高中化学选修3-物质结构与性质-全册知识点总结
高中化学《选修三物质结构与性质》知识归纳
![高中化学《选修三物质结构与性质》知识归纳](https://img.taocdn.com/s3/m/64facf60182e453610661ed9ad51f01dc381574e.png)
高中化学《选修三物质结构与性质》知识归纳选修三《物质结构与性质》是高中化学课程中的一本重要教材。
本书主要介绍了物质的结构与性质的关系,以及有机化合物、配位化学、无机材料等内容。
下面是关于该教材的知识归纳。
第一章物质的结构和性质1.物质的微观结构:原子、离子和分子是物质的微观结构。
2.物质的宏观性质:密度、熔点、沸点、导电性、导热性、溶解性等是物质的宏观性质。
3.物质的宏观性质与微观结构的关系:物质的性质与其微观结构相关,如金属的导电性、晶体的硬度等。
第二章有机化合物的结构和性质1.有机化合物的元素组成:有机化合物主要由碳、氢和少量氧、氮、硫等元素组成。
2.有机化合物的结构:有机化合物由分子构成,分子由原子通过共价键连接。
3.有机化合物的性质:有机化合物具有燃烧性、酸碱性、氧化还原性、流动性、挥发性等特性。
4.有机物的分类:根据分子中所含的官能团,有机物可分为醇、酮、醛、酸、酯、醚、芳香化合物等不同类型。
第三章有机反应与有机合成1.有机反应的定义:有机反应是指有机化合物在适当条件下发生变化,形成具有新性质的有机化合物。
2.脱水反应:脱水反应是指有机化合物中的水分子与有机分子发生反应,生成新的有机化合物。
3.氢化反应:氢化反应是指有机化合物中的氢气与有机分子发生反应,生成新的有机化合物。
4.酸碱催化:酸碱催化是指在酸碱存在的条件下,有机化合物的反应速率增加。
第四章金属配合物1.配位化合物的概念:配位化合物是指由一个或多个给体与一个或多个受体之间通过配位键结合形成的化合物。
2.配位键:配位键是指由配体中的一个或多个电子对与金属离子形成的共价键。
3.配位数:配位数是指一个金属离子周围配位体的数目。
4.配位化合物的性质:配位化合物具有明显的颜色、溶解度、稳定性等特性。
第五章无机材料1.无机材料的分类:无机材料可分为金属材料、非金属材料和无机非金属材料。
2.无机材料的性质:金属材料具有导电性、延展性、塑性等特性;非金属材料主要用于绝缘材料、陶瓷材料等;无机非金属材料具有耐高温、耐腐蚀等特性。
高考化学选修三知识点总结汇编
![高考化学选修三知识点总结汇编](https://img.taocdn.com/s3/m/eec3b065360cba1aa911da66.png)
学习-----好资料高中化学选修3知识点全部归纳(物质的结构与性质)▼第一章原子结构与性质.一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如Cr [Ar]3d54s1、Cu [Ar]3d104s1. 2924(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
高中化学选修3物质结构与性质全册知识点总结
![高中化学选修3物质结构与性质全册知识点总结](https://img.taocdn.com/s3/m/663770b47d1cfad6195f312b3169a4517623e573.png)
高中化学选修3物质结构与性质全册知识点总结一、物态变化1.固体、液体和气体的特点和微观结构。
2.相变的概念及其条件。
3.气体的压力、体积和温度的关系(气体状态方程)。
4.确定气体的压强、体积和温度的实验方法。
二、物质的分子结构1.分子的结构和性质的关系。
2.分子的极性与非极性。
3.分子的键型及其特点。
4.共价键的键能和键长的关系。
三、化学键的性质1.同种键和异种键的定义和举例。
2.键能的概念及其在化学反应中的表现。
3.键长的测定方法及其在化学反应中的影响。
4.共价键的极性和电性的概念及其与键型的关系。
四、物质的热稳定性1.温度和物质的热稳定性的关系。
2.物质的热分解与热合成的条件和特点。
3.确定物质的热分解和热合成的方法。
五、物质的电解性1.电解质和非电解质的区别和举例。
2.电解质的导电性及其与离子的浓度和动力学的关系。
3.强电解质和弱电解质的区别和举例。
六、分子与离子的形成1.分子化合物和离子化合物的区别和举例。
2.确定分子和离子的产生与存在的条件。
七、氢键和离子键1.氢键的特点和举例。
2.氢键的性质和应用。
3.离子键的特点和举例。
4.离子键的性质和应用。
八、离子晶体和共价晶体1.离子晶体的特点和举例。
2.确定离子晶体的特性和存在的条件。
3.共价晶体的特点和举例。
4.确定共价晶体的特性和存在的条件。
九、化学键的杂化1.杂化的概念和种类。
2.方向性杂化的概念和应用。
3.确定方向性杂化的条件和特点。
十、分子结构的测定1.确定分子结构的方法。
2.确定分子结构的仪器。
3.确定分子结构的实验步骤和原理。
综上所述,以上是高中化学选修3《物质结构与性质》全册的知识点总结。
通过对这些知识点的学习,我们可以了解物质的分子结构和性质的关系,从而深入理解化学反应的本质和原理。
希望对你的学习有所帮助!。
高中化学选修3-物质结构和性质-全册知识点总结
![高中化学选修3-物质结构和性质-全册知识点总结](https://img.taocdn.com/s3/m/75345b4958fb770bf78a55ed.png)
高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
选修三物质结构与性质知识点
![选修三物质结构与性质知识点](https://img.taocdn.com/s3/m/74b951b32cc58bd63086bd42.png)
选修三物质结构与性质知识点总结高二化学组 2014.5.30第一章 原子结构与性质知识点归纳1.位、构、性关系的图解、表解与例析(1)元素在周期表中的位置、元素的性质、元素原子结构之间存在如下关系:(2)元素及化合物性质递变规律表解同周期:从左到右同主族:从上到下核电荷数逐渐增多电子层结构 电子层数相同,最外层电子数递增原子核对外层 电子的吸引力 逐渐增强逐渐减弱主要化合价 正价+1到+7 负价-4到-1最高正价等于 (F 、O 除外) 元素性质 金属性逐渐减弱,非金属性 电离能 ,电负性金属性 ,非金属性逐渐减弱第一电离能逐渐减小,电负性逐渐最高价氧化物 对应水化物的 酸碱性 酸性增强碱性酸性减弱碱性非金属气态氢化物的形成和 热稳定性气态氢化物形成由难到易,稳定性气态氢化物形成由易到难,稳定性逐渐减弱2.核外电子构成原理(1)核外电子是分能层排布的,每个能层又分为不同的能级。
