自考初等数论复习
初等数论总复习题及知识点总结
初等数论总复习题及知识点总结最后,给大家提一点数论的学习方法,即一定不能忽略习题的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经说过如果学习数论时只注意到它的内容而忽略习题的作用,则相当于只身来到宝库而空手返回而异。
数论有丰富的知识和悠久的历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅导材料的最后给大家介绍数论中著名的“哥德巴赫猜想”和费马大定理的阅读材料。
初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法最大公因数和辗转相除法整除的进一步性质和最小公倍数素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求:2,3 ;:4 ;:1;:1,2,5;:1。
第二章:不定方程(4学时)自学12学时二元一次不定方程多元一次不定方程勾股数费尔马大定理。
习题要求:1,2,4;:2,3。
第三章:同余(4学时)自学12学时同余的定义、性质剩余类和完全剩余系欧拉函数、简化剩余系欧拉定理、费尔马小定理及在循环小数中的应用习题要求:2,6;:1;:2,3;1,2。
第四章:同余式(方程)(4学时)自学12学时同余方程概念孙子定理高次同余方程的解数和解法素数模的同余方程威尔逊定理。
习题要求:1;:1,2;:1,2。
第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余勒让德符号二次互反律雅可比符号、素数模同余方程的解法习题要求:2;:1,2,3;:1,2;:2;:1。
第一章:原根与指标(2学时)自学8学时指数的定义及基本性质原根存在的条件指标及n次乘余模2及合数模指标组、特征函数习题要求:3。
第一章整除一、主要内容整除的定义、带余除法定理、余数、最大公因数、最小公倍数、辗转相除法、互素、两两互素、素数、合数、算术基本定理、Eratosthesen筛法、[x]和{x}的性质、n!的标准分解式。
二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。
初等数论单元复习
N p1 p2 pn ,
这里p1<p2<p3<…<pn,且p1,p2,p3,…,pn都 是质数,α1, α2, …, αn是自然数,其中αi表示质数 pi在N中出现的重数.通常把上面分解式叫做整数 N的标准分解式.
那么 (1)τ(a) = (α1 +1)(α2 +1)…(αn +1) = ∏(αi+1). (2)σ(a) = (1+ p1+ p12+…+ p1 α1 ) (1+ p2+ p22+… + p2α2) …(1+ pn+ pn2+…+ pn αn ) (3)σ1(a) =
1
2
n
a
a
例1、 已知两个数的最大公约数为8, 最小公倍数为128,求这两个数.
(4)n 个数两两互质 •如果 a1 ,a2 , …,an ( n≥2) 中的任意 两个数 ai, aj ( i ≠ j, I = 1, 2, … , n;j =1, 2, …, 质.
辗转相除法
• 设a,b为两个任意自然数,a>b,如果 a=bq1+r1 (0<r1<b), b=r1q2+r2 (0<r2<r1), r1=r2q3+r3 (0<r3<r2), … rn-3=rn-2qn-1+rn-1 (0<rn-1<rn-2), rn-2=rn-1qn+rn (0<rn<rn-1), rn-1=rnqn+1, 那么 (a,b)=rn.
最新初等数论复习题题库及答案
《初等数论》本科一 填空题(每空2分)1.写出30以内的所有素数 2,3,5,7,11,13,17,19,23,29 .2.,(,)(,)(,)a b a b a b a b =设是任意两个不为零的整数,则 1 . 3.若,a b 是非零整数,则a 与b 互素的充要条件是存在整数,x y ,适1ax by +=4.写出180的标准分解式是 22235⋅⋅ ,其正约数个数有 (2+1)(2+1)(1+1)=18个.5.,1,2,,a b a b 设与是正整数则在中能被整除的整数恰有 []ab个.6.设,a b 是非零整数,c 是整数,方程ax by c +=有整数解(,x y )的充要条件是 (,)|a b c7. 若整数集合A 是模m 的完全剩余系,则A 中含有 m 个整数.8.ϕ(3)= 2 ;ϕ(4)= 2 .9.当p 素数时,(1)()p ϕ= 1p - ;(2)()k p ϕ= 1k k p p -- . 10.(),(,)1,1m m a m a ϕ=-≡设是正整数则 0 (m o d ).m 11.,,p p a a a -≡设是素数则对于任意的整数有 0 (m o d ).p 12.已知235(mod7)x +≡,则x ≡ 1 (m o d 7). 13.同余方程22(mod 7)x ≡的解是 4(mod7) . 14.同余方程2310120(mod 9)x x ++≡的解是 .X=6. . 15.(,)1n p =若,n p 是模的二次剩余的充要条件是 -121(mod ).p n p ≡ . 16.(,)1n p =若,n p 是模的二次非剩余的充要条件是 -121(mod ).p np ≡- .17.3()=5 -1 ; 4()=5 1 .18.,p 设是奇素数则2()p= 218(1).p --.19.,p 设是奇素数则1()p = 1 ;-1()p= -12(-1).p .20. 5()=9 1 ; 2()=45-1 .二 判断题(判断下列结论是否成立,每题2分).1. ||,|a b a c x y Z a bx cy ⇒∈+且对任意的有.成立2. (,)(,),[,][,]a b a c a b a c ==若则.不成立3. 23|,|a b a b 若则.不成立4.(mod ),0,(mod ).a b m k k N ak bk mk ≡>∈⇒≡ 成立5.(mod )(mod ).ac bc m a b m ≡⇒≡ 不成立6. 22(mod ),(mod )(mod )a b m a b m a b m ≡≡≡-若则或至少有一个成立. 不成立 7. 222(mod ),(mod )a b m a b m ≡≡若则.不成立8. 若x 通过模m 的完全剩余系,则x b +(b 是整数)通过模m 的完全剩余系. 成立 9. 1212{,,,}{,,,}.m m a a a b b b 若与都是模m 的完全剩余系不成立1122{,,,}.m m a b a b a b m +++则也是模的完全剩余系不成立10.若(,)1a m =,x 通过模m 的简化剩余系,则ax b +也通过模m 的简化剩余系. 不成立 11.12121212,,(,)1,()()().m m N m m m m m m ϕϕϕ∈==若则 成立12. 同余方程24330(mod15)x x -+≡和同余方程2412120(mod15)x x +-≡是同解的. 成立13. (mod ).ax b m ax my b ≡+=同余方程等价于不定方程成立14. 2,(mod ),() 1.am x a m m≡=当是奇素数时若有解则成立15. 2,()1,(mod ).a m x a m m=≡当不是奇素数时若则方程一定有解不成立三 计算题1. (1859,1573)-求.(6分)解:1.(1859,1573)(1859,1573)(286,1573)(286,15732865)(286,143)(0,143)143-===-⨯===2.求 [-36,108,204].(8分)解:22232232.[36,108,204][36,108,204],3623,10823,2042317,[36,108,204]23171836.-==⨯=⨯=⨯⨯∴=⨯⨯=3. 求(125,17),以及x ,y ,使得125x +17y =(125,17).(10分)解:3.651,16-56-(17-26)36-173(125-177)-173125-2217.1253-17221,3,-22.x y =+==⨯=⨯=⨯⨯=⨯⨯∴⨯⨯===由等式起逐步回代得4. 求整数x ,y ,使得1387x -162y =(1387,162).(10分)解:4.9421,19-429-4(11-9)59-4115(20-11)-411520-911520-9(71320)322097132(91-71)97132914171329141(16291)73914116273(13878162)41162731387625162.1=⨯+=⨯=⨯=⨯⨯=⨯⨯=⨯⨯=⨯⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯-=⨯-⨯=⨯-⨯-⨯=⨯-⨯∴由等式起逐步回代得38773162625 1.⨯-⨯=5. 12!.分解为质因数乘积(8分)6. ,10|199!k k 求最大的正整数使.(8分)7. [1].100++求(10分) 8. 