七年级数学上册 全册单元测试卷试卷(word版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册全册单元测试卷试卷(word版含答案)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.如图,在数轴上有三个点A、B、C,完成下列问题:
(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.
(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.
(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.
【答案】(1)解:如图所示,
(2)解:如图所示,点E表示的数为:﹣3.5,
∵点C表示的数为:4,
∴CE=4﹣(﹣3.5)=7.5
(3)解:∵第一次操作:有3=(21+1)个点,
第二次操作,有5=(22+1)个点,
第三次操作,有9=(23+1)个点,
∴第六次操作后,OC之间共有(26+1)=65个点;
∵65个点除去0有64个数,
∴这些点所表示的数的和=4×()=130.
【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;
(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.
2.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.
(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;
(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.
【答案】(1)25°
(2)解:∠BOC=65°,OC平分∠MOB
∠MOB=2∠BOC=130°
∠BON=∠MOB-∠MON=130°-90°=40°
∠CON=∠COB-∠BON=65°-40°=25°
(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°
∠AOC=∠AOB-∠BOC=180°-65°=115°
∠MON=90°
∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°
4∠NOC+∠NOC=25°
∠NOC=5°
∠NOB=∠NOC+∠BOC=70°
【解析】【解答】(1)∠MON=90,∠BOC=65°
∠MOC=∠MON-∠BOC=90°-65°=25°
【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度
数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.
3.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.例如:如图1所示,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.
(1)如图1所示,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC 的度数:
(2)已知∠AOB=90°,如图2所示,若OC,OD是∠AOB的两条三分线.
①求∠COD的度数;
②现以点O为中心,将∠COD顺时针旋转n度得到∠C’DD’,当OA恰好是∠C’OD’的三分线时,求n的值.
【答案】(1)解:如图1,
∵ OC是∠AOB的一条三分线,且∠BOC>∠AOC,
∴∠AOC= ∠AOB,
又∵∠AOB=60°,
∴∠AOC=20°
(2)解:① 如图2,
∵∠AOB=90°,OC,OD是∠AOB的两条三分线,
∴∠COD = ∠AOB =30°;
②分两种情况:
当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时,
∠AOC'=10°,
∴∠DOC'=30°-10°=20°,
∴∠DOD'=20°+30°=50°;
当OA是∠C'OD'的三分线,且∠AOD'<∠AOC'时,
∠AOC'=20°,
∴∠DOC'=30°-20°=10°,
∴∠DOD'=10°+30°=40°;
综上所述,n=40°或50°
【解析】【分析】(1)根据题中给出的角的三分线的定义结合已知条件可得∠AOC=∠AOB ,计算即可得出答案.
(2)①根据题中给出的角的三分线的定义结合已知条件∠COD =∠AOB,计算即可得出答案;
②根据题意分情况讨论:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时;当OA 是∠C'OD'的三分线,且∠AOD'<∠AOC'时;分别结合角的三分线的定义计算即可得出答案.
4.如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转.
(1)直接写出∠DPC的度数.
(2)如图②,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,当PC与PB重合时,求旋转的时间是多少?
(3)在(2)的条件下,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请直接写出旋转的时间.
【答案】(1)解:∠DPC=180°-∠APC-∠BPD=180°-60°-30°=90°
故答案为:90°
(2)解:设旋转的时间是t秒时PC与PB重合,根据题意列方程得
5t-t=30+90
解得t=30
又∵180÷5=36秒
∴30<36
故旋转的时间是30秒时PC与PB重合
(3)解:设t秒时其中一条射线平分另两条射线的夹角,分三种情况:
①当PD平分∠BPC时,5t-t=90-30,解得t=15
②当PC平分∠BPC时,,解得t=26.25
③当PB平分∠DPC时,5t-t=90-2×30,解得t=37.5
故15秒或26.25秒或37.5秒时其中一条射线平分另两条射线的夹角
【解析】【分析】(1)易得∠DPC=180°-∠APC-∠BPD即可求(2)只需设旋转的时间是t 秒时PC与PB重合,列方程解可得(3)一条射线平分另两条射线的夹角,分三种情况:当PD平分∠BPC时;当PC平分∠BPC时;当PB平分∠DPC时,计算每种情况对应的时间即可.
5.已知:,点,分别在,上,点为,之间的一点,连接, .