(2)核外电子排布遵循的三个原理:a .能量最低原理b .c .洪特规则及洪特规则特例能层1 2 3 4 5 K L M N O 最多容纳电子数(2n 2)83250离核远近 距离原子核由远及近 能量 具有能量由 及 能级 s sp spd spdf … 最多容纳电子数22 62 6 10 14能量ns<(n-2)f<(n-1)d<np元素性质 同周期:从左到右递变性 同主族:从上到下 递变性 主族:最外层电子数=最高正价=8- 负价 原子半径 原子得失 最外层电子数 电子的能力 位置 原子序数=主族序数=周期数= 原子结构(3)泡利(不相容)原理:(4)洪特规则:(6)原子核外电子排布表示式:a.原子结构简图 b.电子排布式 c.轨道表示式3.原子核外电子运动状态的描述:电子云第二章分子结构与性质一.共价键1.共价键的本质及特征共价键的本质是在原子之间形成共用电子对,其特征是具有和。
2.共价键的类型①按成键原子间共用电子对的数目分为单键、、三键。
高中化学选修三物质结构与性质知识点大全
![高中化学选修三物质结构与性质知识点大全](https://img.taocdn.com/s3/m/e071d32dc5da50e2524d7f5e.png)
物质结构与性质知识点大全原子核外电子排布原理1.能层、能级与原子轨道(1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N……表示,能量依次升高。
(2)能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序依次升高,即:E(s)<E(p)<E(d)<E(f)。
(3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域。
这种电子云轮廓图称为原子轨道。
【特别提示】(1)任一能层的能级总是从s能级开始,而且能级数等于该能层序数。
(2)以s、p、d、f……排序的各能级可容纳的最多电子数依次为1、3、5、7……的二倍。
(3)构造原理中存在着能级交错现象。
由于能级交错,3d轨道的能量比4s轨道的能量高,排电子时先排4s轨道再排3d轨道,而失电子时,却先失4s轨道上的电子。
(4)前四周期的能级排布(1s、2s、2p、3s、3p、4s、3d、4p)。
第一能层(K),只有s能级;第二能层(L),有s、p两种能级,p能级上有三个原子轨道p x、p y、p z,它们具有相同的能量;第三能层(M),有s、p、d三种能级。
(5)当出现d轨道时,虽然电子按ns,(n-1)d,np顺序填充,但在书写电子排布式时,仍把(n-1)d放在ns前。
(6)在书写简化的电子排布式时,并不是所有的都是[X]+价电子排布式(注:X 代表上一周期稀有气体元素符号)。
2.基态原子的核外电子排布(1)能量最低原理电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。
如图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图。
注意:所有电子排布规则都需要满足能量最低原理。
(2)泡利原理每个原子轨道里最多只能容纳2个电子,且自旋状态相反。
(3)洪特规则。
高中化学选修3知识点全部归纳
![高中化学选修3知识点全部归纳](https://img.taocdn.com/s3/m/4a7968536d175f0e7cd184254b35eefdc9d31566.png)
高中化学选修3知识点全部归纳原子是物质的基本单位,由质子、中子和电子组成。
质子和中子位于原子核中,电子以不同的能级围绕原子核运动,构成了原子的电子云。
原子的质量数等于质子数加上中子数。
原子的核电荷数等于质子数,也称为原子序数。
离子是具有电荷的原子或原子团,分为阳离子和阴离子。
阳离子是质子数大于电子数的带正电荷的离子,阴离子是电子数多于质子数的带负电荷的离子。
离子之间通过电磁作用力相互吸引,形成离子键。
离子结构的化合物一般具有高的熔点和沸点,极性较大,易溶于水,呈电解质。
共价键是由原子间的电子对共享形成的化学键。
共价键的形成使得原子达到稳定的最外层电子数,即遵循八个电子规则(部分元素遵循例外规则)。
共价键的化合物通常具有低熔点和沸点,大多数不溶于水。
共价键可以分为单键、双键和三键。
单键是由两个原子间共享一个电子对形成的,双键和三键分别是共享两个和三个电子对形成的。
双键和三键的键能力相对较强,化合物的键长较短,化学反应活性较大。
3.极性分子与间氢键极性分子是由原子间的共价键构成的分子,其中原子间的电负性差异较大,导致电子云的偏移。
极性分子具有正、负极性,可以与其他极性分子或离子发生静电作用。
间氢键是极性分子之间由氢原子与高电负性的原子(如氧、氮、氟)间的弱相互作用力。
间氢键的存在可以影响化合物的性质,如熔点、沸点和溶解度。
具有间氢键的化合物通常具有较高的熔点和沸点,易溶于水。
有机化合物是以碳为主要骨架并含有氢原子的化合物。
有机化合物的结构可以通过分子式、结构式和功能团来表达。
根据碳骨架的连续性和循环性,有机化合物可以分为直链烷烃、环烷烃、烯烃、炔烃等不同类别。
有机化合物的性质与其分子结构密切相关。
烷烃为非极性分子,溶解度较小,密度相对较小。
烯烃和炔烃由于具有双键和三键,比烷烃更为活泼,活性较大。
芳香烃具有稳定的环状结构,化学活性较小。
5.功能团的结构与化学性质功能团是有机分子中影响化学性质和反应类型的特定原子或原子团。
高中化学物质结构与性质知识点总结
![高中化学物质结构与性质知识点总结](https://img.taocdn.com/s3/m/91718c8e250c844769eae009581b6bd97f19bc23.png)
高中化学物质结构与性质知识点总结一、原子结构与元素周期律1. 原子组成:原子由原子核和核外电子组成。
原子核包含质子和中子,质子带正电,中子不带电。
核外电子围绕原子核运动,形成电子云。
2. 电子排布规律:电子按照能量层次和亚层分布,遵循奥布定律(泡利不相容原理、洪特规则)进行排布。
最低能量原理指导电子优先填充能量最低的轨道。
3. 元素周期表:元素按照原子序数(质子数)递增排列的表格,分为7个周期和18个纵行(族)。
