初中数学 人教版 九年级上册 第二十三章旋转知识点及经典练习题

合集下载

初中数学图形的旋转与平移练习题及答案

初中数学图形的旋转与平移练习题及答案

初中数学图形的旋转与平移练习题及答案旋转与平移是数学中研究图形变换的重要概念,它们在几何图形的研究和解题中扮演着重要的角色。

下面将为大家提供一些初中数学图形的旋转与平移的练习题及答案,帮助大家更好地理解和掌握这一知识点。

练习题一:1. 将图形A绕点O逆时针旋转90度,得到图形B,如图所示。

请画出图形B,并标出其顶点坐标。

解答:根据题目所给条件,我们可以得知图形B是将图形A绕点O逆时针旋转90度得到的。

假设图形A的顶点坐标依次为A(x1, y1),B(x2,y2),C(x3, y3),则图形B的顶点坐标为A'(-y1, x1),B'(-y2, x2),C'(-y3, x3)。

练习题二:2. 将线段AB向右平移5个单位得到线段CD,如图所示。

如果A的坐标为(1, 2),请画出线段CD,并求出C点的坐标。

解答:根据题目所给条件,我们知道线段AB向右平移5个单位得到线段CD,那么坐标的改变量就是平移的距离。

假设A点的坐标为(x1, y1),则C点的坐标为(x1 + 5, y1)。

练习题三:3. 将线段EF绕点O顺时针旋转180度得到线段GH,如图所示。

请写出线段GH的坐标,并判断是否与线段EF相等。

解答:根据题目所给条件,我们知道线段EF绕点O顺时针旋转180度得到的线段GH。

假设E点的坐标为(x1, y1),F点的坐标为(x2, y2),则G 点的坐标为(-x1, -y1),H点的坐标为(-x2, -y2)。

通过对比可以发现,线段GH与线段EF在长度、形状上完全相同。

练习题四:4. 将正方形ABCD绕点O逆时针旋转90度得到正方形EFGH,如图所示。

若正方形ABCD的边长为5个单位,请计算正方形EFGH的边长。

解答:根据题目所给条件,我们知道正方形EFGH是将正方形ABCD绕点O逆时针旋转90度得到的。

假设正方形ABCD的边长为 a,则正方形EFGH的边长也为 a。

练习题五:5. 将图形P绕点O逆时针旋转270度得到图形Q,如图所示。

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

初中数学人教版九年级上册第二十三章 旋转23.3 课题学习 图案设计-章节测试习题(2)

初中数学人教版九年级上册第二十三章 旋转23.3 课题学习 图案设计-章节测试习题(2)

章节测试题1.【题文】如图所示,△ABC外侧有正方形ABDE与正方形ACFG,请你设计一个方案,将△ABC旋转一个角度,使得△AEG与由△ABC旋转得到的三角形的一边重合,另一边在同一条直线上.【答案】见解答【分析】根据正方形的性质,得出数量关系,再根据旋转的性质设计方案.【解答】由正方形的性质可得:AB=AE,AC=AG,∠BAC=∠BAE=∠EAG=∠GAC,可设计方案为:(1)将△ABC绕点A逆时针方向旋转90°,这时AC与AG重合,AB旋转到AC的原位,与AE在同一直线上;(2)将△ABC绕点A顺时针方向旋转90°,这时AB与AE重合,AC旋转到AB的原位,与AG在同一直线上.2.【答题】如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O经过4次旋转而得到,则每一次旋转的角度大小为______.【答案】72°【分析】本题考查了利用旋转设计图案.【解答】3.【答题】彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是().A. B.C. D.【答案】B【分析】本题考查了旋转的概念.【解答】是轴对称图案,故不符合题意;是旋转图案,符合题意;是其它几何构架图案,故不符合题意;是平移图案,故不符合题意;选B.4.【答题】如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A. 45°,90°B. 90°,45°C. 60°,30°D. 30°,60°【答案】A【分析】本题考查了旋转的性质.【解答】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.选A.5.【答题】风力发电机可以在风力作用下发电.如图的转子叶片图案绕图案中心旋转°后能与原来的图案重合,那么的值可能是()A. 45B. 60C. 90D. 120【答案】D【分析】本题考查了旋转的概念.【解答】该图形被平分成三部分,旋转120°的整数倍,就可以与自身重合,故n 的最小值为120.选D.6.【答题】在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()A. AB. BC. CD. D【答案】B【分析】本题考查了旋转的性质.【解答】A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.选B.7.【答题】下列各图中,图形甲变成图形乙,既能用平移,又能用旋转的是()A. AB. BC. CD. D【答案】C【分析】本题考查了旋转的概念.【解答】A只能通过旋转180°得到;B只能通过平移得到;D只能通过旋转得到;C能用平移,又能用旋转得到,选C.8.【答题】如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A. AB. BC. CD. D【答案】B【分析】本题考查了图形的旋转变化,认真观察旋转得到的图案,找到旋转中心,即可判断.【解答】A、顺时针,连续旋转60度,三次即可得到.B、不能作为“基本图案”.C、旋转180度,即可得到.D、旋转60度即可.选B.9.【答题】如下四个图案,它们绕中心旋转一定的度数后都能和原来的图形相互重合,其中有一个图案与其余图案旋转的度数不同的是()A. B. C. D.【答案】B【分析】本题考查了旋转角,解题的关键是根据图形特点,正确计算出各个图形的最小旋转度数.【解答】A、360÷6=60°;B、360°÷3=120°;C、360°÷6=60°;D、360°÷6=60°.B的旋转角度与其它三个不同,选B.10.【答题】下列图形均可由“基本图案”通过变换得到:(只填序号)(1)可以平移但不能旋转的是______;(2)可以旋转但不能平移的是______;(3)既可以平移,也可以旋转的是______.【答案】①④②⑤③【分析】本题考查了利用移、旋转、轴对称变换设计图案.【解答】①可以看作由左边图案向右平移得到的;②可以看作一个菱形绕一个顶点旋转得到的;③既可以看作一个圆向右平移得到的,也可以看作两个圆组成的图案旋转得到的;④可以看作上面基本图案向下平移得到的;⑤可以看作上面图案绕中心旋转得到的.故可以平移但不能旋转的是①④;可以旋转但不能平移的是②⑤;既可以平移,也可以旋转的是③.故答案为(1)①④,(2)②⑤,(3)③11.【答题】如图,正方形ABCD可以看作由什么“基本图形”经过怎样的变化形成的?______.【答案】把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD【分析】本题考查了利用旋转设计图案.【解答】观察图形可知把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD.故答案为:把△ABO绕O点连续旋转90°,180°,270°可以得到正方形ABCD.12.【答题】正六边形可以看成由基本图形______经过______次旋转而成.【答案】正三角形 5【分析】本题考查了旋转的性质.【解答】根据图形可得:正六边形可以看成由基本图形正三角形经过5次旋转而成.13.【答题】如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转______次,每次旋转______度形成的.【答案】7 45【分析】本题考查了利用旋转设计图案.【解答】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.故如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.14.【答题】如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数是______.【答案】45°【分析】本题考查了旋转的性质.【解答】∵中心角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°,故答案为:45°.15.【题文】如图中的图案是由一个怎样的基本图形经过旋转、轴对称和平移得到的呢?【答案】见解答【分析】可选择不同的基本图形,一般选择基本图形是能使图形的形成过程好说明为原则.【解答】此图形可看作基本图形经过轴对称形成的.16.【题文】如图,网格中每个小正方形的边长为1,点C(0,1),点B(-1,3).(1)利用网格画出直角坐标系(要求标出x轴,y轴和原点),则点A的坐标为______;(2)以△ABC为基本图形,利用旋转设计一个图案,说明你的创意为______.【答案】A(-4,3)见解答.【分析】(1)根据点C的坐标确定原点,则可以画出直角坐标系,把点B向左平移3个单位长度得到点A;(2)把△ABC绕点C顺时针旋转3次,即可得到一个风车的图案.【解答】(1)直角坐标系如图所示,则A的坐标为(-4,3);(2)如图,把△ABC绕点C顺时针旋转3次90°,180°,270°,即可得到一个风车的图案.17.【题文】如图,在网格中有一个四边形图案.(1)请你画出此图案绕点O按顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.【答案】(1)画图见解答;(2)34;(3)AB2+BC2=AC2【分析】(1)将此图案的各顶点绕点O顺时针方向旋转90°,180°,270°后找到它们的对应点,顺次连接得到的图案,就是所要求画的图案.(2)观察画出的图形,可发现S四边形AA1A2A3=S四边形AB1B2B3-4S△BAA3依次代入求值.(3)这个图案就是我们几何中的著名的勾股定理.【解答】(1)如图.(2)-4=(3+5)2-4××3×5=34,故四边形AA1A2A3的面积是34.(3)由图可知:(a+c)2=4×ac+b2,整理得:c2+a2=b2,即:AB2+BC2=AC2.这就是著名的勾股定理.18.【题文】如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)【答案】作图见解答.【分析】如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D 点下面两格的小正方形放在右面,就组成了矩形.【解答】如图:19.【题文】如图,从正三角形出发,利用旋转,作一个飞鸟图.请你也利用正三角形用旋转设计一个图案.【答案】图案见解答.【分析】先以等边三角形的一边为基础画一个基本图形,再绕等边三角形的两个顶点分别旋转60°后删除原等边三角形即可.【解答】如图所示:20.【题文】某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图1所示的等腰直角三角形,王聪同学设计了如图2所示的四种图案.(1)你喜欢哪种图案?并简述该图案的形成过程.(2)请你利用所学过的知识再设计一幅与上述不同的图案.【答案】(1)见解答(2)见解答【分析】(1)答案不唯一,如:我喜欢图案(4).图案形成的过程也不唯一,如:图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)答案不唯一,利用旋转或对称的相关知识完成即可.图形见解答.【解答】(1)答案不唯一,如:我喜欢图案(4).图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)如图所示.。

