《分式方程》分式PPT课件 图文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③ 检验:把x1= -3,代入最简公分母,
x(x-2)=-3(-3-2)= 15 ≠0;
把x2= 2 ,代入最简公分母, x(x-2)= 2(2-2) =0
∴x= 2 是增根,舍去. ∴原方程的根是x= -3 .

(填空)1、解方程:
x1 6 0 x2 x22x
7
一 解:·方·程·两·边·同·乘·以·最·简·公·分·母 x(x-2),
左边= 331112
,
右边=
1 2
.
∵ 左边=右边
∴ 原方程的根是 x=3.
检验
例2
解分式方程
x15x9 x1 x21
解 方程两边同乘以最简公分母(x+1)(x-1),
得 (x-1)2 =5x+9 解整式方程,得 x1=-1, x2=8
x2-2x+1=5x+9 X2-7x-8=0 (x+1)(x-8)=0
一元二次方程
1、2(x-1)=x+1; x2+x-20=0; x+2y=1…
整式方程: 方程两边都是整式的方程.
2、 x 1 1 x 0 ;x x 1 1 1 2 ;x 1 1 1 y 1 ;x x 1 1 5 x x 2 1 9
分式方程:方分程母中 含只 有含 未有 知分 数式 的或 方整程式. ,且
你总该记得,有一个黄昏,白马湖上的 黄昏, 在你那 间天花 板要压 到头上 来的, 一颗骰 子似的 客厅里 ,你和 我读着 竹久梦 二的漫 画集。 你告诉 我那篇 序做得 有趣, 并将其 大意译 给我听 。我对 于画, 你最明 白,彻 头彻尾 是一条 门外汉 。但对 于漫画 ,却常 常要像 煞有介 事地点 头或摇 头;而 点头的 时候总 比摇头 的时候 多—— 虽没有 统计, 我肚里 有数。 那一天 我自然 也乱点 了一回 头。 点头之余,我想起初看到一本漫画,也 是日本 人画的 。里面 有一幅 ,题目 似乎是 《aa子 爵b泪》 (上两 字已忘 记), 画着一 个微侧 的半身 像:他 严肃的 脸上戴 着眼镜 ,有三 五颗双 钩的泪 珠儿, 滴滴答 答历历 落落地 从眼睛 里掉下 来。我 同时感 到伟大 的压迫 和轻松 的愉悦 ,一个 奇怪 的矛盾 !梦二 的画有 一幅— —大约 就是那 画集里 的第一 幅—— 也使我 有类似 的感觉 。那幅 的题目 和内容 ,我的 记性真 不争气 ,已经 模糊得 很。只 记得画 幅下方 的左角 或右角 里,并 排地画 着极粗 极肥又 极短的 一个“ !”和 一个“ ?”。 可惜我 不记得 他们哥 儿俩谁 站在上 风,谁 站在下 风。我 明白( 自己要 脸)他 们俩就 是整个 儿的人 生的谜 ;同时 又觉着 像是那 儿常常 见着的 两个胖 孩子。 我心眼 里又是 糖浆, 又是姜 汁,说 不上是 什么味 儿。无 论如何 ,我总 得惊异 ;涂呀 抹的几 笔,便 造起个 小世界 ,使你 又要叹 气又要 笑。叹 气虽是 轻轻的 ,笑虽 是微微 的,似 一把锋 利的裁 纸刀, 戳到喉 咙里去 ,便可 要你的 命。而 且同时 要笑又 要叹气 ,真是 不当人 子,闹 着玩儿 !
增根
当x1=-1时, 原方程的两个分母值为零,分 式无意义,因此x1=-1不是原方程的根.
当x2=8时, 左边= 7 /9 , 右边=7 /9
左边=右边, 因此x2=8是原方程的根. ∴ 原方程的根是x=8.
增根的定义
增根:在去分母,将分式方程转化为整
式方程的过程中出现的不适合于原方
程的根.
······
巩固定义
找一找:
1. 下列方程中属于分式方程的有( ① ③ );
属于一元分式方程的有( ① ).