(1)如图1,求证:;
(2)如图2,,,,分别为,,,的角平分线,求证与互补;
【答案】(1)证明:过C点作CG∥MN,
∵,
∴,
∴∠MAC=∠ACG,∠PBC=∠GCB,
∵∠ACB=∠ACG+∠GCB,
∴∠ACB=∠MAC+∠PBC
(2)证明:由(1)同理可知,
∵,,,分别为,,,的角平分线,
∴∠DAE=∠DBE= =90°,
∴∠D+∠E=360°-(∠DAE+∠DBE)=180°,
∴与互补.
【解析】【分析】(1)过C点作CG∥MN,再根据两直线平行,内错角相等即可证明;(2)由(1)可知,,再根据角平分线的性质与平角的性质知∠DAE=∠DBE=90°,即可证得 + =180°.
6.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明;
(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明。
【答案】(1)解:猜想:AB=AC+CD.
证明:如图②,在AB上截取AE=AC,连接DE,
∵AD为∠BAC的角平分线时,
∴∠BAD=∠CAD,
∵AD=AD,
∴△ADE≌△ADC(SAS),
∴∠AED=∠C,ED=CD,
∵∠ACB=2∠B,
∴∠AED=2∠B,
∵∠AED=∠B+∠EDB,
∴∠B=∠EDB,
∴EB=ED,
∴EB=CD,
∴AB=AE+DE=AC+CD.
(2)解:猜想:AB+AC=CD.
证明:在BA的延长线上截取AE=AC,连接ED.
∵AD平分∠FAC,
∴∠EAD=∠CAD.
在△EAD与△CAD中,
AE=AC,∠EAD=∠CAD,AD=AD,
∴△EAD≌△CAD(SAS).
∴ED=CD,∠AED=∠ACD.
∴∠FED=∠ACB,
又∵∠ACB=2∠B,
∴∠FED=2∠B,
∵∠FED=∠B+∠EDB,
∴∠EDB=∠B,
∴EB=ED.
∴EA+AB=EB=ED=CD.
∴AC+AB=CD.
【解析】【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易证DE=CD,则可求得AB=AC+CD;
(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.
7.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)
(1)若AM=4cm,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)
(2)当点C、D运动了2s,求AC+MD的值.
(3)若点C、D运动时,总有MD=2AC,则AM=________(填空)
(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【答案】(1)2;4
(2)解:当点C、D运动了2 s时,CM=2 cm,BD=4 cm
∵AB=12 cm,CM=2 cm,BD=4 cm
∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm
(3)4
(4)解:①当点N在线段AB上时,如图1,
∵AN﹣BN=MN,
又∵AN﹣AM=MN
∴BN=AM=4
∴MN=AB﹣AM﹣BN=12﹣4﹣4=4
∴ = = ;
②当点N在线段AB的延长线上时,如图2,
∵AN﹣BN=MN,
又∵AN﹣BN=AB
∴MN=AB=12
∴ = =1;
综上所述 = 或1
【解析】【解答】解:(1.)根据题意知,CM=2cm,BD=4cm,
∵AB=12cm,AM=4cm,
∴BM=8cm,
∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,
故答案为:2,4;
(3.)根据C、D的运动速度知:BD=2MC,
∵MD=2AC,
∴BD+MD=2(MC+AC),即MB=2AM,
∵AM+BM=AB,
∴AM+2AM=AB,
∴AM= AB=4,
故答案为:4;
【分析】(1)根据运动速度和时间分别求得CM、BD的长,根据线段的和差计算可得;(2)由题意得CM=2 cm、BD=4 cm,根据AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD可得答案;(3)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以
AM= AB;(4)分点N在线段AB上时和点N在线段AB的延长线上时分别求解可得.
8.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.
(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .
(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)
(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.
【答案】(1)平分
(2)或49
(3)解:不变,设,
,,
【解析】【解答】(1)直线平分;(2)或
【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.
9.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒
(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;
(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;
(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)
①当t=________秒时,OM平分∠AOC?
(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.
【答案】(1)2.25;45
(2)解:∠NOC﹣∠AOM=45°,
∵∠AON=90°+10t,
∴∠NOC=90°+10t﹣45°
=45°+10t,
∵∠AOM=10t,
∴∠NOC﹣∠AOM=45°
(3)3
(4)解:②∠NOC﹣∠AOM=45°.
∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,
∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,
∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,
∴∠NOC﹣∠AOM=45°.
【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,
∴∠AOM= =22.5°,
∴t=2.25秒,
∵∠MON=90°,∠MOC=22.5°,
∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;
故答案为:2.25,45;
·(3)①∵∠AOB=5t,∠AOM=10t,
∴∠AOC=45°+5t,
∵OM平分∠AOC,
∴∠AOM= AOC,
∴10t= (45°+5t),
∴t=3秒,
故答案为:3.
【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由
于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.
