfifoisempty,themodulatorwi llcontinuerosendpreamblebytesuntilthefirstbyteiswrittentoth etxfifo.themodulatorwillthensendthesyncwordandthenthedataby tes.thesynchronizationwordisatwo-bytevaluesetinthesync1andsync0 registers.thesyncwordprovidesbytesynchronizationoftheiningp acket.aone-bytesyncwordcanbeemulatedbysettingtheaync1valuet othepreamblepattern.itisalsopossibletoemulatea32bitsyncword bysettingmdmcfg2.sync_modeto3or7.thesyncwordwillthenberepea tedtwice.1101supportsbothconstantpacketlengthprotocolsandvariablelen gthprotocols.variableorfixedpacketlengthmodecanbeusedforpac ketsupto255bytes.forlongerpackets,infinitepacketlengthmodem ustbeused.fixedpacketlengthmodeisselectedbysettingpktctrl0.length_con fig=0.thedesiredpacketlengthissetbythepktlenregister.thisvaluemustbedifferentfrom0.invariablepacketlengthmode,pktctrl0.length_config=1,thepack etlengthisconfiguredbythefirstbyteafterthesyncword.thepacke tlengthisdefinedasthepayloaddata,excludingthelengthbyteando ptionalcrc.thepktlenregisterisusedtosetthemaximumpacketleng thallowedinrx.anypacketreceivedwithalengthbytewithavaluegre aterthanpktlenwillbediscarded.thepktlenvaluemustbedifferent from0.thebytewrittentothetxfifomustbedifferentfrom0.withpktctrl0.length_config=2,thepacketlengthissettoinfinite andtransmissionandreceptionwillcontinueuntilturnedoffmanual ly.asdescribedinthenextsection,thiscanbeusedtosupportpacket formatswithdifferentlengthconfigurationthannativelysupporte dby1101.oneshouldmakesurethattxisnotturnoffduringthetransmissionofthefirsthalfofanybyte.refertothe11012.1arbitrarylengthfieldconfigurationthepacketlengthregister,pktlen,canbereprogrammedduringrecei veandtransmit.inbinationwithfixedpacketlengthmode(pktctrl0. length_config=0),thisopensthepossibilitytohaveadifferentlen gthfieldconfigurationcansupportedforvariablelengthpackets(i nvariablepacketlengthmodethelengthbyteisthefirstbyteafterth esyncword).atthestartofreception,thepacketlengthissetalarge value.themcureadsoutenoughbytestointerpretthelengthfieldint hepacket.thenthepktlenvalueissetaordingtothisvalue.theendof packetwillourwhenthebytecounterinthepackethandlerisequaltot hepktlenregister.thus,themcumustbeabletoprogramthecorrectle ngth,beforetheinternalcounterreachesthepacketlength.2.2packetlength>255thepacketautomationcontrolregister,pktctrl0,canbereprogramm edduringtxandrx.thisopensthepossibilitytotransmitandreceive packetsthatarelongerthan256bytesandstillbeabletousethepacke thandlinghardwaresupport.atthestartofthepacket,theinfinitep acketlengthmode(pktctrl0.length_config=2)mustbeactive.onthe txside,thepktlenregisterissettomod(length,256).ontherxsidet hemcureadsoutenoughbytestointerpretthelengthfieldinthepacke tandsetsthepktlenregistertomod(length,256).whenlessthan256b ytesremainsofthepacket,themcudisablesinfinitepacketlengthmo deandactivatesfixedpacketlengthmode.whentheinternalbytecoun terreachesthepktlenvalue,thetransmissionorreceptionends(the radioentersthestatedeterminedbytxoff_modeorrxoff_mode).auto maticcrcappending/checkingcanalsobeused(bysettingpktctrl0.c rc_en=1).whenforexamplea600-bytepacketistobetransmitted,themcushould dothefollowing(seealsofigure18)setpktctrl0.length_config=2.pre-programthepktlenregistertomod(600,256)=88.transmitatleast345bytes(600-255),forexamplebyfillingthe64-b ytetxfifosixtimes(384bytestransmitted).setpktctrl0.length_config=0.thetransmissionendswhenthepacketcounterreaches88.atotalof60 0bytesaretransmitted.3packetfilteringinreceivemode1101supportsthreedifferenttypesofpacket-filtering;addressfi ltering,maximumlengthfiltering,andcrcfiltering.3.1addressingfilteringsettingpktctrl1.adr_chktoanyothervaluethanzeroenablesthepac ketaddressfilter.thepackethandlerenginewillparethedestinati onaddressbyteinthepacketwiththeprogrammednodeaddressinthead drregisterandthe0*00broadcastaddresswhenpktctrl1.adr_chk=10 orboththe0*00and0*ffbroadcastaddresseswhenpktctrl1.adr_chk= 11.ifthereceivedaddressmatchesavalidaddress,thepacketisrece ivedandwrittenintotherxfifo.iftheaddressmatchfails,thepacke tisdiscardedandreceivemoderestarted(regardlessofthemcsm1.rx off_modesetting).ifthereceivedaddressmatchesavalidaddresswhenusinginfinitepacketlengthmodeandaddressfilteringisenabled,0*ffwillbewritte nintotherxfifofollowedbytheaddressbyteandthenthepayloaddata.3.2maximumlengthfilteringinvariablepacketlengthmode,pktctrl0.length_config=1,thepktl