元素周期表反映了元素的周期律和族律。
4. 元素周期律:元素的性质随着原子序数的增加呈现周期性变化。
同一周期内,元素的原子半径逐渐减小,电负性逐渐增大;同一族内,元素的化学性质具有相似性。
二、化学键与分子结构1. 化学键的形成:化学键是由原子间相互作用形成,主要包括离子键、共价键和金属键。
2. 离子键:正负离子之间的静电吸引力。
通常由活泼金属和活泼非金属元素之间形成。
3. 共价键:两个或多个非金属原子之间通过共享电子对形成的键。
共价键可以是单键、双键或三键,键的强度和性质与电子对的共享方式有关。
4. 分子的几何结构:分子中原子的空间排布。
分子的几何结构影响其物理和化学性质。
例如,水分子呈弯曲结构,二氧化碳分子呈线性结构。
5. 分子间力:分子间的相互作用力,包括氢键、范德华力等。
这些力量影响物质的熔点、沸点和溶解性等物理性质。
三、晶体结构1. 晶体的类型:晶体分为分子晶体、原子晶体、离子晶体和金属晶体。
不同类型的晶体具有不同的物理和化学性质。
2. 晶体的构造:晶体由原子、离子或分子按照一定的规律排列而成。
晶体的构造决定了其对称性和物理性质。
3. 晶体缺陷:晶体中的不完美之处,如空位、位错等。
晶体缺陷会影响材料的强度、导电性和光学性质。
四、酸碱与氧化还原反应1. 酸碱理论:布朗斯特-劳里酸碱理论认为,凡是能够给出质子的物质为酸,能够接受质子的物质为碱。
2. 酸碱性质:酸性物质具有释放质子的能力,碱性物质具有接受质子的能力。
高中化学物质结构与性质知识点总结
![高中化学物质结构与性质知识点总结](https://img.taocdn.com/s3/m/e474fec16429647d27284b73f242336c1eb9309b.png)
高中化学物质结构与性质知识点总结一、原子结构与周期表1. 原子结构原子是由质子、中子和电子组成的基本粒子。
质子和中子构成原子核,电子绕核运动。
质子带正电,中子不带电,电子带负电。
原子核的直径约为10^-15米,电子的轨道半径约为10^-10米,原子核的质量占整个原子的绝大部分。
2. 周期表周期表是根据元素的原子序数和元素周期律排列而成。
元素的周期表位置可以推测出该元素的原子结构和性质。
周期表也反映了不同元素之间的相似性和规律性。
二、分子结构与键1. 共价键共价键是化学键的一种,是由两个原子共享电子而形成的化学键。
共价键可以分为极性共价键和非极性共价键。
极性共价键是由两个不同电负性的原子间形成,使电子本身更倾向于位于电负性较高的原子周围,非极性共价键是由两个相同电负性的原子间形成。
2. 离子键离子键是由离子间的静电作用而形成的化学键。
通常由金属和非金属元素间形成。
3. 金属键金属键是金属元素间形成的化学键。
金属元素通常以离子形式排列,金属中的电子可以自由移动。
4. 其他键还有氢键、范德华力等其它类型的键。
三、物质的性质1. 物态物质可以存在于固态、液态和气态。
当温度或压力改变时,物质的物态也会发生改变。
2. 燃烧性燃烧性是物质在氧气中发生氧化反应并释放能量的性质。
3. 反应性物质在化学反应中的性质叫做反应性,可以通过物质的物态、颜色等来观察。
4. 溶解性溶解性是物质溶解于溶剂的能力,可以分为易溶性、难溶性和不溶性。
5. 导电性导电性是物质导电的能力,受物质的结构和性质影响。
6. 光学性物质在光线的照射下会发生反射、折射等光学现象。
7. 导热性导热性是物质传递热能的能力,受物质的结构和性质影响。
四、分子结构与物质性质的关系1. 结构与性质的关系分子的结构影响其化学物性。
分子之间的键合方式、原子间的电子分布等结构因素直接影响物质的性质。
2. 形成分子模型使用Lewis结构、VSEPR理论等模型对分子结构进行描述,可以预测其性质。
高中化学选修《物质结构与性质》知识点提纲
![高中化学选修《物质结构与性质》知识点提纲](https://img.taocdn.com/s3/m/3e04db21f242336c1eb95e7b.png)
【高中化学选修《物质结构与性质》知识点提纲】一.原子结构与性质.一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3).掌握能级交错图和1-36号元素的核外电子排布式.①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
高中化学《选修三 物质结构与性质》知识归纳
![高中化学《选修三 物质结构与性质》知识归纳](https://img.taocdn.com/s3/m/2e30b6d3c9d376eeaeaad1f34693daef5ef71362.png)
《选修三物质结构与性质》知识归纳一、能层与能级1、能层(电子层:n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
由里向外,分别用字母:K、L、M、N、O、P、Q表示相应的第一、二、三、四、五、六、七能层。
各能层最多容纳的电子数为2n2;在同一个原子中,离核越近,电子能量越低2、能级:同一能层里的电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序升高,即:E(s)<E(p)<E(d)<E(f)①K层指包含一个能级,即s能级;L层包含两个能级,s和p能级;M层包含三个能级,s、p和d能级;N层包含四个能级,s、p、d、f能级②每个能层中,能级符号的顺序是ns、np、nd、nf……③s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍④同一能级容纳的电子数相同3、电子云:原子核外电子绕核高速运动是没有确定的轨道的,就好像一团“带负电荷的云雾”笼罩在原子核周围,这种“带负电荷的云雾”称之为电子云。
电子云密集(单位体积内小黑点多)的地方,电子出现的机会多;反之,电子云稀疏(单位体积内小黑点少)的地方,电子出现的机会少。
即电子云表示电子在核外单位体积内出现几率的大小,而非表示核外电子多少4、原子轨道:不同能级上的电子出现概率约为90%的电子云的空间轮廓图称为原子轨道(1)原子轨道的形状①s电子的原子轨道都是球形的,每个s能级各有1个原子轨道,能层序数越大,s原子轨道的半径越大;能量:E1s<E2s<E3s,随着能层序数的增大,电子在离核更远的区域出现的概率减小,电子云越来越向更大的空间扩展②p电子的原子轨道是纺锤形(哑铃形),每个p能级有3个轨道,它们互相垂直,分别以p x、p y、p z为符号。