81743.x y +=求方程的整数解(6分)9. 19201909.x y +=求方程的正整数解(10分)10. 求方程111x -321y =75的整数解.(10分) 11. 12310661.x x x ++=求方程15的整数解(8分) 12. 361215.x y z ++=求不定方程的整数解(8分)13. 237.x y z ++=求不定方程的所有正整数解(8分)14. 19,2,3 5.30将写成三个分数之和它们的分母分别是和(10分) 15. 222370.x y x y +--=求方程的整数解(6分) 16. 331072.x y +=求方程的整数解(8分)17. 5()4.xy yz zx xyz ++=求方程的正整数解(10分)18. 4063().求的个位数字与最后两位数字十进制(10分)19. 67(mod 23).x ≡解同余方程(8分) 20. 12150(mod 45).x +≡解同余方程(8分)21. 2(mod 3)3(mod 5).2(mod 7)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(6分)22. 43()0(mod35),()289.f x f x x x x ≡=+++解同余式(10分) 23. 765:2720(mod5).x x x x --++≡解同余方程(6分)24. .求出模23的所有二次剩余和二次非剩余(8分)25. 25(mod11).x ≡判断方程有没有解(6分)26. 2563,429(mod563).x ≡已知是素数判定方程是否有解(8分) 27. 3求以为其二次剩余的全体素数.(8分)28. 10173:(1)();(2)().1521计算(8分) 29. (300).ϕ计算(6分)30. 3(mod8)11(mod 20).1(mod15)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(10分)四 证明题1、,,,, 1.:|,|,|.a b x y ax by a n b n ab n +=设是两个给定的非零整数且有整数使得求证若则(6分)证明:1.()|,|.n n ax by nax nbyab na ab nb ab n =+=+∴又2.121212,,,,0,.4|.n n n a a a a a a a a a n n +++==设是整数且则(8分)证明:1212121231122.,,,,,,0,2.,,,.,,2(2).-,(-1),,.,,,,4.n n n i n n n n a a a a a a n a a a a a i n a a a a n a a a n +++=∴≤≤+++=∴若是奇数则都是奇数则不可能即在中至少有一个偶数如果只有一个偶数不妨设为则不整除由知左边是个奇数的和右边是偶数这是不可能的在中至少有两个偶数即3. 任给的五个整数中,必有三个数之和被3整除.(8分)证明:1231231231231231233.3,03,1,2,3,4,5.(1)0,1,2,0,1,2,3()3.(2)0,1,2,,(0,12),3()3.i i i i i i i a q r r i r r r r a a a q q q r r r r r r r a a a q q q r =+≤<====++=+++====++=+++设若在中数都出现不妨设则成立若在中数至少有一个不出现则至少有三个取相同的值令或则成立4. 22,,9|,3|(,).a b a ab b a b ++设是整数且则(8分)证明:2222224.9,9()3,3()3,3(),3,9(),93,3,33.3,3,3.3.3,3.3(,).a ab b a b ab a b ab a b a b a b ab ab a b a a b b b a b a a b ++∴-+∴-+∴-∴-∴-∴∴∴-∴-∴或若若故5. 设,a b 是正整数,证明()[,][,]a b a b a b a b +=+.(8分)证明:()5.()[,](),(,)(,)()[,](,),(,)(,),()[,](,),()[,],(,)ab b a b a b a b a b a a b a b b a b b a b b a b b a b a b b a b b a b a b b a b b a b a b ++=+⋅=⋅+=+++=∴+=++=+∴而即结论成立6. (mod ),0,,(mod ).nna b m n n N a b m ≡>∈≡当时又则(6分)证明:123216.(mod ),,()(),,(mod ).n n n n n n n n n n a b m m a b a b a b a a b a b b m a b a b m ----≡∴--=-++++∴-≡又即7. 12{,,,},{}.m A x x x m x x =设是模的一个完全剩余系以表示的小数部分11:(,)1,{}(-1).2mi i ax b a m m m =+==∑证明若则(10分) 证明:1211111117.2,{,,,},(1),1(1)1{}{}{}{}.22m i mm mm m i i j j j j ax b ax b ax b m ax b km j j m ax b j j j j m m m k m m m m m m --=====++++=+≤≤+--=+====⋅=∑∑∑∑∑由定理知也是模的一个完全剩余系可设从而8. ,:n N ∈设证明1()2,2k n n n k N ϕ==∈的充要条件是.(10分)证明:-1-118.2,(2)2(1-)2.22(),2,2|,21()()()(2)(2)()2()2,222(),1,.(()112)k k k k k k k k k nn nn n t t n t n t n t t t t t t t t t n n ϕϕϕϕϕϕϕϕϕϕϕ⇐====⇒==/=====⨯⋅=⋅=∴==⇔=若则若设则即从而得证注或9. ,5|12344.n n n n n N n ∈+++⇔/设则(10分)证明:444449.(5)4,,1(mod5)(14).4,03,1234(1)1(2)2(3)3(4)41234(mod5).5|1234,5|1234,0,1,2,30,4;4,0,5|1234,n n n n q r q r q r q rr r r r n n n n r r r r r r r r k k n q r r r r n n r ϕ=≡≤≤=+≤≤+++≡⋅+⋅+⋅+⋅≡+++⇒++++++==∴//⇐=+++/由定理知令则若即得把代入检验可知若则易知5|1234.n n n n ∴+++/10. ()1,(,)1,:(mod )(mod ).m m a m x bam ax b m ϕ-=≡≡设是正整数证明是同余方程的解证明:()()()-110.(,)1,,1(mod ).(mod ),(,)1,(mod ).m m m a m Euler a m ax b a b m a m x a b m ϕϕϕ=≡∴≡≡=∴≡由定理则11. -121(mod ).p n p n p ≡-是模的二次非剩余的充要条件是(10分)证明:-111221122-121211.(,)1,,1(mod ),(1)(1)0(mod ),,10(mod )10(mod ),1(mod ),1(mod ).p p p p p p p n p Euler n p nnp p n p np n p n p np -----=≡∴+-≡+≡-≡≡∴≡-若则由定理是素数则或中必有一个成立是模的二次剩余的充要条件是 12. 12(mod ),(mod ),y a p y a p p ≡≡设都是模的平方剩余12(mod ),(mod ).y b p y b p p ≡≡都是模的平方非剩余121211:(mod ),(mod ),(mod ).y a a p y b b p p y a b p p ≡≡≡求证都是模的平方剩余是模的平方非剩余(10分)证明:11112222121211122212121112.1,1(mod ),1(mod ),()()1(mod ),()1(mod ),.p p p p p p p aap b bp a a b b p a b p -------≡≡≡≡-∴≡≡≡-∴由定理知得证13. 22,43,:(mod ),(mod ).p q n x p q x q p +≡≡设为两个形如的奇质数求证若无解则有两个解(10分)1-122222221-113.:,43,,,22(mod ),()1,()(-1)()() 1.(mod ),,-(mod ),(-)(mod ),-,,(mod ).p q p q p q n p q p p x p q q p q qx q p c c c p c c q p c x q p c -⋅-+∴≡∴=-==-=∴≡≡=≡/∴≡±证明均为形如的数均为奇数又无解则有解设是其一解则因为且也是其一解又因为二次同余方程至多有两个解故恰有两个解为14. 