en.packet_lengthregistervalueisusedtosetthemaximumallowedpa cketlength.ifthereceivedlengthbytehasalargervaluethanthis,t hepacketisdiscardedandreceivemoderestarted(regardlessofthem csm1.rxoff_modesetting).3.3crcfilteringthefilteringofapacketwhencrccheckfailsisenabledbysettingpkt ctrl1.crc_autoflush=1.thecrcautoflushfunctionwillflushtheen tirerxfifoifthecrccheckfails.afterautoflushingtherxfifo,the nextstatedependsonthemcsm1.rxoff_modesetting.whenusingtheautoflushfunction,themaximumpacketlengthis63byt esinvariablepacketlengthmode.notethatwhenpktctrl1append_sta tusisenabled,themaximumallowedpacketlengthisreducedbytwobyt esinordertomakeroomintherxfifoforthetwostatusbytesappendeda ttheendofthepacket.sincetheentirerxfifoisflushedwhenthecrcc heckfails,thepreviouslyreceivedpacketmustbereadoutofthefifo beforereceivingthecurrentpacket.themcumustnotreadfromthecur rentpacketuntilthecrchasbeencheckedasok.4packethandlingintr ansmitmodethepayloadthatistobetransmittedmustbewrittenintothetxfifo.t hefirstbytewrittenmustbethelengthbytewhenvariablepacketleng thisenabled.thelengthbytehasavalueequaltothepayloadofthepac ket(includingtheoptionaladdressbyte).ifaddressrecognitionisenabledonthereceiver,thesecondbytewrittentothetxfifomustbet headdressbyte.iffixedpacketlengthisenabled,thefirstbytewrittentothetxfifo shouldbetheaddress(assumingthereceiverusesaddressrecognitio n).themodulatorwillfirstsendtheprogrammednumberofpreamblebytes .ifdataisavaibleinthetxfifo,themodulatorwillsendthetwo-byte s(optionally4-byte)syncwordfollowedbythepayloadinthetxfifo.ifcrcisenabled,thec hecksumiscalculatedoverallthedatapulledfromthetxfifo,andthe resultissentastwoextrabytesfollowingthepayloaddata.ifthetxf iforunsemptybeforethepletepackethasbeentransmitted,theradiowillentertxfifo_underflowstate.theonlywaytoexitthisstateisb yissuingansftxstrobe.writingtothetxfifoafterithasbeenunderf lowedwillnotrestarttxmode.ifwhiteningisenabled,everythingfollowingthesyncwordswillbew hitened.thisisdonebeforetheoptionalfec/interleaverstage.whi teningisenabledbysettingpktctrl0.white_data=1.iffec/interleavingisenabled,everythingfollowingthesyncwords willbescrambledbytheinterleaverandfecencodedbeforebeingmodu lated.fecisenabledbysettingmdmcfg1.fec_en=1.5packethandlinginreceivemodeinreceivemode,thedemodulatorandpackethandlerwillsearchforav alidpreambleandthesyncword.whenfound,thesynchronismandwillreceivethefirstpayloadbyte.iffec/interleavingisenabled,thefecdecoderwillstarttodecodet hefirstpayloadbyte.theintrerleaverwillde-scramblethebitsbef oreanyotherprocessingisdonetothedata.ifwhiteningisenabled,thedatawillbede-whitenedatthisstage.whenvariablepacketlengthmodeisenabled,thefirstbyteistheleng thbyte.thepackethandlerstoresthisvalueasthepacketlengthandr eceivesthenumberofbytesindicatedbythelengthbyte.iffixedpack etlengthmodeisused,thepackethandlerwillaepttheprogrammednum berofbytes.next,thepackethandleroptionallycheckstheaddressandonlycontinuesthereceptioniftheaddressmatches.ifautomaticcrccheckisen abled,thepackethandlerputescrcandmatchesitwiththeappendedcr cchecksum.attheendofthepayload,thepackethandlerwilloptionallywhitetwo extrapacketstatusbytes(seetable27andtable28)thatcontaincrcs tatus,linkqualityindication,andrssivalue.6packethandlinginfirmwarewhenimplementingapacketorientedradioprotocolinfirmware,them cuneedstoknowwhenapackethasbeenreceived/transmitted.additio nally,forpacketslongerthan64bytes,therxfifoneedstoberefille dwhiteintx.thismeansthatthemcuneedstoknowthenumberofbytesth atcanbereadfromorwrittentotherxfifoandtxfiforespectively.th erearetwopossiblesolutionstogetthenecessarystatusinformation:a)interruptdrivensolutionthegdopinscanbeusedinbothrxandtxtogiveaninterruptwhenasyncw ordhasbeenreceived/transmittedorwhenapletepackethasbeenrece ived/transmittedbysettingiofgx.gdox_cfg=0*06.inaddition,the rearetwoconfigurationsfortheiocfgx.gdox_cfgregisterthatcanb eusedasaninterruptsourcetoprovideinformationonhowmanybytest hatareintherxfifoandtxfiforespectively.theiocfgx.gdox_cfg=0 *02andiocfgx.gdox_cfg=0*03configurationsareassociatedwithth etxfifo.seetable41formoreinformation.b)spipollingthepktststusregistercanbepolledatagivenratetogetinformation aboutthecurrentgdo2andgdo0valuesrespectively.therxbytesandtxbytesregisterscanbepolledatagivenratetogetinformationabout thenumberofbytesintherxfifoandtxfiforespectively.alternativ ely,thenumberofbytesintherxfifoandthetxfifocanbereadfromthe chipstatusbytereturnedonthemisolineeachtimeaheaderbyte,data byte,ormandstrobeissentonthespibus.itisremendedtoemployaninterruptdrivensolutionsincehighrates pipollingreducestherxsensitivity.furthermore,asexplainedins ection10.3andthe1101erratanotes[4],whenusingspipolling,ther eisasmall,butfinite,probabilitythatasinglereadfromregisters pkstatus,rxbytesandtxbytesisbeingcorrupt.thesameisthecasewh enreadingthechipstatusbyte.refertothetiwebsiteforswexamples([9]and[10]).