初中数学人教版九年级上册第二十三章期末复习练习题-普通用卷

初中数学人教版九年级上册第二十三章期末复习练习题-普通用卷

初中数学人教版九年级上册第二十三章期末复习练习题一、选择题1.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A. 1.6B. 1.8C. 2D. 2.62.如图,将△ABC绕点A旋转后得到△ADE,则下列结论不正确的是()A. BC=DEB. ∠E=∠CC. ∠EAC=∠BADD. ∠B=∠E3.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A. (−1,2+√3)B. (−√3,3)C. (−√3,2+√3)D. (−3,√3)4.如图,把菱形ABOC绕O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的是().A. ∠COFB. ∠AODC. ∠BOFD. ∠COE5.如图4×4的正方形网格中,其中一个三角形①绕某点旋转一定的角度,得到三角形②,则其旋转中心是()A. 点AB. 点BC. 点CD. 点D6.三张扑克牌如图1所示放在桌子上,小敏把其中一张旋转180°后得到如图2所示,则她所旋转的牌从左数起是()A. 第一张B. 第二张C. 第三张D. 都不是7.下列属于中心对称图形的是()A. B.C. D.8.下列说法中,正确的是()A. 在成中心对称的图形中,连接对称点的线段不一定都经过对称中心B. 在成中心对称的图形中,连接对称点的线段都被对称中心平分C. 若两个图形的对应点连成的线段都经过某一点,则这两个图形一定关于这一点成中心对称D. 以上说法都正确9.如图,△ABC和△AB′C′成中心对称,A为对称中心.若∠C=90°,∠B=30°,BC=1,则BB′的长为()A. 4B. √33C. 2√33D. 4√3310.如下图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影的部分构成中心对称图形,该小正方形的序号是()A. ①B. ②C. ③D. ④11.如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A. B. C. D.12.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A. ④B. ③C. ②D. ①13.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A. B. C. D.14.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A. 1B. 2C. 3D. 415.沿图中虚线旋转一周,能围成的几何体是下面几何体中的()A. B. C. D.二、填空题16.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为______.17.如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE绕点A顺时针旋转90°得△ABG,则CF的长为________.18.如下图,________和▵OAB关于点O对称,点C与点________,点D与点________是关于点O的对称点.19.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于点E对称,则对称中心E的坐标是__________.20.在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A′B′C′,使各顶点仍在格点上,则其旋转角的度数是______.21.如图,在平面直角坐标系xOy中,△COD可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△COD的过程:______.三、解答题22.将两块全等的三角板如下图①放置,其中∠A′CB′=∠ACB=90°,∠A′=∠A=30°.将图①中的▵A′B′C顺时针旋转45°得图②,点P′是A′C与AB的交点,点Q是A′B′与BC的交点.①②(1)求证:CP′=CQ;(2)在图②中,若AP′=3,求CQ的长.23.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7.(1)旋转中心是点________,旋转了____________________度,DE的长度是________;(2)BE与DF的位置关系如何?请说明理由.(提示:延长BE交DF于点G)24.如下图,方格纸中有三个点A,B,C,要求作一个四边形,使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.甲乙丙(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.25.如下图,四边形ABCD是以点O为对称中心的中心对称图形,过点O作OE⊥AC交BC于点E,如果▵ABE的周长为24cm,求四边形ABCD的周长.26.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,坐标分别为A(2,2),B(1,0),C(3,1).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出将△ABC绕原点O顺时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,直接写出对称中心的坐标.27.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3).以点(0,0)为旋转中心,将△ABC顺时针旋转90°,得到ΔA1B1C1.(1)在坐标系中画出ΔA1B1C1.(2)若△ABC上有一点P(m,n),直接写出旋转后对应点P1的坐标.(3)求点A的运动路径长.答案和解析1.【答案】A【解析】解:由旋转的性质可知,AD=AB,∵∠B=60°,AD=AB,∴△ADB为等边三角形,∴BD=AB=2,∴CD=CB−BD=1.6,故选:A.根据旋转变换的性质得到AD=AB,根据等边三角形的性质解答即可.本题考查的是旋转变换的性质、等边三角形的性质,掌握旋转前、后的图形全等是解题的关键.2.【答案】D【解析】【分析】本题考查了旋转的性质,根据旋转的性质解答即可.【解答】解:∵△ABC绕点A旋转后得到△ADE,∴△ABC≌△ADE,∴AB=AD,AC=AE,BC=DE,∠C=∠E,∠B=∠D,∠CAB=∠EAD;△ABC中每一点都绕旋转中心沿相同方向转动了相同的角度,∴∠EAC=∠BAD.∴D项不正确.故选D.3.【答案】B【解析】【分析】本题考查坐标与图形变化−旋转,旋转的性质,含30°角的直角三角形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.如图,作B′H⊥y轴于H.由含30°角的直角三角形的性质求出A′H,由勾股定理求出B′H,进而得出OH 即可得出答案.【解答】解:如图,作B′H⊥y轴于H.由题意得:△OAB≌△OA′B′,∴OA′=A′B′=2,∠B′A′H=∠A′OB′+∠OB′A′=∠AOB+∠OBA=60°,∴∠A′B′H=30°,∴A′H=1A′B′=1,B′H=√A′B′2−A′H2=√3,2∴OH=OA′+A′H=3,∴B′(−√3,3),故选B.4.【答案】A【解析】【分析】此题考查了旋转的性质,属于基础题,解答本题的关键是掌握两对应边所组成的角都可以作为旋转角,难度一般.两对应边所组成的角都可以作为旋转角,结合图形即可得出答案.【解答】解:A.OC旋转后的对应边为OE不是OF,故∠COF不可以作为旋转角,故本选项正确;B.OA旋转后的对应边为OD,故∠AOD可以作为旋转角,故本选项错误;C.OB旋转后的对应边为OF,故∠BOF可以作为旋转角,故本选项错误;D.OC旋转后的对应边为OE,故∠COE可以作为旋转角,故本选项错误;故选A.【解析】解:如图:作出三角形①和三角形②两组对应点所连线段的垂直平分线的交点B为旋转中心.故选:B.根据旋转的性质,找出两组对应顶点的连线的垂直平分线,交点即为旋转中心.本题考查了旋转的性质,主要利用了旋转中心的确定,是基础题,比较简单.6.【答案】A【解析】解:旋转前后图形的形状一样,图1中从左边数第二、三张扑克牌旋转180度后,图形不能和原来的图形重合,而第一张旋转180度后正好与原图重合.故选A.旋转前后图形的形状一样,从而可判断旋转的那一张牌是中心对称图形,由此可得出答案.本题考查的是中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.7.【答案】D【解析】【分析】本题主要考查了中心对称图形,只要把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就是中心对称图形.根据中心对称图形的定义,对每个选项分别分析,解答出即可.【解答】解:将A,B,C,D各选项中图形绕一点旋转180∘后与本身重合的只有D项中的图形,所以D项中的图形是中心对称图形.故选D.【解析】【分析】本题主要考查中心对称,根据中心对称的性质逐项判定可求解.【解答】解:A.在成中心对称的图形中,连接对称点的线段一定都经过对称中心,故错误;B.在成中心对称的图形中,连接对称点的线段都被对称中心平分,故正确;C.若两个图形的对应点连成的线段都经过某一点,并被该点平分,这两个图形才关于这一点成中心对称,故错误;D.以上说法都正确是错误的,故选B.9.【答案】D【解析】【分析】本题考查的是直角三角形的性质、中心对称图形的概念、勾股定理,掌握直角三角形的性质是解题的关键.根据直角三角形的性质得到AB=2AC,根据勾股定理列式求出AB,根据中心对称图形的性质计算.【解答】解:在Rt△ABC中,∠B=30°,∴AB=2AC,AB)2+1=AB2,由勾股定理得,AC2+BC2=AB2,即(12,解得,AB=2√33∵图形是一个中心对称图形,A为对称中心,∴BB′=2AB=4√3,3故选D.10.【答案】B【解析】解:如图,将②涂黑后,与图中阴影部分构成的图形绕O正方形的中心旋转180°后,这个图形能自身重合,是中心对称图形.故选:B.根据中心对称图形的意义,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将②涂黑后,与图中阴影部分构成的图形绕O正方形的中心旋转180°后,这个图形能自身重合,是中心对称图.本题是考查中心对称图形的意义及特征.根据意义及特征即可确定哪个小正方形与图中阴影部分构成中心对称图形.11.【答案】B【解析】【分析】本题考查了利用旋转设计图案,难度不大,但易错.认真观察旋转得到的图案,找到旋转中心,即可判断.【解析】解:A、顺时针,连续旋转60度,三次即可得到.B、不能作为“基本图案”.C、旋转180度,即可得到.D、旋转60度即可.故选B.12.【答案】C【解析】略13.【答案】D【解析】【分析】本题考查旋转的性质,△AOB绕点O旋转180°得到△DOE,则点A与点D、B与E关于点O成中心对称.【解答】解:∵△AOB绕点O旋转180°得到△DOE,∴点A与点D、B与E关于点O成中心对称,作图正确的是D选项图形.故选D.14.【答案】D【解析】【分析】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键,根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.15.【答案】B【解析】【分析】根据该图形的上下底边平行且相等的特点可得旋转一周后得到的平面应是平行且全等的关系,据此找到正确选项即可.长方形旋转一周得到的几何体是圆柱.【解答】解:易得该图形旋转后可得上下底面平行且半径相同的2个圆,应为圆柱,故选B.16.【答案】√10【解析】解:在△ABC中,∠C=90°,AC=4,BC=3,∵△ABC绕点A逆时针旋转得到△AED,∴∠DEA=∠C=90°,AE=AC=4,DE=BC=3,∴BE=AB−AE=5−4=1,连接BD,在Rt△BDE中,由勾股定理可得BD=√DE2+BE2=√32+12=√10,即B、D两点间的距离为√10,故答案为:√10.由旋转的性质可求得AE、DE,由勾股定理可求得AB,则可求得BE,连接BD,在Rt△BDE 中可求得BD的长.本题主要考查旋转的性质,掌握旋转前后对应线段相等、对应角相等是解题的关键.17.【答案】6−2√5【解析】【分析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,利用勾股定理计算出AE▵2√5,再根据旋转的性质得到AG=AE=2√5,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,于是可判断点G在CB的延长线上,接着证明FA平分∠GAD得到FN=FM=4,然后利用面积法计算出GF,从而计算CG−GF就可得到CF的长.【解答】解:作FM⊥AD于M,FN⊥AG于N,如图,易得四边形CFMD为矩形,则FM=4,∵正方形ABCD的边长为4,点E是CD的中点,∴DE=2,∴AE=√42+22=2√5,∵△ADE绕点A顺时针旋转90°得△ABG,∴AG=AE=2√5,BG=DE=2,∠3=∠4,∠GAE=90°,∠ABG=∠D=90°,而∠ABC=90°,∴点G在CB的延长线上,∵AF平分∠BAE交BC于点F,∴∠2+∠4=∠1+∠3,即FA平分∠GAD,∴FN=FM=4,∵12AB⋅GF=12FN⋅AG,∴GF=4×2√54=2√5,∴CF=CG−GF=4+2−2√5=6−2√5.故答案为6−2√5.18.【答案】△OCD;A;B【解析】【分析】本题考查了中心对称的知识,难度不大,其实中心对称即是旋转的特例.直接根据图形可以发现△OAB与△OCD关于O点对称,C与A,D与B关于O点对称.【解答】解:由图形可得,△OAB与△OCD关于O点对称,点C与点A,点D与点B关于O点对称.故答案为△OCD;A;B.19.【答案】(3,−1)【解析】解:连接AA1、CC1,则交点就是对称中心E点.观察图形知,E(3,−1).连接对应点AA1、CC1,根据对应点的连线经过对称中心,则交点就是对称中心E点,在坐标系内确定出其坐标.此题考查了中心对称的性质:对应点的连线经过对称中心,且被对称中心平分.确定E点位置是关键.20.【答案】90°【解析】解:根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故答案为90°.根据旋转角的概念找到∠BOB′是旋转角,从图形中可求出其度数.本题主要考查了旋转角的概念,解题的关键是根据旋转角的概念找到旋转角.21.【答案】以原点O为中心,将△AOB顺时针旋转90°,再将得到的三角形向下平移1个单位长度【解析】解:答案不唯一,如:以原点O为中心,将△AOB顺时针旋转90°,再将得到的三角形向下平移1个单位长度;故答案为:以原点O为中心,将△AOB顺时针旋转90°,再将得到的三角形向下平移1个单位长度.利用平移变换或旋转变换的性质解决问题即可.本题考查几何变换的类型,坐标与图形变化−对称,平移,旋转等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】解:(1)∵将△A′B′C顺时针旋转45°,∴∠ACA′=45°,AC=A′C,∠A=∠A′,∵∠A′CB′=∠ACB=90°,∴∠BCA′=∠ACA′=45°,且AC=A′C,∠A=∠A′,∴△A′CQ≌△ACP(ASA),∴CP=CQ;(2)如图②,过点P作PE⊥AC于E,∵∠A=30°,AP=3,PE⊥AC,∴PE=1.5,∵∠ACA′=45°,PE⊥AC,∴CE=PE=1.5,∴PC=3√2,2∴CP=CQ=3√2.2【解析】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明△A′CQ≌△ACP是本题的关键.(1)由“ASA”可证△A′CQ≌△ACP,可得CP=CQ;(2)由直角三角形的性质和全等三角形的性质可求CP=CQ=3√2.223.【答案】解:(1)A;90或270;3;(2)BE⊥DF.理由:如图,延长BE交DF于点G,由旋转的性质可得:∠AEB=∠F,又∵∠AEB=∠DEG,∴∠F=∠DEG,∵∠F+∠ADF=90°,∴∠DEG+∠ADF=90°,∴∠DGE=90°,即BE⊥DF.【解析】【分析】本题主要考查旋转的性质,熟练掌握①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.(1)由△ADF绕点A顺时针旋转90度得到△ABE可知AE=AF=4,AD=AB=7,从而得出DE的长;所以∠EAF=90°,∠EBA=∠FDA,可得旋转度数;(2)根据旋转的性质得出∠F=∠AEB=∠DEG,再根据∠F+∠ADF=90°可得∠DEG+∠ADF=90°,即可得答案.解:(1)根据题意可知,△ADF绕点A顺时针旋转90度得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD−AE=7−4=3,∵∠EAF=90°,∠EBA=∠FDA,可得旋转中心为点A,旋转角度为90°或270°;故答案为A;90或270;3;(2)见答案.24.【答案】解:(1)甲图:平行四边形,(2)乙图:等腰梯形,(3)丙图:正方形.【解析】(1)平行四边形是中心对称图形但不是轴对称图形;(2)等腰梯形是轴对称图形但不是中心对称图形;(3)正方形既是轴对称图形又是中心对称图形.本题考查了轴对称图形和中心对称图形,熟练掌握几个常见的四边形是哪类图形是关键:①平行四边形是中心对称图形但不是轴对称图形;②等腰梯形是轴对称图形但不是中心对称图形;③矩形、菱形、正方形既是轴对称图形又是中心对称图形.25.【答案】解:∵四边形ABCD关于点O中心对称,∴AO=CO,AB=CD,BC=AD,∵OE⊥AC,∴AE=EC,∴C△ABE=AB+BE+AE=AB+BE+EC=AB+BC=24cm,∴C=AB+BC+CD+AD=2(AB+BC)=48cm.四边形ABCD【解析】【分析】本题考查的是中心对称,利用了中心对称,线段垂直平分线的性质.根据中心对称,可得AO=CO,AB=CD,BC=AD,根据线段垂直平分线的性质,可得AE=CE,根据等量代换,可得AB+BC的值,根据四边形的周长公式,可得答案.26.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)△A1B1C1与△A2B2C2成中心对称图形,对称中心的坐标为(−12,−12).【解析】(1)利用利用y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A2、B2、C2,从而得到△A2B2C2;(3)根据中心对称的定义进行判断.本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.27.【答案】解:(1)如图,△A1B1C1即为所求作.(2)P1(n,−m).(3)由题意可知,OA=√22+42=√20=2√5,A的运动路径.【解析】本题考查作图−旋转变换,解题的关键是理解题意,灵活运用所学知识解决问题.(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用旋转变换的性质判断即可.(3)利用圆的周长公式计算,再乘以1即可.4第21页,共21页。