1(mod 4),(mod ).p p y a p p ≡≡设是适合的素数是模的平方剩余:(mod ).y a p p ≡-证明也是模的平方剩余(8分)121214.:41,1,1(mod ),(-)1(mod ).p p p k a p a p --=+≡≡证明令由定理知则15. 2,:141.n n m ++设是整数证明的任何奇因数都是的形式(10分)22215.:,4141.:1,41.|1,1(mod ),-1(),,4 1.m m p n p m p n n p QR p p m +++++≡-∈=+证明由于奇数都可表示成奇素数之积而且任意多个形如的整数之积也具有的形式我们只需证明若素数是的因数则具有的形式若则即由以上推论知 16. -1,1(mod )-1.p p x p p ≡若是素数则同余方程有个解(8分)16.:(),.,-1,1,2,3,,-1(mod ).Fermat p p x p p ≡证明由费马定理定理可知任意与互质的数都是它的解因此这个同余方程恰好有个不同的解即17. -1-1100101010,:9|9|.nn n n n i i N a a a a N a ==+++⋅+⇔∑设求证(8分)23111011017.101,101,101,,101(mod9),101010(mod9);n nn n n n n N a a a a a a a a ---≡≡≡≡∴=++++≡++++18. 52:641|2 1.+求证(8分)5248163232218.24,216,2256,2154,21(mod 641),210(mod 641),6412 1.≡≡≡≡≡-∴+≡∴+19. :,,()(,)([,]).m n N mn m n m n ϕϕ∈=证明若则(10分)12121219.:[,],(1).111()(1-)(1-)(1-),111([,])[,](1-)(1-)(1-),(,)[,],111()(,)[,](1-)(1-)(1-)(,)([,]).i kk kmn m n p i k mn mn p p p m n m n p p p mn m n m n mn m n m n m n m n p p p ϕϕϕϕ≤≤===∴==证明易知与有相同的素因数设它们是则20. ,,(mod ).p p a a a p ≡设是素数则对于任意的整数有(8分)120.:(,)1,,1(mod ),(()1),(mod ).(,)1,,0(mod ),p p pa p Euler a p p p a a p a p p a a a p ϕ-=≡=-∴≡>∴≡≡∴证明若由定理若则结论成立。
《初等数论》复习资料
《初等数论》 考试复习资料一、叙述题1.完全剩余系2.二次反转定律3.雅可比符号4.费马小定理5.平方非剩余6.欧拉定理二、计算和证明题1.已知正整数a=35,b=21,求(a,b),并将其表成a,b 的线性组合。
2.求同余式)32(m od 172≡x 的解. 3.求同余式组1(mod 4)2(mod5)3(mod 7)x x x ≡⎧⎪≡⎨⎪≡⎩的解。
4.已知正整数,a b 满足(,)7,[,]105a b a b ==,求,.a b5.求不定方程9125200.x y z +-=的通解.6.证明: 176212535|(17631254).-7.若今天是星期天,证明:再过101010天是星期四。
参考答案一、叙述题1.完全剩余系从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系2.二次反转定律设a,b是两个非零整数,我们定义雅克比符号括号下a除b,若存在整数x,使得x的平方恒等于a,那么就记括号下a除b等于1;否则就记括号下a除b等于负13.雅可比符号4.费马小定理费马小定理是欧拉定理的一个特殊情况:假如n和a的最大公约数是1的话,那么a^{\varphi (n)} \equiv 1 \pmod在这里φ(n)是欧拉商数。
欧拉商数的值是所有小于n的自然数中与n没有公约数的数的量。
假如n是一个质数,则φ(n) = n-1,即费马小定理。
5.平方非剩余设x为任意正整数,若p为4k+1型素数,且g是素数p的最小原根,设g^(2n-1) mod p = r(1<=n<=(p-1)/2),则y^2=p*x+r 与y^2=p*x -r 都无整数解。
设x为任意正整数,若p为4k-1型素数,且g是素数p的最小原根,设g^(2n-1) mod p = r(1<=n<=(p-1)/2)则y^2=p*x+r 都无整数解,但y^2=p*x -r 都有整数解。
6.欧拉定理二、计算和证明题1.已知正整数a=35,b=21,求(a,b),并将其表成a,b 的线性组合。
《初等数论》期期末复习资料
《初等数论》期期末复习资料一、单项选择题1、如果n 2,n 15,则30( )n .A 整除B 不整除C 等于D 不一定 2、大于10且小于30的素数有( ). A 4个 B 5个 C 6个 D 7个 3、模5的最小非负完全剩余系是( ).A -2,-1,0,1,2B -5,-4,-3,-2,-1C 1,2,3,4,5D 0,1,2,3,4 4、整数637693能被( )整除. A 3 B 5 C 7 D 95、不定方程210231525=+y x ( ).A 有解B 无解C 有正数解D 有负数解 6、 求525与231的最大公因子( ) A 、63 B 、21 C 、42 D 、12 7、同余式)593(m od 4382≡x ( ).A 有解B 无解C 无法确定D 有无限个解 8、不定方程210231525=+y x ( ).A 有解B 无解C 有正数解D 有负数解 9、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 10、整数637693能被( )整除. A 3 B 5 C 7 D 911、 求525与231的最大公因子( ) A 、63 B 、21 C 、42 D 、12 12、同余式)593(m od 4382≡x ( ).A 有解B 无解C 无法确定D 有无限个解13、不定方程210231525=+y x ( ).A 有解B 无解C 有正数解D 有负数解 14、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 15、整数637693能被( )整除. A 3 B 5 C 7 D 9 16、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定 17、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ Bb a =C ac T )(m od m bcD b a ≠19、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a =C ac T )(m od m bcD b a ≠20、=),0(b ( ). A b Bb -C bD 021、如果1),(=b a ,则),(b a ab +=( ). A a BbC 1D b a +22、小于30的素数的个数( ). A 10 B 9 C 8 D 7 三、计算题1、 求50!中2的最高次幂.2、令 =-1859, =1573,求( )=?3、 求525与231的最大公因子?4、解同余式)321(m od 75111≡x .5、求[525,231]=?6、求解不定方程18116=-y x .7、 解不定方程525x+231y=42.8、 求7x+4y=100的一切整数解. 9、 求-15x+25y=-100的一切整数解. 10、 求9x+24y-5z=1000的一切整数解。
初等数论期末复习
2015年5月8日9时1分
性质(9)
若 a ≡b (mod m1), a ≡b (mod m2), m=[ m1, m2 ], 则 a ≡ b (mod m) .
性质(10) 设d ≥1, d | m,若a ≡b (mod m) ,
则 a ≡ b (mod d ) .
性质(11) 若a ≡b (mod m),则 (a,m) = (b,m).
则一次同余方程ax ≡ b ( mod m )恰有一个解 .
一次同余方程有解的判定
定理3.1.3 设m为正整数, a, b是整数, (a, m)=d,则同
余方程 ax≡b (mod m) 有解的充分必要条件为 d | b.
定理3. 1. 4 设m为正整数, a为整数, (a, m)=d,
d | b,则同余方程 ax ≡ b (mod m) 恰有 d 个解.
变形(1):加上或减去模的倍数,推广的加减变形,
即 a≡b+mk (mod m); 变形(2):移项变形, 由 a≡b+c(mod m) 可得 a-c≡b(mod m); 变形(3):约去同余式两端的公约数,约简变形,
2015年5月8日9时1分
简化剩余系的充要条件
定理2.2 7 整数集合 {a1 , a2 , , a ( m) }为模m的 简化剩余系的充要条件是: ( i ) (ai, m) =1 ( 1≤i ≤ϕ (m) ); ( ii ) 各数关于模m两两不同余.
