广阳区四中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广阳区四中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的()
A.充要条件B.充分不必要条件
C.必要不充分条件D.不充分不必要条件
2.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是()
A.B.C.D.
3.现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是()
A.①简单随机抽样,②系统抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①分层抽样,②系统抽样,③简单随机抽样
4.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()
A.3πa2B.6πa2C.12πa2D.24πa2
5.
已知双曲线
﹣
=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于
( )
A
. B
. C .3 D .5
6. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
7. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪
-+≤⎨⎪+-≤⎩
上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )
A
1 B
1-
C. 1 D
1 8. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位 9. 如图,该程序运行后输出的结果为( )
A .7
B .15
C .31
D .63 10.边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( ) A .3π B .5π
C .12π
D .20π
11
10y -+=的倾斜角为( )
A .150
B .120
C .
60 D .
30 12.在下列区间中,函数f (x )=
()x ﹣x 的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3 )
D .(3,4)
二、填空题
13.幂函数1
222
)33)(+-+-=m m x m m x f (在区间()+∞,0上是增函数,则=m .
14.i 是虚数单位,化简: = .
15.给出下列四个命题:
①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;
③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.
其中正确命题的序号是 .
16.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 . 17.已知
=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .
18.某几何体的三视图如图所示,则该几何体的体积为
三、解答题
19.已知数列{a n }的前n 项和为S n ,首项为b ,若存在非零常数a ,使得(1﹣a )S n =b ﹣a n+1对一切n ∈N *都成立.
(Ⅰ)求数列{a n }的通项公式;
(Ⅱ)问是否存在一组非零常数a ,b ,使得{S n }成等比数列?若存在,求出常数a ,b 的值,若不存在,请说明理由.
20.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).
(1)若函数在区间上是单调减函数,求实数的取值范围;
(2)求函数的极值;
(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.
21.【海安县2018届高三上学期第一次学业质量测试】已知函数()()
2x
f x x ax a e =++,其中a R ∈,e 是
自然对数的底数.
(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;
(3)若()4f x ≤在[]
4,0-恒成立,求a 的取值范围.
22.(本小题满分10分)选修4—4:坐标系与参数方程
以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==θ
θ
sin 2cos 2y x (θ
为参数,],0[πθ∈),直线l 的参数方程为2cos 2sin x t y t ì=+ïí=+ïîa
a
(t 为参数).
(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的极坐标;
(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.
【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.
23.(本小题满分13分)
如图,已知椭圆2
2:14
x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,
(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;
(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.
【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.
(2)若f(α)=﹣2,求sinαcosα+cos2α的值.
广阳区四中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,
若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,
故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.2.【答案】A
【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.
如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.
对照选项知,只有A符合此要求.
故选A.
【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
3.【答案】A
【解析】解;观察所给的四组数据,
①个体没有差异且总数不多可用随机抽样法,简单随机抽样,
②将总体分成均衡的若干部分指的是将总体分段,
在第1段内采用简单随机抽样确定一个起始编号,
在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,
③个体有了明显了差异,所以选用分层抽样法,分层抽样,
故选A.
4.【答案】B
【解析】解:根据题意球的半径R满足
(2R)2=6a2,
所以S球=4πR2=6πa2.
故选B
5.【答案】A
【解析】解:抛物线y2=12x的焦点坐标为(3,0)
∵双曲线的右焦点与抛物线y2=12x的焦点重合
∴4+b2=9
∴b2=5
∴双曲线的一条渐近线方程为,即
∴双曲线的焦点到其渐近线的距离等于
故选A.
【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键.
6.【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )
那么安全存放的不同方法种数为2A 44
=48.
故选B .
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖. 7. 【答案】A 【解析】
试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.
考点:线性规划求最值. 8. 【答案】C 【解析】
试题分析:()2222log 2log 2log 1log g x x x x ==+=+,故向上平移个单位. 考点:图象平移.
9. 【答案】如图,该程序运行后输出的结果为( ) D
【解析】解:因为A=1,s=1
判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2; 判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3;
判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4; 判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5; 判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;
此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m 值应是5. 故答案为5.
【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.
10.【答案】C
【解析】解:∵正方形的边长为2,
∴正方形的对角线长为=2, ∵球心到平面ABCD 的距离为1,
∴球的半径R==
,
则此球的表面积为S=4πR 2
=12π.
故选:C .
【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键.
11.【答案】C 【解析】
10y -+=,可得直线的斜率为k =tan 60αα=⇒=,故选C.1 考点:直线的斜率与倾斜角. 12.【答案】A
【解析】解:函数f (x )=()x
﹣x ,
可得f (0)=1>0,f (1)=﹣<0.f (2)=﹣<0, 函数的零点在(0,1). 故选:A .
二、填空题
13.【答案】 【解析】
【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数()y x R αα=∈是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断;(2)若幂函
数()y x R αα=∈在()0,+∞上单调递增,则α0>,若在()0,+∞上单调递减,则0α<;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1 14.【答案】 ﹣1+2i .
【解析】解:
=
故答案为:﹣1+2i .
15.【答案】 ①③④ .
【解析】解:①∵
,∴T=2π,故①正确;
②当x=5时,有x 2﹣4x ﹣5=0,但当x 2﹣4x ﹣5=0时,不能推出x 一定等于5,故“x=5”是“x 2﹣4x ﹣5=0”成立
的充分不必要条件,故②错误;
③易知命题p 为真,因为>0,故命题q 为真,所以p ∧(¬q )为假命题,故③正
确;
④∵f ′(x )=3x 2﹣6x ,∴f ′(1)=﹣3,∴在点(1,f (1))的切线方程为y ﹣(﹣1)=﹣3(x ﹣1),即3x+y ﹣2=0,故④正确.
