中考数学真题分类汇编(第三期)专题40动态问题试题(含解析)
2019年全国各地中考数学试题分类汇编(第三期) 专题40 动态问题(含解析)
动态问题一.选择题1.(2019•四川省达州市•3分)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.【点评】本题考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.2. (2019•黑龙江省绥化市•3分)如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<22时,P点最多有9个③当P点有8个时,x=2 2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③答案:B考点:正方形的性质,等腰三角形,等边三角形的判定。
解析:①当x=0(即E、A两点重合)时,如下图,分别以A、F为圆心,2为半径画圆,各2个P点,以AF为直径作圆,有2个P点,共6个,所以,①正确。
②当0<x<22时,P点最多有8个,故②错误。
3.(2019•山东泰安•4分)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC 上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.【解答】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.【点评】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.4.(2019•山东潍坊•3分)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A .B .C .D .【分析】由题意当0≤x ≤3时,y =3,当3<x <5时,y =×3×(5﹣x )=﹣x +.由此即可判断.【解答】解:由题意当0≤x ≤3时,y =3,当3<x <5时,y =×3×(5﹣x )=﹣x +.故选:D . 【点评】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题,属于中考常考题型.二.填空题1.(2019•四川省广安市•3分)如图1.8,在四边形ABCD 中,AD ∥BC ,︒=∠30B ,直线AB l ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2.8所示,则四边形ABCD 的周长是 ▲ .图8.1 l F E C A B【答案】3210+ 【解析】由题意和图像易知BC =5,AD =7-4=3当BE =4时(即F 与A 重合),EF =2,又因为AB l ⊥且∠B =30°,所以AB =32,因为当F 与A 重合时,把CD 平移到E 点位置可得三角形AED ′为正三角形,所以CD =2,故答案时3210+.2.(2019•山东潍坊•3分)如图,直线y =x +1与抛物线y =x 2﹣4x +5交于A ,B 两点,点P 是y 轴上的一个动点,当△P AB 的周长最小时,S △P AB = .【分析】根据轴对称,可以求得使得△P AB 的周长最小时点P 的坐标,然后求出点P 到直线AB 的距离和AB 的长度,即可求得△P AB 的面积,本题得以解决.【解答】解:,解得,或,∴点A 的坐标为(1,2),点B 的坐标为(4,5),∴AB ==3,作点A 关于y 轴的对称点A ′,连接A ′B 与y 轴的交于P ,则此时△P AB 的周长最小, 点A ′的坐标为(﹣1,2),点B 的坐标为(4,5),设直线A ′B 的函数解析式为y =kx +b ,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.【点评】本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.三.解答题1.(2019•湖北省仙桃市•10分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:y=25t2﹣80t+100(0≤t≤4);(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y 关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);(2)将PQ=3代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD =6,由CB∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC 的值,由OF=OD•cos∠OBC,DF=OD•sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【解答】解:(1)过点P作PE⊥BC于点E,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(3t,0),点Q的坐标为(8﹣2t,6),∴PE=6,EQ=|8﹣2t﹣3t|=|8﹣5t|,∴PQ2=PE2+EQ2=62+|8﹣5t|2=25t2﹣80t+100,∴y=25t2﹣80t+100(0≤t≤4).故答案为:y=25t2﹣80t+100(0≤t≤4).(2)当PQ=3时,25t2﹣80t+100=(3)2,整理,得:5t2﹣16t+11=0,解得:t1=1,t2=.(3)经过点D的双曲线y=(k≠0)的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=6,BC=8,∴OB==10.∵BQ∥OP,∴△BDQ∽△ODP,∴===,∴OD=6.∵CB∥OA,∴∠DOF=∠OB C.在Rt△OBC中,sin∠OBC===,cos∠OBC===,∴OF=OD•cos∠OBC=6×=,DF=OD•sin∠OBC=6×=,∴点D的坐标为(,),∴经过点D的双曲线y=(k≠0)的k值为×=.【点评】本题考查了勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=3时t 的值;(3)利用相似三角形的性质及解直角三角形,找出点D的坐标.2.(2019•山东青岛•12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB =10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.【分析】(1)当点E在∠BAC的平分线上时,因为EP⊥AB,EC⊥AC,可得PE=EC,由此构建方程即可解决问题.(2)根据S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)构建函数关系式即可.(3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG,可得tan∠EOC=tan∠QOG,推出=,由此构建方程即可解决问题.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AB=10cm,BC=8cm,∴AC==6(cm),∵OD垂直平分线段AC,∴OC=OA=3(cm),∠DOC=90°,∵CD∥AB,∴∠BAC=∠DCO,∵∠DOC=∠ACB,∴△DOC∽△BCA,∴==,∴==,∴CD=5(cm),OD=4(cm),∵PB=t,PE⊥AB,易知:PE=t,BE=t,当点E在∠BAC的平分线上时,∵EP⊥AB,EC⊥AC,∴PE=EC,∴t=8﹣t,∴t=4.∴当t为4秒时,点E在∠BAC的平分线上.(2)如图,连接OE,P C.S四边形OPEG=S△OEG+S△OPE=S△OEG+(S△OPC+S△PCE﹣S△OEC)=•(4﹣t)•3+[•3•(8﹣t)+•(8﹣t)•t﹣•3•(8﹣t)=﹣t2+t+16(0<t<5).(3)存在.∵S=﹣(t﹣)2+(0<t<5),∴t=时,四边形OPEG的面积最大,最大值为.(4)存在.如图,连接OQ.∵OE⊥OQ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴=,∴=,整理得:5t2﹣66t+160=0,解得t=或10(舍弃)∴当t=秒时,OE⊥OQ.【点评】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.3.(2019•山东威海•12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD 方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值.【分析】(1)作辅助线,构建三角形全等,证明△AEM≌△EFN和△ADE≌△CDE(SAS),可得AE=CE=EF;(2)根据三角形的面积公式可得y与x之间关系的函数表达式,根据勾股定理计算BD 的长可得x的取值;(3)利用配方法可得结论.【解答】(1)证明:过E作MN∥AB,交AD于M,交BC于N,∵四边形ABCD是正方形,∴AD∥BC,AB⊥AD,∴MN⊥AD,MN⊥BC,∴∠AME=∠FNE=90°=∠NFE+∠FEN,∵AE⊥EF,∴∠AEF=∠AEM+∠FEN=90°,∴∠AEM=∠NFE,∵∠DBC=45°,∠BNE=90°,∴BN=EN=AM,∴△AEM≌△EFN(AAS),∴AE=EF,∵四边形ABCD是正方形,∴AD=CD,∠ADE=∠CDE,∵DE=DE,∴△ADE≌△CDE(SAS),∴AE=CE=EF;(2)解:在Rt△BCD中,由勾股定理得:BD==10,∴0≤x≤5,由题意得:BE=2x,∴BN=EN=x,由(1)知:△AEM≌△EFN,∴ME=FN,∵AB=MN=10,∴ME=FN=10﹣x,∴BF=FN﹣BN=10﹣x﹣x=10﹣2x,∴y===﹣2x2+5x(0≤x≤5);(3)解:y=﹣2x2+5x=﹣2(x﹣)2+,∵﹣2<0,∴当x=时,y有最大值是;即△BEF面积的最大值是.【点评】此题是四边形的综合题,主要考查正方形的性质,全等三角形的判定与性质,勾股定理,三角形面积,二次函数的最值等知识点的理解和掌握,难度适中,熟练掌握正方形中利用辅助线构建全等来解决问题是本题的关键.4.(2019•湖南益阳•12分)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=CD=2,DE==2,再由∠OAD=30°知OD=AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=知S△ODM=,S△OAD=9,设OA=x、OD =y,据此知x2+y2=36,xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得==,据此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos∠OAD=可得答案.【考点】动点问题.【解答】解:(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=3(负值舍去),∴OA=3;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴==,即==,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA==,∴cos∠OAD==.【点评】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点。