数据包处理的硬件支持1101提供了对数据包导向无线协议的内置硬件支持。
本科毕业设计(论文)外文翻译译文
![本科毕业设计(论文)外文翻译译文](https://img.taocdn.com/s3/m/d109d9f90242a8956bece420.png)
本科毕业设计(论文)外文翻译译文学生姓名:院(系):油气资源学院专业班级:物探0502指导教师:完成日期:年月日地震驱动评价与发展:以玻利维亚冲积盆地的研究为例起止页码:1099——1108出版日期:NOVEMBER 2005THE LEADING EDGE出版单位:PanYAmericanYEnergyvBuenosYAiresvYArgentinaJPYBLANGYvYBPYExplorationvYHoustonvYUSAJ.C.YCORDOVAandYE.YMARTINEZvYChacoYS.A.vYSantaYCruzvYBolivia 通过整合多种地球物理地质技术,在玻利维亚冲积盆地,我们可以减少许多与白垩纪储集层勘探有关的地质技术风险。
通过对这些远景区进行成功钻探我们可以验证我们的解释。
这些方法包括盆地模拟,联井及地震叠前同时反演,岩石性质及地震属性解释,A VO/A V A,水平地震同相轴,光谱分解。
联合解释能够得到构造和沉积模式的微笑校正。
迄今为止,在新区有七口井已经进行了成功钻探。
基质和区域地质。
Tarija/Chaco盆地的subandean 褶皱和冲断带山麓的中部和南部,部分扩展到玻利维亚的Boomerange地区经历了集中的成功的开采。
许多深大的泥盆纪气田已经被发现,目前正在生产。
另外在山麓发现的规模较小较浅的天然气和凝析气田和大的油田进行价格竞争,如果他们能产出较快的油流而且成本低。
最近发现气田就是这种情况。
接下来,我们赋予Aguja的虚假名字就是为了讲述这些油田的成功例子。
图1 Aguja油田位于玻利维亚中部Chaco盆地的西北角。
基底构造图显示了Isarzama背斜的相对位置。
地层柱状图显示了主要的储集层和源岩。
该油田在Trija和冲积盆地附近的益背斜基底上,该背斜将油田和Ben i盆地分开(图1),圈闭类型是上盘背斜,它存在于连续冲断层上,Aguja有两个主要结构:Aguja中部和Aguja Norte,通过重要的转换压缩断层将较早开发的“Sur”油田分开Yantata Centro结构是一个三路闭合对低角度逆冲断层并伴随有小的摆幅。
毕设外文翻译是什么意思(两篇)2024
![毕设外文翻译是什么意思(两篇)2024](https://img.taocdn.com/s3/m/16fd60f01b37f111f18583d049649b6648d7098b.png)
引言概述:在现代高等教育中,毕业设计(或称为毕业论文、学士论文等)是学生完成学业的重要环节。
而对于一些特定的专业,例如翻译专业,有时候还需要完成外文翻译这一项任务。
本文将探讨毕设外文翻译的意义和目的,以及为什么对翻译专业的学生而言这一任务极其重要。
正文内容:1.提高翻译能力和技巧外文翻译是一项对翻译专业学生而言十分重要的任务,通过进行外文翻译,学生们可以通过实践提高自己的翻译能力和技巧。
在这个过程中,他们可以学习如何处理不同类型的外文文本,熟悉不同领域的专业术语,并掌握一些常用的翻译技巧和策略。
2.扩展语言和文化知识毕设外文翻译要求学生们对翻译语言的相关知识和背景有一定的了解。
在进行翻译时,学生们需要遵循目标语言的语法规则,并确保所翻译的内容准确、清晰地传达源语言的意义。
通过这一过程,学生们可以进一步扩展自己的语言和文化知识,提高自己的跨文化沟通能力。
3.提供实践机会毕设外文翻译为学生们提供了一个实践的机会,让他们能够将在课堂上所学到的理论知识应用于实际操作中。
通过实践,学生们可以对所学知识的理解更加深入,同时也可以发现并解决实际翻译过程中的问题和挑战。
这对于学生们将来从事翻译工作时具备更好的实践能力和经验具有重要意义。
4.培养翻译专业素养毕设外文翻译要求学生们具备良好的翻译专业素养。
在进行翻译过程中,学生们需要保持专业的态度和责任心,严谨地对待每一个翻译任务。
他们需要学会如何进行翻译质量的评估和控制,以确保最终翻译稿的准确性和流畅性。
这一系列的要求和实践,可以帮助学生们培养出色的翻译专业素养。
5.提升自我学习和研究能力毕设外文翻译要求学生们进行广泛的文献阅读和研究,以便更好地理解所翻译的内容,并找到适当的翻译方法和策略。
在这个过程中,学生们需要培养自己的自主学习和研究能力,提高对学术和专业领域的敏感性,并能够独立思考和解决问题。
这将对学生们未来的学术研究和进一步的职业发展产生积极的影响。
总结:引言概述:毕业设计外文翻译(Thesis Translation)是指在毕业设计过程中,对相关外文文献进行翻译,并将其应用于研究中,以提供理论支持和参考。
毕业设计英文翻译
![毕业设计英文翻译](https://img.taocdn.com/s3/m/fdd8e5e8aeaad1f346933f14.png)
沈阳工业大学化工装备学院毕业设计(论文)外文翻译毕业设计(论文)题目:含硫氨污水冷却器外文题目:Head processing technology译文题目:封头加工工艺院(系):化工装备学院专业班级:过控0802班学生姓名:孙鹏博指导教师:闫小波2012年3月11日Head processing technology1.welding process1.1welding operationOur factory common welding methods are: manual welding, argon arc welding, submerged arc welding.(1) manual welding is mainly used for carbon steel 3-6mm plate welding.(2) submerged arc welding to more than 8mm carbon steel stainless steel sheet welding mainly.(3)3-6mm stainless steel argon arc welding with welding mainly. Commonly used stainless steel wire ER304and ER316L steel wire, commonly used to J422and J507and J426and J427low-temperature welding consumables. Flux of carbon steel used is the HJ431, stainless steel commonly used is HJ260,.As a result of welding wire flux can be easily affected with damp, stored in the infrared drying machine, flux HJ431and HJ260drying temperature is 250-300℃. Welding wire J422and J350drying temperature were 150℃ and 300 ℃Welding process is completely in accordance with the" welding" execution, sheet thickness determines the welding to welding or double sided arc welding in welding, after the weld seam inspection ( RT X ray ) judgment without pores, cracks and other defects, such as found in the above deficiencies, to the repair, until the filming.1.2 welding operation standard(1) welding procedure card after receiving process, affirm the process card and physical material, quantity, unit number, specifications, size instruction number is consistent, whether there is debris around the wafer, wafer splashes whether clean removal, such as treatment is not clean, will use the grinding clean.