人教版初中数学九年级上册第二十三章23.1.1旋转的概念与性质

人教版初中数学九年级上册第二十三章23.1.1旋转的概念与性质

3.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt △ADE,点B的对 应点D恰好落在BC边上.若AC= 3 , ∠B=60 °,则CD的长为( D ) A. 0.5 B. 1.5 C. 2 D. 1
E
A
C
D
B
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,旋转角等 于 44 ° .
A1 C,
A1B
BC,
A1BD CBF,
△BCF≌△BA1D;
1.下列现象中属于旋转的有( C )个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的
转动;⑤钟摆的运动;⑥荡秋千运动.
A.2 B.3 C.4 D.5
2. 下列说法正确的是( B )
A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到
3.旋转不改变图形的形状和大小.
A E
F
B
D O C
探究新知
素养考点 1 旋转作图
例1 如图,E是正方形ABCD中CD边上任意一点,以点A 为中心,把△ADE顺时针旋转90°,画出旋转后的图形.
想一想:本题中作 图的关键是什么?
A
D
E
作图关键-确定点E的对应点E′
B
C
例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点 B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=
x
A.45°,90° B.90°,45° C.60°,30° D.30°,60°

人教版初中九年级数学上册第二十三章《旋转》知识点复习(含答案解析)

人教版初中九年级数学上册第二十三章《旋转》知识点复习(含答案解析)

一、选择题1.下列图形一定不是中心对称图形的是( )A .正六边形B .线段()213y x x =-+≤≤C .圆D .抛物线2y x x =+ 2.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 3.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).A .4B .5C .6D .8 4.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( ) A .第二象限 B .第三象限 C .第四象限 D .第二或第四象限 5.下列图形中,是中心对称图形的是( )A .B .C .D . 6.如图,在平面直角坐标系中,点A 的坐标为(3,1)-,将OA 绕原点O 按顺时针方向旋转90︒得到OA ',则点A '的坐标为( )A .(3,1)B .(3,1)-C .(1,3)--D .(1,3)7.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .23C .4D .458.下列四个图案中,是中心对称图形的是( )A .B .C .D .9.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形.其中正确的结论有( ).A .1个B .2个C .3个D .4个10.如图,等边△OAB 的边OB 在x 轴上,点B 坐标为(2,0),以点O 为旋转中心,把△OAB 逆时针转90︒,则旋转后点A 的对应点A '的坐标是( )A .(-13)B 3-1)C .(31-,)D .(-2,1) 11.已知等边△ABC 的边长为8,点P 是边BC 上的动点,将△ABP 绕A 逆时针转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是 ( )A .2B .23C .4D .不能确定 12.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 13.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D . 14.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3)15.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°二、填空题16.有两个直角三角板,其中45E ∠=︒,30C ∠=︒,按图①的方式叠放,先将ABC固定,再将AED 绕顶点A 顺时针旋转,使//BC DE (如图②所示),则旋转角BAD ∠的度数为______.17.若点M (3,a ﹣2),N (b ,a )关于原点对称,则ab =_____.18.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30︒后得到正方形A B C D '''',则图中阴影部分面积为____________.19.在ABC 中,2AB =,3AC =,以CB 为边作一个形状等边三角形BCD △,则DA 的最大值是________.20.如图,正方形ABCD 的边长为6,点E 在边CD 上.以点A 为中心,把ADE 顺时针旋转90︒至ABF 的位置,若2DE =,则FC =________.21.如图,在ABC 中,4AB =, 5.8BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为________.22.如图,在平面直角坐标系中,若△ABC≌△DEF关于点H成中心对称,则对称中心H 点的坐标是_________.23.如图,△ABC中,∠A=60°,∠ABC=80°,将△ABC绕点B逆时针旋转,得到△DBE,若DE∥BC,则旋转的最小度数为_____.24.如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是_____°.25.如图,在Rt ABC中,∠C=90°,AC=6cm,BC=8cm.将Rt ABC绕点A逆时针旋转△,使点C '落在AB边上,连结BB',则BB'的长度为_________.得到Rt AB C''26.一副直角三角尺叠放,如图①所示,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两个三角尺有一组边互相平行.例如图②,当∠BAD=15°时,BC∥DE,当90°<∠BAD<180°时,∠BAD的度数为___.三、解答题27.如图,在一个1010⨯的正方形网格中有一个,ABC ABC ∆∆的顶点都在格点上.(1)在网格中画出ABC ∆向下平移4个单位,再向右平移6个单位得到的111A B C ∆. (2)在网格中画出ABC ∆关于点P 成中心对称得到的222A B C ∆.(3)若可将111A B C ∆绕点О旋转得到222A B C ∆,请在正方形网格中标出点O ,连接12A A 和12B B ,请直接写出四边形2211A B A B 的面积.28.已知30AOB ∠=,P 为射线OB 上一点,M 为射线OA 上一动点,连接PM , 满足OMP ∠为钝角,将线段PM 绕点 P 顺时针旋转150,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)在射线 MA 上取点D ,点M 关于点D 的对称点为E ,连接EP ,当PDO ∠= 时,使得对于任意的点M ,总有ON EP =,并证明29.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD △绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)请求出旋转角的度数;(2)请判断AE与BD的位置关系,并说明理由.30.江都大润发超市销售一种利润为每千克10元的水产品,一个月能销售出500千克.经市场分析,销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,若设单价每千克涨价x元,请解答以下问题:(1)填空:每千克水产品获利元,月销售量减少千克;(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应涨价为多少元?。

【初中数学】人教版九年级上册小结(第二十三章)(练习题)

【初中数学】人教版九年级上册小结(第二十三章)(练习题)

人教版九年级上册小结(第二十三章)(153)1.如果将点P绕定点M旋转180∘后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,点M是线段PQ的中点.如图,在平面直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0).点列P1,P2,P3,…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称,…,对称中心分别是A,B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),则点P2017的坐标为.2.如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线l的函数解析式是()x+1 C.y=3x−3 D.y=x−1A.y=x+1B.y=133.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为.4.如图,在Rt△ABC中,∠ABC=90∘,AB=BC=√2,将△ABC绕点C逆时针旋转60∘,得到△MNC,连接BM,则BM的长是.5.如图,在△ABC中,AC=BC=8,∠C=90∘,D为BC的中点,将△ABC绕点D逆时针旋转45∘,得到△A′B′C′,B′C′与AB相交于点E,则S四边形ACDE=.6.如图,正方形ABCD的边长为3,E,F分别是AB,BC边上的点,且∠EDF=45∘.将△DAE 绕点D逆时针旋转90∘,得到△DCM.(1)求证:EF=MF;(2)当AE=1时,求EF的长.7.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点的坐标分别为A(−2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180∘,得到△A1B1C,请画出△A1B1C;(2)平移△ABC,使点A的对应点A2的坐标为(−2,−6),请画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.8.利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出你所作的图形连同原四边形绕点O按顺时针旋转90∘后的图形;(2)完成上述设计后,整个图案的面积等于.9.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形,该小正方形的序号是()A.①B.②C.③D.④10.如图,是某年在北京举办的世界数学家大会的会标“弦图”,它既标志着中国古代的数学成就,又像一只转动着的风车,欢迎世界各地的数学家们.请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另外两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形都不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.11.如图,在△ABC中,∠C=67∘,将△ABC绕点A顺时针旋转后得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A.56∘B.50∘C.46∘D.40∘12.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120∘后,点P的对应点的坐标是()A.(√3,−1)B.(1,−√3)C.(2√3,−2)D.(2,−2√3)13.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.14.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中,既是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个15.如图,如果甲、乙关于点O成中心对称,则乙图中不符合题意的一块是()A. B. C. D.参考答案1.【答案】:(1,1)【解析】:∵点P 1(1,1)关于点A 的对称点是P 2(1,−1),∴点P 2关于点B 的对称点是P 3(−1,3),∴点P 3关于点O 的对称点是P 4(1,−3),∴点P 4关于点A 的对称点是P 5(1,3),∴点P 5关于点B 的对称点是P 6(−1,−1),∴点P 6关于点O 的对称点是P 7(1,1),可以看出,点P 7的坐标和点P 1的坐标相同,点P 的坐标每6个一循环,∵2017÷6=336……1,∴点P 2017的坐标和点P 1的坐标相同,是(1,1)2.【答案】:D【解析】:如图,设点D(1,0).∵直线l 经过点D(1,0),且将▱OABC 分割成面积相等的两部分,∴OD =BE =1.∵顶点B 的坐标为(6,4),∴E(5,4).设直线l 的函数解析式是y =kx +b .∵直线l 过点D(1,0),E(5,4),∴{k +b =0,5k +b =4,解得{k =1,b =−1.∴直线l 的函数解析式是y =x −1.故选 D3.【答案】:(−1,−1)【解析】:如图,过点A 作AD ⊥OB 于点D ,∵△AOB 是等腰直角三角形,OB =2,∴OD=AD=1,∴A(1,1),∴点A关于原点对称的点的坐标为(−1,−1).故答案为(−1,−1).4.【答案】:√3+1【解析】:如图,连接AM,设BM与AC相交于点D.∵在Rt△ABC中,∠ABC=90∘,AB=BC=√2,∴AC=2.∵∠ACM=60∘,AC=CM=2,∴△ACM是等边三角形,∴MC=MA.∵AB=BC,∴BM垂直平分AC,∴CD=BD=1.由勾股定理得DM=√3,∴BM=BD+DM=√3+1.5.【答案】:28【解析】:∵在△ABC中,AC=BC=8,∠C=90∘,∴∠B=45∘.∵旋转角是45∘,即∠BDE=45∘,∴△BDE是等腰直角三角形.BC=4.∵D是BC的中点,∴BD=12根据勾股定理可得BE=DE=2√2,∴S 四边形ACDE =S △ABC −S △BDE =12AC ·BC −12BE ·DE =12×8×8−12×2√2×2√2=28.故答案为286(1)【答案】证明:∵△DAE 绕点D 逆时针旋转90∘得到△DCM ,∴DE =DM ,∠ADE =∠CDM ,∴∠EDM =90∘,即∠EDF +∠FDM =90∘.∵∠EDF =45∘,∴∠FDM =∠EDF =45∘.又∵DF =DF ,∴△DEF ≌△DMF ,∴EF =MF(2)【答案】设EF =x .∵AE =CM =1,∴BF =BM −MF =BM −EF =4−x .在Rt △EBF 中,由勾股定理,得EB 2+BF 2=EF 2,即22+(4−x)2=x 2,解得x =52.即EF 的长为527.【答案】:(1)如图所示,△A 1B 1C 即为所求(2)如图所示,△A 2B 2C 2即为所求(3)旋转中心是直线B 1B 2和A 1A 2的交点,由图可知旋转中心的坐标是(0,−2).8(1)【答案】如图所示.(2)【答案】20【解析】:∵边长为1的方格纸中一个方格的面积是1,∴原四边形的面积为5,∴整个图案的面积=4×5=209.【答案】:B【解析】:根据题意,可作出四种图形如下,其中旋转180∘与自身重合的只有第2个图形,∴将②涂黑能与原图中的阴影部分构成中心对称图形.故选B.10.【答案】:以下图案仅供参考.可从中任选两个作为答案:【解析】:以下图案仅供参考.可从中任选两个作为答案:11.【答案】:C【解析】:∵点C′在边BC上,∴∠BC′C为平角.由于旋转不改变图形的大小,∴∠AC′B′=∠C=67∘,AC′=AC,∴∠AC′C=∠C=67∘,∴∠B′C′B=180∘−∠AC′B′−∠AC′C=180∘−67∘−67∘=46∘. 故选C.12.【答案】:B【解析】:设斜边长为4的直角三角板AOB绕点O顺时针旋转120∘后得△A′OB′,点P到了点P′的位置,如图所示.由旋转知∠BOB′=120∘,∴∠2=120∘−90∘= 30∘=∠3,∴A′B′∥x轴,∴OC⊥A′B′,且∠1=30∘. 过点P′作P′D⊥x轴于点D,得矩形OCP′D.在\\mathrm{(Rt}\triangle A\)′OC中,OA′=12A′B′=2,A′C=12OA′=1,∴OC=√22−12=√3,∴P′D=OC=√3.∵A′P′=12A′B′=2,∴P′C=2−1=1. ∵点P′在第四象限,∴点P的对应点P′的坐标是(1,−√3).故选 B13.【答案】:A【解析】:先根据轴对称图形排除C,D两项,再根据中心对称图形排除B项14.【答案】:B【解析】:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形,但它是中心对称图形,等腰三角形是轴对称图形,但它不是中心对称图形15.【答案】:C。