中考数学专题复习——动态变化问题(经典题型)
中考数学专题复习——动态变化问题(经典题型)【专题点拨】动态型问题一般是指以几何知识和图形为背景,渗透运动变化观点的一类试题,常见的运动对象有点动、线动和面动;其运动形式而言就是平移、旋转、翻折和滚动等。
动态型试题其特点是集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活,多变,动中有静,动静结合,能够在运动变化中发展同学们的空间想象能力。
解答动态型试题的策略是:(1)动中求静,即在运动变化中探索问题中的不变性;(2)动静互化,抓住静的瞬间。
找到导致图形或者变化规律发生改变的特殊时刻,同时在运动变化的过程中寻找不变性及其变化规律。
【典例赏析】【例题1】(2017黑龙江佳木斯)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG 交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG :S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG :S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.【例题2】(2017黑龙江佳木斯)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)①如图2中,结论:OH=AD,OH⊥AD.延长OH到E,使得HE=OH,连接BE,由△BEO≌△ODA即可解决问题;②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.由△BEO≌△ODA即可解决问题;【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.【例题3】(2017湖北江汉)如图,在平面直角坐标系中,四边形ABCD的边AD 在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B 两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC 交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为20 ;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t≤3时,根据已知条件得到四边形ABFE是平行四边形,于是得到S=AE•OC=4t;②当3≤t<7时,如图1,求得直线CD的解析式为:y=2x﹣4,直线E′F′的解析式为:y=﹣2x+2t﹣10,解方程组得到G(,t﹣7),于是得到S=S四边形ABCD ﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF 的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),求得PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,∴A(﹣5,0),∴OA=5,∴AC=7,把x=﹣3代入y=﹣2x﹣10得,y=﹣4∴OC=4,∴四边形ABCD的面积=(3+7)×4=20;故答案为:20;(2)①当0≤t≤3时,∵BC∥AD,AB∥EF,∴四边形ABFE是平行四边形,∴S=AE•OC=4t;②当3≤t<7时,如图1,∵C(0,﹣4),D(2,0),∴直线CD的解析式为:y=2x﹣4,∵E′F′∥AB,BF′∥AE′∴BF′=AE=t,∴F′(t﹣3,﹣4),直线E′F′的解析式为:y=﹣2x+2t﹣10,解得,∴G(,t﹣7),∴S=S四边形ABCD ﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,综上所述:S关于t的函数解析式为:S=;(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),∵PM⊥直线BC于M,交x轴于n,∴M(m,﹣4),N(m,0),∴PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作FK⊥x轴于K,则KF=4,由△TKF∽△PNT得, =2,∴NT=2KF=8,∵PN2+NT2=PT2,∴4(m+3)2+82=4(m+1)2,解得:m=﹣6,∴﹣2m﹣6=﹣6,此时,P(﹣6,6);②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作PH⊥y轴于H,则PH=|m|,由△TFC∽△PTH得,,∴HT=2CF=2,∵HT2+PH2=PT2,即22+m2=4(m+1)2,解得:m=﹣,m=0(不合题意,舍去),∴m=﹣时,﹣2m﹣6=﹣,∴P(﹣,﹣),综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在y轴上.【能力检测】1.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AF G=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC=EC,再由GE=2BG 结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.2.(2017乌鲁木齐)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.【考点】G6:反比例函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于y轴的对称点P,B点关于x轴的对称点Q,根据对称的性质得到P点坐标为(﹣1,3),Q点坐标为(3,﹣1),PQ分别交x 轴、y轴于C点、D点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用两点间的距离公式求解可得.【解答】解:分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=DP+DC+CQ+AB=PQ+AB=+=4+2=6,故选:B.3.(2017黑龙江鹤岗)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是 5 .【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.【解答】解:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PC+PE的最小值,∵CD=4,CE=1,∴DE=3,在Rt△ADE中,∵AE===5,∴PC+PE的最小值为5.故答案为:5.4.(2017黑龙江鹤岗)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;L8:菱形的性质;R2:旋转的性质.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OA,OD=OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=OA,OD=OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=OC′,∠AOC′=∠BOD′,∴=,∴△AOC′∽△BOD′,∴==,∠OAC′=∠OBD′,∴BD′=AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.5.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC 的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.【考点】FI:一次函数综合题.【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N 点坐标,利用待定系数法可求得直线BN的解析式;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为▱BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S﹣S四边形BNN′B′,可分别得到S与t的函数关系式.△OGN′【解答】解:(1)∵|x﹣15|+=0,∴x=15,y=13,∴OA=BC=15,AB=OC=13,∴B(15,13);(2)如图1,过D作EF⊥OA于点E,交CB于点F,由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,∵tan∠CBD=,∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,∴=,∵DE∥ON,∴==,且OE=3,∴=,解得OM=6,∴ON=8,即N(0,8),把N、B的坐标代入y=kx+b可得,解得,∴直线BN的解析式为y=x+8;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形BN N′B′为平行四边形,且NN′=t,∴S=NN′•OA=15t;当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,∵NN′=t,∴可设直线B′N′解析式为y=x+8﹣t,令y=0,可得x=3t﹣24,∴OG=24,∵ON=8,NN′=t,∴ON′=t﹣8,∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;综上可知S与t的函数关系式为S=.。