(2) there is no welding test plate, groove cutting quality can meet the requirement, material surface without obvious defects, such as abnormal response.(3) according to the" Regulations" welding procedure card check of welding groove type and dimensions correspond to.(4) on each side of groove surface grinding, butt edge offset is not greater than the10% thickness, and not more than1.5mm.(5) point fixed the first weld layer terminal welding length not less than 50mm, arc board specifications should be 150*150mm and a mask having R arc, team rounds should be given within 8 hours of welding, or to use flame to the moisture inside the baking groove.(6) the welder holds" welding" and" welding records" for welding consumables, welding two class library for registration, using flux field volume should not exceed 4 hours, or to continue to back into the oven drying.(7) a, preheating plate thickness not less than 30mm carbon steel, low alloy steel, the preheating temperature of welding process by" card"," standard" provisions of the welding technology.B, preheating range width not less than 4mm and no less than 100mm. C, in the process of welding groove at any time temperature shall not be less than the prescribed temperature.D, when welding temperature is below 0 ℃( arbitrary thickness) must be heated to 15 ℃or above in order to welding.(8) a before welding, welding to welding equipment inspection, examination was normal before welding facilities.According to B,"" the requirements of welding process welding, welding and fill in the recordsC, welding, welding layers shall be in accordance with" welding" requirements, welding shall not be a large current, less layers. (9) removal of the root a, stainless steel cleaning before the root groove sides, within the range of 300mm, splashing paint coating.B, using carbon arc air gouging, should be selected according to the request carbon rod diameter.C, root cleaning, grinding cleaning groove and two side the existence of carburized layer, oxide, slag and other sundries. Grinding width: manual welding, rust, oxide above 20mm, oil30mm above, automatic welding, rust, grease, oxides 25mm50mm groove inner grinding requirements, carbon steel, low alloy steelδn ≤10mm weld, its two ends within the range of 300mm carburized layer must be completely removed, the rest part allows the removal of more than 50%. Other non-ferrous metals must be completely clear. [3]D, root cleaning, composite steel Cr-Mo, manual welding and the thicknessofδn ≥30mm welds shall be examined by PT.(10) during the process of welding defect repair by welding repair welding repair monitor instruction experienced welders as. Repair welding process should eliminate soldering phenomenon, or polished after welding, the following defects must be removed before welding to welding crack,①partial②③pits the stomaA shall not be lower than the parent material, weld.B, there shall be no undercutting.C, without removing the residual high seam. The surface shall not have cracks, pores, crater, undercut and slag inclusions, and may not retain the slag and spatter.D, removal of residual high weld inspection shall not have any defect display PT.E, such as the defects of carbon steel, low-alloy steel repair procedures: a grinding wheel or a carbon arc gouging polishing cleaning→ PT check grinder grinding out the welding groove, welding, PT, stainless steel repair procedures: a grinding wheel or a carbon arc gouging polishing cleaning→PT (δ n≥ 2mm need )→grinder polished to a welding groove welding→ PT examination. [4](12) welded internal rework, repair procedures: location of defect, defect removal→ PT→→removal check welding weld→ PT examination. [5] (13) according to RT film, RT staff and the welders in welding seam together determine the location of defects, including the following requirements when using UT to determine the defect position, the first repairδ n≥ 30mm use UT to determine the location of defects, two or three repairδ n≥ 20mm using UT to determine the defect position, UT positioning by RT after class. The position and depth of defect ( calibration side shall be the depth of defect≤1/2 side).