2015年5月8日9时1分
定理 2.2.8 若( a,m ) = 1 , x 通过模 m 的简化 剩余系,则 ax 也通过模 m 的简化剩余系。
2015年5月8日9时1分
பைடு நூலகம்
利用同余解答整除问题
初等数论知识点整理
初等数论知识点整理 1. 整数的基本性质:
- 整数的定义与整数集的基本运算
- 整数的大小与比较
- 整数的不同表示形式(十进制、二进制、八进制等) 2. 整除与约数:
- 整除的定义与性质
- 素数的定义与判定方法
- 约数的定义与性质
- 最大公约数与最小公倍数的概念与计算方法
3. 同余与模运算:
- 同余的定义与性质
- 同余的基本运算性质
- 模运算的基本性质
- 剩余类和完全剩余系的概念与性质
4. 质数与素数:
- 质数与素数的定义
- 质数与素数的性质和特性
- 素数的测试方法与算法
- 质因数分解的方法与应用
5. 数论基本定理:
- 唯一分解定理(素因数分解定理)
- 辗转相除法与欧几里得算法
- 欧拉函数与欧拉定理
- 费马小定理与扩展欧几里得算法
6. 数论问题的应用:
- 同余方程与线性同余方程
- 不定方程的整数解与应用
- 素数分布与素数定理
- 模重复性与周期性问题
注意:本整理的所有内容仅供参考,请勿将其作为官方教材或其他正式场合使用。
02013自学考试初等数论模拟试题(含答案)
02013自学考试初等数论模拟试题(含答案)一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9.7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解 C.()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( )A .()()f a g a 为可乘函数;B .()()f ag a 为可乘函数C .()()f a g a +为可乘函数;D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________; 23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件);28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30. ()48ϕ=_________________________________。
自考初等数论复习
初等数论初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法 最大公因数和辗转相除法 整除的进一步性质和最小公倍数 素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求3p :2,3 ; 8p :4 ;12p :1;17p :1,2,5;20p :1。
第二章:不定方程(4学时)自学12学时二元一次不定方程c by ax =+多元一次不定方程c x a x a x a n n =++Λ2211 勾股数 费尔马大定理。
习题要求29p :1,2,4;31p :2,3。
第三章:同余(4学时)自学12学时同余的定义、性质 剩余类和完全剩余系 欧拉函数、简化剩余系欧拉定理、费尔马小定理及在循环小数中的应用 习题要求43p :2,6;46p :1;49p :2,3;53p 1,2。
第四章:同余式(方程)(4学时)自学12学时同余方程概念 孙子定理高次同余方程的解数和解法 素数模的同余方程 威尔逊定理。
习题要求60p :1;64p :1,2;69p :1,2。
第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余 勒让德符号 二次互反律 雅可比符号、素数模同余方程的解法习题要求78p :2; 81p :1,2,3;85p :1,2;89p :2;93p :1。
第六章:原根与指标(2学时)自学8学时指数的定义及基本性质 原根存在的条件 指标及n 次乘余 模2 及合数模指标组、 特征函数习题要求123p :3。
➢ 第一章 整除 一、主要内容筛法、[x]和{x}的性质、n !的标准分解式。
二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除 整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。
认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。
初等数论复习资料
初等数论一、计算题求解不定方程9x +21y =144.解:因为(9,21)=3,3,所以有解;化简得3x +7y =48;考虑3x +7y =1,有x =-2, y =1,所以原方程的特解为x =-96, y =48,因此,所求的解是x =-96+7t , y =48-3t , t ∈Z 。
求不定方程x + 2y + 3z = 41的所有正整数解。
解:分别解x + 2y = tt + 3z = 41得x = t - 2uy = u u∈Z,t = 41 - 3vz = v v∈Z,消去t得x = 41 - 3v - 2uy = uz = v u,v∈Z。
由此得原方程的全部正整数解为(x, y, z) = (41 - 3v - 2u, u, v),u > 0,v > 0,41 - 3v - 2u > 0。
求[136,221,391]=?设n 的十进制表示是z xy 4513,若792∣n ,求x ,y ,z 。
解:因为792 = 8⋅9⋅11,故792∣n ⇔ 8∣n ,9∣n 及11∣n 。
我们有8∣n ⇔ 8∣z 45 ⇒ z = 6,以及9∣n ⇔ 9∣1 + 3 + x + y + 4 + 5 + z = 19 + x + y ⇔ 9∣x + y + 1, (1) 11∣n ⇔ 11∣z - 5 + 4 - y + x - 3 + 1 = 3 - y + x ⇔ 11∣3 - y + x 。
(2) 由于0 ≤ x, y ≤ 9,所以由式(1)与式(2)分别得出x + y + 1 = 9或18,3 - y + x = 0或11。
这样得到四个方程组:⎩⎨⎧=+-=++b x y a y x 31已知两整数相除,得商12,余数26,又知被除数、除数、商及余数之和为454.求被除数.解:a=12b +26, a +b +12+26=454, 12b +26+b +12+26=454,(12+1) b =454-12-26-26=390, b =30, 被除数a =12b +26=360+26=386.从5, 6, 7, 8, 9这五个数字中选出四个不同的数字组成一个四位数,它能同时被3, 5, 7整除,那么这些四位数中最大的一个是多少?解:被5整除,个数必为5,5+6+7+8=26, 5+6+7+9=27 ,5+6+8+9=28,5+7+8+9=29中唯27能被3整除,故选出的四个不同的数字是5, 6, 7,9,但不同排序有9765,9675,7965,7695,6975,6795,在黑板上写出三个整数,然后擦去一个,换成其他两数之和加1,继续这样操作下去,最后得到三个数为35,47,83.问原来所写的三个数能否是2,4,6?解:不能.因为原来所写的三个数若是2,4,6,每次操作后剩下的三个数是两偶一奇.甲物每斤5元,乙物每斤3元,丙物每三斤1元,现在用100元买这三样东西共100斤,问各买几斤?解:设买甲物x 斤,乙物y 斤,丙物z 斤,则5x + 3y +31z = 100, x + y + z = 100。
自考初等数论第一章试题及答案
自考初等数论第一章试题及答案一、选择题1. 下列哪个数是质数?A. 4B. 9C. 17D. 20答案:C2. 一个数能被3整除的特征是什么?A. 该数的各位数字之和能被3整除B. 该数的最后两位能被3整除C. 该数的倒数能被3整除D. 该数的各位数字之积能被3整除答案:A3. 如果a和b是互质数,那么它们的最大公约数是多少?A. 1B. aC. bD. ab答案:A二、填空题4. 一个数的最小倍数是______。
答案:它本身5. 100以内最大的质数是______。
答案:976. 如果两个数的最大公约数是12,最小公倍数是72,那么这两个数分别是______和______。
答案:12和72三、解答题7. 证明:如果a是质数,那么a^2 + a与1同为质数。
证明:假设a是质数,那么a只有1和a两个因数。
考虑a^2 + a,我们可以看到它不能被a整除,因为a^2 + a = a(a + 1),而a与a + 1是互质的。
如果a^2 + a是合数,那么它必须有一个大于1小于a^2 + a的因数,但这与a是质数矛盾,因为这意味着a^2 + a有除了1和a^2 + a之外的因数。
因此,a^2 + a与1同为质数。
8. 一个数被7除余1,被8除余3,被9除余4,求这个数。
解答:设这个数为x,根据题意我们有以下三个同余方程:x ≡ 1 (mod 7)x ≡ 3 (mod 8)x ≡ 4 (mod 9)我们可以使用中国剩余定理来解决这个问题。
首先找到7, 8, 9的乘积,即504,然后计算每个方程的Mi和Mi':M1 = 504 / 7 = 72, M1' = 1 (因为72 * 1 % 7 = 1)M2 = 504 / 8 = 63, M2' = 3 (因为63 * 3 % 8 = 3)M3 = 504 / 9 = 56, M3' = 2 (因为56 * 2 % 9 = 4)接下来计算x:x = (1 * 72 * 1) + (3 * 63 * 3) + (4 * 56 * 2)= 72 + 567 + 448= 1087但是我们需要找到小于504的最小正整数解,所以我们对1087取模504:x = 1087 % 504 = 87因此,满足条件的最小正整数是87。