全国各地中考数学试卷分类汇编动态问题
动态问题一、选择题1.(2013江苏苏州,10,3分)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则P A +PC 的最小值为( ).A B C D .【答案】B .【解析】如图,作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时P A +PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解:如图,作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时P A +PC 的值最小.∵DP =P A ,∴P A +PC =PD +PC =CD .∵B (3,∴AB ,OA =3,∠B =60°.由勾股定理得:OB .由三角形面积公式得:12×OA ×AB =12×OB ×AM ,即12×3=12×AM .∴AM =32.∴AD =2×32=3.∵∠AMB =90°,∠B =60°, ∴∠BAM =30°,∵∠BAO =90°,∴∠OAM =60°. ∵DN ⊥OA ,∴∠NDA =30°,∴AN =12×AD =32.由勾股定理得:DN=2. ∵C (12,0),∴CN =3-12-32=1.在Rt △DNC 中,由勾股定理得:DC 2.即P A +PC 所以应选B .【方法指导】本题考查了三角形的内角和定理,轴对称的最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P 点的位置,题目比较好,难度适中. 【易错警示】弄不清楚最小值问题,赵不到最短距离而出错.2.(2013山东临沂,14,3分)如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动.设运动时间为t (s ),△OEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )【答案】:B .3(2013四川南充,10,3分)如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们的运动速度都是1cm/s .设P ,Q 出发秒时,△BPQ 的面积为y cm 2,已知y 与的函数关系的图象如图2(曲线OM 为抛物线的一部分).则下列结论: ①AD=BE=5cm ;②当0<≤5时,252t y =;③直线NH 的解析式为2725+-=t y ; ④若△ABE 与△QBP 相似,则429=t 秒.其中正确结论的个数为( ) A .4 B .3 C .2 D .1【答案】:B .【解析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P 到达点E 时点Q 到达点C ,从而得到BC 、BE 的长度,再根据M 、N 是从5秒到7秒,可得ED 的长度,然后表示出AE 的长度,根据勾股定理求出AB 的长度,然后针对各小题分析解答即可. 【方法指导】本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出A .D .DF点P 到达点E 时,点Q 到达点C 是解题的关键,也是本题的突破口,难度较大. 4.(2013湖北荆门,12,3分)如图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右匀速(注:“匀速”二字为录入者所添加)平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是( )【答案】A【解析】为计算的方便,不妨设AB =CD,AD =1,∠ABC =45°.分别过点A ,D 向BC 作垂线,垂足依次为E ,F ,如图3,设动直线l 移动的速度为x .①当0≤x <1时,S =12x 2,其图象是开口向上的抛物线的一部分;②当1≤x <2时,S =12+1×(x -1)=x -12,其图象是直线的一部分;③当2≤x ≤3时,S =2-12(3-x )2,其图象是开口向下的抛物线的一部分.综上所述,选A .【方法指导】判断函数大致图象的试题,一般应先确立函数关系解析式,再根据函数图象及性质做出合理的判断.解答分段函数的图象问题一般遵循以下步骤:①根据自变量的取值范围对函数进行分段;②求出每段的解析式;③由每段的解析式确定每段图象的形状. 5 (2013山东烟台,12,3分)如图1.E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE-—ED —DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止.它们的运动速度都是1cm /s .若点P ,Q 同时开始运动,设运动时间为t (s ),⊿BPQ 的面积y (cm 2).已知y 与t 的函数关系图像如图2,则下面结论错误的是( )A . cm AE 6=B . 54sin =∠EBC C . 当100≤<t 时,252t y =D .当s t 12=时,PBQ ∆是等腰三角形A .B .C .D .(第12题)图3【答案】A【考点解剖】本题是一道典型的动点问题,主要考查了三角函数、等腰三角形的判定、二次函数的解析式、三角形的面积公式,解决本题的关键是能够根据图形中点的位置与相应线段、面积的变化来理解函数图象表达的意义,数形结合,化静为动,从而正确的解决问题. 【解析】如图:利用数形结合思想方法,结合图1、图2分别求出BE =BC =10cm ,DE =4cm ,AE =6cm ;然后利用勾股定理求出AB ,即可求出sin ∠EBC =54;当100≤<t 时,根据△BPF ∽△EBA 可求出BQ 边上的高PF t 54=,然后利用三角形面积公式即可求出y 与t 的函数关系式y =⨯t 21t 54252t =,最后利用排除法即可选D .【方法指导】点的运动问题,主要表现在运动路径与时间之间的图象关系.解决动点问题时,对题意的理解要清晰,关键是正确获取或处理题中的信息,明确哪些是变化的量,哪些是不变的量.二、填空题1.(2013杭州4分)射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值(单位:秒)【思路分析】求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;【解析】∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接P A,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.【方法指导】本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊..2(2013浙江湖州,16,4分)如图,已知点A是第一象限内横坐标为AC⊥x =-于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,轴于点M,交直线y x则点P在线段ON上运动时,A点不变,B点随之运动,求当点P从点O运动到点N时,点B运动的路径长是__▲__.【答案】【解析】(1)首先,需要证明线段B0B n就是点B运动的路径(或轨迹),如答图②所示.利用相似三角形可以证明;(2)其次,如答图①所示,利用相似三角形△AB0B n∽△AON,求出线段B0B n的长度,即点B运动的路径长.OM=N在直线y=-x上,AC⊥x轴于点M,则△OMN为等腰直角三角形,=.如答图①所示,设动点P在O点(起点)时,点B的位置为B0,动点P在N点(起点)时,点B的位置为B n,连接B0B n.∵AO⊥AB0,AN⊥AB n,∴∠OAC=∠B0AB n,又∵AB0=AO•tan30°,AB n=AN•tan30°,∴AB0:AO=AB n:AN=tan30°,∴△AB0B n∽△AON,且相似比为tan30°,∴B0B n=ON•tan30°=B0B n就是点B运动的路径(或轨迹).如答图②所示,当点P运动至ON上的任一点时,设其对应的点B为B i,连接AP,AB i,B0B i.∵AO⊥AB0,AP⊥AB i,∴∠OAP=∠B0AB i,又∵AB0=AO•tan30°,AB i=AP•tan30°,∴AB0:AO=AB i:AP,∴△AB0B i∽△AOP,∴∠AB0B i=∠AOP.又∵△AB0B n∽△AON,∴∠AB0B n=∠AOP,∴∠AB0B i=∠AB0B n,∴点B i在线段B0B n上,即线段B0B n就是点B运动的路径(或轨迹).综上所述,点B运动的路径(或轨迹)是线段B0B n,其长度为.【方法指导】本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.本题的要点有两个:首先,确定点B 的运动路径是本题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B 运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中3.(2013山东菏泽,14,3分)如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于Q ,当CQ =13CE时, EP +BP =____________.【答案】12.【解析】延长BQ 角射线EF 于M.∵E 、F 分别是AB 、AC 的中点,∴EF//BC ,即EM//BC.∴△EQM ∽△EQB ,∴123132===CE CECQ EQ BC EM , 即26=EM ,∴EM=12.∵∠CBP 的平分线交CE 于Q ,∴∠PBM=∠CBM , ∵EM//BC ,∴∠EMB=∠CBM ,∴∠PBM=∠EMB ,∴PB=PM ,所以EP +BP =EM=12.【方法指导】本题考查三角形相似、三角形中位线性质、角平分线意义等.本题是一道动点型问题,解题时要善于从“动中求静,联想关联知识”.三、解答题1.