初中数学九年级旋转知识点总结

初中数学九年级旋转知识点总结

旋转是数学中的一个重要概念,初中数学九年级的旋转知识点主要涉及到平面上的图形的旋转。

下面是对旋转知识点的详细总结。

一、旋转的基本概念旋转是指将一个平面上的图形绕着一个圆心旋转一定角度后得到的新图形。

旋转可以分为顺时针旋转和逆时针旋转两种。

二、旋转的基本要素1.旋转中心:旋转时固定不动的点,通常用O表示。

2.旋转角度:图形绕旋转中心旋转的角度,通常用θ表示。

3.旋转方向:图形绕旋转中心旋转的方向,可为顺时针或逆时针。

三、旋转的基本性质1.旋转前后的对应关系:旋转前后,图形上的各个点在对应的位置。

2.旋转角度的正负性:顺时针旋转时,旋转角度为负值;逆时针旋转时,旋转角度为正值。

3.旋转的复合性:对一个图形连续旋转两次,相当于对这个图形进行一次旋转,旋转角度为两次旋转角度的和。

四、旋转的具体操作1.给定旋转中心和旋转角度,旋转一个点:将给定点与旋转中心连接,然后以旋转角度为自由度,将连接线旋转相应角度,确定旋转点的新位置。

2.给定旋转中心和旋转角度,旋转一条线段:将给定线段上的两个端点分别旋转,得到旋转线段的两个端点,然后连接这两个点得到旋转线段。

3.给定旋转中心和旋转角度,旋转一个多边形:将多边形上的各个顶点依次旋转,得到旋转多边形的各个顶点,然后连接这些点得到旋转多边形。

五、旋转的性质与判定1.旋转过程中的不变性:旋转前后,图形的形状、大小和角度不变。

2.图形的旋转对称性:图形相对于旋转中心旋转一定角度后,与原图形完全重合。

3.旋转角度的关系:相交的两个线段,经过旋转后的线段之间的夹角等于它们旋转前的夹角。

4.旋转中心判定:判断一个点关于一个给定点旋转一定角度后的位置。

六、旋转的运用1.添加旋转对称部分:先将一个图形旋转一定角度,然后与旋转前的图形拼接,可以得到一个具有旋转对称性的图形。

2.图形的旋转判定:给定一个图形,根据旋转的要素和性质,判断该图形能否通过旋转得到另一个图形。

3.旋转变换的应用:在解决实际问题时,可以运用旋转变换来简化问题的处理过程,比如地球绕太阳的自转等。

人教版九年级数学上册第二十三章旋转必刷常考题附答案

人教版九年级数学上册第二十三章旋转必刷常考题附答案

人教版九年级数学上册第二十三章旋转必刷常考题附答案一.选择题(共5小题)1.如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°2.在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)3.如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD4.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°5.如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A 依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)二.填空题(共5小题)6.如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=.7.如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为.8.如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB交B′C′于点D,若∠BAB ′=40°,则∠C′DC的度数是°.9.如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是.10.如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是.三.解答题(共5小题)11.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.12.如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.13.如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D→D经过的路径;(2)所画图形是对称图形;(3)写出所画图形围成的面积.(结果保留π)14.如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.15.在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点A时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.2022-2023学年上学期初中数学人教版九年级期末必刷常考题之旋转参考答案与试题解析一.选择题(共5小题)1.如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.2.在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)【考点】关于原点对称的点的坐标.【专题】平面直角坐标系;平移、旋转与对称;模型思想;应用意识.【分析】根据关于原点对称的两个点的坐标之间的关系,即纵横坐标均互为相反数,可得答案.【解答】解:点P(3,﹣1)关于坐标原点中心对称的点P′的坐标为(﹣3,1),故选:C.【点评】本题考查关于原点对称的点的坐标,掌握关于原点对称的两个点坐标之间的关系是得出正确答案的前提.3.如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD【考点】全等三角形的判定与性质;旋转的性质.【专题】平移、旋转与对称;运算能力;推理能力.【分析】由旋转的性质可得出∠ADC=∠ABE,AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,得出△CAE和△DAB都是等边三角形,可判断A,B,C选项正确,则可得出结论.【解答】解:∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴∠ADC=∠ABE,∵∠ABE+∠ABC=180°,∴∠ADC+∠ABC=180°,故选项正确,不符合题意,∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,∴△CAE和△DAB都是等边三角形,∴∠ACD=∠AEB=60°,∠ACE=60°,∴∠BCD=120°,故B选项正确,不符合题意;∵△ACE为等边三角形,∴AC=CE=BE+BC,又∵BE=CD,∴AC=CD+BC,故C选项正确,不符合题意,∵BD=AB,AB≠AE,∴AE≠BD,故D选项错误,符合题意.故选:D.【点评】本题主要考查旋转的性质,等边三角形的判定与性质,熟练掌握旋转的性质是解题的关键.4.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°【考点】等腰三角形的性质;旋转的性质.【专题】图形的相似;应用意识.【分析】根据图形的旋转性质,得AB=AB′,已知AB′=CB′,结合等腰三角形的性质及三角形的外角性质,得∠B、∠C的关系为解决问题的关键.【解答】解:∵AB′=CB′,∴∠C=CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴C=24°,∴∠C′=∠C=24°,故选:D.【点评】本题主要考查了等腰三角形的性质及图形的旋转性质.5.如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A 依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)【考点】规律型:点的坐标;坐标与图形变化﹣旋转.【专题】规律型;平移、旋转与对称;几何直观;运算能力;推理能力.【分析】分析A1,A2,A3,A4,A5点坐标,找到规律求解.【解答】解:根据图形分析,从A开始旋转,当旋转到A4,时,A回到矩形的起始位置,4次一循环.A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0),A7(9,0),A8(11,2),A9(14,1),A10(15,0),A11(15,0),A12(17,2),A4n+1(6n+2,1),A4n+2(6n+3,0),A4n+3(6n+3,0),A4n+4(6n+5,0),当A2021时,即4n+1=2021,解得n=505,∴横坐标为6n+2=6×505+2=3032,纵坐标为1,则A2021的坐标(3032,1),故选:B.【点评】本题主要考查图形的旋转变换,解题关键是找到图形在旋转的过程中,点坐标变化规律进而求解.二.填空题(共5小题)6.如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=30°.【考点】多边形内角与外角;旋转对称图形.【专题】平移、旋转与对称;几何直观.【分析】依据多边形内角和公式求得正六边形每个角的度数,再根据角的和差关系进行计算即可.【解答】解:由旋转可得,该多边形是正六边形,∴该正六边形每个角为=120°,∴∠ABC=120°﹣90°=30°,故答案为:30°.【点评】本题主要考查了旋转对称图形,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.7.如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】连接FH,由正方形的性质得出∠B=∠C=90°,AB=BC,由旋转的性质得出EF=EH,证明Rt△EBF≌Rt△HCE(HL),得出∠EFB=∠HEC,证出∠FEH=90°,由勾股定理可得出答案.【解答】解:连接FH,∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC,∵AF=2,BF=4,∴AB=6,∵BE=2,∴CE=4,∴BF=CE,∵将△BEF绕点E顺时针旋转,得到△GEH,∴EF=EH,在Rt△EBF和Rt△HCE中,,∴Rt△EBF≌Rt△HCE(HL),∴∠EFB=∠HEC,∵∠EFB+∠BEF=90°,∴∠BEF+∠CEH=90°,∴∠FEH=90°,∵BF=4,BE=2,∴EF===2,∴FH=EF=2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质,勾股定理.8.如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB交B′C′于点D,若∠BAB′=40°,则∠C′DC的度数是40°.【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】由旋转的性质得到∠BAC=∠B′AC′,∠C=∠C′,进而推出∠CAC′=40°,根据三角形内角和定理证得∠C′DC=∠CAC′,即可求得∠C'DC的度数.【解答】解:∵将△ABC绕点A逆时针旋转得到△AB'C',∴△ABC≌△AB'C',∴∠BAC=∠B′AC′,∠C=∠C′,∵∠BAB'=40°,∴∠CAC′=40°,∵∠C'DC=180°﹣∠DEC′﹣∠C′,∠CAC′=180°﹣C﹣∠AEC,∠DEC′=∠AEC,∠C′DC=∠CAC′=40°,故答案为:40.【点评】本题主要考查了旋转的性质,三角形内角和定理,能灵活运用旋转的性质是解决问题的关键.9.如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是4.【考点】正方形的性质;轴对称﹣最短路线问题;旋转的性质.【专题】图形的全等;平移、旋转与对称;推理能力.【分析】连接BF,过点F作FG⊥AB交AB延长线于点G,通过证明∴△AED≌△GFE (AAS),确定F点在BF的射线上运动,作点C关于BF的对称点C',由三角形全等得到∠CBF=45°,从而确定C'点在AB的延长线上,当D,F,C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,求出DC'=4即可.【解答】解:连接BF,过点F作FG⊥AB交AB延长线于点G,∵将ED绕点E顺时针旋转90°到EF,∴EF⊥DE,且EF=DE,∴∠EDA=∠FEG,在△AED与△GFE中,,∴△AED≌△GFE(AAS),∴FG=AE,∴F点在BF的射线上运动,作点C关于BF的对称点C',∵EG=DA,FG=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC'的角平分线,即F点在∠CBC'的角平分线上运动,∴C'点在AB的延长线上,当DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,∴DC'===4,故答案为4.【点评】本题考查了旋转的性质,正方形的性质,轴对称求最短路径,能够将线段和通过轴对称转化为共线线段是解题的关键.10.如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】过点F作FH⊥CD于H,如图,利用正方形的性质得DA=CD,∠D=90°,再根据旋转的性质得EA=EF,∠AEF=90°,接着证明△ADE≌△EHF得到DE=FH=2,AD=EH,所以EH=DC,则DE=CH=2,然后利用勾股定理计算FC的长.【解答】解:过点F作FH⊥于H,如图,∵四边形ABCD为正方形,∴DA=CD,∠D=90°,∵AE绕点E顺时针旋转90°得到EF,∴EA=EF,∠AEF=90°,∵∠DAE+∠AED=90°,∠FEH+∠AED=90°,∴∠EAD=∠FEH,在△ADE和△EHF中,,∴△ADE≌△EHF(AAS),∴DE=FH=2,AD=EH,∴EH=DC,即DE+CE=CH+EC,∴DE=CH=2,在Rt△CFH中,FC===2,【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三.解答题(共5小题)11.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定;旋转的性质.【专题】图形的全等;多边形与平行四边形;推理能力.【分析】(1)由旋转的性质可得CB=CE,AB=DE=BF,由“SSS”可证△ABC≌△CFD;(2)延长BF交CE于点G,可证BF∥ED,由一组对边平行且相等可证四边形BEDF 是平行四边形.【解答】证明:(1)∵点F是边AC中点,∴CF=AC,∵∠BCA=30°,∴BA=AC,∠A=60°,∴AB=CF,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴AC=CD,∠ACD=60°,∴∠ACB=∠DCE,在△ABC和△CFD中,,∴△ABC≌△CFD(SAS);(2)延长BF交CE于点G,由(1)得,FC=BF,∴∠BCF=∠FBC=30°,∵∠BCE=60°,∴∠BCE+∠CBG=∠BGE=90°,∵∠DEC=∠ABC=90°∴∠BGE=∠DEC,∴BF∥ED,∵,AB=DE,∴BF=DE,∴四边形BEDF是平行四边形.【点评】本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定等知识,灵活运用这些知识进行推理是本题的关键.12.如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.【考点】全等三角形的判定与性质;矩形的性质;旋转的性质.【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;推理能力.【分析】证明Rt△BDA≌Rt△BDG,得到∠ABD=∠GBD,再利用矩形性质求解.【解答】证明:∵旋转矩形ABCD得到矩形GBEF,∴AB=BG,∠A=∠DGB=90°,在Rt△BDA和Rt△BDG中,,∴Rt△BDA≌Rt△BDG(HL),∴∠ABD=∠GBD,∵四边形ABCD是矩形,∴∠ABD=∠BDH,∴∠BDH=∠HBD,∴DH=BH.【点评】本题主要考查了旋转的性质、矩形的性质、解题关键是证明Rt△BDA≌Rt△BGA,得到∠ABD=∠GBD,再利用矩形性质求解.13.如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称图形;(3)写出所画图形围成的面积.(结果保留π)【考点】作图﹣旋转变换.【专题】平移、旋转与对称;几何直观;运算能力.【分析】(1)根据要求画出图形即可.(2)根据轴对称图形的定义判断即可.S+S﹣S矩形,利用扇形的面积公式(3)根据所画图形的面积=S计算可得.【解答】解:(1)点D→D1→D2→D经过的路径如图所示.(2)所画图形是轴对称图形;故答案为:轴.S+S﹣S矩形(3)所画图形的面积=S半圆+=•π•42+×2﹣4×8=8π+4π+4π﹣32=16π﹣32.【点评】本题考查作图﹣旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.【考点】全等三角形的判定与性质;等腰三角形的性质;勾股定理;旋转的性质.【专题】图形的全等;等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】(1)先根据∠DBE=∠ABC可知∠ABD+∠CBE=∠DBE=∠ABC,再由图形旋转的性质可知BE=BF,∠ABF=∠CBE,故可得出∠DBF=∠DBE,由全等三角形的性质即可得出△DBE≌△DBF,故可得出结论;(2)把△CBE逆时针旋转90°,由于△ABC是等腰直角三角形,故可知图形旋转后点C与点A重合,∠FAB=∠BCE=45°,所以∠DAF=90°,由(1)证DE=DF,再根据勾股定理即可得出结论.【解答】(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABF由△CBE旋转而成,∴BE=BF,∠ABF=∠CBE,∴∠DBF=∠DBE,在△DBE与△DBF中,,∴△DBE≌△DBF(SAS),∴DF=DE;(2)证明:∵将△CBE按逆时针方向旋转得到△ABF,∴BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AF重合,∴AF=EC,∴∠FAB=∠BCE=45°,∴∠DAF=90°,在Rt△ADF中,DF2=AF2+AD2,∵AF=EC,∴DF2=EC2+AD2,同(1)可得DE=DF,∴DE2=AD2+EC2.【点评】本题考查的是图形的旋转及勾股定理,熟知旋转前、后的图形全等是解答此题的关键.15.在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.【考点】含30度角的直角三角形;坐标与图形变化﹣旋转.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】(1)①根据旋转的性质得到OA=OA',∠A'=∠BAO=60°,推出△OAA'是等边三角形,于是得到α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,根据三角形的内角和定理得到∠OBA=30,根据勾股定理得到,求得,得到,于是得到答案;(2)如图2,等腰三角形的性质得到,推出∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,由垂直的定义得到结论.【解答】解:(1)①由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,∵∠BAO=60°,∴∠OBA=30°,在Rt△OAB中,∠OBA=30°,∴AB=2OA=4,∴,∴,又∵∠AOA'=60°,∴∠B'OC=90°﹣∠AOA'=30°,∵∠B'CO=90°,∴,∴,∴;(2)AA'⊥BB',理由:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴,∵∠BOA'=90°﹣α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB'.【点评】主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和定理,解决问题的关键是熟练掌握旋转的性质.考点卡片1.规律型:点的坐标规律型:点的坐标.2.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从4.含30度角的直角三角形(1)含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.5.直角三角形斜边上的中线(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可以用来判定直角三角形.6.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.7.多边形内角与外角(1)多边形内角和定理:(n﹣2)•180°(n≥3且n为整数)此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.(2)多边形的外角和等于360①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)•180°=360°.8.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.9.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.10.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.11.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.13.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(214.关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.15.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.16.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等。