p原子轨道的平均半径也随能层序数增大而增大③能级与原子轨道数和容纳的电子数的关系能级s(球形)p(纺锤形)d f原子轨道1357容纳的电子数261014二、基态原子的核外电子排布式1、构造原理:多电子的核外电子排布总是按照能量最低原理,由低能级逐步填充到高能级。
高中化学选修3——物质的结构与性质
![高中化学选修3——物质的结构与性质](https://img.taocdn.com/s3/m/fe6b1f265901020207409ca9.png)
一、原子结构和元素性质方面1. 原子一般由质子、中子和核外电子构成。
但却只由质子和电子构成。
2. 金属元素原子的最外层电子数一般小于4,而非金属元素原子的最外层电子数一般大于或等于4。
但H、He、B的最外层电子数均小于4,其中H、B为非金属元素,而He为稀有气体元素;虽然Ge、Sn、Pb、Bi的最外层电子数均大于或等于4,但它们却为金属元素。
3. 稀有气体元素原子的最外层一般为8个电子的稳定结构。
但He的最外层为2个电子的稳定结构。
4. 主族元素的原子得失电子所形成的阴阳离子最外层一般具有8个电子的稳定结构。
但对核外只有一个电子层的离子来说,最外层却只有2个电子,如;而则是一个氢原子核。
5. 含金属元素的离子一般为阳离子。
但也存在某些阴离子,如等。
6. 只含非金属元素的离子一般为阴离子。
但也存在某些阳离子,如等。
7. 一种非金属元素一般形成一种阴离子。
但氧元素形成的离子除,还有。
8. 主族元素的最高化合价一般等于原子的最外层电子数。
但氟元素和氧元素的最高化合价却都不等于原子的最外层电子数,其中氟元素的最高化合价为0价(氟无正价),而氧的最高价为+2价(在OF2中)。
9. 氢元素在化合物中一般为+1价。
但在金属氢化物中却为-1价。
10. 氧元素在化合物中一般为-2价。
但在过氧化物(如等)中为-1价;在OF2中为+2价。
11. 对于对应阴阳离子具有相同的电子层结构的金属元素和非金属元素而言,金属元素的最高化合价一般低于非金属元素的最高化合价。
而和虽然电子层结构相同。
但钠、镁、铝的最高价(分别为+1、+2、+3价)却高于氟的最高价(0价)。
12. 原子的相对原子质量一般为保留一定位数的小数有效数字。
但12C的相对原子质量却为整数,并且是精确值。
13. 某原子的相对原子质量一般并不等同于对应元素的相对原子质量。
但对于某些只有一种核素的元素而言,原子的相对原子质量就是元素的相对原子质量,如:钠元素就只有一种核素,因此,Na原子的相对原子质量就是钠元素的相对原子质量。
高中化学选修三知识点总结
![高中化学选修三知识点总结](https://img.taocdn.com/s3/m/683fbf03abea998fcc22bcd126fff705cd175c55.png)
第一章 原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道能级,叫做构造原理;能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错;说明:构造原理并不是说4s 能级比3d 能级能量低实际上4s 能级比3d 能级能量高,而是指这样顺序填充电子可以使整个原子的能量最低;也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和;2能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理;构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级;3泡利不相容原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子;换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反用“↑↓”表示,这个原理称为泡利Pauli 原理;4洪特规则:当电子排布在同一能级的不同轨道能量相同时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特Hund 规则;比如,p3的轨道式为或,而不是; 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态;即p 0、d 0、f 0、p 3、d 5、f 7、p 6、d 10、f 14时,是较稳定状态;前36号元素中,全空状态的有4Be 2s 22p 0、12Mg 3s 23p 0、20Ca 4s 23d 0;半充满状态的有:7N 2s 22p 3、15P 3s 23p 3、24Cr 3d 54s 1、25Mn 3d 54s 2、33As 4s 24p 3;全充↑↓ ↑↓ ↓ ↓ ↑ ↑ ↑满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6;4. 基态原子核外电子排布的表示方法1电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1;②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K:Ar4s1;2电子排布图轨道表示式每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子;如基态硫原子的轨道表示式为二.原子结构与元素周期表1.原子的电子构型与周期的关系1每周期第一种元素的最外层电子的排布式为ns1;每周期结尾元素的最外层电子排布式除He为1s2外,其余为ns2np6;He核外只有2个电子,只有1个s轨道,还未出现p轨道,所以第一周期结尾元素的电子排布跟其他周期不同;2一个能级组最多所容纳的电子数等于一个周期所包含的元素种类;但一个能级组不一定全部是能量相同的能级,而是能量相近的能级;2.元素周期表的分区1根据核外电子排布①分区②各区元素化学性质及原子最外层电子排布特点③若已知元素的外围电子排布,可直接判断该元素在周期表中的位置;如:某元素的外围电子排布为4s24p4,由此可知,该元素位于p区,为第四周期ⅥA族元素;即最大能层为其周期数,最外层电子数为其族序数,但应注意过渡元素副族与第Ⅷ族的最大能层为其周期数,外围电子数应为其纵列数而不是其族序数镧系、锕系除外;三.元素周期律1.