(2013杭州4分)射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm的速度向右移动,B(第14题)经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)【思路分析】求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;【解析】∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接P A,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.【方法指导】本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.2.(2013湖北孝感,25,12分)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.,的坐标为3(2013·济宁,23,?分)如图,直线y=-x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.(1)根据直线y=-x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,分析:得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=-x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则OQ=FQ=t,P A=2t,∴QP=8-t-2t=8-3t,∴8-3t=t,解得:t=2,如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,P A=2t,∴OP=8-2t,∴QP=t-(8-2t)=3t-8,∴t=3t-8,解得:t=4;(3)如图1,当Q在P点的左边时,∵OQ=t,P A=2t,∴QP=8-t-2t=8-3t,当t=-=时,S矩形PEFQ的最大值为:=4,如图2,当Q在P点的右边时,∵OQ=t,P A=2t,∴QP=t-(8-2t)=3t-8,∴S矩形PEFQ=QP•QE=(3t-8)•t=3t2-8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴0≤t≤4,当t=-=时,S矩形PEFQ的最小,∴t=4时,S矩形PEFQ的最大值为:3×42-8×4=16,综上所述,当t=4时,S矩形PEFQ的最大值为:16.点评:此题主要考查了二次函数与一次函数的综合应用,得出P ,Q 不同的位置进行分类讨论得出是解题关键.4.(2013·潍坊,24,13分)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x =1对称,AB =4,所以A(-1,0),B(3,0), 由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a +3b =1.5,即a +b =0.5,又12=-a b,即b =-2a ,代入上式解得a =-0.5,b =1,从而c =1.5,所以23212++-=x x y .(2)由(1)知23212++-=x x y ,令x =0,得c(0,1.5),所以CD//AB , 令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE +CF =DF +BE ,即,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -=假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO =∠NPO ,所以Rt △MPM 1∽Rt △NPN 1, 所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t +2)(x M +x N )=2k x M x N ,……(2) 把y =kx -2(k ≠0)代入221x y -=中,整理得x 2+2kx -4=0, 所以x M +x N =-2k , x M x N =-4,代入(2)得t =2,符合条件, 故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。
2012全国各地中考数学解析汇编--第40章 动态型问题A(已排版)
2012全国各地中考数学解析汇编--第40章动态型问题A(已排版)(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)四十章 动态型问题A(2012江苏苏州,18,3分)如图①,在梯形ABCD 中,AD ∥BC ,∠A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A →B →C →D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积S (单位:cm 2)与点P 移动的时间(单位:s )的函数如图②所示,则点P 从开始移动到停止移动一共用了(4+2) 秒(结果保留根号).分析: 根据图②判断出AB 、BC 的长度,过点B 作BE ⊥AD 于点E ,然后求出梯形ABCD 的高BE ,再根据t=2时△PAD 的面积求出AD 的长度,过点C 作CF ⊥AD 于点F ,然后求出DF 的长度,利用勾股定理列式求出CD 的长度,然后求出AB 、BC 、CD 的和,再根据时间=路程÷速度计算即可得解.解答: 解:由图②可知,t 在2到4秒时,△PAD 的面积不发生变化,∴在AB 上运动的时间是2秒,在BC 上运动的时间是4﹣2=2秒,∵动点P的运动速度是1cm/s,∴AB=2cm,BC=2cm,过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,则四边形BCFE是矩形,∴BE=CF,BC=EF=2cm,∵∠A=60°,∴BE=ABsin60°=2×=,AE=ABcos60°=2×=1,∴×AD×BE=3,即×AD×=3,解得AD=6cm,∴DF=AD﹣AE﹣EF=6﹣1﹣2=3,在Rt△CDF中,CD===2,所以,动点P运动的总路程为AB+BC+CD=2+2+2=4+2,∵动点P的运动速度是1cm/s,∴点P从开始移动到停止移动一共用了(4+2)÷1=4+2(秒).故答案为:(4+2).点评:本题考查了动点问题的函数图象,根据图②的三角形的面积的变化情况判断出AB、BC的长度是解题的关键,根据梯形的问题中,经常作过梯形的上底边的两个顶点的高线作出辅助线也很关键.(2012贵州省毕节市,23,12分)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△A′BC′.(1)如图②,将△ACD沿A′C′边向上平移,使点A与点C′重合,连接A′D和BC,四边形A′BCD是形;(2)如图③,将△ACD的顶点A与A′点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为度;连接CC′,四边形CDBC′是形;(3)如图④,将AC边与A′C′边重合,并使顶点B和D在AC边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由。
中考数学试题分类动态问题
第44章 动态问题一、选择题1. 2011安徽,10,4分如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是A .B .C .D .答案C2. 2011山东威海,12,3分如图,在正方形ABCD 中,AB =3cm,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3cm 的速度运动,到达B 点时运动同时停止,设△AMN 的面积为y cm 2,运动时间为x 秒,则下列图象中能大致反映y 与x 之间的函数关系的是答案B3. 2011甘肃兰州,14,4分如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH 的面积为S,AE 为x,则S 关于x 的函数图象大致是A .B .C .D .答案B 二、填空题 三、解答题A BC DEFGHx y -1 O 1x y1 O 1 x yO 1 xy1O 1 11. 2011浙江省舟山,24,12分已知直线3+=kx y k <0分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.1当1-=k 时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动如图1.① 直接写出t =1秒时C 、Q 两点的坐标;② 若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值. 2当43-=k 时,设以C 为顶点的抛物线n m x y ++=2)(与直线AB 的另一交点为D 如图2, ① 求CD 的长;② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大答案1①C 1,2,Q 2,0.②由题意得:Pt ,0,Ct ,-t+3,Q 3-t ,0, 分两种情形讨论:情形一:当△AQC ∽△AOB 时,∠AQC=∠AOB =90°,∴CQ ⊥OA , ∵CP ⊥OA ,∴点P 与点Q 重合,OQ =OP ,即3-t =t ,∴t=.情形二:当△ACQ ∽△AOB 时,∠ACQ=∠AOB =90°,∵O A=O B=3,∴△AOB 是等腰直角三角形,∴△ACQ 是等腰直角三角形,∵CQ ⊥OA ,∴AQ=2CP ,即t =2-t +3,∴t=2.∴满足条件的t 的值是秒或2秒. 2 ①由题意得:Ct ,-34t +3,∴以C 为顶点的抛物线解析式是23()34y x t t =--+, 由233()3344x t t x --+=-+,解得x 1=t ,x 2=t 34-;过点D 作DE ⊥CP 于点E ,则∠DEC=∠AOB =90°,DE ∥OA ,∴∠EDC=∠OAB ,∴△DEC ∽△AOB ,∴DE CDAO BA=, ∵AO =4,AB =5,DE =t -t-34=34.∴CD =35154416DE BA AO ⨯⨯==.②∵CD =1516,CD 边上的高=341255⨯=.∴S △COD =11512921658⨯⨯=.∴S △COD 为定值; 要使OC 边上的高h 的值最大,只要OC 最短.第24题图2第24题图1因为当OC ⊥AB 时OC 最短,此时OC 的长为125,∠BCO =90°,∵∠AOB =90°,∴∠COP =90°-∠BOC =∠OBA ,又∵CP ⊥OA ,∴Rt △PCO ∽Rt △OAB ,∴OP OC BO BA =,OP =123365525OC BO BA ⨯⨯==,即t =3625, ∴当t 为3625秒时,h 的值最大.2. 