《初等数论》复习思考题及参考答案
《初等数论》复习思考题及参考答案一、填空题1、16除-81的商是 -6 ,余数是 15 。
2、{-3.3} = 0.7 ;[-5.68] = -6 。
3、12!的标准分解式为 210⨯35⨯52⨯7⨯11 。
4、(1516,600)= 4 。
5、8270的标准分解式是 2⨯5⨯827 。
6、不定方程ax + by = c (其中a ,b ,c 是整数)有整数解的充要条件是 (a ,b )|c 。
7、模5的最小非负完全剩余系是 0,1,2,3,4 。
8、模6的绝对最小完全剩余系是 -3,-2,-1,0,1,2 。
9、3406的十进位表示中的个位数字是 9 。
10、7100被11除的余数是 1 。
11、ϕ(480) = 128 。
二、选择题1、417被-15除的带余除法表达式是( D )。
A 417 = (-15)⨯(-30)-33B 417 = (-15)⨯(-26)+27C 417 = (-15)⨯(-28)+(-3)D 417 = (-15)⨯(-27)+122、设n ,m 为整数,如果n 3,m 3,则9( A )nm 。
A 整除B 不整除C 等于D 小于3、整数6的正约数的个数是( D )。
A 1B 2C 3D 44、如果)(mod m b a ≡,c 是任意整数,则( A )。
A )(mod m bc ac ≡B bc ac =C ac ≢)(mod m bcD bc ac ≠5、如果( A ),则不定方程c by ax =+有解。
A c b a ),(B ),(b a cC c aD a b a ),(6、整数5874192能被( B )整除。
A 3B 3与9C 9D 3或97、大于20且小于40的素数有( A )。
A 4个B 5个C 6个D 7个8、模4的最小非负完全剩余系是( D )。
A -2,-1,0,1B -4,-3,-2,-1C 1,2,3,4D 0,1,2,39、整数637693能被( C )整除。
初等数论复习题答案
初等数论复习题答案1. 试述质数与合数的定义。
答案:质数是指大于1的自然数,除了1和它本身以外不再有其他因数的数。
合数则是指除了1和它本身之外,还有其他因数的自然数。
2. 请解释最大公约数和最小公倍数的概念。
答案:最大公约数(GCD)是指两个或多个整数共有约数中最大的一个。
最小公倍数(LCM)是指两个或多个整数的最小公共倍数。
3. 举例说明辗转相除法(欧几里得算法)的计算过程。
答案:设两个正整数为a和b(a > b),辗转相除法的过程是:用较大的数除以较小的数,得到余数r,然后用较小的数去除这个余数,再得到新的余数,如此反复,直到余数为0,最后的除数即为最大公约数。
4. 试证明费马小定理。
答案:费马小定理指出,如果p是一个质数,a是一个不被p整除的整数,则a^(p-1) ≡ 1 (mod p)。
证明过程通常涉及模运算和群论的基本概念。
5. 说明中国剩余定理的基本原理。
答案:中国剩余定理是数论中一个关于线性同余方程组的定理。
给定一组两两互质的模数和一组对应的余数,定理保证了存在一个唯一的解,这个解在模数乘积的模下是唯一的。
6. 什么是素数定理?请简要说明。
答案:素数定理描述了素数在自然数中的分布情况。
它指出,小于或等于给定数x的素数数量大约是x除以x的自然对数,即π(x) ≈ x / ln(x)。
7. 描述同余的概念及其性质。
答案:同余是指两个整数a和b,若它们除以正整数n后余数相同,则称a和b同余模n,记作a ≡ b (mod n)。
同余具有自反性、对称性和传递性等性质。
8. 简述模运算的性质。
答案:模运算的性质包括加法和乘法的封闭性、结合律、交换律、分配律以及模逆元的存在性等。
9. 试解释什么是完全数。
答案:完全数是指一个正整数,它等于其所有真因数(即除了自身以外的因数)之和。
10. 请解释什么是亲和数。
答案:亲和数是一对或一组数,其中每个数的所有真因数之和等于另一个数。
例如,220和284就是一对亲和数,因为220的真因数之和为1+2+4+5+10+11+20+22+44+55+110=284,而284的真因数之和也为220。
初等数论复习题题库及答案
《初等数论》本科一 填空题(每空2分)1.写出30以内的所有素数 2,3,5,7,11,13,17,19,23,29 .2.,(,)(,)(,)a b a b a b a b =设是任意两个不为零的整数,则 1 . 3.若,a b 是非零整数,则a 与b 互素的充要条件是存在整数,x y ,适1ax by +=4.写出180的标准分解式是 22235⋅⋅ ,其正约数个数有 (2+1)(2+1)(1+1)=18个.5.,1,2,,a b a b 设与是正整数则在中能被整除的整数恰有 []ab个.6.设,a b 是非零整数,c 是整数,方程ax by c +=有整数解(,x y )的充要条件是 (,)|a b c7. 若整数集合A 是模m 的完全剩余系,则A 中含有 m 个整数.8.ϕ(3)= 2 ;ϕ(4)= 2 .9.当p 素数时,(1)()p ϕ= 1p - ;(2)()k p ϕ= 1k k p p -- . 10.(),(,)1,1m m a m a ϕ=-≡设是正整数则 0 (m o d ).m 11.,,p p a a a -≡设是素数则对于任意的整数有 0 (m o d ).p 12.已知235(mod7)x +≡,则x ≡ 1 (m o d 7). 13.同余方程22(mod 7)x ≡的解是 4(mod7) . 14.同余方程2310120(mod 9)x x ++≡的解是 .X=6. . 15.(,)1n p =若,n p 是模的二次剩余的充要条件是 -121(mod ).p n p ≡ . 16.(,)1n p =若,n p 是模的二次非剩余的充要条件是 -121(mod ).p np ≡- .17.3()=5 -1 ; 4()=51 .18.,p 设是奇素数则2()p= 218(1).p --.19.,p 设是奇素数则1()p = 1 ;-1()p = -12(-1).p .20. 5()=9 1 ; 2()=45-1 .二 判断题(判断下列结论是否成立,每题2分).1. ||,|a b a c x y Z a bx cy ⇒∈+且对任意的有.成立2. (,)(,),[,][,]a b a c a b a c ==若则.不成立3. 23|,|a b a b 若则.不成立4.(mod ),0,(mod ).a b m k k N ak bk mk ≡>∈⇒≡ 成立5.(mod )(mod ).ac bc m a b m ≡⇒≡ 不成立6. 22(mod ),(mod )(mod )a b m a b m a b m ≡≡≡-若则或至少有一个成立. 不成立 7. 222(mod ),(mod )a b m a b m ≡≡若则.不成立8. 若x 通过模m 的完全剩余系,则x b +(b 是整数)通过模m 的完全剩余系. 成立 9. 1212{,,,}{,,,}.m m a a a b b b 若与都是模m 的完全剩余系不成立1122{,,,}.m m a b a b a b m +++则也是模的完全剩余系不成立10.若(,)1a m =,x 通过模m 的简化剩余系,则ax b +也通过模m 的简化剩余系. 不成立 11.12121212,,(,)1,()()().m m N m m m m m m ϕϕϕ∈==若则 成立12. 同余方程24330(mod15)x x -+≡和同余方程2412120(mod15)x x +-≡是同解的. 成立13. (mod ).ax b m ax my b ≡+=同余方程等价于不定方程成立14. 2,(mod ),() 1.am x a m m≡=当是奇素数时若有解则成立15. 2,()1,(mod ).am x a m m=≡当不是奇素数时若则方程一定有解不成立三 计算题1. (1859,1573)-求.(6分)解:1.(1859,1573)(1859,1573)(286,1573)(286,15732865)(286,143)(0,143)143-===-⨯===2.求 [-36,108,204].(8分)解:22232232.[36,108,204][36,108,204],3623,10823,2042317,[36,108,204]23171836.-==⨯=⨯=⨯⨯∴=⨯⨯=3. 求(125,17),以及x ,y ,使得125x +17y =(125,17).(10分)解:3.651,16-56-(17-26)36-173(125-177)-173125-2217.1253-17221,3,-22.x y =+==⨯=⨯=⨯⨯=⨯⨯∴⨯⨯===由等式起逐步回代得4. 求整数x ,y ,使得1387x -162y =(1387,162).(10分)解:4.9421,19-429-4(11-9)59-4115(20-11)-411520-911520-9(71320)322097132(91-71)97132914171329141(16291)73914116273(13878162)41162731387625162.1=⨯+=⨯=⨯=⨯⨯=⨯⨯=⨯⨯=⨯⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯-=⨯-⨯=⨯-⨯-⨯=⨯-⨯∴由等式起逐步回代得38773162625 1.