集体备课因式分解法求解一元二次方程说课稿

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用因式分解法求解一元二次方程

说课稿

一、学情分析

学生知识技能基础:在前几册学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,积累了解方程的一些方法;在八年级学生学习了因式分解,掌握了提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;

学生活动经验基础:在相关知识的学习过程中,学生已经经历了用配方法和公式法求一元二次方程的解的过程;同时在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学目标:

知识与技能

1、能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性;

2、会用因式分解法(提公因式法、公式法)解决某些简单的数字系数的一元二次方程;

3、通过因式分解法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想。

过程与方法

1、通过学生探究一元二次方程的解法,使学生知道分解因式法是解一元二次方程的一种简便、特殊的方法,通过“降次”把一元二次方程转化为两个一元一次方程;

2、通过小组合作交流,尝试在解方程过程中,多角度地思考问题,寻求从不同角度解决问题的方法,并初步学会不同方法之间的差异,学会在与他人的交流中获益。

情感、态度、价值观

1、经历观察,归纳分解因式法解一元二次方程的过程,激发好奇心;

2、进一步丰富数学学习的成功体验,使学生在学习中培养良好的情感、态度

和主动参与、合作交流的意识,进一步提高观察、分析、概括等能力。

三、教学重点

掌握用因式分解法解一元二次方程

四、教学难点

灵活运用因式分解法解一元二次方程

五、教学过程

本节课设计了七个教学环节:第一环节:复习回顾;第二环节:情境引入,探究新知;第三环节:例题解析;第四环节:巩固练习;第五环节:拓展延伸;第六环节:感悟与收获;第七环节:布置作业。

第一环节:复习回顾

内容:1、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n≥0)的形式。

2、用公式法解一元二次方程应先将方程化为一般形式。

3、选择合适的方法解下列方程:

①x2-6x=7 ②3x2+8x-3=0

意图:以问题串的形式引导学生思考,回忆两种解一元二次方程的方法,有利于学生衔接前后知识,形成清晰的知识脉络,为学生后面的学习作好铺垫。

第二环节:情景引入、探究新知

内容:一个数的平方与这个数的3倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?

(说明:学生独自完成,教师巡视指导,选择不同答案准备展示。)附:学生A:设这个数为x,根据题意,可列方程

x2=3x

∴x2-3x=0

∵a=1,b= -3,c=0

∴ b2-4ac=9

∴ x

1=0, x

2

=3

∴这个数是0或3。

学生B::设这个数为x,根据题意,可列方程 x2=3x

∴ x2-3x=0

x2-3x+(3/2)2=(3/2) 2

(x-3/2) 2=9/4

∴ x-3/2=3/2或x-3/2= -3/2

∴ x

1=3, x

2

=0

∴这个数是0或3。

学生C::设这个数为x,根据题意,可列方程 x2=3x

∴ x2-3x=0

即x(x-3)=0

∴ x=0或x-3=0

∴ x

1=0, x

2

=3

∴这个数是0或3。

学生D:设这个数为x,根据题意,可列方程

x2=3x

两边同时约去x,得

∴ x=3

∴这个数是3。

师:同学们在下面用了多种方法解决此问题,观察以上四个同学的做法是否存在问题?你认为那种方法更合适?为什么?

(小组内交流,选代表回答,及时让学生补充不同的思路,关注每一个学生的参与情况。)

XX小组:我们认为D小组的做法不正确,因为要两边同时约去X,必须确保X不等于0,但题目中没有说明。

学生E:补充一点,刚才讲X须确保不等于0,而此题恰好X=0,所以不能约去,否则丢根.

师:这两位同学的回答条理清楚并且叙述严密,相信下面同学的回答会一个比一个棒!(及时评价鼓励,激发学生的学习热情)

师:现在请C同学为大家说说他的想法

学生C:X(X-3)=0 所以X

1=0或X

2

=3 因为我想3×0=0, 0×(-3)=0 , 0×0=0反

过来,如果ab=0,那么a=0或b=0,所以a与b至少有一个等于0

师:好,这时我们可这样表示:

如果a×b=0,那么a=0或b=0 这就是说:当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中用的是“或”,而不用“且”。

所以由x(x-3)=0得到x=0和x-3=0时,中间应写上“或”字。

我们再来看c同学解方程x2=3x的方法,他是把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用a×b=0,则a=0或b=0,把一元二次方程变成一元一次方程,从而求出方程的解。我们把这种解一元二次方程的方法称为因式分解法,即当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我门就采用因式分解法来解一元二次方程。

提示:

1.用分解因式法的条件是:方程左边易于分解,而右边等于零;

2.关键是熟练掌握因式分解的知识;

3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”

步骤:

1. 将方程左边因式分解,右边等于0;

2. 根据“至少有一个因式为零”,转化为两个一元一次方程.

3. 分别解两个一元一次方程,它们的根就是原方程的根.

(此时可以回顾因式分解的概念及方法)

说明:如果ab=0,那么a=0或b=0,“或”是“二者中至少有一个成立”的意思,包括两种情况,二者同时成立;二者有一个成立。“且”是“二者同时成立”的意思。

意图:通过独立思考,小组协作交流,力求使学生根据方程的具体特征,灵活选取适当的解法.在操作活动过程中,培养学生积极的情感,态度,提高学生自主学习和思考的

相关文档
最新文档