2011广东东莞,22,9分如图,抛物线2517144y x x =-++与y 轴交于点A ,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C 3,0. 1求直线AB 的函数关系式;2动点P 在线段OC 上,从原点O 出发以每钞一个单位的速度向C 移动,过点P 作⊥x 轴,交直线AB 于点M ,抛物线于点N ,设点P 移动的时间为t 秒,MN 的长为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;3设2的条件下不考虑点P 与点O ,点G 重合的情况,连接CM ,BN ,当t 为何值时,四边形BCMN 为平等四边形问对于所求的t 的值,平行四边形BCMN 是否为菱形说明理由.解1把x=0代入2517144y x x =-++,得1y = 把x=3代入2517144y x x =-++,得52y =,∴A 、B 两点的坐标分别0,1、3,52设直线AB 的解析式为y kx b =+,代入A 、B 的坐标,得1532b k b =⎧⎪⎨+=⎪⎩,解得112b k =⎧⎪⎨=⎪⎩所以,112y x =+2把x=t 分别代入到112y x =+和2517144y x x =-++ 分别得到点M 、N 的纵坐标为112t +和2517144t t -++∴MN=2517144t t -++-112t +=251544t t -+即251544s t t =-+∵点P 在线段OC 上移动, ∴0≤t ≤3.3在四边形BCMN 中,∵BC ∥MN∴当BC=MN 时,四边形BCMN 即为平行四边形 由25155442t t -+=,得121,2t t == 即当12t =或时,四边形BCMN 为平行四边形 当1t =时,PC=2,PM=32,PN=4,由勾股定理求得CM=BN=52, 此时BC=CM=MN=BN,平行四边形BCMN 为菱形; 当2t =时,PC=1,PM=2,由勾股定理求得CM=5, 此时BC ≠CM,平行四边形BCMN 不是菱形; 所以,当1t =时,平行四边形BCMN 为菱形.3. 2011江苏扬州,28,12分如图,在Rt △ABC 中,∠BAC=90o,AB<AC,M 是BC 边的中点,MN ⊥BC 交AC 于点N,动点P 从点B 出发沿射线BA 以每秒3厘米的速度运动;同时,动点Q 从点N 出发沿射线NC 运动,且始终保持MQ ⊥MP;设运动时间为t 秒t>01△PBM 与△QNM 相似吗以图1为例说明理由; 2若∠ABC=60o,AB=43厘米; ① 求动点Q 的运动速度;② 设Rt △APQ 的面积为S 平方厘米,求S 与t 的函数关系式; 3探求BP 2、PQ 2、CQ 2三者之间的数量关系,以图1为例说明理由;答案解:1△PBM 与△QNM 相似;∵MN ⊥BC MQ ⊥MP ∴ ∠NMB=∠PMQ=∠BAC =90o ∴∠PMB=∠QMN, ∠QNM=∠B =90o -∠C ∴ △PBM ∽△QNM2①∵∠ABC=60o,∠BAC =90o,AB=43,BP=3t ∴AB=BM=CM=43,MN=4 ∵ △PBM ∽△QNM ∴MN BM NQ BP = 即:3434==NQ BP ∵P 点的运动速度是每秒3厘米, ∴ Q 点运动速度是每秒1厘米; ② ∵ AC=12,CN=8∴ AQ=12-8+t=4+t, AP=43-3t∴ S=)334()4(21t t -⨯+⨯=)16(232--t 3 BP 2+ CQ 2 =PQ 2证明如下: ∵BP=3t, ∴BP 2=3t 2 ∵CQ=8-t ∴CQ 2=8-t 2=64-16t+t 2 ∵PQ 2=4+t 2+34-t 2=4t 2-16t+64 ∴BP 2+ CQ 2 =PQ 24. 2011山东德州23,12分在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x xy =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A .1如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由. 2如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时: ①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在,试求出所有满足条件的M 点的坐标,若不存在,试说明理由.答案解:1∵⊙P分别与两坐标轴相切,∴P A⊥OA,PK⊥OK.∴∠P AO=∠OKP=90°.又∵∠AOK=90°,∴∠P AO=∠OKP=∠AOK=90°.∴四边形OKP A是矩形.又∵OA=OK,∴四边形OKP A是正方形.……………………2分2①连接PB,设点P的横坐标为x,则其纵坐标为x 32.过点P作PG⊥BC于G.∵四边形ABCP为菱形,∴BC=P A=PB=PC.∴△PBC为等边三角形.在Rt△PBG中,∠PBG=60°,PB=P A=x,PG=x 32.AP 23yx=xyKO图1OA P 23yx=xyB C图2GMsin ∠PBG =PBPG,即2x x =. 解之得:x =±2负值舍去.∴ PG,P A =B C=2.……………………4分 易知四边形OGP A 是矩形,P A =OG =2,BG =CG =1, ∴OB =OG -BG =1,OC =OG +GC =3.∴ AB 1,0C 3,0.……………………6分 设二次函数解析式为:y =ax 2+bx +c .据题意得:0930a b c a b c c ⎧++=⎪++=⎨⎪=⎩解之得:a=3, b=3-, c∴二次函数关系式为:233y x x =-9分 ②解法一:设直线BP 的解析式为:y =ux +v ,据题意得:2u v u v +=⎧⎪⎨+=⎪⎩解之得:uv=-∴直线BP的解析式为:y =-.过点A 作直线AM ∥PB ,则可得直线AM的解析式为:y =+解方程组:233y y x x ⎧=+⎪⎨=-⎪⎩得:110x y =⎧⎪⎨=⎪⎩;227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+. ∴0=t .∴t =-∴直线CM的解析式为:y =-.解方程组:2y y x x ⎧=-⎪⎨=⎪⎩得:113x y =⎧⎨=⎩ ;224x y =⎧⎪⎨=⎪⎩. 综上可知,满足条件的M 的坐标有四个,分别为:12分 解法二:∵12PAB PBC PABCS S S ∆∆==,∴AC 3,0显然满足条件.延长AP 交抛物线于点M ,由抛物线与圆的轴对称性可知,PM =P A . 又∵AM ∥BC , ∴12PBM PBA PABCS S S ∆∆==.∴点M又点M 的横坐标为AM =P A +PM =2+2=4. ∴点M点7,综上可知,满足条件的M 的坐标有四个,分别为:12分解法三:延长AP 交抛物线于点M ,由抛物线与圆的轴对称性可知,PM =P A . 又∵AM ∥BC , ∴12PBM PBA PABCS S S ∆∆==.∴点M2x x =. 解得:10x =舍,24x =. ∴点M 的坐标为点7,综上可知,满足条件的M 的坐标有四个,分别为:12分 5. 2011山东菏泽,21,9分如图,抛物线y =12x 2+bx -2与x 轴交于A ,B 两点,与y 轴交于C 点,且A -1,0. 1求抛物线的解析式及顶点D 的坐标; 2判断△ABC 的形状,证明你的结论;3点Mm ,0是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.解:1把点A -1,0的坐标代入抛物线的解析式y =12x 2+bx -2, 整理后解得32b =-, 所以抛物线的解析式为 213222y x x =--. 顶点D 325,28⎛⎫- ⎪⎝⎭.2∵AB =5,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形. 3作出点C 关于x 轴的对称点C′,则C′ 0,2,OC′=2. 连接C′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC +MD 的值最小. 设抛物线的对称轴交x 轴于点E . △C′OM ∽△DEM . ∴OM OC EM ED '=.∴232528m m =-.∴m =2441. 6. 2011山东济宁,23,10分如图,在平面直角坐标系中,顶点为4,1-的抛物线交y 轴于A 点,交x 轴于B ,C 两点点B 在点C 的左侧. 已知A 点坐标为0,3.1求此抛物线的解析式;2过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;3已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大并求出此时P 点的坐标和PAC ∆的最大面积.答案1解:设抛物线为2(4)1y a x =--. ∵抛物线经过点A 0,3,∴23(04)1a =--.∴14a =. ∴抛物线为2211(4)12344y x x x =--=-+. ……………………………3分 2 答:l 与⊙C 相交. …………………………………………………………………4分 证明:当21(4)104x --=时,12x =,26x =. ∴B 为2,0,C 为6,0.∴AB =设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠. ∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BCOB AB =.∴2CE =.∴2CE =>.…………………………6分 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交. ……………………………………………7分 3 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .可求出AC 的解析式为132y x =-+.…………………………………………8分 设P 点的坐标为m ,21234m m -+,则Q 点的坐标为m ,132m -+.∴2211133(23)2442PQ m m m m m =-+--+=-+.∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+,∴当3m =时,PAC ∆的面积最大为274.x第23题此时,P 点的坐标为3,34-. ……………………………10分7. 