(14) after the welding inspector or monitor by confirmed, in the process card signed your name and object together with transfer to the next process, by the next process responsibility recognition can.2.stamping process2.1stamping operationStamping operation is small head forming an important operation. The same stamping is also head of the cracking, thinning appeared most processsection.2.2punching machine.(1) the master cylinder is mainly used to connect the die head, is the head forming the necessary parts.(2) side cylinder used for pressing die ring, fixing the upper and lower mold ring of head disk. The head in the pressing process is to prevent the crease, as an important part of the drum kit.(3) the overflow valve used for controlling the compressor overall pressure, prevent the wafer during the pressing process of tears. (4) stamping valve in pressure, stamping valve on pressure relief, achieve average pressure effect.In addition, circuit boards, motors, circuit boards, storage tank, operation platform, pedestal are stamping machine components.2.3.3 stamping operation steps(1) first of all to undertake a blanking process card, find a good wafer.(2) the control process card on the technological requirements, put ona set of corresponding die, and with the use of gauges to determine the selected die size and to suppress the wafer size.(3) the wafer is clamped on the upper and lower mold inside the circle, and determine the die head of the center point and the center point of the wafer in a straight line.(4) the operation ring mold and die relative motion, pressure test, according to the control rod rebound to judge the size of the pressure, thereby regulating pressure size.(5) pressure test end, pressed wafer, stamping.2.3the stamping operation standard(1) the control task orders, confirm physical and process card is consistent, according to the process card confirming workpiece number, material, specification, batch number and other factors, at the same time check wafer end there is no crack, burr, polished wafer whether it meets the requirements, whether chamfer, is facing the good, there are special requirements when the problem is found, in time to contact.(2) according to the process card correct selection of die mold surface, inspection, found bruises and serious injury must be polished, but must be clean mold surface corrosion and dirt.(3) according to the technology card size, shape, texture, straight edge higher to suppress.(4) the warm-stamping ( according to requirement sheet property is heated to a certain temperature, and then stamping process ), to prepare a baking gun, gas, oxygen, percussion with head shall prepare the corresponding template, double-sided film to the wafer edge of both sides in a range of about 200-300mm template removal, and clear the film surface. [6] (5) mounted on the lower die, as the case to join the die pad, the wafer inside and outside surface coated with oil, applied range of top to200-300mm, smear should be uniform, the upper and lower mold are evenly coated.(6) the first gold stamping head, hanging out with a model head, check section shape, at the same time, check whether the drum kit, and there is no thinning, and check the surface has no scratch, hoop printing, such as none of the above abnormalities can continue to stamping, head forming, sealing surfaces such as scratches are timely grinding, and confirm the minimum board thickness, confirm whether a scratch, strain, curved peel, orange peel, drum kits, wrinkle, hoop printing etc..(7) such as a head drum kit fold phenomenon should be together with the card with the move to rework process technology.(8) each head should be able to see the instruction, piece number, material, or to transplantation, each product specifications after testing, the process card ( to sign the name ) together to the next process, by the next process validation.3.pressure drum process3.1pressure drum operationPressure drum process and stamping processes are the same steps in the process, stamping process range of φ 159- φ1900mm and pressure drum process is in the range of φ 1600- φ4800mm. And stamping is different pressure drum mostly the head generally forming, eventually forming is completed by spinning, stamping without the special requirements of customers, eventually forming step is not required. φ 1600- φ1900mm heads the two processes is needed.3.2pressure drum machine.