初中数学人教九年级上册第二十三章旋转-旋转的概念与性质

初中数学人教九年级上册第二十三章旋转-旋转的概念与性质

A C
O
F
D
E
2 旋转的性质
A
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案( △ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
C O
F
E
新课讲解
B D
问题1 在图形的旋转过程中,线段OA
这个定点O称为旋转中心.
O
旋转中心
旋转角 120
P′
转动的角称为旋转角.
如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转 的对应点.
转动的方向分为顺时针与逆时针 .
新课讲解
确定一次图形的旋转时
,
旋转中心
必须明确
旋转角
旋转方向
温馨提示:(1)旋转的范围是“平面内”,其中“旋转中心, 旋转方向,旋转角度”称之为旋转的三要素;(2)旋转变换 同样属于全等变换.
解答:由旋转的性质,得AD=AE,∠DAE=∠BAC=60°,
∴△ADE为等边三角形.
∵AD=5,
∴△ADE的周长为15.
定义 旋转 性质
三要素:旋转中心,旋
转方向和旋转角度
课堂总结
(1)旋转前后的图形全等; (2)对应点到旋转中心的距离相等; (3)对应点与旋转中心所连线段的夹 角等于旋转角
应用
随堂即练
例2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度
得Rt △ADE,点B的对应点D恰好落在BC边上.若AC=3 ,
∠B=60 °,则CD的长为( D )
A. 0.5
B. 1.5
C. 2

新人教版九年级上册数学[《旋转》全章复习与巩固--知识点整理及重点题型梳理](提高)

新人教版九年级上册数学[《旋转》全章复习与巩固--知识点整理及重点题型梳理](提高)

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A B C''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转【: 388636:经典例题2-3】3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:【变式】如图,△ABC 中,∠BAC=90°,AC=2,AB=23,△ACD 是等边三角形. (1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】(1)Rt △ABC 中,AC=2,AB=23, ∴BC=4, ∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB , ∴AE=AB ,∠BAE=60°,BD=EC , ∴BE=AE=AB=23,∠EBA=60°, ∴∠EBC=90°, 又BC=2AC=4,∴Rt △EBC 中,EC=2223+4=27()4.(2015•东西湖区校级模拟)如图,Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF.(1)填空:线段BE、AF的数量关系为,位置关系为;(2)当=时,求证:=2;(3)若当=n时,=,请直接写出n的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则, ∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律. 【:388636:经典例题4-5】5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC ,(1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=42 又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:PE=2BP,PC=AE ∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90°又∵由(1)证得∠BAE=∠BCP∴∠PAB+∠BCP=90又∵∠ABC=90°∴点A,P,C三点共线,即P必在对角线AC上.【总结升华】注意勾股定理及逆定理的灵活运用.举一反三:【变式】如图,在四边形ABCD中,AB=BC,,K为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.。

人教版初中九年级数学上册第二十三章《旋转》知识点(含答案解析)

人教版初中九年级数学上册第二十三章《旋转》知识点(含答案解析)

一、选择题1.如图,在△ABC 中,AB =AC ,∠BAC =45°,点D 在AC 边上.将△ABD 绕点A 逆时针旋转45°得到△ACD ′,且D ′、D 、B 三点在同一条直线上,则∠ABD 的大小为( )A .15°B .22.5°C .25°D .30°2.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D . 3.如图,OAB 绕点O 逆时针旋转80°到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .45°B .35°C .25°D .15° 4.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 5.如图所示,把ABC 绕C 点旋转35︒,得到A B C ''',A B ''交AC 于点D ,若90A DC '∠=︒,则A ∠等于( )A .35︒B .65︒C .55︒D .45︒6.如图,正方形ABCD 的边长为1,将其绕顶点C 旋转,得到正方形CEFG ,在旋转过程中,则线段AE 的最小值为( )A .32-B .2-1C .0.5D .512- 7.如图,将一个含30角的直角三角尺AOB 放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知30OAB ∠=︒,12AB =,点D 为斜边AB 的中点,现将三角尺AOB 绕点O 顺时针旋转90︒,则点D 的对应点D 的坐标为( )A .(33,3)B .(63,6)-C .(3,33)-D .(33,3)- 8.已知Rt ABC ∆中,两条直角边4AC =,3BC =,将ABC ∆绕斜边中点O 旋转,使直角顶点与点B 重合,得到与ABC ∆全等的EDB ∆,BE 边和AC 相交于点F ,则EF 的值是( )A .78B .1C .45D .239.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .10.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是()A.B.C.D.11.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的()A.内部B.外部C.边上D.以上都有可能12.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是( )A.22B.4 C.23D.不能确定13.如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90 得到月牙②,则点A的对应点A’的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)14.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.15.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .二、填空题16.若点M (3,a ﹣2),N (b ,a )关于原点对称,则ab =_____.17.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.18.如图,在ABC 中,AB AC =,30B ∠=︒,将ABC 绕点A 沿顺时针方向旋转一周,当BC 边的对应边与AC 平行时,旋转角为______度.19.在Rt ABC △中,90ACB ∠=︒,将ABC 绕顶点C 顺时针旋转得到A B C '',点M 是BC 的中点,点P 是A B ''的中点,连接PM .若4BC =,30A ∠=︒,则在旋转一周的过程中线段PM 长度的最大值等于_____.20.如图所示,把一个直角三角尺ACB 绕30角的顶点B 顺时计旋转,使得点A 落在CB 的延长线上的点E 处,则BCD ∠的度数为______.21.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.22.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件_____,使四边形ABCD 为矩形.23.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.24.如图,小正方形方格的边长都是1,点A 、B 、C 、D 、O 都是小正方形的顶点.若COD 是由AOB 绕点O 按顺时针方向旋转一次得到的,则至少需要旋转______°.25.如图,正方形ABCD 的边长为2,BE 平分∠DBC 交CD 于点E ,将△BCE 绕点C 顺时针旋转90°得到△DCF ,延长BE 交DF 于G ,则BF 的长为_____.26.如图,O 是正△ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',下列结论正确有______.(请填序号)①点O 与O '的距离为4;②150AOB ∠=︒;③633AOBO S '=+四边形④9634AOC AOB S S +=+△△.三、解答题27.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-1,1)、B (-3,1)、C (-1,4).(1)画出△ABC 绕点C 顺时针旋转90°后得到的△A 1B 1C ;(2)画出△ABC 关于点P (1,0)对称的△A 2B 2C 2.28.在ABC ∆中,AB AC =,BAC α∠=.(1)直接写出ABC ∠的大小为______.(用含α的式子表示)(2)当060α︒<<︒时,将线段BC 绕点B 逆时针旋转60︒得到线段BD ,连接AD 、CD .①求证:ABD ACD ∆≅∆;②当40α=︒,求ACD ∠的度数.29.在平面直角坐标系中,四边形AOBC 是矩形,点(0 0)O ,,点(10 0)A ,,点(0 6)B ,.以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为点D ,E , F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB △≌BCA ;②求出ABH 面积.30.某学习小组在探究三角形全等时,发现了下列两种基本图形,请给予证明.(1)如图1,AC 与BD 交于点O ,AB ∥CD ,AB=CD ,求证:OA=OC .(2)如图2,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .求证:BD =AE .(3)数学老师赞赏了他们的探索精神,并鼓励他们用图1或图2的基本图形来解决问题:如图3,把一块含45°的直角三角板ABC (即ABC ∆是等腰直角三角形,90C =∠,AC BC =)绕点A 逆时针旋转后成为ADE ∆,已知点B 、C 的对应点分别是点D 、E .连结BD ,并作射线CE 交BD 于点F ,试探究在旋转过程中,DF 与BF 的大小关系如何,并证明.。

人教版初中数学九年级上册第23章旋转知识点总结

人教版初中数学九年级上册第23章旋转知识点总结

【人教版】初中数学九年级知识点总结:23旋转【编者按】学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。

一、目标与要求1.了解图形的旋转的有关概念并理解它的基本性质。

2.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。

3.理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角。

4.理解旋转前、后的图形全等,掌握以上三个图形的旋转的基本性质的运用。

5.了解中心对称的概念并理解它的基本性质。

6.运用旋转知识作图,旋转角度变化,设计出不同的美丽图案,并运用它解决一些实际问题。

7.了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法。

二、知识框架三、重点1.图形旋转的基本性质2.中心对称的基本性质3.两个点关于原点对称时,它们坐标间的关系4.图形的旋转的基本性质及其应用5.用旋转的有关知识画图6.利用中心对称、对称中心、关于中心对称点的概念解决一些问题四、难点1.图形旋转的基本性质的归纳与运用2.中心对称的基本性质的归纳与运用3.运用操作实验几何得出图形的旋转的三条基本性质4.根据需要设计美丽图案5.从一般旋转中导入中心对称五、知识点、概念总结1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

如下图所示:2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。

【学生卷】初中数学九年级数学上册第二十三章《旋转》经典测试卷(培优)(3)

【学生卷】初中数学九年级数学上册第二十三章《旋转》经典测试卷(培优)(3)

