北师大版初中数学八年级上册《第四章一次函数2一次函数与正比例函数》优质课导学案_0

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章一次函数

2 .—次函数

一、学生分析

在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续

通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。本节课进一步研究其中最简单的一种函数一一一次函数•由于

有前面内容的铺垫,学生已经会建立变量之间的关系,可能有部分学生表述上还不太规范,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成x,y=1,x-y--1等,培养学生良好的书写习惯.

二、教学任务分析

《一次函数》是义务教育课程标准北师大版实验教科书八年级(上)第四

章《一次函数》的第二节.本节内容安排了1个课时:让学生理解一次函数和正比例函数的概念,能根据已知信息写出简单的一次函数表达式,并初步形成利用函数的观点认识现实世界的意识和能力.

教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时教材是将正比例函数作为一次函数特殊情况给出来的.

本节课教学目标分析是:

(1)理解一次函数和正比例函数的概念;

⑵能根据所给条件写出简单的一次函数表达式.

(3) 经历一般规律的探索过程,发展学生的抽象思维能力;

(4) 经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力.

(5) 体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.

本节课教学重点是:

理解一次函数和正比例函数的概念.

本节课教学难点是:

能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力

三、教学过程设计

本节课设计了七个环节:第一环节:复习引入,侯课朗读;第二环节:问题引入,同学交流;第三环节:归纳概括,总结概念;第四环节:巩固辨析,理清概念;第五环节:应用拓展,提高能力;第六环节:课堂小结;第七环节:布置作业.

第一环节:复习引入,侯课朗读

科代表引领大家阅读学案P71的学习准备

(1) 函数的概念。

(2) 函数有哪些表示方式?

意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法,为这节新课的学习做好知识铺垫;同时通过阅读的整齐与否也检查了同学们的预习情况。

第二环节:问题引入,同学交流

内容:

1. 小明早晨吃早点,必吃一碗粥和x个包子,粥1元一碗,包子0.8元一个,那么小明的早点费用y= , 其中是自变量,是因变量•答案:y=0.8x+1 , x, y

2某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y 增加0.5cm.

(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并

填入下表:

⑵你能写出x与y之间的关系式吗?

答案(1) 3 、3.5、4、4.5、5、5.5 ;(2) y = 3+ 0.5x.

例2某辆汽车油箱有汽油60L,汽车每行驶50km耗油6L.

(1)完成下表:

⑵你能写出x与y之间的关系式吗?

(3)你能写出邮箱剩余油量z(L)与汽车行驶路程程x(km)之间的关系吗?

答案(1)0,6,12,18,24,36 ;

⑵x与y之间的关系式为y=0.12x ;

(3) z=60-0.12x

意图:这三个问题分别是学案和教材上的内容,事先我安排了预习,课

堂上主要让同学交流自己的看法和意见,教师点评,为接下来的总结概括作铺垫。第三环节:归纳概括,总结概念

在上面的活动中:得到几个关系式:y=0.8x+1 ,y=3+0.5x,y=0.12x ,y=60-0.12x ,请同学们找出这些关系式的共同点,并回答问题:

(1)这些变化过程中自变量分别是什么?因变量分别是什么?

自变量x ,因变量y

(2)这些关系式是关于自变量的几次式?

一次式

(3)关于X的一次式的一般形式是什么?

y=kx+b(k 和,k,b 为常数)

通过观察、探索、总结,归纳出一次函数与正比例函数的概念:

一般地,若两个变量x,y间的关系式可以表示成y二kx+b(k,b为常数,k工0)的形式,则称y是x的一次函数(x是自变量,y为因变量).特别地,当b= 0时, 则y是x的正比例函数.

意图:从生动有趣的生活问题情景(吃早饭,弹簧的长度、汽车油箱中的余油量)出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.其间引导学生大胆猜想,勇于探索,鼓励学生积极思考,提高学生的分析问题、解决问题、总结归纳的能力.

本课主要从函数解析式这一角度去研究一次函数,这是学生第一次正式接触函数

的表达式,让学生逐步学会从函数表达式去认识函数,进一步掌握一次函数

的定义.

第四环节:巩固辨析,理清概念

内容:

例1判断下列函数是否为x的一次函数或者是正比例函数?如果是,请指出k 和b.

2 1 (1)y=-x+1 (2) y = 2x⑶ y=0.5x ⑷ y=(m-2)x+n (5) y =

x 解:(1)y=-x+1为x的一次函数,但不是x的正比例函数k=-1,b=1

(3)y=0.5x 为x的一次函数,也是x的正比例函数,k=0.5,b=0

例2 写出下列各题中y与x之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?

(1)汽车以60km/h的速度匀速行驶,行驶路程为y(km)与行驶时间x(h)之间的关系;

解:由路程=速度X时间,得y=60x ,

y是x的一次函数,也是x的正比例函数.

(2)圆的面积y (cm2 )与它的半径x (cm)之间的关系.

解:由圆的面积公式,得y= n x2,

y不是x的正比例函数,也不是x的一次函数.

(3)—棵树现在高5 0 cm,每个月长高2 cm, x月后这棵树的高度为y cm. 解:这棵树每月长高2 cm,x个月长高了2x cm,因而y=50+2x,y是x的一次函数,但不是x的正比例函数.

意图:对本节概念进行巩固练习.

第五环节:应用拓展提高能力

内容:

1.若函数y=(m-1)x m「3是关于x的一次函数,求m的值

解:若y是x的一次函数,则

m-1和

m =1 解得m=-1

2. 已知函数y = (n —2)x + 2n+ 1,若它是一次函数,求n的取值范围;若它是正比例函数,求n的值.

相关文档
最新文档