2013江苏省宿迁市中考数学试题及答案(Word解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013江苏省宿迁市中考数学试题及答案(Word解析版)
一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项填涂在答题卡相应位置上)
6
3.(3分)(2013•宿迁)如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是()
4.(3分)(2013•宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB 的值是()
6.(3分)(2013•宿迁)方程的解是()
7.(3分)(2013•宿迁)下列三个函数:①y=x+1;②;③y=x2﹣x+1.其图象既
8.(3分)(2013•宿迁)在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线
或
AB=,又
=
AP=
(
DP=
PD=
二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.(3分)(2013•宿迁)如图,数轴所表示的不等式的解集是x≤3.
10.(3分)(2013•宿迁)已知⊙O1与⊙O2相切,两圆半径分别为3和5,则圆心距O1O2的值是8或2.
11.(3分)(2013•宿迁)如图,为测量位于一水塘旁的两点A、B间的距离,在地面上确定点O,分别取OA、OB的中点C、D,量得CD=20m,则A、B之间的距离是40m.
12.(3分)(2013•宿迁)如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为90度时,两条对角线长度相等.
13.(3分)(2013•宿迁)计算的值是2.
+
14.(3分)(2013•宿迁)已知圆锥的底面周长是10π,其侧面展开后所得扇形的圆心角为90°,则该圆锥的母线长是20.
l=中,
,
15.(3分)(2013•宿迁)在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P
的坐标是(﹣1,0).
∴
.
16.(3分)(2013•宿迁)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.
17.(3分)(2013•宿迁)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴
影部分的面积是.(结果保留π)
于点
的中点,由折叠的性质可得点
==.
.
的中点,将阴影部分的面积转化为扇形的面积.
18.(3分)(2013•宿迁)在平面直角坐标系xOy中,一次函数与反比例函数的图象交点的横坐标为x0.若k<x0<k+1,则整数k的值是1.
x=2
=2﹣
三、解答题(本大题共10题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
19.(8分)(2013•宿迁)计算:.
20.(8分)(2013•宿迁)先化简,再求值:,其中x=3.
=•
=,
=
21.(8分)(2013•宿迁)某景区为方便游客参观,在每个景点均设置两条通道,即楼梯和无障碍通道.如图,已知在某景点P处,供游客上下的楼梯倾斜角为30°(即∠PBA=30°),长度为4m(即PB=4m),无障碍通道PA的倾斜角为15°(即∠PAB=15°).求无障碍通道的长度.(结果精确到0.1m,参考数据:
sin15°≈0.21,cos15°≈0.98)
22.(8分)(2013•宿迁)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)被调查的学生共有100人,并补全条形统计图;
(2)在扇形统计图中,m=30,n=10,表示区域C的圆心角为144度;(3)全校学生中喜欢篮球的人数大约有多少?
×
23.(10分)(2013•宿迁)如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
,
24.(10分)(2013•宿迁)妈妈买回6个粽子,其中1个花生馅,2个肉馅,3个枣馅.从外表看,6个粽子完全一样,女儿有事先吃.
(1)若女儿只吃一个粽子,则她吃到肉馅的概率是;
(2)若女儿只吃两个粽子,求她吃到的两个都是肉馅的概率.
=
.
25.(10分)(2013•宿迁)某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.
(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.
,
26.(10分)(2013•宿迁)如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.
(1)若∠C=30°,求证:BE是△DEC外接圆的切线;
(2)若BE=,BD=1,求△DEC外接圆的直径.
AE=EC=BE=
=
AE=EC=BE=
AC=2
∴=
∴=
27.(12分)(2013•宿迁)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx ﹣3(a,b是常数)的图象与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.动直线y=t(t为常数)与抛物线交于不同的两点P、Q.
(1)求a和b的值;
(2)求t的取值范围;
(3)若∠PCQ=90°,求t的值.
;∴
28.(12分)(2013•宿迁)如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2.点E从点B出发沿BC方向运动,过点E作EF∥AD交边AB于点F.将△BEF沿EF所在的直线折叠得到△GEF,直线FG、EG分别交AD于点M、N,当EG过点D时,点E即停止运动.设BE=x,△GEF与梯形ABCD的重叠部分的面积为y.
(1)证明△AMF是等腰三角形;
(2)当EG过点D时(如图(3)),求x的值;
(3)将y表示成x的函数,并求y的最大值.
AD=
GM=
DE=﹣
﹣
x=,
x=;
x=,
≤
x=
∴
=+()>最大值为。