一、选择题1.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 4.下列图形中,是中心对称图形的是( )A .B .C .D . 5.下列图形中,是中心对称图形的是( )A .B .C .D .6.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A.4 B.3 C.2 D.17.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是( )A.22B.4 C.23D.不能确定9.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.菱形10.下列四个图案中,不是中心对称图案的是()A.B.C.D.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为()A.3 B.3C13D1512.下列图标中,既是轴对称图形,又是中心对称图形的是()A .B .C .D . 13.如果齿轮A 以逆时针方向旋转,齿轮E 旋转的方向( )A .顺时针B .逆时针C .顺时针或逆时针D .不能确定 14.下列图形是中心对称图形的是( )A .B .C .D .15.已知点A (1,a )、点B (b ,2)关于原点对称,则a+b 的值为( )A .3B .-3C .-1D .1二、填空题16.如图所示,在直角坐标系中,点()0,6A ,点()3,4P 将AOP 绕点O 顺时针方向旋转,使OA 边落在x 轴上,则PP '=_______________.17.在ABC 中,2AB =,3AC =,以CB 为边作一个形状等边三角形BCD △,则DA 的最大值是________.18.如图,在平面直角坐标系中,将ABC 绕点A 顺时针旋转到111A B C △的位置,点B ,O (分别落在点1B ,1C 处,点1B 在x 轴上,再将11AB C △绕点1B 顺时针旋转到112A B C 的位置,点2C 在x 轴上,再将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x 轴上,依次进行下去,…,若点(3,0),(0,4),5A B AB =,则点2021B 的坐标为________.19.如图,在正方形ABCD 中,3AB =,点E 在CD 边上,1DE =,把ADE 绕点A 顺时针旋转90°,得到ABE '△,连接EE ',则线段EE '的长为______.20.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为_______.21.如图,点O 是等边△ABC 内一点,∠AOB =112°.将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .当α为______________度时,△AOD 是等腰三角形?22.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180),如果EF ⊥AB ,那么n 的值是_______.23.矩形是中心对称图形,对矩形ABCD 而言,点A 的对称点是点____.24.在平面直角坐标系中,点A (-5,b)关于原点对称的点为B (a ,6),则(a+b)2019=____.25.如图,在Rt △ABC 中,∠ABC =90°,∠BAC =32°,斜边AC =6,将斜边AC 绕点A 逆时针方向旋转26°到达AD 的位置,连接CD ,取线段CD 的中点N ,连接BN ,则BN 的长为_________.26.如图,把Rt ABC ∆绕点A 逆时针旋转40︒,得到Rt AB C ''∆,点C '恰好落在边AB 上,连接BB ',则BB C ''∠=___________度.三、解答题27.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为(2,4)-.(1)以原点O 为旋转中心,画出把ABC 逆时针旋转90°的图形111A B C △; (2)在(1)的条件下,求出经过111A B C 、、三点的抛物线的解析式.28.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为()4,5-,()1,3-.(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出ABC 向下平移的3个单位,再向右平移3个单位后的的A B C '''. (3)点A 关于x 轴的对称点坐标是______;点C 关于y 轴的对称点坐标是______;点B 关于原点的对称点坐标是______.29.如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H .求证:EDC HFE ≅.30.综合与实践问题情境从“特殊到一般”是数学探究的常用方法之,类比特殊图形中的数量关系和探究方法可以发现一般图形具有的普遍规律.如图1,在ABC 中,90ACB ∠=︒,AC BC =,AD 为BC 边上的中线,E 为AD 上一点,将AEC 以点C 为旋转中心,逆时针旋转90°得到BFC △,AD 的延长线交线段BF 于点P .探究线段EP ,FP ,BP 之间的数量关系.数学思考(1)请你在图1中证明AP BF ⊥;特例探究(2)如图2,当CE 垂直于AD 时,求证:2EP FP BP +=;类比再探(3)请判断(2)的结论在图1中是否仍然成立?若成立,请证明;若不成立,请说明理由.。