⨯-⨯=5. 12!.分解为质因数乘积(8分)6. ,10|199!k k 求最大的正整数使.(8分)7. [1].100++求(10分) 8. 81743.x y +=求方程的整数解(6分)9. 19201909.x y +=求方程的正整数解(10分)10. 求方程111x -321y =75的整数解.(10分) 11. 12310661.x x x ++=求方程15的整数解(8分) 12. 361215.x y z ++=求不定方程的整数解(8分)13. 237.x y z ++=求不定方程的所有正整数解(8分)14. 19,2,3 5.30将写成三个分数之和它们的分母分别是和(10分) 15. 222370.x y x y +--=求方程的整数解(6分) 16. 331072.x y +=求方程的整数解(8分)17. 5()4.xy yz zx xyz ++=求方程的正整数解(10分)18. 4063().求的个位数字与最后两位数字十进制(10分)19. 67(mod 23).x ≡解同余方程(8分) 20. 12150(mod 45).x +≡解同余方程(8分)21. 2(mod 3)3(mod 5).2(mod 7)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(6分)22. 43()0(mod35),()289.f x f x x x x ≡=+++解同余式(10分) 23. 765:2720(mod5).x x x x --++≡解同余方程(6分)24. .求出模23的所有二次剩余和二次非剩余(8分)25. 25(mod11).x ≡判断方程有没有解(6分)26. 2563,429(mod563).x ≡已知是素数判定方程是否有解(8分) 27. 3求以为其二次剩余的全体素数.(8分)28. 10173:(1)();(2)().1521计算(8分) 29. (300).ϕ计算(6分)30. 3(mod8)11(mod 20).1(mod15)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(10分)四 证明题1、,,,, 1.:|,|,|.a b x y ax by a n b n ab n +=设是两个给定的非零整数且有整数使得求证若则(6分)证明:1.()|,|.n n ax by nax nbyab na ab nb ab n =+=+∴又2.121212,,,,0,.4|.n n n a a a a a a a a a n n +++==设是整数且则(8分)证明:1212121231122.,,,,,,0,2.,,,.,,2(2).-,(-1),,.,,,,4.n n n i n n n n a a a a a a n a a a a a i n a a a a n a a a n +++=∴≤≤+++=∴若是奇数则都是奇数则不可能即在中至少有一个偶数如果只有一个偶数不妨设为则不整除由知左边是个奇数的和右边是偶数这是不可能的在中至少有两个偶数即3. 任给的五个整数中,必有三个数之和被3整除.(8分)证明:1231231231231231233.3,03,1,2,3,4,5.(1)0,1,2,0,1,2,3()3.(2)0,1,2,,(0,12),3()3.i i i i i i i a q r r i r r r r a a a q q q r r r r r r r a a a q q q r =+≤<====++=+++====++=+++设若在中数都出现不妨设则成立若在中数至少有一个不出现则至少有三个取相同的值令或则成立4. 22,,9|,3|(,).a b a ab b a b ++设是整数且则(8分)证明:2222224.9,9()3,3()3,3(),3,9(),93,3,33.3,3,3.3.3,3.3(,).a ab b a b ab a b ab a b a b a b ab ab a b a a b b b a b a a b ++∴-+∴-+∴-∴-∴-∴∴∴-∴-∴或若若故5. 设,a b 是正整数,证明()[,][,]a b a b a b a b +=+.(8分)证明:()5.()[,](),(,)(,)()[,](,),(,)(,),()[,](,),()[,],(,)ab b a b a b a b a b a a b a b b a b b a b b a b b a b a b b a b b a b a b b a b b a b a b ++=+⋅=⋅+=+++=∴+=++=+∴而即结论成立6. (mod ),0,,(mod ).nna b m n n N a b m ≡>∈≡当时又则(6分)证明:123216.(mod ),,()(),,(mod ).n n n n n n n n n n a b m m a b a b a b a a b a b b m a b a b m ----≡∴--=-++++∴-≡又即7. 12{,,,},{}.m A x x x m x x =设是模的一个完全剩余系以表示的小数部分11:(,)1,{}(-1).2mi i ax b a m m m =+==∑证明若则(10分) 证明:1211111117.2,{,,,},(1),1(1)1{}{}{}{}.22m i mm mm m i i j j j j ax b ax b ax b m ax b km j j m ax b j j j j m m m k m m m m m m --=====++++=+≤≤+--=+====⋅=∑∑∑∑∑由定理知也是模的一个完全剩余系可设从而8. ,:n N ∈设证明1()2,2k n n n k N ϕ==∈的充要条件是.(10分)证明:-1-118.2,(2)2(1-)2.22(),2,2|,21()()()(2)(2)()2()2,222(),1,.(()112)k k k k k k k k k nn nn n t t n t n t n t t t t t t t t t n n ϕϕϕϕϕϕϕϕϕϕϕ⇐====⇒==/=====⨯⋅=⋅=∴==⇔=若则若设则即从而得证注或9. ,5|12344.n n n n n N n ∈+++⇔/设则(10分)证明:444449.(5)4,,1(mod5)(14).4,03,1234(1)1(2)2(3)3(4)41234(mod5).5|1234,5|1234,0,1,2,30,4;4,0,5|1234,n n n n q r q r q r q rr r r r n n n n r r r r r r r r k k n q r r r r n n r ϕ=≡≤≤=+≤≤+++≡⋅+⋅+⋅+⋅≡+++⇒++++++==∴//⇐=+++/由定理知令则若即得把代入检验可知若则易知5|1234.n n n n ∴+++/10. ()1,(,)1,:(mod )(mod ).m m a m x bam ax b m ϕ-=≡≡设是正整数证明是同余方程的解证明:()()()-110.(,)1,,1(mod ).(mod ),(,)1,(mod ).m m m a m Euler a m ax b a b m a m x a b m ϕϕϕ=≡∴≡≡=∴≡由定理则11. -121(mod ).p n p n p ≡-是模的二次非剩余的充要条件是(10分)证明:-111221122-121211.(,)1,,1(mod ),(1)(1)0(mod ),,10(mod )10(mod ),1(mod ),1(mod ).p p p p p p p n p Euler n p nnp p n p np n p n p np -----=≡∴+-≡+≡-≡≡∴≡-若则由定理是素数则或中必有一个成立是模的二次剩余的充要条件是 12. 12(mod ),(mod ),y a p y a p p ≡≡设都是模的平方剩余121211:(mod ),(mod ),(mod ).y a a p y b b p p y a b p p ≡≡≡求证都是模的平方剩余是模的平方非剩余(10分)证明:11112222121211122212121112.1,1(mod ),1(mod ),()()1(mod ),()1(mod ),.p p p p p p p a a p b b p a a b b p a b p -------≡≡≡≡-∴≡≡≡-∴由定理知得证13. 22,43,:(mod ),(mod ).p q n x p q x q p +≡≡设为两个形如的奇质数求证若无解则有两个解(10分)14. 1(mod 4),(mod ).p p y a p p ≡≡设是适合的素数是模的平方剩余:(mod ).y a p p ≡-证明也是模的平方剩余(8分)15. 2,:141.n n m ++设是整数证明的任何奇因数都是的形式(10分) 16. -1,1(mod )-1.p p x p p ≡若是素数则同余方程有个解(8分) 17. -1-1100101010,:9|9|.nn n n n i i N a a a a N a ==+++⋅+⇔∑设求证(8分)18. 52:641|2 1.+求证(8分)19. :,,()(,)([,]).m n N mn m n m n ϕϕ∈=证明若则(10分) 20. ,,(mod ).p p a a a p ≡设是素数则对于任意的整数有(8分)。
初等数论知识点
初等数论知识点数论是数学的一个重要分支,而初等数论则是数论中较为基础的部分,它主要研究整数的性质和相互关系。