2xx13x1

x1y12x1 34
③ 4x3y7
④ x2 +2x-1=0
X2-1=0
2、已知分式
2x3 x2 1
,当x= ±1
时,
分式无意义.
X(x―3)
3、分式2(xx23)与
3 x2 3x
的最简公分母
把x2= 1 29,代入最简公分母,
∴原x(方x-程2)=的 根12 是2x21=9 ( 1 1 2 22 2 9 9 ,2x)2=≠012 . 29
2、分式方程 x112x1的最简公分母是 X-1.
3、如果 x 1231 2 xx有增根,那么增根为 X=2 .
4、关于x的方程
ax1 x
=4
的解是x=
分式方程
学习目标:
1、理解整式方程、分式方程及增根的概念; 2、掌握可化为一元一次、一元二次方程的 分式方程的解法; 3、了解分式方程产生增根的原因及掌握验 根的方法。
引例: 列方程
某,求数这与个1数的.差除以它与1的和的商等于—12
解 :设某数为x, 得
—X—-1— = —1 X+1 2
概念 观察下列方程:一元一次方程
是 2X(x―3) .
解分式方程
例1 解分式方程 xx1112
分式方程
解: 方程的两边同乘以最简公分母2(x+1), 转

2(x+1)
· xx1112
●● ● ● ●
·2(x+1)
①化简,得整式方程 2(x-1)=x+1
化 整式方程
② 解整式方程,得 x=3.
解整式方程
③ 检验:把x=3代入原方程
例2
解分式方程
x15x9 x1 x21
+1
解 方程两边同乘以最简公分母(x+1)(x-1),
① 得 (x-1)2 =5x+9 +1·(x+1)(x-1)
② 解整式方程,得 x1=-1, x2=8
③ 检验:把x1=-1,x2=8代入原方程
当x1=-1时, 原方程的两个分母值为零,分
式无意义,因此x1=-1不是原方程的根.
② 3xx52;
③ x112x1;

x 2 x1 x21
.
① x= 9 2
② x=-3

x1=
1 17 4
,
x2=
1
17 4
④ x=-2 (x=1是增根,已舍去)
思 考:
解分式方程的验根与解一元一次、 一元二次方程的验根有什么区别?
小 结:
1、整式方程、分式方程的概念; 2、解分式方程;(注意检验) 3、增根及增根产生的原因; 4、体会数学转化的思想方法。

(填空)1、解方程:
x1 7 0 x2 x22x
一 解:方·程·两·边·同·乘·以·最·简·公·分·母· x(x-2) ,
练 ①化简,得 x 2+ x -7=0 .
② 解得 x1= 1229x2= 1229 .