(必考题)初中九年级数学上册第二十三章《旋转》经典题

(必考题)初中九年级数学上册第二十三章《旋转》经典题

一、选择题1.如图,在ABC 中,,90AB AC BAC =∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当EPF ∠在ABC 内绕点P 旋转时,下列结论错误的是( )A .AE CF =B .EPF 为等腰直角三角形C .EP AP =D .2ABC AEPF S S =四边形C解析:C【分析】 利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断.【详解】∵AB=AC ,∠BAC=90°,P 是BC 中点,∴AP=CP ,AP ⊥BC ,∠C=∠B=∠BAP=∠CAP=45°,∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE=∠CPF ,在△APE 和△CPF 中,45APE CPF AP CP EAP FCP ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△APE ≌△CPF (ASA ),∴AE=CF ,EP=PF ,S △AEP =S △CPF ,∴△EPF 是等腰直角三角形,S 四边形AEPF =12S △ABC ,即2S 四边形AEPF =S △ABC , A 、B 、D 均正确, ∵旋转过程中,EP 的长度的变化的,故EP≠AP ,C 错误;故选:C .【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定及性质的运用,解答时证明三角形全等是关键.2.如图,在等边△ABC 中,AC=8,点O 在AC 上,且AO=3,点P 是边AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( ).A .4B .5C .6D .8B解析:B【分析】 连接DP ,根据题意,得OP OD =,=60DOP ∠,从而得到120AOP COD ∠+∠=;再根据等边三角形和三角形内角和性质,得120AOP OPA ∠+∠=,从而得COD OPA ∠=∠,通过全等三角形判定,即可得到答案.【详解】如图,点D 落在BC 上,连接DP∵线段OP 绕点O 逆时针旋转60°得到线段OD∴OP OD =,=60DOP ∠∴180120AOP COD DOP ∠+∠=-∠=∵等边△ABC∴180120AOP OPA A ∠+∠=-∠=∴COD OPA ∠=∠即:OP OD COD OPA A C =⎧⎪∠=∠⎨⎪∠=∠⎩∴AOP CDO △≌△∴AP OC =∵AC=8,AO=3∴5OC AC AO =-=∴5AP OC ==故选:B .【点睛】本题考查了等边三角形、全等三角形、旋转、三角形内角和的知识;解题的关键是熟练掌握等边三角形、全等三角形、旋转、三角形内角和的性质,从而完成求解.3.如图,在ABC ∆中,30,8,5BAC AB AC ∠===,将ABC ∆绕点A 顺时针旋转30得到ADE ∆连接CD ,则CD 的长是( )A .7B .8C .12D .13A解析:A【分析】 过点D 作DF AC ⊥与F ,由旋转的性质可得AD=AB=8,30BAC DAB ∠=∠=︒,由直角三角形的性质可得AF=4,33【详解】解:过点D 作DF AC ⊥与F ,将ABC ∆绕点A 顺时针旋转30得到ADE ∆,830AD AB BAC DAB ∴==∠=∠=︒,,60CAD ∴∠=︒,且DF AC ⊥,AD=84343AF DF AF ∴===,,1CF ∴=,224817CD DF CF ∴=+=+=故选A ..【点睛】本题考查了旋转的性质、勾股定理,添加合适的辅助线构造直角三角形是解题的关键. 4.已知点(2,3)A ,O 是坐标原点,将线段OA 绕点O 逆时针旋转90︒,点A 旋转后的对应点1A ,则点1A 的坐标是( )A .(2,3)--B .(2,3)-C .(3,2)-D .(3,2)-D 解析:D【分析】根据点(,)x y 绕原点逆时针旋转90°得到的坐标为(,)y x -解答即可.【详解】解:A 、1A 两点是绕原点逆时针旋转90︒得到的,1A ∴的坐标为(3,2)-.故选:D .【点睛】考查由旋转得到的两点的坐标的变换;用到的知识点为:点(,)x y 绕原点逆时针旋转90︒得到的坐标为(,)y x -.5.下列图形:线段、等边三角形、平行四边形、矩形、菱形、正方形、直角梯形,既是轴对称图形又是中心对称图形的个数是( )A .6B .5C .4D .3C解析:C【分析】根据轴对称图形与中心对称图形的定义解答即可.【详解】解:线段,既是中心对称图形,又是轴对称图形;等边三角形,不是中心对称图形,是轴对称图形;平行四边形,是中心对称图形,不是轴对称图形;矩形,既是中心对称图形,又是轴对称图形;菱形,既是中心对称图形,又是轴对称图形;正方形,既是中心对称图形,又是轴对称图形;直角梯形,既不是中心对称图形,又不是轴对称图形;所以,既是中心对称图形,又是轴对称图形的有:线段,矩形,菱形,正方形共4个. 故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 6.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有( )A .3种B .4种C .5种D .6种C 解析:C【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【详解】如图所示:,共5种,故选C .【点睛】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.7.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--C 解析:C【解析】分析:根据关于原点对称的点的坐标特点解答.详解:点P (-3,-5)关于原点对称的点的坐标是(3,5),故选C .点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数. 8.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .D解析:D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别9.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.C解析:C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.如果齿轮A以逆时针方向旋转,齿轮E旋转的方向()A.顺时针B.逆时针C.顺时针或逆时针D.不能确定B解析:B【分析】根据图示进行分析解答即可.【详解】齿轮A以逆时针方向旋转,齿轮B以顺时针方向旋转,齿轮C以逆时针方向旋转,齿轮D 以顺时针方向旋转,齿轮E以逆时针方向旋转,故选B.【点睛】此题考查旋转问题,关键是根据图示进行解答.二、填空题11.如图,在ABC 中,AB =2,AC =1,∠BAC =30°,将ABC 绕点A 逆时针旋转60°得到11AB C △,连接BC 1,则BC 1的长为__________ .【分析】先根据旋转的定义和性质可得从而可得再利用勾股定理即可得【详解】由旋转的定义和性质得:在中故答案为:【点睛】本题考查了旋转的定义和性质勾股定理熟练掌握旋转的性质是解题关键 解析:5 【分析】 先根据旋转的定义和性质可得111,60A AC C CAC ==∠=︒,从而可得190BAC ∠=︒,再利用勾股定理即可得.【详解】由旋转的定义和性质得:111,60A AC C CAC ==∠=︒,30BAC ∠=︒,1190AC BAC AC B C ∴∠=+=∠∠︒,在1Rt ABC 中,222211215BC AB AC =+=+=,故答案为:5.【点睛】本题考查了旋转的定义和性质、勾股定理,熟练掌握旋转的性质是解题关键. 12.如图,正方形AEFG 与正方形ABCD 的边长都为2,正方形AEFG 绕正方形ABCD 的顶点A 旋转一周,在此旋转过程中,线段DF 的长可取的整数值可以为______________. 1或2或3或4【分析】如图连接AF 由题意可知AF-AD≤DF≤AD+AF 即2-2≤DF≤2+2由此即可解决问题【详解】解:如图连接AF 易知AF=2∵AF-AD≤DF≤AD+AF ∴2-2≤DF≤2+2解析:1或2或3或4【分析】如图连接AF ,由题意可知AF-AD≤DF≤AD+AF ,即22,由此即可解决问题.【详解】解:如图连接AF.易知AF=22,∵AF-AD≤DF≤AD+AF,∴22-2≤DF≤2+22,∵DF是整数,∴DF=1或2或3或4.故答案为:1或2或3或4【点睛】本题考查了旋转变换、正方形的性质、三角形的三边关系等知识,解题的关键是学会用转化的思想思考问题,把最短问题转化为三边关系解决.13.如图,△AOB中,∠B=30°,将△AOB绕点O顺时针旋转得到△A′OB′,若∠A′=40°,则∠B′= °,∠AOB= .30°110°【分析】根据旋转的性质得到利用∠AOB=∠A′OB′以及三角形内角和定理计算即可【详解】∵△AOB中∠B=30°将△AOB绕点O顺时针旋转得到△A′OB′∠A′=40°∴∠B=∠B′=解析:30°, 110°【分析】根据旋转的性质得到,利用∠AOB=∠A′OB′以及三角形内角和定理计算即可.【详解】∵△AOB中,∠B=30°,将△AOB绕点O顺时针旋转得到△A′OB′,∠A′=40°,∴∠B=∠B′=30°,∠A′=∠A=40°,则∠B′=30°,∠AOB=180°-∠A-∠B=110°.故答案为30,110.考点:旋转的变换14.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,若菱形的面积为20cm2,则阴影部分的面积为_____cm2.10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半即可得出结果【详解】∵O是菱形两条对角线的交点菱形ABCD是中心对称图形∴△OEG≌△OFH四边形OMAH≌四边形ONCG 四边形解析:10【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,即可得出结果.【详解】∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的面积=12S菱形ABCD=12×20=10(cm2).故答案为:10.【点睛】本题考查了中心对称,菱形的性质,全等三角形的判定与性质等知识;熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.15.如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22.将△BDE绕点B逆时针方向旋转后得△BD'E',当点E'恰好落在线段AD'上时,则CE'=_______.【分析】如图连接CE′过B作BH⊥CE′于H根据等腰直角三角形的性质可得AB=BC=BD=BE=2根据旋转的性质可得∠D′BD=∠ABE′D′B=BE′=BD=2根据角的和差关系可得∠ABD′=∠C26【分析】如图,连接CE′,过B作BH⊥CE′于H,根据等腰直角三角形的性质可得AB=BC=22BD=BE=2,根据旋转的性质可得∠D′BD=∠ABE′,D′B=BE′=BD=2,根据角的和差关系可得∠ABD′=∠CBE′,利用SAS可证明△ABD′≌△CBE′,可得∠D′=∠CE′B=45°,可得出BH=E′H=22BE′2,利用勾股定理可求出CH的长,进而可得CE′的长.【详解】如图,连接CE′,过B作BH⊥CE′于H,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22,∴AB=BC =22,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,在△ABD′和△CBE中AB BCABD CBE BD BE''=⎧⎪∠=∠''⎨⎪=⎩∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=22BE′=2,在Rt△BCH中,CH=22BC CH-=826-=,∴CE′=26+,故答案为26+【点睛】本题考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定与性质及勾股定理的应用,熟练掌握旋转的性质是解题关键.16.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为________ .60°【解析】要使白球反弹后能将黑球直接撞入袋中∠2+∠3=90°∵∠3=30°∴∠2=60°∴∠1=60°故答案是:60°解析:60°【解析】要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故答案是:60°.17.矩形是中心对称图形,对矩形ABCD而言,点A的对称点是点____.C【分析】根据把一个图形绕某一点旋转180°如果旋转后的图形能够与原来的图形重合那么这个图形就叫做中心对称图形这个点叫做对称中心可得答案【详解】解:矩形是中心对称图形对称中心是对角线的交点点A的对称解析:C【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】解:矩形是中心对称图形,对称中心是对角线的交点,点A的对称点是点C,故答案为C.【点睛】本题考查了中心对称图形,关键是掌握中心对称图形的性质.18.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是_______.(12)【分析】根据旋转的概率即可得出每旋转4次一个循环进而得到第2020次旋转得到△OA2020B2020则顶点A的对应点A2020的坐标与点A4的坐标相同【详解】解:将△OAB绕点O顺时针旋转9解析:(1,2)【分析】根据旋转的概率,即可得出每旋转4次一个循环,进而得到第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同.【详解】解:将△OAB 绕点O 顺时针旋转90°得△OA 1B 1;此时,点A 1的坐标为(2,-1); 再将△OA 1B 1绕点O 顺时针旋转90°得△OA 2B 2;此时,点A 2的坐标为(-1,2); 再将△OA 2B 2绕点O 顺时针旋转90°得△OA 3B 3;此时,点A 3的坐标为(-2,1); 再将△OA 3B 3绕点O 顺时针旋转90°得△OA 4B 4;此时,点A 4的坐标为(1,2); ∴每旋转4次一个循环,…依此类推,第2020次旋转得到△OA 2020B 2020,则顶点A 的对应点A 2020的坐标与点A 4的坐标相同,为(1,2);故答案为:(1,2).【点睛】本题考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.19.如图,在平面直角坐标系中,点1P 的坐标22,22⎛⎫ ⎪ ⎪⎝⎭,将线段1OP 绕点O 按顺时针方向旋转45°,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45°,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP 、5OP ,……,n OP (n 为正整数),则点2020P 的坐标是_________.(0-22019)【分析】根据题意得出OP1=1OP2=2OP3=4如此下去得到线段OP3=4=22OP4=8=23…OPn=2n -1再利用旋转角度得出点P2020的坐标与点P4的坐标在同一直线上进 解析:(0,-22019)【分析】根据题意得出OP 1=1,OP 2=2,OP 3=4,如此下去,得到线段OP 3=4=22,OP 4=8=23…,OP n =2n-1,再利用旋转角度得出点P 2020的坐标与点P 4的坐标在同一直线上,进而得出答案.【详解】解:∵点P 1的坐标为2222⎛ ⎝⎭,将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 1;∴OP 1=1,OP 2=2,∴OP 3=4,如此下去,得到线段OP 4=23,OP 5=24…,∴OP n =2n-1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P 2020的坐标与点P 4的坐标在同一直线上,正好在y 轴负半轴上,∴点P 2020的坐标是(0,-22019).故答案为:(0,-22019).【点睛】此题主要考查了点的变化规律,根据题意得出点P 2014的坐标与点P 6的坐标在同一直线上是解题关键.20.如图,在正方形ABCD 内部有一点P ,PB =1,PC =2,135BPC ∠=︒,则PA = ____.【分析】将△PBA 沿B 点顺时针旋转90°此时A 与C 点重合P 点旋转到E 点连接PE 易证△BPE 是等腰直角三角形利用勾股定理可求出PE 的长再证明△PCE 是直角三角形利用勾股定理求出CE 的长即可得到PA 的长 解析:6【分析】将△PBA 沿B 点顺时针旋转90°,此时A 与C 点重合,P 点旋转到E 点,连接PE ,易证△BPE 是等腰直角三角形,利用勾股定理可求出PE 的长,再证明△PCE 是直角三角形.利用勾股定理求出CE 的长,即可得到PA 的长.【详解】将△PBA 沿B 点顺时针旋转90°,此时A 与C 点重合,P 点旋转到E 点,连接PE ,∴PB=BE=1,PA=EC ,∠BPE=90°∴△PEB 是等腰直角三角形,∴∠PEB=∠EPB =45°,∴22,又∵∠BPC=135°,∴∠EPC=135°-45°=90°,∴在直角△PEC 中,EC=()2222226PC PE +=+=, ∴PA=EC 6=,故答案为:6.【点睛】本题考查了正方形的性质、旋转的性质、等腰直角三角形的判断和性质以及勾股定理的运用,解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.三、解答题21.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE=1,求FM 的长.解析:52【分析】由旋转可得DE=DM ,∠EDM 为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF 为45°,可得出∠EDF=∠MDF ,再由DF=DF ,利用SAS 可得出三角形DEF 与三角形MDF 全等,由全等三角形的对应边相等可得出EF=MF ;则可得到AE=CM=1,正方形的边长为3,用AB-AE 求出EB 的长,再由BC+CM 求出BM 的长,设EF=MF=x ,可得出BF=BM-FM=BM-EF=4-x ,在直角三角形BEF 中,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即为FM 的长.【详解】解:∵∆DAE 逆时针旋转90°得到∆DCE ,∴∠FCM=∠FCD+∠DCM=180°,∴F 、C 、M 三点共线,∴DE=DM ,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在∆DEF 和∆DMF 中,DE DM EDF FDM DF DF =⎧⎪∠=∠⎨⎪=⎩∴∆DEF ≌∆DMF(SAS),∴EF=MF ,设EF=MF=x ,∵AE=CM=1,且BC=3,∴BM=BC+CM=4,∴BF=BM-MF=BM-EF=4-x ,∵EB=AB-AE=3-1=2,在Rt∆EBF 中222EB BF EF +=即2222(4)x x +-=解得x=52, ∴FM=52【点睛】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理.此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.22.如图,△ABC 三个顶点的坐标分别是A (1,1),B (4,2),C (3,4). (1)请画出△ABC 关于原点对称的△A 1B 1C 1;通过作图,你发现了△ABC 中任意一点(x ,y )关于原点中心对称后的点坐标为 .(2)已知点M 坐标为(m ,n ),点P 的坐标为(2,-3),则点M 关于点P 中心对称的点N 的坐标为 .解析:(1)画图见解析,(-x ,-y ),(2)(-m +4,-n -6)【分析】(1)依据中心对称画图,即可得到△A 1B 1C 1;根据关于原点对称的坐标变化规律,可得坐标;(2)将P 点平移到原点,利用(1)的结论,求出N 点坐标.【详解】解:(1)△ABC 关于原点对称的△A 1B 1C 1如图所示,(x ,y )关于原点中心对称后的点坐标为(-x ,-y )(2)将点P (2,-3)平移到原点,对应的点M 坐标变为M 1(m-2,n+3),M 1(m-2,n+3)关于原点(即现在的点P )对称点M 2的坐标为(-m+2,-n-3),再将点P 平移回原来的位置,点M 2的坐标变为(-m+4,-n-6),即点N 的坐标为(-m+4,-n-6)【点睛】本题考查了中心对称的画法以及关于原点对称点的坐标变化规律,通过平移点P ,把关于任意一点成中心对称的问题转化为关于原点对称的问题是解决问题的关键,体现了数学的转化思想.23.如图,在一个1010⨯的正方形网格中有一个,ABC ABC ∆∆的顶点都在格点上.(1)在网格中画出ABC ∆向下平移4个单位,再向右平移6个单位得到的111A B C ∆. (2)在网格中画出ABC ∆关于点P 成中心对称得到的222A B C ∆.(3)若可将111A B C ∆绕点О旋转得到222A B C ∆,请在正方形网格中标出点O ,连接12A A 和12B B ,请直接写出四边形2211A B A B 的面积.解析:(1)画图见解析;(2)画图见解析;(3)画图见解析,10.【分析】(1)根据平移的方向和距离即可得到111A B C ∆;(2)根据中心对称变换的性质作图即可得到222A B C ∆;(3)根据各对应点的连线都经过旋转中心即可找到点O ,再根据平行四边形的面积公式可求得2211A B A B 的面积.【详解】()1如图所示,111A B C ∆即为所求.()2如图所示,222A B C ∆即为所求.()3如图所示,O 为所求点.∵11A B ∥22A B ,11A B =22A B ,∴四边形2211A B A B 为平行四边形,5210,S ∴=⨯=∴四边形2211A B A B 的面积为10.【点睛】本题考查了基本作图-平移变换、作图-中心对称变换、平行四边形的判定与性质,掌握平移变换和中心对称变换的性质,找到变换的对应点是解答的关键.24.(1)探索发现:如图1,已知Rt ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:AD CE =,CD BE =.(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为()1,3,求点N 的坐标.解析:(1)证明见详解,(2)N (4,2).【分析】(1)AD l ⊥, BE l ⊥, 90ACB ∠=︒,由一线三直角推出∠DAC=∠BCE易证△ADC ≌△CEB (AAS )利用全等三角形的性质得AD=CE ,CD=BE ,(2)过M 作MQ ⊥y 轴于Q ,过N 作NP ⊥QM 交QM 的延长线于P 由(1)知△OQM ≌△MPN 由性质得QM=PN ,OQ=MP ,求 P 点的纵坐标N 与P 横坐标相同,PN=1,求N 点纵坐标即可【详解】(1)如图1∵AD l ⊥, BE l ⊥,∴∠ADC=∠CEB=90º,∴∠DAC+∠ACD=90º,∵90ACB ∠=︒,∴∠ACD+∠BCE=180º-∠ACB=90º,∴∠DAC=∠BCE ,在△ADC 和△CEB 中,∵∠ADC=∠CEB=90º,∠DAC=∠BCE ,AC BC =,∴△ADC ≌△CEB (AAS ),AD=CE ,CD=BE ,(2)如图2过M 作MQ ⊥y 轴于Q ,过N 作NP ⊥QM 交QM 的延长线于P ,由(1)知△OQM ≌△MPN ,∴QM=PN ,OQ=MP ,∵点M 的坐标为()1,3,∴MQ=1,OQ=3,∴PN=QM=1,∴MP=OQ=3,∵PQ ⊥y 轴,Q (0,3)P 点的纵坐标为3,QP=QM+MP=1+3=4,P (4,3),∵PN ⊥QM ,∴PN ∥y 轴,∴N 与P 横坐标相同,PN=1,N 点纵坐标为3-1=2,∴N (4,2).【点睛】本题考查全等三角形变换问题,掌握三角形全等的判定方法,会用一线三直角找全等条件,会利用辅助线构型解决问题是关键.25.在Rt ABC ∆中,,90,,AC BC ACB M N ︒=∠=在直线AB 上,且222MN AM BN =+.(1)如图1,当点,M N 在线段AB 上时,求证:45MCN ︒∠=.(2)如图2,当点M 在BA 的延长线上且点N 在线段AB 上时,上述结论是否成立?若成立,请证明,若不成立,请说明理由.解析:(1)证明见解析;(2)成立,证明见解析.【分析】(1)将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,利用旋转的性质和等腰三角形的性质证明'NBM ∆为直角三角形,可证明'MN M N =,利用全等三角形的判定(SSS )可证明()'CMN CM N SSS ∆≅∆,即可证得1'452MCN MCM ︒∠=∠=; (1)仿照(1)中方法将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,证明DBN ∆为直角三角形,再证DN=MN ,进而证明()CMN CDN SSS ∆≅∆即可得出结论.【详解】()1如图1,,90AC BC ACB ︒=∠=,将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,则'ACM NCM ∆≅∆,',','ACM BCM CM CM AM BM ∴∠=∠==,连接'M N ,'CAM CNM ∠=∠=45°,''90M BN CBM CBA ︒∴∠=∠+∠=,'NBM ∴∆为直角三角形,22222''NM BN BM BN AM ∴=+=+,又222MN AM BN =+,'MN M N ∴=, 在CMN ∆和'CM N ∆中''CM CM MC M N CN CN =⎧⎪=⎨⎪=⎩,()'CMN CM N SSS ∴∆≅∆,'MCN M CN ∴∠=∠, 1'452MCN MCM ︒∴∠=∠=, 即45MCN ︒∠=;()2如图2,,90AC BC ACB ︒=∠=,将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,CMA CDB ∴∆≅∆,,,135CM CD AM BD CAM CBD ︒∴==∠=∠=,90DBN CBD CBA ︒∴∠=∠-∠=,DBN ∴∆为直角三角形,22222DN BD BN AM BN ∴=+=+,又222MN AM BN =+,DN MN ∴=, 在CMN ∆和CDN ∆中CM CD CN CN MN DN =⎧⎪=⎨⎪=⎩,()CMN CDN SSS ∴∆≅∆,1452MCN DCN MCD ︒∴∠=∠=∠=, 45MCN ︒∴∠=.【点睛】本题考查了等腰三角形的性质、旋转的性质、全等三角形的判定与性质、勾股定理,熟练掌握全等三角形的判定与性质,利用旋转性质旋转△ACM 构造直角三角形是解答的关键. 26.如图,等边△ABC 中,P 是BC 边上任意一点,将△ABP 绕点A 逆时针旋转60°.(1)请用圆规和无刻度的直尺作出旋转后的三角形(保留作图痕迹,不写作法和证明); (2)记点P 的对应点为P ʹ,试说明△APP ʹ的形状,并说明理由解析:(1)见解析;(2)△APPʹ是等边三角形,理由见解析.【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)根据“含有60°角的等腰三角形是等边三角形”进行判断△APPʹ的形状.【详解】解:(1)如图所示,(2)△APPʹ是等边三角形,如图,连接PPʹ,根据作图得∠PAPʹ=60°,AP=APʹ,∴△APPʹ是等边三角形.【点睛】本题考查的是作图-旋转变换和等边三角形的判断,熟知图形旋转的性质及等边三角形的判定定理是解答此题的关键.27.某学习小组在探究三角形全等时,发现了下列两种基本图形,请给予证明.(1)如图1,AC 与BD 交于点O ,AB ∥CD ,AB=CD ,求证:OA=OC .(2)如图2,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .求证:BD =AE .(3)数学老师赞赏了他们的探索精神,并鼓励他们用图1或图2的基本图形来解决问题:如图3,把一块含45°的直角三角板ABC (即ABC ∆是等腰直角三角形,90C =∠,AC BC =)绕点A 逆时针旋转后成为ADE ∆,已知点B 、C 的对应点分别是点D 、E .连结BD ,并作射线CE 交BD 于点F ,试探究在旋转过程中,DF 与BF 的大小关系如何,并证明.解析:(1)见解析;(2)见解析;(3)DF BF =,理由见解析【分析】(1)利用三角形ABD CDO ∆∆,全等来证即可(2)利用一线三直角证2B ∠=∠,再证两三角形全等即可(3)证F 为BD 中点,构造一个三角形,过点D 作DG ∥BC ,交CF 延长线于点G ,只要证GDF CBF ∆∆≌,看看条件DG ∥BC ,有BCF G ∠=∠,以及DFG CFB =∠∠,差一边,由旋转知BC D E =,只要证GD=DE ,由90AED ∠=︒,得90AEC DEG ∠+∠=︒,90ACB ∠=︒,则90BCF ACE ∠+∠=︒,AE=AC ,=ACE AEC ∠∠,得到BCF DEF=G ∠=∠∠,DG=DE=BC ,为此GDF CBF ∆∆≌得证即可.【详解】证明:(1)∵AB ∥CD ∴A C ∠=∠,B D ∠=∠,又∵AB CD =∴()ABD CDO ASA ∆∆≌,∴OA OC =,(2)∵BD l ⊥,CE l ⊥,∴90BDA CEA ∠=∠=︒∴190B ∠+∠=︒,∵90BAC ∠=︒∴1290∠+∠=︒∴2B ∠=∠,又∵AB AC =∴()ABD CAE AAS ∆∆≌,∴BD AE =,,(3)DF BF =.理由如下:,法一:过点D 作DG ∥BC ,交CF 延长线于点G ,∴G BCF ∠=∠∵90ACB ∠=︒∴90BCF ACE ∠+∠=︒,由旋转得:AC AE =∴ACE AEC ∠=∠,∵90AED ∠=︒∴90AEC DEG ∠+∠=︒,∴BCF DEG ∠=∠∴G DEG ∠=∠∴DE DG =,又∵DE BC =∴DG BC =,又∵DFG CFB =∠∠∴()GDF CBF AAS ∆∆≌,∴DF BF =,法二:作AH EC ⊥,BM CF ⊥,DN CF ⊥交CF 延长线于N ,∵AC AE =∴CH EH =,∵90ACB ∠=︒∴90BCF ACH ∠+∠=︒,又∵90ACH HAC ∠+∠=︒,AC BC =,∴ACH CBM ∆∆≌∴CH BM =∴EH BM =,在AEH ∆与EDN ∆中,由图2可证:EH DN =∴DN BM =,∵DN CF ⊥,BM CF ⊥∴DN ∥BM ,在DNF ∆与BMF ∆中,由图1可证:DF BF =.【点睛】本题考查利用全等证线段相等问题,利用好平行线,使问题得以解决,利用好一线三直角,找到∠B=∠CAE,使问题得以解决,利用好旋转,有线等就有角等,使∠G=∠DEG=∠BCG,GD=DE=BC,使问题得以解决.28.如图,在7×7的正方形网格中,选取14个格点,以其中3个格点为顶点画出△ABC.(1)请你以选取的格点为顶点再画出一个三角形,要求所画的三角形与△ABC组成的图形是中心对称图形;(2)若网格中每个小正方形的边长为1,请猜想新得到的中心对称图形是什么特殊图形(不用证明),并求出它的面积.解析:(1)如图所示见解析;(2)是平行四边形,面积是6.【分析】(1)确定出对称中心,然后根据中心对称图形的性质作出即可;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,再根据格点的特点,利用三角形的面积公式即可得平行四边形的面积.【详解】(1)如图所示:所画的三角形与△ABC组成的图形是中心对称图形;(2)观察图形,根据中心对称图形的性质知新得到的图形是平行四边形,面积是:123262⨯⨯⨯=.【点睛】本题考查了利用中心对称的性质作图,平行四边形的判定,熟练掌握中心对称的性质是作图的关键,要注意对称中心的确定.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三章旋转y)旋转1.(2018·湖南中考模拟)如图,将正方形ABCD 中的阴影三角形绕点A 顺时针旋转90°后,得到的图形为( )A .B .C .D .【答案】A 【解析】顺时针90°后,AD 转到AB 边上,所以,选A 。