电离能、电负性1电离能是指气态原子或离子失去1个电子时所需要的最低能量,第一电离能是指电中性基态原子失去1个电子转化为气态基态正离子所需要的最低能量;第一电离能数值越小,原子越容易失去1个电子;在同一周期的元素中,碱金属或第ⅠA族第一电离能最小,稀有气体或0族第一电离能最大,从左到右总体呈现增大趋势;同主族元素,从上到下,第一电离能逐渐减小;同一原子的第二电离能比第一电离能要大2元素的电负性用来描述不同元素的原子对键合电子吸引力的大小;以氟的电负性为,锂的电负性为作为相对标准,得出了各元素的电负性;电负性的大小也可以作为判断金属性和非金属性强弱的尺度,金属的电负性一般小于,非金属的电负性一般大于,而位于非金属三角区边界的“类金属”的电负性在左右;它们既有金属性,又有非金属性;3电负性的应用①判断元素的金属性和非金属性及其强弱②金属的电负性一般小于,非金属的电负性一般大于,而位于非金属三角区边界的“类金属”如锗、锑等的电负性则在左右,它们既有金属性,又有非金属性;③金属元素的电负性越小,金属元素越活泼;非金属元素的电负性越大,非金属元素越活泼;④同周期自左到右,电负性逐渐增大,同主族自上而下,电负性逐渐减小;2.原子结构与元素性质的递变规律3.对角线规则在元素周期表中,某些主族元素与右下方的主族元素的有些性质是相似的,如第二章分子结构与性质课标要求1.了解共价键的主要类型σ键和π键,能用键长、键能和键角等说明简单分子的某些性质2.了解杂化轨道理论及常见的杂化轨道类型sp、sp2、sp3,能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构;3.了解简单配合物的成键情况;4.了解化学键合分子间作用力的区别;5.了解氢键的存在对物质性质的影响,能列举含氢键的物质;要点精讲一.共价键1.共价键的本质及特征共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性;2.共价键的类型①按成键原子间共用电子对的数目分为单键、双键、三键;②按共用电子对是否偏移分为极性键、非极性键;③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性;3.键参数①键能:气态基态原子形成1 mol化学键释放的最低能量,键能越大,化学键越稳定;②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定;③键角:在原子数超过2的分子中,两个共价键之间的夹角;④键参数对分子性质的影响键长越短,键能越大,分子越稳定.4.等电子原理来源:学§科§网原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近;二.分子的立体构型1.分子构型与杂化轨道理论杂化轨道的要点当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道;杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同;2分子构型与价层电子对互斥模型价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子;1当中心原子无孤对电子时,两者的构型一致;2当中心原子有孤对电子时,两者的构型不一致;3.配位化合物1配位键与极性键、非极性键的比较2配位化合物①定义:金属离子或原子与某些分子或离子称为配体以配位键结合形成的化合物;②组成:如AgNH32OH,中心离子为Ag+,配体为NH3,配位数为2;三.分子的性质1.分子间作用力的比较2.分子的极性1极性分子:正电中心和负电中心不重合的分子;2非极性分子:正电中心和负电中心重合的分子;3.溶解性1“相似相溶”规律:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂.若存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好;2“相似相溶”还适用于分子结构的相似性,如乙醇和水互溶,而戊醇在水中的溶解度明显减小.4.手性具有完全相同的组成和原子排列的一对分子,如左手和右手一样互为镜像,在三维空间里不能重叠的现象;5.无机含氧酸分子的酸性无机含氧酸可写成HOmROn,如果成酸元素R相同,则n值越大,R的正电性越高,使R—O—H中O的电子向R偏移,在水分子的作用下越易电离出H+,酸性越强,如HClO<HClO2<HClO3<HClO4第三章晶体结构与性质一.晶体常识1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固; ②气态物质冷却不经液态直接凝固凝华;③溶质从溶液中析出;3.晶胞晶胞是描述晶体结构的基本单元;晶胞在晶体中的排列呈“无隙并置”;4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有晶胞为立方晶胞立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较2.晶体熔、沸点高低的比较方法1不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体;金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低;2原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅3离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高;4分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高;②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高;③组成和结构不相似的物质相对分子质量接近,分子的极性越大,其熔、沸点越高;④同分异构体,支链越多,熔、沸点越低;5金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高;三.几种典型的晶体模型。
高中化学选修三知识点归纳
![高中化学选修三知识点归纳](https://img.taocdn.com/s3/m/41638b5ddf80d4d8d15abe23482fb4daa58d1dc3.png)