下面让我们一起来了解一些初等数论的重要知识点。
一、整除整除是初等数论中的一个核心概念。
如果整数 a 除以整数 b(b≠0),商是整数且没有余数,我们就说 a 能被 b 整除,记作 b | a。
例如,15÷3 = 5,没有余数,所以 3 | 15。
整除具有一些基本的性质:1、如果 a | b 且 b | c,那么 a | c。
2、如果 a | b 且 a | c,那么对于任意整数 m、n,有 a |(mb+ nc)。
二、素数与合数素数(质数)是指一个大于 1 的整数,除了 1 和它自身外,不能被其他正整数整除。
例如 2、3、5、7 等都是素数。
合数则是指除了能被 1 和本身整除外,还能被其他数(0 除外)整除的自然数。
比如 4、6、8、9 等。
素数具有重要的地位,有一个著名的定理叫做“算术基本定理”,它指出任何一个大于 1 的整数都可以唯一地分解成素数的乘积。
三、最大公因数与最小公倍数两个或多个整数共有的因数中最大的一个,称为它们的最大公因数,记作(a, b)。
例如,12 和 18 的公因数有 1、2、3、6,其中最大的是 6,所以(12, 18) = 6。
两个或多个整数共有的倍数中最小的一个,称为它们的最小公倍数,记作 a, b。
对于 12 和 18,它们的公倍数有 36、72 等,其中最小的是 36,所以 12, 18 = 36。
求最大公因数和最小公倍数可以使用质因数分解法或辗转相除法。
四、同余同余是指两个整数 a 和 b 除以正整数 m 所得的余数相同,就说 a 和b 对模 m 同余,记作a ≡ b (mod m)。
同余有很多性质,比如如果a ≡ b (mod m),c ≡ d (mod m),那么a +c ≡b + d (mod m),ac ≡ bd (mod m),ac ≡ bd (mod m)等。
7月浙江自考初等数论试题及答案解析
1浙江省2018年7月自学考试初等数论试题课程代码:10021一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.-30被-9除的余数是( )A.-3B.-6C.3D.6 2.下列给出的数中是合数的是( )A.1063B.1073C.1093D.11033.⎪⎪⎭⎫ ⎝⎛4001000中5的幂指数是( )A.1B.2C.3D.44.不能表示为5x +7y (x , y 是非负整数)的最大整数是( )A.23B.24C.25D.265.下列给出的素数模数中,3是平方非剩余的是( )A.37B.47C.53D.59二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1.60480的标准分解式为______.2.μ(50400)=______.3.π(55.5)=______.4.对任意的正整数n ,最大公因数(12n +1,30n +3)=______.5.若 (n)=4,则n=______.6.同余方程6x≡7(mod 23)的解是______.7.不定方程6x+9y=30的通解是______.8.写出模10的一个最小的非负简化剩余系,并要求每项都是7的倍数,则此简化剩余系为______.9.326被50除的余数是______.10.梅森数M23是______(填素数或合数).三、计算题(本大题共4小题,每小题10分,共40分)1.已知两正整数中,每一个除以它们的最大公约数所得的商之和等于18,它们的最小公倍数等于975,求这两个数。
2.有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人。
已知这队士兵不超过170人,问这队士兵有几人?3.求正整数x,使x2-1216是完全平方数。
4.已知563是素数,判断不定方程x2+563y=429是否有整数解。
初等数论 期末复习
题目:一、求同余式的解:111x 75(mod321)≡二、求高次同余式的解:)105(m od 0201132≡-+x x 。
三、求高次同余式的解: 27100x x ++≡(mod 13). 四、计算下列勒让德符号的值:105223-⎛⎫⎪⎝⎭, 91563⎛⎫⎪⎝⎭五、计算下列勒让德符号的值:)593438(,)1847365(六、韩信点兵:有兵一队,若列成五行纵队,则末行一人;成六行纵队,则末行五人;成七行纵队,则末行四人;成十一行纵队,则末行十人。
求兵数。
七、设 b a ,是两个正整数,证明: b a ,的最大公因子00(,)a b ax by =+,其中00ax by +是形如ax by +(,x y 是任意整数)的整数里的最小正数. 八、证明:存在无穷多个自然数n ,使得n 不能表示为p a +2(a > 0是整数,p 为素数)的形式。
九、证明: 若方程 11...0n n n x a x a -+++= (0,i n a > 是整数,1,...,i n =)有有理数解,则此解必为整数.十、证明: 若(,)1a b =, 则(,)12a b a b +-=或十一、证明:设N ∈c b a ,,,c 无平方因子,c b a 22,证明:b a 。
十二、设p 是奇素数,1),(=p n , 证明: ⎪⎪⎭⎫ ⎝⎛≡-p n np 21 (mod p ). 十三、设m > 1,模m 有原根,d 是)(m ϕ的任一个正因数,证明:在模m 的缩系中,恰有)(d ϕ 个指数为d 的整数,并由此推出模m 的缩系中恰有))((m ϕϕ个原根。
十四、设g 是模m 的一个原根,证明:若γ通过模()m ϕ的最小非负完全剩余系, 则g γ通过模m 的一个缩系。
第一题:求同余式的解:111x 75(mod321)≡ 解答:(111,321)3,375=∴同余式有三个解11175321x (m o d )333≡ 即 37x 25(mod107)≡ 4x 75(m o d 10≡ 又x 2775(mod107)99(mod107)≡⨯≡因此同余式的解为x 99,206,313(mod321)≡。
自考初等数论试题及答案
初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解.A c b a ),(B ),(b a cC c aD a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数. 2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391] ------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ; -------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论复习要求
一、填空题(每小题 5 分,共 20 分) 1.设 n 为整数,则 n3 被 6 除后可能取到的最小非负余数为________________。 2.设 a1, a2 , c 是正整数,当___________时,不定方程 a1x a2 y c 一定有解。 3. 用 [x] 表 示 x 的 整 数 部 分 , {x} 表 示 x 的 小 数 部 分 , 则 [-1.3]= __________ , {-1.3}=_________。
4.求 28!的标准质因数分解式。 5.求1571682 的十进制表示的末两位数。 三、判断题及叙述题(每小题 3 分,共 12 分)
1.设 q 为正整数, a,b 为整数, 则由q ab可推出q a或q b 。 ()
2. 设 m 为 正 整 数 , a,b,c 为 整 数 , ac bc(mod m), 则 a b(mod m) 。 ()
2.一次同余式与同余式组 【考核知识点】 同余式两端公约数的约去;一元一次同余式的概念及其解法;二元一次不定方程的同余 式解法;中国剩余定理;一次同余式组。 【考核要求】 (1)理解一次同余式的概念与性质; (2)熟练掌握一元一次同余式的解法; (3)掌握二元一次不定方程的同余式解法; (4)了解中国剩余定理; (5)掌握一次同余式组的解法。
这与 2n 1 是质数矛盾。
3.不妨设这个有理数是
b a
,
a
1,
(a,
b)
1;
若
b a
k
c
是整数,则 ca k
bk ,所以 a | bk ;
4.19x 3mod 31 的解为___________________。
二、计算题(每小题 10 分,共 50 分) 1.若今天是星期一,问 350 天后是星期几? 2.求不定方程 7x + 13 y = 123 的全部正整数解。 3.解同余方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数论初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法 最大公因数和辗转相除法 整除的进一步性质和最小公倍数 素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求3p :2,3 ; 8p :4 ;12p :1;17p :1,2,5;20p :1。
第二章:不定方程(4学时)自学12学时二元一次不定方程c by ax =+多元一次不定方程c x a x a x a n n =++Λ2211 勾股数 费尔马大定理。
习题要求29p :1,2,4;31p :2,3。
第三章:同余(4学时)自学12学时同余的定义、性质 剩余类和完全剩余系 欧拉函数、简化剩余系欧拉定理、费尔马小定理及在循环小数中的应用 习题要求43p :2,6;46p :1;49p :2,3;53p 1,2。