10.如图,已知点,且,满足 .过点分别作轴、轴,垂足分别是点A、C.
(1)求出点B的坐标;
(2)点M是边上的一个动点(不与点A重合),的角平分线交射线于点
N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由. (3)在四边形的边上是否存在点,使得将四边形分成面积比为1:4的两部分?若存在,请直接写出点的坐标;若不存在,说明理由.
【答案】(1)解:由得:
,解得:
∴点的坐标为
(2)解:不变化
∵轴
∴BC∥x轴
∴
∵平分
∴
∴
∴
(3)解:点P可能在OC,OA边上,如下图所示,
由(1)可知,BC=5,AB=3,故矩形的面积为15
若点P在OC边上,可设P点坐标为,则
三角形BCP的面积为,
剩余部分面积为,
所以,解得,
P点坐标为;
若点P在OA边上,可设P点坐标为,则
三角形BAP的面积为,
剩余部分面积为,
所以,解得,
P点坐标为 .
综上,点的坐标为, .
【解析】【分析】(1)由绝对值和算术平方根的非负性可知由两个非负数的和为0,则这两个数都为0,由此可列出关于,的二元一次方程组,解之即可得出B点坐标;(2)根据平行线和角平分线的性质可证明,所以比值不变化;
(3)点P只能在OC,OA边上,表示出两部分的面积,依比值求解即可.
11.
(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.
(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)
(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)
【答案】(1)
(2)解:延长、,交于点 .
,
由(1)知:
∴ .
(3)
【解析】【解答】解:(1)
∵平分,平分,
∴,
∵是的外角
∴
∵是的外角
∴
( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:
,
【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.
12.如图,三角形ABC,直线,CD、BD分别平分和.
(1)图中,,,求的度数,说明理由.
(2)图中,,直接写出 ________.
(3)图中,, ________.
【答案】(1)解:
,
,
如图1过D点作,
,
,,
,即
又、BD分别平分和.
,同理
(2)
(3)
【解析】【解答】
如图2过D点作,
,
,,
,即
又、BD分别平分和.
,同理,
,
,
即,
,
,
,
,
故答案为.
如图3过D点作,
,
,,
,即
又、BD分别平分和.
,同理,
,
,
即,
,
,
,
,
故答案为.
【分析】(1)过点作,根据平行线的性质,得出,,则,再根据、分别平分和
,得出,同理,即可解答;(2)根据(1)的思路即可解答;(3)根据(2)的思路即可解答.
13.已知直线AB平行CD,直线EF分别截AB、CD于点E、F两点。
(1)如图①,有一动点P在线段CD之间运动(不与C,D两点重合),试探究∠1、∠2、∠3的等量等关系?试说明理由。
(2)如图②、③,当动点P在线段CD之外运动(不与C,D两点重合),问上述结论是否还成立?若不成立,试写出新的结论并说明理由。
【答案】(1)解:∠2=∠1+∠3理由如下:
如图,过点P作PQ∥AB,则∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD.
∴∠3=∠CPQ.
∵∠2=∠APQ+∠CPQ
=∠1+∠3.
(2)解:解:②∠2=∠1+∠3不成立,新的结论为∠2=∠3 ∠1.理由如下:
如图,过点P作PQ∥AB,则∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD.
∴∠3=∠CPQ.
∠2=∠CPQ ∠APQ
=∠3 ∠1.
③∠2=∠1+∠3不成立,新的结论为∠2=∠1 ∠3.理由如下:
如图,过点P作PQ∥AB,则∠1=∠APQ.
∵AB∥CD,PQ∥AB,
∴PQ∥CD.
∴∠3=∠CPQ.
∠2=∠APQ ∠CPQ
=∠1 ∠3.
综合②、③的结论,∠2= .
【解析】【分析】(1)∠2=∠1+∠3,理由如下:如图,过点P作PQ∥AB,利用平行线的判定与性质可得∠1=∠APQ,PQ∥CD∥AB,利用平行线的性质可得∠3=∠CPQ,由∠2=∠APQ+∠CPQ即得结论;
(2)不成立,新的结论为∠2=∠3∠1.理由:如图,过点P作PQ∥AB,利用平行线
的判定与性质可得∠1=∠APQ,PQ∥CD∥AB,利用平行线的性质可得∠3=∠CPQ,由∠2=∠CPQ∠APQ即可求出结论;
(3)不成立,新的结论为∠2=∠1∠3.理由如下:同(1)可证∠1=∠APQ,∠3=∠CPQ,利用∠2=∠APQ∠CPQ即可求出结论.