高中化学选修三知识点归纳一、原子结构。
1. 能层与能级。
- 能层:根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的能层,能层用符号K、L、M、N、O、P、Q表示,能量依次升高。
- 能级:同一能层里电子的能量也可能不同,又将其分成不同的能级,如s、p、d、f等能级,各能级的能量顺序为ns < np < nd < nf(n为能层序数)。
2. 构造原理与电子排布式。
- 构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按顺序填入核外电子运动轨道,这个顺序被称为构造原理。
- 电子排布式:如铁(Fe)的电子排布式为1s^22s^22p^63s^23p^63d^64s^2。
为了简化,还可以写成[Ar]3d^64s^2(其中[Ar]表示氩原子的核外电子排布结构)。
3. 基态与激发态、光谱。
- 基态原子:处于最低能量的原子。
- 激发态原子:当基态原子的电子吸收能量后,会跃迁到较高能级,变成激发态原子。
- 光谱:不同元素的原子发生跃迁时会吸收或释放不同频率的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。
原子光谱是线状光谱,可用于元素的定性分析。
二、分子结构与性质。
1. 共价键。
- 共价键的类型。
- σ键:原子轨道以“头碰头”方式重叠形成的共价键,如H - H键,s - s 重叠;H - Cl键,s - p重叠等。
- π键:原子轨道以“肩并肩”方式重叠形成的共价键,如N≡ N中,除了一个σ键外,还有两个π键。
- 共价键的参数。
- 键能:气态基态原子形成1mol化学键释放的最低能量。
键能越大,化学键越稳定。
- 键长:形成共价键的两个原子之间的核间距。
键长越短,键能越大,共价键越稳定。
- 键角:在原子数超过2的分子中,两个共价键之间的夹角。
键角是描述分子立体结构的重要参数,如CO_2分子中键角为180^∘,为直线形分子;H_2O分子中键角为104.5^∘,为V形分子。
高中化学选修知识点
![高中化学选修知识点](https://img.taocdn.com/s3/m/dc80504e5e0e7cd184254b35eefdc8d376ee14bb.png)
高中化学选修知识点高中化学选修部分的知识为我们打开了更广阔的化学世界,深入探讨了一些特定领域的化学原理和应用。
下面就来详细聊聊几个重要的选修知识点。
一、选修三:物质结构与性质1、原子结构我们要了解原子的组成,包括原子核和核外电子。
原子核由质子和中子构成,而核外电子的排布遵循一定的规律。
能层、能级的概念很关键,电子在不同能层和能级上的分布决定了原子的性质。
比如,最外层电子数决定了元素的化学性质。
2、共价键共价键是原子间通过共用电子对形成的化学键。
共价键有不同的类型,如σ键和π键。
σ键比较稳定,π键则相对活泼。
通过了解共价键的极性和分子的极性,能解释很多物质的物理性质,比如溶解性。
3、晶体结构晶体分为离子晶体、原子晶体、分子晶体和金属晶体。
不同类型的晶体具有不同的物理性质,像离子晶体熔点较高,硬度较大;原子晶体熔点和硬度都非常高;分子晶体则一般熔点低、硬度小。
二、选修四:化学反应原理1、化学反应速率它表示化学反应进行的快慢程度。
影响化学反应速率的因素有很多,比如浓度、温度、压强、催化剂等。
浓度增大,反应速率加快;温度升高,反应速率通常也会加快;对于有气体参与的反应,压强增大可能会加快反应速率;催化剂能显著改变反应速率。
2、化学平衡在一定条件下,当正反应速率等于逆反应速率时,反应达到平衡状态。
平衡是动态的平衡,条件改变时,平衡会发生移动。
勒夏特列原理能帮助我们预测平衡移动的方向。
3、电解质溶液这部分涉及强弱电解质、电离平衡、水解平衡和沉淀溶解平衡。
强电解质在溶液中完全电离,弱电解质则部分电离。
盐类的水解是指盐中的弱酸根离子或弱碱阳离子与水电离出的氢离子或氢氧根离子结合,从而影响溶液的酸碱性。
沉淀溶解平衡则与溶解度有关,通过控制条件可以实现沉淀的生成、溶解和转化。
三、选修五:有机化学基础1、有机物的分类了解有机物可以按照碳骨架和官能团进行分类。
常见的官能团有碳碳双键、碳碳三键、羟基、醛基、羧基等,不同的官能团决定了有机物的性质。
人教版高中化学选修3:物质结构与性质 归纳与整理。
![人教版高中化学选修3:物质结构与性质 归纳与整理。](https://img.taocdn.com/s3/m/59a8fdf131126edb6e1a1066.png)
(3) 用 价 层 电 子 对 互 斥 理 论 判 断 BeCl2 的 构 型 为 __________,BF3 分子中 F—B—F 键的键角为__________。
归纳与整理பைடு நூலகம்
第二章
原子结构与性质
章末专题复习 共3课时
知识网络·宏观掌控 最新高考·名题诠释
专题突破·纵引横连
分 子 结 构 与 性 质
分 子 结 构 与 性 质
化学键与物质类别的关系
●专题归纳 1.只含非极性共价键的物质:同种非金属元素构成的单 质,如: I2、N2、P4、金刚石、晶体硅等 。 2.只含有极性共价键的物质:一般是不同非金属元素构 成的共价化合物,如: HCl、NH3、SiO2、CS2等 。 3.既有极性键又有非极性键的物质, 如 H2O2、C2H2、CH3CH3等 。
3、价层电子对互斥模型、杂化轨道理论与分子空间构型的关系
●典例透析 卤族元素是典型的非金属元素,包括 F、Cl、Br、I
等。请回答下列有关问题。 (1)同主族元素的电负性大小存在一定的规律,F、Cl、
Br、I 的电负性由小到大的顺序是_____________________ ___________________________________________________。
4.只含有离子键的物质:活泼非金属元素与活泼金属元 素形成的化合物,如:Na2S、CaCl2、K2O、NaH等 。
5.既有离子键又有非极性键的物质,
如: Na2O2
。
6.由离子键、共价键、配位键构成的物质,如:NH4Cl 等。
高中化学选修3知识点全部归纳(物质的结构与性质)
![高中化学选修3知识点全部归纳(物质的结构与性质)](https://img.taocdn.com/s3/m/87357656d1f34693dbef3edd.png)
高中化学选修3知识点全部归纳(物质的结构与性质)第一章原子结构与性质。