(1) the main cylinder is provided with an upper die head is pressed drumexecution as long as part of.(2) supporting seat fixed lower die and upper die head center in a straight line.(3) supporting frame1is provided with a rolling wheel, a position adjusting before and after.(4) supporting frame is provided with a rolling wheel rotating disk II. In addition, there are hydraulic system, the motor, oil pump, oil tank, and a control console.3.3pressure drum machine operation steps(1) first of all to undertake a blanking process card, find a good wafer.(2) the control process card on the technological requirements, put ona set of corresponding die, and with the use of gauges to determine the selected die size and to suppress the wafer size.(3) and stamping machine is different from the original film is not pressure drum center began to suppress, but from the wafer edge, as long as the die and wafer alignment on the line.(4) the pressing process is continuously by controlling the rotation wheel is driven by the rotation of a wafer rotating, according to a certain order to suppress.(5) in after the pressing process, prepared template matching. If a deviation to make further adjustments.3.4pressure drum operation standard(1) die on the quality of the products and the smooth pressure drum forming crucial. Therefore, require that the operator must according to the processing situation of choice for mold and timely adjust shim plate.(2) the operator receives the process card, see process card, according to the process card check objects, to confirm the real instruction, one-piece, material. Number, batch number etc.. According to the choice of mold process card.(3) for EHA, EHB head shapes have adopted the 0.82*D standard selection, for DHB, PSH, MD and other special products according to technology card selection of mold, but in principle according to P*0.82/1.15or P*0.82/1.2 standard selection. [1](4) pressing carefully before inspection wafer quality, no seam wafer end is smooth, there is no gap, surface has no cutting slag and defects.(5) a weld in addition to carefully check the end of the wafer wafer defects, at the same time should be checked for weld seam is higher than that of base metal, weld ends of are welding spatter, weld end grinding smooth, there is no crack notch.(6) two or two or more superimposed when pressed, each slice of the joint surface should be clean, according to the circumstances must entrust welding class, the wafer is welded together to suppress.(7) detection of wafer thickness ( the thickest, most thin, whether and process card, measurement of wafer size and process card.(8) suppression must be removed before the inside and outside surface of all debris, to prevent pitting appeared.(9) for general stainless steel materials ( more than 5mm plate ) using Teflon plate mold and the lower mold dressing on surface polished smooth ( necessary nowadays mold to Teflon plate. ) to ensure the surface quality of the workpiece, while in the process of the pressing need to avoid debris into molds and semi-finished products. [6](10) the pressing process, when the wafer is a R shape, must use the corresponding R model measurement, the pressing process should be considered to adjust the pressure deformation degree.(11) pressing is finished, the measurement of plate thickness, measuring arc length. Check surface quality, check end and weld end is smooth ( necessary to polish out the ceremony ).(12) to check the semi-finished product with process card is on the move to the next process ( and sign the name ) by the next process to confirm acceptance before.4.spinning process4.1spinning operationThe spinning process is pressed after the drum head molding process, mainly for large head R and straight edge formation.4.2spinning machine.(1) forming wheel is connected to the corresponding mold, forming in the head inside, mold top with half formed head R and straight edge is tangent to tangent.(2) supporting wheel is also connected and molded wheel mold, forming in the head outside, and a forming wheel tangent.