14.如(图1),在平面直角坐标系中,,,,且满足
,线段交轴于点.
(1)填空: ________, ________;
(2)点为轴正半轴上一点,若,,且分别平分,如(图2),求的度数;
(3)求点的坐标;
(4)如(图3),在轴上是否存在一点,使三角形的面积和三角形的面积相等?若存在,求出点坐标,若不存在,说明理由.
【答案】(1)-3;3
(2)解:∵AB∥DE,∴∠ODE+∠DFB=180°,∵,∴∠DFB=∠AFO=180°-140°=40°,∴∠FAO=50°,∵分别平分,∴∠OAN=
∠FAO=25°,∠NDM=∠ODE=70°,∴∠DNM=∠ANO=90°-25°=65°,∴∠AMD=180°−∠DNM-∠NDM=45°
(3)解:连结OB,如图,设F(0,t),∵△AOF的面积+△BOF的面积=△AOB的面积,∴ ×3×t+ ×t×3= ×3×3,解得t=,∴F点坐标为(0,);
(4)解:存在,∵,∴△的面积= ,设Q(0,y),
∵△ABQ的三角形=△AQF的面积+△BQF的面积,∴•|y− |•3+•|y− |•3=,解得y=5或y=−2,∴此时Q点坐标为(0,5)或(0,−2);
【解析】【解答】解:(1)∵(a+b)2+|b-a-6|=0,
∴a+b=0,b-a-6=0,
∴a=−3,b=3,
故答案为:-3,3;
【分析】(1)根据非负数的性质得a+b=0,b-a-6=0,然后解方程组求出a和b即可得到点A和B的坐标;(2)由AB∥DE可知∠ODE+∠DFB=180°,得到∠DFB=∠AFO=
180°-140°=40°,所以∠FAO=50°,再根据角平分线定义得∠OAN=∠FAO=25°,∠NDM=
∠ODE=70°,得到∠DNM=∠ANO=90°-25°=65°,然后根据三角形内角和定理得∠AMD=180°−∠DNM-∠NDM=45°;(3)①连结OB,如图3,设F(0,t),根据△AOF
的面积+△BOF的面积=△AOB的面积得到 ×3×t+ ×t×3= ×3×3,解得t=,则可得
到F点坐标为(0,);(4)先计算△ABC的面积=,利用△ABQ的三角形=△AQF 的面积+△BQF的面积得到•|y− |•3+•|y− |•3=,解出y即可.
15.直线AB与直线CD相交于点O,OE平分 .
(1)如图①,若,求的度数;
(2)如图②,射线OF在内部.
①若,判断OF是否为的平分线,并说明理由;
②若OF平分,,求的度数.
【答案】(1)解:∵∠BOC=130°
∴∠BOD=180°-∠BOC=180°-130°=50°
∵OE平分∠BOD
∴
∴∠AOD=∠BOC=130°
∴∠AOE=∠AOD+∠DOE=130°+25°=155°
(2)解:①∵OE平分∠BOD
∴∠BOE=∠DOE
∵OF⊥OE
∴∠EOF=90°
∴∠DOF=90°-∠DOE
∵∠AOF=180°-∠EOF-∠BOE
=180°-90°-∠BOE
=90°-∠BOE
∴∠AOF=∠DOF
∴DF平分∠AOD
②∵
∴设∠DOF=3x,则∠AOF=5x
∵OF平分∠AOE
∴∠EOF=∠AOF=5x,∠AOE=10x
∴∠DOE=∠EOF-∠DOF=5x-3x=2x
∵OE平分∠BOD
∴∠BOE=∠DOE=2x,∠BOD=4x
∵∠BOE+∠AOE=180°
∴2x+10x=180°
∴x=15°
∴∠BOD=4×15°=60°
【解析】【分析】(1)由∠BOC=130°可得∠BOD=50°根据OE平分∠BOD得
,根据对顶角相等可得∠AOD=∠BOC=130°即可求出∠AOE的度
数;(2)①由OE平分∠BOD可得∠BOE=∠DOE由OF⊥OE可得∠EOF=90°,故∠DOF=90°-∠DOE由图形可计算出:∠AOF=90°-∠BOE,故∠AOF=∠DOF可证DF平分∠AOD②依题意设∠DOF=3x,则∠AOF=5x由OF平分∠AOE,可得∠EOF=∠AOF=5x,∠AOE=10x,可得:∠DOE=∠EOF-∠DOF=5x-3x=2x由OE平分∠BOD可得∠BOE=∠DOE=2x,∠BOD=4x由图形可知∠BOE+∠AOE=180°,列出方程求出x即可。