2011山东威海,25,12分如图,抛物线2y ax bx c =++交x 轴于点(3,0)A -,点(1,0)B ,交y 轴于点(0,3)E -.点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线l 过点F 且与y 轴平行.直线y x m =-+过点C ,交y 轴于点D .1求抛物线的函数表达式;2点K 为线段AB 上一动点,过点K 作x 轴的垂线与直线CD 交于点H ,与抛物线交于点G ,求线段HG 长度的最大值;3在直线l 上取点M ,在抛物线上取点N ,使以点A ,C ,M ,N 为顶点的四边是平行四边形,求点N 的坐标.图① 备用图答案 解:1设抛物线的函数表达式(1)(3)y a x x =-+ ∵抛物线与y 轴交于点(0,3)E -,将该点坐标代入上式,得1a =. ∴所求函数表达式(1)(3)y x x =-+,即223y x x =+-. 2∵点C 是点A 关于点B 的对称点,点(3,0)A -,点(1,0)B , ∴点C 的坐标是(5,0)C .将点C 的坐标是(5,0)C 代入y x m =-+,得5m =. ∴直线CD 的函数表达式为5y x =-+.AxyBOCD第23题EPQ设K 点的坐标为(,0)t ,则H 点的坐标为(,5)t t -+,G 点的坐标为2(,23)t t t +-. ∵点K 为线段AB 上一动点, ∴31t -≤≤.∴222341(5)(23)38()24HG t t t t t t =-+-+-=--+=-++. ∵3312-≤-≤, ∴当32t =-时,线段HG 长度有最大值414.3∵点F 是线段BC 的中点,点(1,0)B ,点 (5,0)C , ∴点F 的坐标为(3,0)F . ∵直线l 过点F 且与y 轴平行, ∴直线l 的函数表达式为3x =. ∵点M 在直线l 上,点N 在抛物线上 ,∴设点M 的坐标为(3,)M m ,点N 的坐标为2(,23)N n n n +-. ∵点(3,0)A -,点 (5,0)C ,∴8AC =. 分情况讨论: ①若线段AC 是以点A ,C ,M ,N 为顶点的四边是平行四边形的边,则须MN ∥AC ,且MN =AC =8.当点N 在点M 的左侧时,3MN n =-. ∴38n -=,解得5n =-. ∴N 点的坐标为(5,12)N -.当点N 在点M 的右侧时,3MN n =-. ∴38n -=,解得11n =. ∴N 点的坐标为(11,40)N .②若线段AC 是以点A ,C ,M ,N 为顶点的平行四边形的对角线,由“点C 与点A 关于点B 中心对称”知:点M 与点N 关于点B 中心对称.取点F 关于点B 对称点P ,则点P 的坐标为(1,0)P -.过点P 作NP ⊥x 轴,交抛物线于点N .将1x =-代入223y x x =+-,得4y =-. 过点N ,B 作直线NB 交直线l 于点M . 在△BPN 和△BFM 中,∵90NPB MBF BF BP BPN BFM ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△BPN ≌△BFM . ∴NB =MB .∴四边形点ANCM 为平行四边形. ∴坐标为(1,4)--的点N 符合条件.∴当点N 的坐标为(5,12)-,(11,40),(1,4)--时,以点A ,C ,M ,N 为顶点的四边是平行四边形.8. 2011山东烟台,26,14分如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为y =-43x +163,点A 、D 的坐标分别为-4,0,0,4.动点P 自A 点出发,在AB 上匀速运行.动点Q 自点B 出发,在折线BCD 上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t 秒时,△OPQ 的面积为s 不能构成△OPQ 的动点除外. 1求出点B 、C 的坐标; 2求s 随t 变化的函数关系式;3当t 为何值时s 有最大值并求出最大值.答案解:1把y =4代入y =-43x +163,得x =1. ∴C 点的坐标为1,4. 当y =0时,-43x +163=0, ∴x =4.∴点B 坐标为4,0.2作CM ⊥AB 于M ,则CM =4,BM =3. ∴BC =22CM BM +=2234+=5. ∴sin ∠ABC =CM BC =45. ①当0<t <4时,作QN ⊥OB 于N , 则QN =BQ ·sin ∠ABC =45t. 备用图2O xyABCDO xyABCD备用图1 OxyABCD PQ∴S=12OP·QN=124-t×45t=-25t2+85t0<t<4.②当4<t≤5时,如备用图1, 连接QO,QP,作QN⊥OB于N.同理可得QN=4 5 t.∴S=12OP·QN=12×t-4×45t. =25t2-85t4<t≤5.③当5<t≤6时,如备用图2, 连接QO,QP.S=12×OP×OD=12t-4×4=2t-85<t≤6.3①在0<t<4时,当t=8522()5⨯-=2时,S最大=28()524()5-⨯-=85.②在4<t≤5时,对于抛物线S=25t2-85t,当t=-85225-⨯=2时,S最小=25×22-85×2=-85.∴抛物线S=25t2-85t的顶点为2,-85.∴在4<t≤5时,S随t的增大而增大.∴当t =5时,S 最大=25×52-85×5=2. ③在5<t ≤6时,在S =2t -8中,∵2>0,∴S 随t 的增大而增大. ∴当t =6时,S 最大=2×6-8=4.∴综合三种情况,当t =6时,S 取得最大值,最大值是4.说明:3中的②也可以省略,但需要说明:在2中的②与③的△OPQ ,③中的底边OP 和高CD 都大于②中的底边OP 和高.所以③中的△OPQ 面积一定大于②中的△OPQ 的面积.9. 2011四川南充市,22,8分抛物线y =ax 2+bx+c 与x 轴的交点为A m -4,0和B m ,0,与直线y =-x +p 相交于点A 和点C2m -4,m -6.1求抛物线的解析式;2若点P 在抛物线上,且以点P 和A,C 以及另一点Q 为顶点的平行四边形ACQP 面积为12,求点P,Q 的坐标; 3在2条件下,若点M 是x 轴下方抛物线上的动点,当⊿PQM 的面积最大时,请求出⊿PQM 的最大面积及点M 的坐标;答案解:1∵点Am-4,0和C2m-4,m-6在直线y =-x +p 上 ∴0(4)6(24)m p m m p =--+⎧⎨-=--+⎩解得:31m p =⎧⎨=-⎩∴A-1,0 B3,0, C2,-3 设抛物线y =ax 2+bx+c =ax-3x+1, ∵C2,-3 ∴a=1∴抛物线解析式为:y =x 2-2x-32AC=32,AC 所在直线的解析式为:y =-x -1,∠BAC=450∵平行四边形ACQP 的面积为12. ∴平行四边形ACQP 中AC 边上的高为2312=22过点D 作DK ⊥AC 与PQ 所在直线相交于点K,DK= 22,∴DN=4 ∵ACPQ,PQ 所在直线在直线ACD 的两侧,可能各有一条, ∴PQ 的解析式或为y =-x +3或y =-x -5∴2233y x x y x ⎧=--⎨=-+⎩解得:1130x y =⎧⎨=⎩或2225x y =-⎧⎨=⎩2235y x x y x ⎧=--⎨=--⎩,此方程组无解. 即P 13,0, P 2-2,5∵ACPQ 是平行四边形 ,A-1,0 C2,-3 ∴当P3,0时,Q6,-3 当P-2,5时,Q1,2∴满足条件的P,Q 点是P 13,0, Q 16,-3或 P 2-2,5,Q 21,2 (1)设M t ,t 2-2t-3,-1<t <3,过点M 作y 轴的平行线,交PQ 所在直线雨点T,则Tt,-t+3MT=-t+3- t 2-2t-3=- t 2+t+6过点M 作M S ⊥PQ 所在直线于点S, MS=22MT=22 - t 2+t+6=- 22t-212+8225∴当t=21时,M 21,-415,⊿PQM 中PQ 边上高的最大值为822510.2011 浙江杭州,24, 12图形既关于点O 中心对称,又关于直线AC ,BD 对称,AC =10,BD =6,已知点E ,M 是线段AB 上的动点不与端点重合,点O 到EF ,MN 的距离分别为1h ,2h .△OEF 与△OGH 组成的图形称为蝶形. 1求蝶形面积S 的最大值;2当以EH 为直径的圆与以MQ 为直径的圆重合时,求1h 与2h 满足的关系式,并求1h 的取值范围.答案1 如图,设EF 与AC 交于点K,由△OEF ∽△ABD,得AK EF AO BD =,1556h EF-=, O DCBAyxLK SEROABM16(5)5EF h =-,1111622(5)225S OK EF h h =⨯•=⨯•-,整理得216515()522S h =--+,当152h =时,蝶形面积S 的最大,最大值为152.2 如图,设MN 与AC 交于点L,由1得16(5)5EF h =-,则13(5)5EK h =-,23(5)5ML h =-由OK 2+EK 2=OE 2,OL 2+ML 2=OM 2,得OK 2+EK 2=OL 2+ML 2,2222112233(5)(5)55h h h h ⎡⎤⎡⎤+-=+-⎢⎥⎢⎥⎣⎦⎣⎦,整理得[]1212()17()450h h h h -+-=,当点E,M 不重合时,120h h -≠,124517h h +=.当OE ⊥AB 时,14534h =,所以145017h << 2当点,E M 重合时,则12h h =,此时1h 的取值范围为105h <<.解法二:1由题意,得四边形ABCD 是菱形. 由//EF BD ,得ABDAEF ∆∆,1565h EF -∴=,即()1655EF h =- ()2111166515255522OEFS S EF h h h h ∆⎛⎫∴==⨯=-⨯=--+ ⎪⎝⎭所以当152h =时,max 152S =. 2根据题意,得OE OM =.如图,作OR AB ⊥于R , OB 关于OR 对称线段为OS ,1当点,E M 不重合时,则,OE OM 在OR 的两侧,易知RE RM =.225334AB =+=,34OR ∴=221533434BR ⎛⎫∴=-= ⎪⎝⎭由////ML EK OB ,得,OK BE OL BMOA AB OA AB== 2OK OL BE BM BR OA OA AB AB AB ∴+=+=,即1295517h h +=124517h h ∴+=,此时1h 的取值范围为145017h <<且14534h ≠ 2当点,E M 重合时,则12h h =,此时1h 的取值范围为105h <<.11. 