(3) base for fixing head, and the bottom according to head size before and after moving, the head should be installed so that the center of the base and the head of the center in a straight line.(4) the center rod is used for fixing head, and the center and the center of the base is in a straight line.In addition to the motor, a circuit board, is connected to the shaft, anda control console.4.3spinning procedure(1) to undertake pressure drum process card, according to the card to determine the corresponding head spinning.(2) according to the head of the diameter, select the corresponding upper and lower mold.(3) the clamping head, ensure that the head of the center point and the center of the base point in a straight line.(4) to adjust the molding wheel and the head of tangent, then according to the forming wheel position adjustment roller.(5) in the spinning process to observe the forming roller and the supporting roller relative position, and continue to use the template on the line alignment. Until the R reaches the requirements.4.4spinning operation standard(1) spinning wheel material for steel bearings or ductile iron, mold on the quality of the products and can spin forming closely related, therefore the operator must be processed according to choose suitable mold, at the same time, because of the shape of the mold and the surface condition of the quality of the workpiece has a great influence, therefore, before processing and machining process must on the mold for full inspection.(2) according to the process card requirements, confirm wafer, pressure drum or preload semi-finished instruction number, specifications, quantity of material, compliance, and check the quality of surface and end with no defect, abnormal timely and on the procedures of contact, and in a timely manner(3) check the semi-finished end is smooth, with or without notch, crack, surface has no cutting or welding slag, and shall inspect the weld seam is higher than that of base metal, weld ends whether spatter, weld end grinding smooth, there is no crack. [7](4) pressure drum or to the press after the finished product, must checkfor folding, cracking, crack is not conducive to the spinning processing defects.(5) for stainless steel workpiece, through to the pickling method of decontamination.(6) according to the process card selection of mold, general small arc r size requirements as a basis for selecting the internal wheel. (7) according to the different material, thickness of plate and sheet rebound, selection is slightly smaller than the internal wheel circular arc R.(8) for the special requirements of the product, according to its shape design inside the wheel, confirm the mold surface, good polishing processing.(9) spinning processing, in order to prevent scratching and improve the processing performance, suitable lubricant ( grease ) to prevent process heating head appears on the surface of hot cracks and scratches, can also prolong the service life of die.(10) the spinning process, should be considered a workpiece shaping and timely for pressure adjustment.(11) after the molding process, deal with the size, shape, thickness, surface quality inspections, confirmation.(12) molded product with the card with the transfer process to the next process ( in the process card signed their name ) by the procedures under the inspector or monitor check before.5.groove processThe 5.1groove Essentials(1) groove process is a head of the data ( including circumference, total height) to achieve JB/T4746 standard key process. [1](2) groove is in order and cylinder head connection time, make welding more thoroughly.(3) the main groove cutting process and cutting process tools, is the use of plasma cutting.(4) cutting, according to the card on the technological requirements, determine groove type ( inner groove, outside the mouth, X groove ) and determine the groove angle.(5) the groove before the head splashing agent applicator.(6) groove when the first test slope, then a protractor measuring angle, identified in the tolerance range, after adjustment, the whole slope. The 5.2groove operation standard(1) according to the process card to find real, order confirmation No., specification, material, batch number, quantity and check whether the workpiece has a drum kit, crack, delamination, wrinkle, and whether the loss of a round, found problems in a timely manner to contact, processing, the plate thickness of more than 8mm, is suggested to lose the round groove, the following 6mm, tooling plate pressure is groove.