2.(2018·甘肃中考真题)如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )A.5B C.7D【答案】D【详解】∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==故选D.3.(2019·天津中考模拟)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【答案】C【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°, 故选C .4.(2018·天津中考模拟)如图,将△ABC 绕点A 逆时针旋转100°,得到△ADE .若点D 在线段BC 的延长线上,则∠B 的大小为( )A .30°B .40°C .50°D .60°【答案】B 【解析】∵△ADE 是由△ABC 绕点A 旋转100°得到的, ∴∠BAD=100°,AD=AB , ∵点D 在BC 的延长线上, ∴∠B=∠ADB=180100402-=. 故选B.中心对称图形1.(2019·河北中考模拟)如图是一个中心对称图形,则此图形的对称中心为()A.A点B.B点C.C点D.D点【答案】B【详解】解:如图所示:点A与点C是对应点,点D与点E是对应点,线段AC与DE相交于点B,所以点B是对称中心.故选:B.2.(2019·江苏中考模拟)如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是( )A .(1,0)B .(﹣1,2)C .(0,0)D .(﹣1,1)【答案】B 【详解】(A和B ,C 和D 是对称点)解:作线段AB ,线段CD ,作线段AB 的垂直平分线MN ,线段CD 的垂直平分线EF ,直线MN 交直线EF 于点K ,点K 即为旋转中心.观察图象可知旋转中心()K 1,2-, 故选:B .3.(2019·山东中考模拟)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .【答案】B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,只有选项B符合条件。

故选B。

4.(2019·四川中考真题)不考虑颜色,对如图的对称性表述,正确的是( )A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【答案】B【详解】解:如图所示:是中心对称图形.故选:B.5.(2018春平原区期末)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.【答案】答案见解析【分析】思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.【详解】如图所示,有三种思路:关于原点对称的点的坐坐标规律1.(2019·福建中考模拟)在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于原点对称,则a+b 的值为() A .33 B .-33 C .-7 D .7 【答案】D 【解析】试题分析:关于原点对称的两个点,横坐标和纵坐标分别互为相反数.根据性质可得:a=-13,b=20,则a+b=-13+20=7.2.(2019·广西中考真题)若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3C .5D .7【答案】C 【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称, ∴13m -=-,25n -=-,解得:2n=,m=-,7则275+=-+=m n故选C.3.(2018·全国中考模拟)若在平面直角坐标系内A(m-1,6),B(-2,n)两点关于原点对称,则m+n的值为()A.9B.-3C.3D.5【答案】B【解析】∵在平面直角坐标系内A(m-1,6),B(-2,n)两点关于原点对称,∴m-1+(-2)=0,6+n=0,∴m=3,n=-6,∴m+n=3+(-6)=-3.故选B.关于原点中心对称1.(2018·广东省珠海市文园中学初二期中)△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC 的面积.【答案】(1)(-3,2);(2)2.5 【解析】(1)如图,C 1坐标为(-3,2);(2)11123212131222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=.旋转1.(2019·山东中考模拟)如图,已知△ABC 中,AB =AC ,把△ABC绕A 点沿顺时针方向旋转得到△ADE ,连接BD ,CE 交于点F .(1)求证:△AEC ≌△ADB ;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.【答案】(1)见解析;(2)BF=2. 【详解】解:(1)由旋转的性质得:△ABC ≌△ADE ,且AB =AC , ∴AE =AD ,AC =AB ,∠BAC =∠DAE ,∴∠BAC+∠BAE =∠DAE+∠BAE ,即∠CAE =∠DAB , 在△AEC 和△ADB 中,AE AD CAE DAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△AEC ≌△ADB (SAS );(2)∵四边形ADFC 是菱形,且∠BAC =45°, ∴∠DBA =∠BAC =45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=﹣2.2.(2019·辽宁中考真题)思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC 边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE,见解析;③PC2.【分析】(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB=CD,即可解题.(2)①延长EP交BC于F,易证△FBP≌△EDP(SAS)可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.②作BF∥DE,交EP延长线于点F,连接CE、CF,易证△FBP≌△EDP (SAS),结合已知得BF=DE=AE,再证明△FBC≌△EAC(SAS),可得△EFC是等腰直角三角形,即可证明PC=PE,PC⊥PE.③作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC 交CA延长线于H点,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,得∠FBC=∠EAC,同②可证可得PC=PE,PC⊥PE,再由已知解三角形得∴EC 2=CH 2+HE 2=10+2212PC EC ==【详解】(1)解:∵CD ∥AB ,∴∠C =∠B , 在△ABP 和△DCP 中,BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△ABP ≌△DCP (SAS ), ∴DC =AB . ∵AB =200米. ∴CD =200米, 故答案为:200.(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图1,延长EP 交BC 于F , 同(1)理,可知∴△FBP ≌△EDP (SAS ), ∴PF =PE ,BF =DE , 又∵AC =BC ,AE =DE ,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵EP=FP,∴PC=PE,PC⊥PE.②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.理由如下:如解图2,作BF∥DE,交EP延长线于点F,连接CE、CF,同①理,可知△FBP≌△EDP(SAS),∴BF=DE,PE=PF=12 EF,∵DE=AE,∴BF=AE,∵当α=90°时,∠EAC=90°,∴ED∥AC,EA∥BC∵FB∥AC,∠FBC=90,∴∠CBF=∠CAE,在△FBC和△EAC中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△FBC ≌△EAC (SAS ), ∴CF =CE ,∠FCB =∠ECA , ∵∠ACB =90°, ∴∠FCE =90°,∴△FCE 是等腰直角三角形, ∵EP =FP ,∴CP ⊥EP ,CP =EP =12EF .③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,∴∠FBC =∠EAC =α=150° 同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP, 在Rt △AHE 中,∠EAH =30°,AE =DE =1,21 ∴HE =12,AH又∵AC =AB =3, ∴CH =∴EC 2=CH 2+HE 2=10+∴PC 2=212EC =。

相关文档
最新文档