一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层。
原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q。
原子轨道(能级):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂。
各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1)。
原子核外电子的运动特征可以用电子层、原子轨道和自旋方向来进行描述。
在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2)。
原子核外电子排布原理。
①。
能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道。
②。
泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同。
洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性。
如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3)。
掌握能级交错图和1-36号元素的核外电子排布式。
3。
元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。
常用符号I1表示,单位为kJ/mol。
(1)。
原子核外电子排布的周期性。
高中化学选修3知识点总结
![高中化学选修3知识点总结](https://img.taocdn.com/s3/m/413db258bceb19e8b9f6bacf.png)
高中化学选修3知识点总结高中化学选修3知识点总结第一章原子结构与性质一.原子结构1.原子核外电子排布规律⑴构造原理随着核电荷数递增,大多数元素的电中性基态原子的电子按顺序填入核外电子运动轨道,叫做构造原理。
能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。
(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(3)泡利原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
(4)洪特规则当电子排布在同一能级的不同轨道时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特规则。
2.基态原子核外电子排布的表示方法(1)电子排布式用数字在能级符号的右上角表明该能级上排布的电子数。
二.原子结构与元素周期表1.原子的电子构型与周期的关系(1)每周期第一种元素的最外层电子的排布式为ns1。
每周期结尾元素的最外层电子排布式除He为1s2外,其余为ns2np6。
He核外只有2个电子,只有1个s轨道,还未出现p轨道,所以第一周期结尾元素的电子排布跟其他周期不同。
(2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。
但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。
2.元素周期表的分区(1)根据核外电子排布①分区②各区元素化学性质及原子最外层电子排布特点③若已知元素的外围电子排布,可直接判断该元素在周期表中的位置。
三.元素周期律1.电离能、电负性(1)电离能是指气态原子或离子失去1个电子时所需要的最低能量,第一电离能是指电中性基态原子失去1个电子转化为气态基态正离子所需要的最低能量。
第一电离能数值越小,原子越容易失去1个电子。
在同一周期的元素中,碱金属第一电离能最小,稀有气体第一电离能最大,从左到右总体呈现增大趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中化学选修3-物质结构与性质-全册知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
3、电子云与原子轨道(1)电子云:电子在核外空间做高速运动,没有确定的轨道。
因此,人们用“电子云”模型来描述核外电子的运动。
“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。
(2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。
s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。
4、核外电子排布规律(1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。
(2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。
(3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。
(4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。
能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。
(5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数(二)元素周期表和元素周期律1、元素周期表的结构元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。
(1)原子的电子层构型和周期的划分周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。
即元素周期表中的一个横行为一个周期,周期表共有七个周期。
同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。
(2)原子的电子构型和族的划分族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。
即元素周期表中的一个列为一个族(第Ⅷ族除外)。
共有十八个列,十六个族。