2011 浙江湖州,24,14如图1.已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P 0,m 是线段OC 上一动点C 点除外,直线PM 交AB 的延长线于点D . 1 求点D 的坐标用含m 的代数式表示; 2 当△APD 是等腰三角形时,求m 的值;3 设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H 如图2.当点P 从点O 向点C 运动时,点H 也随之运动.请直接写出点H 所经过 的路径长.不必写解答过程答案解:1由题意得CM=BM ,∵∠PMC =∠DMB ,∴Rt △PMC ≌Rt △DMB ,∴DB =PC ,∴DB =2-m,AD =4-m,∴点D 的坐标为2,4-m.2分三种情况:①若AP =AD ,则224(4)m m +=-,解得32m =. ② 若PD =P A ,过P 作PF ⊥AB 于点F 如图,则AF =FD,11(4)22AF FD AD m ===-,又OP =AF ,∴1(4)2m m =-,解得43m =, ③ 若DP =DA ,∵△PMC ≌△DMB ,∴11(4)22PM PD m ==-,∵222PC CM PM +=,∴221(2)1(4)4m m -+=-, 解得122,23m m ==(舍去). 综上所述,当△APD 是等腰三角形时,过m 的值为342233或或. 3点H 5. 12. 2011宁波市,26,10分如图.平面直角坐标系xOy 中,点B 的坐标为-2,2,点B 的坐标为6,6,抛物线经过A 、O 、B 三点,线段AB 交y 轴与点E . 1求点E 的坐标; 2求抛物线的函数解析式;3点F 为线段OB 上的一个动点不与O 、B 重合,直线EF 与抛物线交与M 、N 两点点N 在y 轴右侧,连结ON 、BN ,当点F 在线段OB 上运动时,求∆BON 的面积的最大值,并求出此时点N 的坐标;4连结AN ,当∆BON 的面积的最大时,在坐标平面内使得∆BOP 与∆OAN 相似点B 、O 、N 对应的点P 的坐标.答案26.解:1设直线AB的函数解析式为y=mx+n将点A-2,2,B6,6代入得:错误!得m=错误!,n=3∴y=错误!x+3当x=0时y=3 ∴E0,3设抛物线的函数解析式为y=ax+bx将A-2,2B6,6代入得错误!解得a=错误!,b=-错误!∴抛物线的解析式为y=错误!x2-错误!x3过点N做x轴的垂线NG,垂足为G,交OB于点Q,过B作BH⊥x轴于H,设Nx, 错误!x2-错误!x 则Qx,x则S∆BON=S∆BON+S∆BON=错误!×QN×OG+错误!×QN×HG=错误!×QN×OG+HG=错误!×QN×OH=错误!〔x-错误!x2-错误!x〕×6=-错误!x2+错误!x=-错误!x-32+错误!0<x<6∴当x =3时,∆BON 面积最大,最大值为错误! 此时点N 的坐标为3, 错误! 4过点A 作AS ⊥GQ 于S ∵A -2,2,B 6,6,N 3, 错误!∴∠AOE =∠OAS =∠BOH =45°,OG =3,NG =错误!,NS =错误!,AS =5 在Rt ∆SAN 和Rt ∆NOG 中 ∴tan ∠SAN = tan ∠NOG =错误! ∴∠SAN =∠NOG∴∠OAS -∠ASN =∠BOG -∠NOG ∴∠OASN =∠BON∴ON 的延长线上存在一点P ,使∆BOP ~∆OAN ∵A -2,2, N 3, 错误! 在Rt ∆ASN 中 AN =错误!=错误!当∆BOP ~∆OAN 时 错误!=错误! ∴错误!=错误! ∴OP =错误! 过点P 作PT ⊥x 轴于点T∴∆OPT ~∆ONG ∴错误!=错误!=错误! 设P 4t ,t 在在Rt ∆POT 中,有4t 2+t 2=错误!2 ∴t 1=错误! ,t 2=-错误!舍 ∴点P 的坐标为15,错误!将∆OBP 沿直线OB 返折,可得出另一个满足条件的点P '错误!,15,由以上推理可知,当点P 的坐标为15,错误!或错误!,15时∆BOP 与∆OAN 相似.13. 2011浙江衢州,24,12分已知两直线12l l 、分别经过点()1,0A ,点()3,0B -,并且当两条直线同时相交于y 轴正半轴的点C 时,恰好有12l l ⊥,经过点A B C 、、的抛物线的对称轴于直线1l 交于点K ,如图所示. 求点C 的坐标,并求出抛物线的函数解析式.抛物线的对称轴被直线1l ,抛物线,直线2l 和x 轴依次截得三条线段,问这三条线段有何数量关系请说明理由. 当直线2l 绕点C 旋转时,与抛物线的另一个交点为M .请找出使MCK 为等腰三角形的点M .简述理由,并写出点M 的坐标.答案1解法1:由题意易知(1,.3C 0BOC COA CO AO CO BO CO COCO ∴==∴=∴即点的坐标是~由题意,可设抛物线的函数解析式为2y ax bx =++把(1,0),(3,0)A B -的坐标分别代入2y ax bx =++得{0930.a b a b +-解这个方程组,得a b ⎧⎪⎨⎪⎩∴抛物线的函数解析式为233y x x =--+ 解法2:由勾股定理,得2222222()().OC OB OC OA BC AC AB +++=+= 又314OB OA AB ===,,(.OC C ∴=∴点的坐标是由题意可设抛物线的函数解析式为()()13.y a x x =-+把(C 0代入函数解析式得a =所以抛物线的函数解析式为)()13.y x x =-+ 2解法1:截得三条线段的数量关系为.KD DE EF == 理由如下:可求得直线1l的解析式为y =+直线2l的解析式为3y x =,抛物线的对称轴为直线1x =-.由此可求得点K的坐标为(-,点D的坐标为1,3⎛⎫- ⎪ ⎪⎝⎭,点E的坐标为1,3⎛- ⎝⎭,点F 的坐标为()1,0-. ,333.KD DE EF KD DE EF ∴===∴==解法2:截得三条线段的数量关系为.KD DE EF == 理由如下:由题意可知Rt 3060ABC ABC CAB ∠=︒∠=︒中,,,则可得tan 30=tan 603EF BF KF AF =⨯︒=⨯︒. 由顶点D的坐标为1,3⎛⎫- ⎪ ⎪⎝⎭得3DF =, 3KD DE EF ∴===3解法1:i 以点K 为圆心,线段KC 长为半径画圆弧,交抛物线于点1M ,由抛物线的对称性可知点1M 为点C 关于直线1x =-的对称点.∴所以点1M的坐标为(-,此时,1M CK 为等腰三角形.ii 当以点C 为圆心,线段KC 长为半径画圆弧时,与抛物线交点为点1M 和点A ,而三点A C K 、、在同一直线上,不能构成三角形.iii 作线段KC 的中垂线l ,由点D 是KE 的中点,且12l l ⊥,可知l 经过点D ,.KD DC ∴=此时,有点2M 即点D坐标为(1,3-,使2M CK 为等腰三角形. l 与抛物线的另一交点即为1M综上所述,当点M 的坐标为(1,3--时,MCK 为等腰三角形 解法2:当点M 的坐标分别为 理由如下:i 链接BK ,交抛物线于点G ,易知点G的坐标为(- .又点C的坐标为,则//.GC AB可求得4AB BK ==,且60ABK ∠=︒,即ABK ∆为正三角形.CGK ∴∆为正三角形∴当2l 与抛物线交于点G ,即2//l AB 时,符合题意,此时点1M的坐标为(- ii 连接CD ,由230KD CK CG CKD ===∠=︒,,易知KDC ∆为等腰三角形 当2l 过抛物线顶点于点D 时,符合题意,此时点2M 的坐标为(1,)3-. iii 当点M 在抛物线对称轴右边时,只有点M 与点A 重合时,满足CM CK =,但此时,三点A C K 、、在同一直线上,不能构成三角形.综上所述,当点M的坐标分别为(1,3--时,MCK ∆为等腰三角形. 14. 2011浙江绍兴,24,14分抛物线21(1)34y x =--+与y 轴交于点A ,顶点为B ,对称轴BC 与x 轴交于点C . 1如图1,求点A 的坐标及线段OC 的长;2点P 在抛物线上,直线//PQ BC 交x 轴于点Q ,连接BQ .①若含45°角的直线三角板如图2所示放置,其中,一个顶点与C 重合,直角顶点D 在BQ 上,另一顶点E 在PQ 上,求直线BQ 的函数解析式;②若含30°角的直角三角板一个顶点与点C 重合,直角顶点D 在直线BQ 上,另一个顶点E 在PQ 上,求点P 的坐标.答案解:1把0x=代入21(1)34y x =--+得114y =, ∴点11(0,)4A , BC 为对称轴,(1,3)B ,1OC ∴=.2①如图1,过点D 作DM x ⊥轴,交x 轴于点M , 过点D 作DN PQ ⊥,交PQ 于点N ,//PQ BC90DMQ DNQ MDN ∴∠=∠=∠=︒ ∴四边形MDNQ 为矩形,90,,,,,CDE MDN CDM EDN DC DE DCM DEN DM DN ∠=∠=︒∴∠=∠=∴∆≅∆∴=∴四边形MDNQ 为正方形,45DQC ∴∠=︒,BCQ ∴∆为等腰直角三角形, 34CQ BC OQ ∴==∴=,,设直线BQ 的函数解析式为y kx b =+, 直线上两点的坐标为(1,3),(4,0)B Q , 代入求得1,4k b =-=,∴直线BQ 的函数解析式为4y x =-+.②当点P D DM x ⊥x M D DN PQ ⊥PQ N (,0)Q m 90,Rt Rt ,,,,//,,31,CDM MDE EDN MDE CDM EDN CD DMCDM EDN DE DNCD DMDN MQ DE MQ DM BCPQ BC MQ CQCD DE m ∠+∠=∠+∠=︒∴∠=∠∴∆∆∴==∴=∴=∴=-, 15. 2011浙江台州,24,14分已知抛物线n m x a y +-=2)(与y 轴交于点A,它的顶点为B,点A 、B 关于原点O 的对称点分别是点C 、D;若点A 、B 、C 、D 中任何三点都不在一直线上,则称四边形ABCD 为抛物线的伴随四边形,直线AB 为抛物线的伴随直线;1如图1,求抛物线1)2(2+-=x y 的伴随直线的解析式;2如图2,若n m x a y +-=2)(m>0的伴随直线是y=x -3,伴随四边形的面积为12,求此抛物线的解析式; 3如图3,若抛物线n m x a y +-=2)(的伴随直线是y =-2x+bb>0,且伴随四边形ABCD 是矩形; ① 用含b 的代数式表示m,n 的值;② 在抛物线的对称轴上是否存在点P,使得△PBD 是一个等腰三角形若存在,请直接写出点P 的坐标用含b 的代数式;若不存在,请说明理由;答案解:1设直线AB 的解析式为y=kx+b.