检·验·:把x1=
1 2
29,代·入·最·简·公·分·母·,
x(x-2)= 1229 (122 92) ≠0 ;
当x2=8时, 左边=
7 9
, 右边=
7 9
左边=右边, 因此x2=8是原方程的根.
∴ 原方程的根是x=8.
例2
解分式方程
x15x9 x1 x21
解 方程两边同乘以最简公分母(x+1)(x-1),
① 得 (x-1)2 =5x+9
② 解整式方程,得 x1=-1, x2=8
③ 检验:把x1=-1,x2=8代入原方程
谢谢欣赏 一、鲁迅是一个非常勤奋的人 鲁迅的勤奋,我想不用我细说大家都是 很明白 的。在 鲁迅的 散文《 百草园 和三味 书屋》 中,鲁 迅讲过 关于上 学迟到 的故事 ,后来 他在桌 子上刻 了个“ 早”字 ,当作 了他一 生的座 右铭。 鲁迅写作的勤奋也是出了名的。为了工 作他常 常工作 到深夜 ,点燃 一支烟 便又来 了工作 激情。 二、鲁迅是一个性格非常刚强的人 小时候的鲁迅就十分的要强,事事总想 走在别 人的前 面。鲁 迅成年 后,他 的性格 变得更 加刚强 ,从他 的文章 中,从 他面对 敌人的 迫害不 惧怕中 ,从他 与批评 他的人 的针锋 相对中 ,我们 都可以 看出他 的性格 。 在鲁迅病重期间,他写个一篇关于自己 身后事 的文章 ,其中 有一句 话说, “让他 们记恨 去,我 一个都 不原谅 !”这 句话就 是鲁迅 刚强性 格的绝 好体现 。 三、鲁迅是一个正义的、富有民族气节 的、忧 国忧民 的人 鲁迅的一生是处在乱世中的一生,国家 的动荡 ,民族 的败落 。深深 的影响 着鲁迅 。为了 追寻人 生的价 值,鲁 迅到日 本去留 学,民 族的耻 辱改变 了他的 人生观 ,他决 定弃医 从文, 也许是 上天注 定,也 许是性 格使然 。从文 的鲁迅 找到了 改变人 们灵魂 的武器 ,也使 自己的 才华和 思想得 到了淋 漓尽致 的发挥 。 弃医从文,鲁迅的忧国忧民的思想在他 的文章 中得到 了充分 的体现 。无论 是《阿Q 正传》 还是《 祝福》 、还是 《伤逝 》无不 充满了 对普通 劳苦大 众的爱 与关怀 。 试问,如果一个写作者,心中没有爱与 关怀, 没有对 劳苦大 众的一 种赤诚 的心。 又怎么 能够写 出感人 至深的 文章呢 ? 四、鲁迅是一个寂寞的、孤独的、哀伤 的、富 有才情 的文人 鲁迅的故乡是在绍兴,自古以来,绍兴 就是出 文人才 子的地 方。可 能是和 江南的 环境有 关系吧 。 这里的文人多情敏感、才思敏捷。鲁迅 在绍兴 鲁镇, 那里的 文化气 息也十 分的浓 厚。鲁 迅从小 就在这 里生活 ,自然 耳濡目 染,身 上的文 人气质 不招自 来。 在鲁迅的《故乡》中,我能时时刻刻感 受到一 个失意 忧伤的 文人的 存在。 作者说 要找一 种全新 的生活 ,要走 一条没 有路的 路。这 是多么 忧伤的 希冀啊 ! 鲁迅的寂寞、孤独、哀伤、在他的散文 、杂文 中都有 充分的 体现。 五、鲁迅是一个甘于清贫、不贪图荣华 富贵的 有气节 的人 纵观鲁迅的一生,是孤独寂寞的一生。 鲁迅的 辉煌从1 919年 算起, 到1936 年去世 总共就 十几年 的时间 。 鲁迅的大半生是在漂泊、孤独中渡过的 。另外 ,鲁迅 的婚姻 也不是 很幸福 。有时 候他就 是一个 苦行僧 ,肉体 在精神 的支配 下默默 的服着 苦役。 鲁迅在物质生活上实在没法与胡适相比 。其实 ,鲁迅 并不是 没有享 受荣华 富贵的 能力。 只是, 鲁迅是 一个精 神独立 的文人 。不愿 为了荣 华富贵 向人卑 躬屈膝 。这一 点,鲁 迅就像 陶渊明 。中国 古代文 人的气 节在鲁 迅身上 得到了 很好的 体现。 上面,我们说了鲁迅的许多优点,当然 人无完 人,鲁 迅也有 一定的 缺点: 一是鲁 迅的性 格过于 刚烈, 心肠较 硬。二 是鲁迅 过于敏 感、常 常为了 一些琐 碎的事 情而小 题大做 。 对于鲁迅的缺点,笔者只是举出了一二 ,也许 鲁迅还 有其他 的缺点 ,限于 作者的 水平有 限只能 举这么 多了。 总而言之,鲁迅的优点是多于缺点的, 而且, 最让笔 者敬佩 鲁迅的 是他有 一颗永 远和劳 苦大众 在一起 的赤子 之心。 他的一 生付出 的多, 索取的 少,这 就是他 的可贵 之处, 也是他 不朽崇 高的地 方。
然后是鲁迅先生长什么样: 浓黑的一字须,根根向上的头发,吸着 烟斗、 面目严 肃冷峻 ,这是 鲁迅通 常留给 我们的 印象, 他似乎 “对一 切人都 怀有忧 虑和敌 意”, 但实际 上,伟 人也和 普通人 一样, 拥有喜 怒哀乐 。他活 着的时 候,周 围有许 多文学 青年愿 意“亲 近”他 ,鲁迅 先生的 笑声是 明朗的 ,是从 心里的 欢喜。 若有人 说了什 么可笑 的话, 鲁迅先 生笑得 连烟卷 都拿不 住了, 常常是 笑得咳 嗽起来 。然后 是长相 。黄里 带白的 脸:瘦 得让人 担心: 头上竖 着寸把 长的头 发;牙 黄羽纱 的长杉 ;隶体 “一” 字似的 胡须; 手里捏 着一枝 黄色烟 嘴。 知道你的漫画将出版,正中下怀, 满心欢 喜。
练 ① 化简,得 x 2+ x -6=0 或x(x+. 1)-6=0
② 解得 x1= -3 , x2= 2 .

检·验·:把x1=
-3,代入最简公分母, ·······
x(x-2)=-3(-3-2)= 15 ≠0;
把x2= 2 ,代入最简公分母, x(x-2)= 2(2-2) =0
∴x= 2 是增根,舍去. ∴原方程的根是x= -3 .
··· 使分母值为零的根
产生的原因:分式方程两边同乘以一个 零而因不式是分后式,所方得程的的根根是.整·式·方·程·的根,
····

(填空)1、解方程:
x1 6 0 x2 x22x
一 解:方程两边同乘以最简公分母 x(x-2),
练 ① 化简,得 x 2+ x -6=0 或x(x+. 1= 2 .
1 2
,则a=
2.
5、若分式方程 a 4 0有增根x=2,则
a=
-1
x2 x24
.
分析:
原分式方程去分母,两边同乘以(x2 -4), 得 a(x+2)+4=0 ① 把x=2代入整式方程①, 得 4a+4=0, a=-1
∴ a=-1时,x=2是原方程的增根.
6、解下列方程:
① x21 ; x3 3
相关文档
最新文档