(2) stainless steel head, should be in the groove wall smearing splash front head agent, prevent groove, slag spout to head on the wall. (3) head onto the beveling machine before, first confirm the head weight, based on the weight of suitable sling, sling safety inspection.(4) head onto the groove machine, beveling rotary table adjustment screw rod, with a center adjusting position, rotating table, is aligned to the center.(5) groove, according to technology card height and height tolerance groove height ruler to draw lines, confirm the high line, the slope slope, should first slope flat groove, and then the slope groove.(6) outside the mouth or the inner groove angle should be controlled within ± 2.5 tolerance.(7) groove after, should check the head circumference, height, straight edge, angle, if not qualified to repair process, repair.(8) qualified head will remove and clean the slag grinding head internal slag, together with card transfer to the next process ( and sign their name ) by the next process inspector confirmation can be.6.polishing process6.1 polishing process steps(1) according to the card process requirements, identify the need for polishing head.(2) the head rotating table, determine the level of, the clamping head.(3) polishing from edge to center, or from the center to the edge; according to the diameter size determine the head beam, lower speed and working stage, after moving speed.(4) check the polishing condition, appropriate for rework.The 6.2polishing operation standard(1) according to the process card and materials to confirm the product instruction number, specifications, material, batch number, quantity, and check whether the workpiece has a drum kit, crack, delamination defects, and whether the loss of a round, found problems in a timely manner to contact, processing, check the appearance, to determine the need for manual processing, the polishing before hook head to mark.(2) according to the requirements of the choice of using a polishing, polishing pads, and the necessary auxiliary tool.(3) confirm the head weight, based on the weight of suitable sling, and check whether the safety hanger.(4) the head hanging onto a work table, adjust the center, at the same time to ensure that the head is in the basic level (0-5 deviations ).(5) people in the scene when polishing polishing, attention, especially the left centre, speed fast, or outward from a center left, a little pressure to increase, from the edge to the center of pressure during polishing, to a little decrease in polishing head, thin wall, as the case may be mounted shockproof wheel, at the same time attention to mechanical work has no abnormal.(6) after the completion of inspection head polishing, with or without defect, and the necessary contact.(7) the Polish well head with coated packaging, in the process card signed their names, together with the head and process the card with the circulation storage, and by the next inspection approval.封头加工工艺1.焊接工序1.1 焊接操作我们厂常用的焊接方法有:手工焊、氩弧焊、埋弧焊。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计中的外文翻译
毕业设计是每位大学生必经的一道坎,它不仅是对所学知识的综合运用,更是
对学生综合素质的考验。
而在毕业设计中,外文翻译是一个非常重要的环节。
本文将从外文翻译的意义、挑战以及技巧等方面进行探讨。
首先,外文翻译在毕业设计中的意义非常重大。
随着全球化的发展,跨文化交
流日益频繁,掌握外文翻译技巧对于学生来说是一项必备的能力。
在毕业设计中,外文翻译不仅可以帮助我们了解国外的学术研究成果,还可以拓宽我们的
视野,提高我们的学术水平。
同时,对于一些特定的专业,如国际贸易、外语等,外文翻译更是必不可少的一环。
然而,外文翻译也带来了一定的挑战。
首先是语言障碍。
不同的语言有不同的
语法结构和表达方式,因此在翻译过程中需要注意语言的准确性和流畅性。
其
次是文化差异。
不同的国家和地区有着不同的文化背景和习俗,这也会影响到
翻译的准确性和质量。
此外,专业术语的翻译也是一个难点,需要对相关领域
有一定的了解和掌握。
那么,在毕业设计中如何进行外文翻译呢?首先,我们需要掌握一些基本的翻
译技巧。
例如,要注重上下文的理解,不能仅仅局限于单个词语的翻译,而要
考虑到整个句子和段落的意思。
其次,要善于使用各种翻译工具。
如今,互联
网的发展给我们提供了很多翻译工具,如谷歌翻译、有道词典等,可以帮助我
们快速准确地翻译。
但是要注意,这些工具只是辅助工具,不能完全依赖它们。
最重要的是要保持对外文的学习和理解,提高自己的外语水平。
另外,我们还可以借鉴一些翻译的经验和方法。
例如,可以参考一些经典的翻
译作品,学习其中的表达方式和技巧。
同时,可以与其他同学进行交流和讨论,
分享彼此的翻译经验,相互帮助和提高。
此外,可以请教一些专业的翻译人员,向他们请教一些翻译的技巧和注意事项。
最后,我们还需要注重翻译的质量和准确性。
在进行外文翻译时,要尽量保持
原文的意思和风格,不要过度解释或加入自己的观点。
同时,要注意语法和用
词的准确性,避免出现错误或歧义。
如果遇到一些难以理解或翻译的地方,可
以进行适当的标注或注释,以便读者理解。
总之,外文翻译在毕业设计中具有重要的意义和挑战。
通过掌握一些基本的翻
译技巧和方法,我们可以提高翻译的质量和准确性,为毕业设计增添一份亮丽
的色彩。
同时,外文翻译也是我们提高跨文化交流能力和学术水平的一个重要
途径。
希望本文对大家在毕业设计中的外文翻译有所帮助。