综上,正确的命题为①③④.
故答案为①③④.
16.【答案】 3x ﹣y ﹣11=0 .
【解析】解:设过点P (4,1)的直线与抛物线的交点 为A (x 1,y 1),B (x 2,y 2),
即有y 12=6x 1,y 22
=6x 2,
相减可得,(y 1﹣y 2)(y 1+y 2)=6(x 1﹣x 2),
即有k AB =
=
==3,
则直线方程为y﹣1=3(x﹣4),
即为3x﹣y﹣11=0.
将直线y=3x﹣11代入抛物线的方程,可得
9x2﹣72x+121=0,判别式为722﹣4×9×121>0,
故所求直线为3x﹣y﹣11=0.
故答案为:3x﹣y﹣11=0.
17.【答案】.
【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,
∴,解得b=1,a=2.
∴|a﹣bi|=|2﹣i|=.
故答案为:.
【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
18.【答案】26
【解析】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:
三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.
∴几何体的体积V==26.
故答案为:26.
【点评】本题考查由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵数列{a n}的前n项和为S n,首项为b,
存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立,
由题意得当n=1时,(1﹣a)b=b﹣a2,∴a2=ab=aa1,
当n≥2时,(1﹣a)S n=b﹣a n+1,(1﹣a)S n+1=b﹣a n+1,
两式作差,得:a n+2=a•a n+1,n≥2,
∴{a n}是首项为b,公比为a的等比数列,
∴.
(Ⅱ)当a=1时,S n=na1=nb,不合题意,
当a≠1时,,
若,即,
化简,得a=0,与题设矛盾,
故不存在非零常数a,b,使得{S n}成等比数列.
【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.
20.【答案】(1)(2)见解析(3)
【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.
试题解析:(1)函数的导函数,
则在区间上恒成立,且等号不恒成立,
又,所以在区间上恒成立,
记,只需,即,解得.
(2)由,得,
①当时,有;,
所以函数在单调递增,单调递减,
所以函数在取得极大值,没有极小值.
②当时,有;,
所以函数在单调递减,单调递增,
所以函数在取得极小值,没有极大值.
综上可知: 当时,函数在取得极大值,没有极小值;
当时,函数在取得极小值,没有极大值.(3)设切点为,
则曲线在点处的切线方程为,
当时,切线的方程为,其在轴上的截距不存在.
当时,令,得切线在轴上的截距为
,
当时,
,
当且仅当,即或时取等号;
当时,
,
当且仅当,即或时取等号.
所以切线在轴上的截距范围是
.
点睛:函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求→求方程
的根→列表检验在的根的附近两侧的符号→下结
论.
(3)已知极值求参数.若函数在点
处取得极值,则
,且在该点左、右两侧的导数值符号相
反.
21.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间
是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)2
44,4e ⎡⎤-⎣⎦
【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极
值与最值,进而分析推证不等式的成立求出参数的取值范围。
(2) 因为()()()()2
'222x
x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦,
当2a =时,()()2
'20x
f x x e =+≥,所以()f x 无单调减区间.
当2a ->-即2a <时,列表如下:
所以()f x 的单调减区间是()2,a --.
当2a -<-即2a >时,()()()'2x
f x x x a e =++,列表如下:
所以()f x 的单调减区间是(),2a --.
综上,当2a =时,()f x 无单调减区间;
当2a <时,()f x 的单调减区间是()2,a --; 当2a >时,()f x 的单调减区间是(),2a --.
(3)()()()()2'222x x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦
. 当2a =时,由(2)可得,()f x 为R 上单调增函数,
所以()f x 在区间[]
4,0-上的最大值()024f =≤,符合题意. 当2a <时,由(2)可得,要使()4f x ≤在区间[]
4,0-上恒成立,
只需()04f a =≤,()()2
244f a e --=-≤,解得2442e a -≤<.
当24a <≤时,可得()4a
a
f a e -=
≤,()04f a =≤. 设()a a g a e =,则()1'a a
g a e
-=,列表如下:
所以()()max
114g a g e ⎡⎤==
<⎣⎦
,可得4a a
e
≤恒成立,所以24a <≤. 当4a >时,可得()04f a =≤,无解.
综上,a 的取值范围是2
44,4e ⎡⎤-⎣⎦.
22.【答案】
【解析】(Ⅰ)设D
点坐标为)q q ,由已知得C 是以(0,0)O
因为C 在点D 处的切线与l 垂直,所以直线OD 与直线+2=0x y +的斜率相同,34
π
θ=,故D 点的直角坐标为(1,1)-
,极坐标为3)4
p . (Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(22
2
≥=+y y x 相切时
21|22|2
=+-k
k
0142=+-∴k k 32-=∴k ,32+=k (舍去)
设点)0,2(-B
,则2AB
k =
=-故直线l 的斜率的取值范围为]22,32(--. 23.【答案】
【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,
∴ 直线AP 的斜率0101y k x -=
,BP 的斜率020
1
y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有2
00012200011114
y y y k k x x x -+-⋅===-.
(4分)
24.【答案】
【解析】解:(1)f(α)
=
=
=﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)
∴sinαcosα+cos2α=
=
=
=.…10(分)。