第四章:同余式(方程)(4学时)自学12学时同余方程概念 孙子定理高次同余方程的解数和解法 素数模的同余方程 威尔逊定理。
习题要求60p :1;64p :1,2;69p :1,2。
第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余 勒让德符号 二次互反律 雅可比符号、素数模同余方程的解法习题要求78p :2; 81p :1,2,3;85p :1,2;89p :2;93p :1。
第六章:原根与指标(2学时)自学8学时指数的定义及基本性质 原根存在的条件 指标及n 次乘余 模2 及合数模指标组、 特征函数习题要求123p :3。
➢ 第一章 整除 一、主要内容筛法、[x]和{x}的性质、n !的标准分解式。
二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除 整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。
认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。
能熟练求出二个整数的最大公因数和最小公倍数,掌握高斯函数[x]的性质及其应用。
三、重点和难点(1)素数以及它有关的性质,判别正整数a为素数的方法,算术基本定理及其应用。
(2)素数有无穷多个的证明方法。
(3)整除性问题的若干解决方法。
(4)[x]的性质及其应用,n!的标准分解式。
四、自学指导整除是初等数论中最基本的概念之一,b∣a的意思是存在一个整数q,使得等式a=bq 成立。
因此这一标准作为我们讨论整除性质的基础。
也为我们提供了解决整除问题的方法。
即当我们无法用整除语言来叙述或讨论整除问题时,可以将其转化为我们很熟悉的等号问题。
读者要熟练掌握并能灵活应用。
特别要注意,数论的研究对象是整数集合,比小学数学中非负整数集合要大。
本章中最重要的定理之一为带余除法定理,即为它可以重作是整除的推广。
同时也可以用带余除法定理来定义整除性,(即当余数r=0时)种很重要的思想方法,它为我们解决整除问题提供了又一条常用的方法。
同时也为我们建立同余理论建立了基础。
读者应熟知常用的分类方法,例如把整数可分成奇数和偶数,特别对素数的分类方法。
例全体奇素数可以分成4k+1,4k+3;或6k+1,6k+5等类型。
和整除性一样,二个数的最大公约数实质上也是用等号来定义的,因此在解决此类问题题的常用方法之一。
读者应有尽有认真体会该定理的证明过程。
既有联系,又有区别。
要认真体会这些相关的性质,a1 ,b1使用相应的定理,要注意,相关定理及推论中互素的条件是经常出现的。
读者必须注意定理成立的条件,也可以例举反例来进行说明以加深影响。
顺便指出,若最小公倍数实际上与最大公因数为对偶命题。
特别要指出的是a和b的公倍数是有无穷多个。
所以一般地在无穷多个数中寻找一个最小数是很困难的,为此在定义中所有公倍数中的最小的正整数。
即自然数的任何一个子集一定有一个最小自然数有在。
最小公倍数的问题一般都可以通过以下式子转化为最大公因数的问题。
两者的关系为上述仅对二个正整数时成立。
当个数大于2时,上述式子不再成立。
证明这一式子的关键是寻找a , b的所有公倍数的形式,然后从中找一个最小的正整数。
解决了两个数的最小公倍数与最大公因数问题后,就可以求出素数是数论研究的核心,许多中外闻名的题目都与素数有关。
除1外任何正整数不是质数即为合数。
判断一个已知的正整数是否为质数可用判别定理去实现。
判别定理又是证明素数无穷的关键。
实际上,对于任何正整数n>1,由判别定理一定知存在素数p,使得p∣n 。
即任何大于1的整数一定存在一个素因数p 。
素数有几个属于内在本身的性质,这些性质是算术基本定理是整数理论中最重要的定理之一,即任何整数一定能分解成一些素数的乘积,而且分解是唯一的,不是任何数集都能满足算术基本定理的,算术基本定理为我们提供了解决其它问题的理论保障。
它有许多应用,例如可求最大公约数,正整数正约数的个数等方面问题,对具体的n,真正去分解是件不容易的事。
对于较特殊的n,例如[x]的性质又提供了解决带有乘除符号的整除问题的方法。
本章的许多问题都围绕着整除而展开,读者应对整除问题的解决方法作一简单的小结。
五、例子选讲补充知识①最小自然数原理:自然数的任意非空子集中一定存在最小自然数。
②抽屉原理:(1)设n是一个自然数,有n个盒子,n+1个物体,把n+1个物体放进n个盒子,至少有一个盒子放了两个或两个以上物体;(2)km+1个元素,分成k组,至少有一组元素其个数大于或等于m+1;(3)无限个元素分成有限组,至少有一组其元素个数为无限。
③梅森数:形如④费尔马数:n⑤设n =k k p p αα...11,设n 的正因子个数为d (n ),所有正因子之和为)(n σ,则有⑥有关技巧1. 整数表示a =a 0×10n +a 1×10n -1+…+a n ,2.整除的常用方法a. 用定义b. 对整数按被n 除的余数分类讨论c. 连续n 个整数的积一定是n 的倍数d. 因式分解e. 用数学归纳法f. 要证明a|b ,只要证明对任意素数p ,a 中p 的幂指数不超过b 中p 的幂指数即可,用p (a )表示a 中p 的幂指数,则 例题选讲例1.请写出10个连续正整数都是合数. 解: 11!+2,11!+3,……,11!+11。
例2. 证明连续三个整数中,必有一个被3整除。
证:设三个连续正数为a ,a +1,a +2,而a 只有3k ,3k +1,3k +2三种情况,令a =3k ,显然成立,a =3k +1时,a +2=3(k+1),a =3k +2时,a +1=3(k +1)。
例3. 证明lg2是无理数。
证:假设lg2是有理数,则存在二个正整数p ,q ,使得lg2=qp,由对数定义可得10p =2q ,则有2p ·5p =2q ,则同一个数左边含因子5,右边不含因子5,与算术基本定理矛盾。
∴lg2为无理数。
例4. 求(21n+4,14n+3)解:原式=(21n+4,14n+3)=(7n+1,14n+3)=(7n+1,7n+2)=(7n+1,1)=1例5. 求2004!末尾零的个数。
解:因为10=2×5,而2比5多, 所以只要考虑2004!中5的幂指数,即5(2004!)=499520045200412520042520045200454=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛例6.证明(n !)(n-1)!|(n !)!证:对任意素数p ,设(n !)(n -1)!中素数p 的指数为α, (n !)!中p 的指数β,则∑⎪⎪⎭⎫⎝⎛-=∞=11k k p n n )!(α,∑⎪⎪⎭⎫⎝⎛-=∞=11k k p n n !)!(β,)()(x n nx ≥Θ α=∑⎪⎪⎭⎫⎝⎛-=∑⎪⎪⎭⎫⎝⎛-≥∑⎪⎪⎭⎫ ⎝⎛-=∑⎪⎪⎭⎫ ⎝⎛∴∞=∞=∞=∞=1111111k k k k k k k k pn n p n n p n n pn !)!(!)!()!(! 即αβ≥,即左边整除右边。
例7. 证明2003|(20022002+20042004-2005) 证:∵ 20022002=(2003-1)2002=2003M 1+120042004=(2003+1)2002=2003M 2+1 ∴20022002+20042004-2005=2003(M 1+M 2-1)由定义2003|(20022002+20042004-2005)例8. 设d (n )为n 的正因子的个数,σ (n )为n 的所有正因子之和,求d (1000),σ (1000)。
解:∵ 1000=23·53∴ d (1000)=(3+1)(3+1)=16,σ (1000)=1515121244--⋅--例9. 设c 不能被素数平方整除,若a 2|b 2c ,则a |b 证:由已知p (c )≤1,且p (a 2)≤p (b 2c )∴ 2p (a )≤2p (b )+p (c ) , ∴ p (a )≤p (b )+2)(c p 即p (a ) ≤p (b ) , ∴ a|b例10. 若M n 为素数,则n 一定为素数。
证:若n 为合数,则设n =ab ,(1<a,b <n )∴ 2ab -1=(2a )b -1=(2a -1)M 为合数,与M n 为素数矛盾, ∴ n 为素数。
例11. 证明对任意m,n ,m ≠n , (F n ,F m )=1。
证:不妨设n>m ,则F n -2=(1212--n )(1212+-n )=(F n -1-2) (1212+-n )= F n -1F n -2……F m - F 0设(F n ,F m )=d ,则d |F n , d |F m ⇒d |2 但F n 为奇数,∴d =1, 即证。
例12. 设m,n 是正整数。
证明(,)(21,21)21m n m n --=-证 : 不妨设nm≥。
由带余数除法得,11r n q m +=.n r ≤≤10我们有121221222121111111-+-=-+-=-+r n q r r r r n q m )(由此及12121--nq n |得,),(1212--n m =),(12121--r n注意到),(),(1r n n m =,若01=r ,则n n m =),(,结论成立.若01>r ,则继续对),(12121--r n 作同样的讨论,由辗转相除法知,结论成立。
显见,2用任一大于1的自然a 代替,结论都成立。
例13. 证明:对任意的正整数n ,成立如下不等式2lg lg k n ≥。
其中n lg 是数n 的以10为底的对数,k 是n 的不同的素因数(正的)的个数。