同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。
(3)原子的电子构型和元素的分区按电子排布可把周期表里的元素划分成 5个区,分别为s区、p区、d区、f区和ds 区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。
2、元素周期律元素的性质随着核电荷数的递增发生周期性的递变,叫做元素周期律。
元素周期律主要体现在核外电子排布、原子半径、主要化合价、金属性、非金属性、第一电离能、电负性等的周期性变化。
元素性质的周期性来源于原子外电子层构型的周期性。
(1)同周期、同主族元素性质的递变规律右)同主族(上+1①同一元素:一般情况下元素阴离子的离子半径大于相应原子的原子半径,阳离子的离子半径小于相应原子的原子半径。
②同周期元素(只能比较原子半径):随原子序数的增大,原子的原子半径依次减小。
如:Na>Mg>Al>Si>P>S>Cl③同主族元素(比较原子和离子半径):随原子序数的增大,原子的原子半径依次增大。
如:Li<Na<K<Rb<Cs,F-<Cl-<Br-<I-④同电子层结构(阳离子的电子层结构与上一周期0族元素原子具有相同的电子层结构,阴离子与同周期0族元素原子具有相同的电子层结构):随核电荷数增大,微粒半径依次减小。
如:F-> Na+>Mg2+>Al3+(3)元素金属性强弱的判断方法x+y+B1、共价键的成键本质:成键原子相互接近时,原子轨道发生重叠,自旋方向相反的未成对电子形成共用电子对,两原子核间电子云密度增加,体系能量降低。
2、共价键类型:(1)σ键和π键(2)极性键和非极性键(3)配位键:一类特殊的共价键,一个原子提供空轨道,另一个原子提供一对电子所形成的共价键。
①配位化合物:金属离子与配位体之间通过配位键形成的化合物。
如:Cu(H2O)4SO4、Cu(NH3)4(OH)2、Ag(NH3)2OH 、Fe(SCN) 3等。
②配位化合物的组成:3、共价键的三个键参数(1)键长、键能决定共价键的强弱和分子的稳定性,键角决定分子空间构型和分子的极性。
(2)键能与反应热:反应热=生成物键能总和-反应物键能总和(四)分子的空间构型1、等电子原理原子总数相同、价电子总数相同的分子具有相似的化学键特征,许多性质是相似的,此原理称为等电子原理。
(1)等电子体的判断方法:在微粒的组成上,微粒所含原子数目相同;在微粒的构成上,微粒所含价电子数目相同;在微粒的结构上,微粒中原子的空间排列方式相同。
(等电子的推断常用转换法,如CO2=CO+O=N2+O=N2O=N2+N—=N3—或SO2=O+O2=O3=N—+O2= NO2—)(2)等电子原理的应用:利用等电子体的性质相似,空间构型相同,可运用来预测分子空间的构型和性质。
2、价电子互斥理论(1)价电子互斥理论的基本要点:A B n型分子(离子)中中心原子A周围的价电子对的几何构型,主要取决于价电子对数(n),价电子对尽量远离,使它们之间斥力最小。
(2)AB n型分子价层电子对的计算方法:①对于主族元素,中心原子价电子数=最外层电子数,配位原子按提供的价电子数计算,如:PCl5中②O、S作为配位原子时按不提供价电子计算,作中心原子时价电子数为6;③离子的价电子对数计算如:NH4+:;SO42-:3、杂化轨道理论(1)杂化轨道理论的基本要点:①能量相近的原子轨道才能参与杂化。
②杂化后的轨道一头大,一头小,电子云密度大的一端与成键原子的原子轨道沿键轴方向重叠,形成σ键;由于杂化后原子轨道重叠更大,形成的共价键比原有原子轨道形成的共价键稳定。
③杂化轨道能量相同,成分相同,如:每个sp3杂化轨道占有1个s轨道、3个p轨道。
④杂化轨道总数等于参与杂化的原子轨道数目之和。
(2)s、p杂化轨道和简单分子几何构型的关系(3)杂化轨道的应用范围:杂化轨道只应用于形成σ键或者用来容纳未参加成键的孤对电子。
(4)中心原子杂化方式的判断方法:看中心原子有没有形成双键或叁键,如果有1个叁键,则其中有2个π键,用去了2个p轨道,形成的是sp杂化;如果有1个双键则其中有1个π键,形成的是sp2杂化;如果全部是单键,则形成的是sp3杂化。
4、分子空间构型、中心原子杂化类型和分子极性的关系(五)分子的性质1、分子间作用力(范德华力和氢键)(1)分子间作用力和化学键的比较(2)范德华力与氢键的比较2、极性分子和非极性分子(1)极性分子和非极性分子<1>非极性分子:从整个分子看,分子里电荷的分布是对称的。
如:①只由非极性键构成的同种元素的双原子分子:H2、Cl2、N2等;②只由极性键构成,空间构型对称的多原子分子:CO2、CS2、BF3、CH4、CCl4等;③极性键非极性键都有的:CH2=CH2、CH≡CH、。
<2>极性分子:整个分子电荷分布不对称。
如:①不同元素的双原子分子如:HCl,HF等。
②折线型分子,如H2O、H2S等。
③三角锥形分子如NH3等。
(2)共价键的极性和分子极性的关系:两者研究对象不同,键的极性研究的是原子,而分子的极性研究的是分子本身;两者研究的方向不同,键的极性研究的是共用电子对的偏离与偏向,而分子的极性研究的是分子中电荷分布是否均匀。
非极性分子中,可能含有极性键,也可能含有非极性键,如二氧化碳、甲烷、四氯化碳、三氟化硼等只含有极性键,非金属单质F2、N2、P4、S8等只含有非极性键,C2H6、C2H4、C2H2等既含有极性键又含有非极性键;极性分子中,一定含有极性键,可能含有非极性键,如HCl、H2S、H2O2等。
(3)分子极性的判断方法①单原子分子:分子中不存在化学键,故没有极性分子或非极性分子之说,如He、Ne等。
②双原子分子:若含极性键,就是极性分子,如HCl、HBr等;若含非极性键,就是非极性分子,如O2、I2等。
③以极性键结合的多原子分子,主要由分子中各键在空间的排列位置决定分子的极性。
若分子中的电荷分布均匀,即排列位置对称,则为非极性分子,如BF3、CH4等。
若分子中的电荷分布不均匀,即排列位置不对称,则为极性分子,如NH3、SO2等。
④根据AB n的中心原子A的最外层价电子是否全部参与形成了同样的共价键。
(或A是否达最高价)(4)相似相溶原理①相似相溶原理:极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。
②相似相溶原理的适用范围:“相似相溶”中“相似”指的是分子的极性相似。
③如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。