由题意,得:A0,5,B2,1 ∴⎩⎨⎧=+=125b k b ∴k=-2 ,b=5∴直线AB 的解析式为y=-2x+52 由伴随直线是y=x -3,得:A0,-3,C0,3 ∴ AC=6 由伴随四边形的面积为12,得:△ABC 的面积为6=m AC ⨯⨯21∴m=±2 ∵m>0 ∴m=2当m=2时,y=-1,顶点为2,-1, 且过点C0,3 ∴抛物线的解析式为y=1)2(212---x ; 3 ① 如图,作BE ⊥x 轴,由题意,得:A0,b,C 0,-b∵抛物线的顶点Bm,n 在y=-2x+bb>0上, ∴n=-2m+b Bm, -2m+b 在矩形ABCD 中,OC=OB ∴OC 2=OB 2即:222)b -2m (++=m b ∴m5m-4b=0 ∴m 1=0舍去,m 2=b 54 ∴n=-2m+b=b 53∴ b m 54=,b n 53=; ② 存在,有4个点:b 54,b 57, b 54,b 59, b 54,b 1516, b 54,b 513-16. 2011浙江义乌,24,12分已知二次函数的图象经过A 2,0、C 0,12 两点,且对称轴为直线x =4. 设顶点为 点P ,与x 轴的另一交点为点B .1求二次函数的解析式及顶点P 的坐标;2如图1,在直线 y=2x 上是否存在点D ,使四边形OPBD 为等腰梯形若存在,求出点D 的坐标;若不存在,请说明理由;3如图2,点M 是线段OP 上的一个动点O 、P 两点除外,以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN ∥x 轴,交PB 于点N. 将△PMN 沿直线MN 对折,得到△P 1MN. 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒. 求S 关于t 的函数关系式.答案1设二次函数的解析式为y =ax 2+bx +c由题意得⎪⎪⎩⎪⎪⎨⎧=++==-0241242c b a c a b 解得⎪⎩⎪⎨⎧=-==1281c b a∴二次函数的解析式为y = x 2-8x +12 点P 的坐标为4,-42存在点D ,使四边形OPBD 为等腰梯形. 理由如下:当y =0时,x 2-8x +12=0 ∴x 1=2 , x 2=6 ∴点B 的坐标为6,0设直线BP 的解析式为y =kx +m 则⎩⎨⎧-=+=+4406m k m k 解得⎩⎨⎧-==122m k∴直线BP 的解析式为y =2x -12D xA OBCPyO PC BAxy图1图2MOAxPNCBy∴直线OD ∥BP∵顶点坐标P 4, -4 ∴ OP =42 设Dx ,2x 则BD 2=2x 2+6-x 2当BD =OP 时,2x 2+6-x 2=32解得:x 1=52,x 2=2 当x 2=2时,OD =BP =52,四边形OPBD 为平行四边形,舍去∴当x =52时四边形OPBD 为等腰梯形 ∴当D 52,54时,四边形OPBD 为等腰梯形3① 当0<t ≤2时,∵运动速度为每秒2个单位长度,运动时间为t 秒, 则MP =2t ∴PH =t ,MH =t ,HN =21t ∴MN =23t ∴S =23t ·t ·21=43t 2 ② 当2<t <4时,P 1G =2t -4,P 1H =txP 1 MAO BCPNyH∵MN ∥OB ∴ EF P 1∆∽MN P 1∆∴211)(11H P G P S S MNP EF P =∆∆ ∴22)42(431t t t S EF P -=∆ ∴ EF P S 1∆=3t 2-12t +12∴S =43t 2-3t 2-12t +12= -49t 2+12t -12 ∴ 当0<t ≤2时,S=43t 2当2<t <4时,S =-49t 2+12t -12 ;17. 2011四川重庆,26,12分如图,矩形ABCD 中,AB =6,BC =2错误!,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速动动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线P A 匀速动动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线P A 的同侧,设动动的时间为t 秒t ≥0. 1当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;2在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;3设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形若存在,求出对应的t 的值;若不存在,请说明理由.xP 1M A OB CPNG HE F y答案1当等边△EFG的边FG恰好经过点C时如图,∠CFB=60°,BF=3-t,在Rt△CBF中,BC=2错误!,∴tan∠CFB =错误!,∴tan 60°=错误!,∴BF=2,∴t=3-t =2,∴t=1.2当0≤t<1时,S= 2错误!t+4错误!;当1≤t<3时,S=错误!t 2+3错误!t+错误!;当3≤t<4时,S= -4错误! t+20错误!;当4≤t<6时,S= 错误!t2-12错误!t+36错误!.3存在,理由如下:在Rt△ABC中,tan∠CAB=错误!=错误!,∴∠CAB=30°.又∵∠HEO=60°,∴∠HAE=∠AHE=30°.∴AE=HE=3-t或t-3.ⅰ当AH=AO=3时如图②,过点E作EM⊥AH于M,则AM=错误!AH=错误!.在Rt△AME中,cos∠MAE=错误!,即cos 30°=错误!,∴AE=错误!,即3-t=错误!或t-3=错误!,t=3-错误!或3+错误!.ⅱ当HA=HO时如图③,则∠HOA=∠HAO=30°,又∵∠HEO=60°,∴∠EHO=90°.∴EO=2HE=2AE.又∵AE+EO=3,∴AE+2AE=3.∴AE=1.即3-t=1或t-3=1,t=2或4.ⅲ当OH=OA时如图④,则∠OHA=∠OAH=30°,∴∠HOB=60°=∠HEB.∴点E和O重合,∴AE=3.即3-t=3或t-3=3,t=6舍去或t=0.综上所述,存在5个这样的值,使△AOH是等腰三角形,即:t=3-错误!或t=3+错误!或t=2或t=4或t=0.18. 2011浙江省嘉兴,24,14分已知直线3+=kx y k <0分别交x 轴、y 轴于A 、B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.1当1-=k 时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动如图1.① 直接写出t =1秒时C 、Q 两点的坐标;② 若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值. 2当43-=k 时,设以C 为顶点的抛物线n m x y ++=2)(与直线AB 的另一交点为D 如图2, ① 求CD 的长;② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大答案1①C 1,2,Q 2,0.②由题意得:Pt ,0,Ct ,-t+3,Q 3-t ,0, 分两种情形讨论:情形一:当△AQC ∽△AOB 时,∠AQC=∠AOB =90°,∴CQ ⊥OA , ∵CP ⊥OA ,∴点P 与点Q 重合,OQ =OP ,即3-t =t ,∴t=.情形二:当△ACQ ∽△AOB 时,∠ACQ=∠AOB =90°,∵O A=O B=3,∴△AOB 是等腰直角三角形,∴△ACQ 是等腰直角三角形,∵CQ ⊥OA ,∴AQ=2CP ,即t =2-t +3,∴t=2.∴满足条件的t 的值是秒或2秒. 2 ①由题意得:Ct ,-34t +3,∴以C 为顶点的抛物线解析式是23()34y x t t =--+, 由233()3344x t t x --+=-+,解得x 1=t ,x 2=t 34-;过点D 作DE ⊥CP 于点E ,则∠DEC=∠AOB =90°,DE ∥OA ,∴∠EDC=∠OAB ,∴△DEC ∽△AOB ,∴DE CDAO BA=, ∵AO =4,AB =5,DE =t -t-34=34.∴CD =35154416DE BA AO ⨯⨯==.②∵CD =1516,CD 边上的高=341255⨯=.∴S △COD =11512921658⨯⨯=.∴S △COD 为定值; 要使OC 边上的高h 的值最大,只要OC 最短. 因为当OC ⊥AB 时OC 最短,此时OC 的长为125,∠BCO =90°,∵∠AOB =90°,∴∠COP =90°-∠BOC =∠OBA ,第24题图2第24题图1又∵CP ⊥OA ,∴Rt △PCO ∽Rt △OAB ,∴OP OC BO BA =,OP =123365525OC BO BA ⨯⨯==,即t =3625, ∴当t 为3625秒时,h 的值最大.19. 2011福建泉州,25,12分在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x xy =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A .1如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由. 2如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时: ①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在,试求出所有满足条件的M 点的坐标,若不存在,试说明理由.答案解:1∵⊙P 分别与两坐标轴相切, ∴ P A ⊥OA ,PK ⊥OK . ∴∠P AO =∠OKP =90°. 又∵∠AOK =90°,∴ ∠P AO =∠OKP =∠AOK =90°. ∴四边形OKP A 是矩形. 又∵OA =OK ,∴四边形OKP A 是正方形.……………………2分 2①连接PB ,设点P 的横坐标为x ,则其纵坐标为x32. 过点P 作PG ⊥BC 于G .AP23y x=xyKO第25题 图1∵四边形ABCP 为菱形, ∴BC =P A =PB =PC . ∴△PBC 为等边三角形.在Rt △PBG 中,∠PBG =60°,PB =P A =x , PG =x32. sin ∠PBG =PBPG,即2332x x =. 解之得:x =±2负值舍去.∴ PG =3,P A =B C=2.……………………4分 易知四边形OGP A 是矩形,P A =OG =2,BG =CG =1, ∴OB =OG -BG =1,OC =OG +GC =3.∴ A 0,3,B 1,0 C 3,0.……………………6分 设二次函数解析式为:y =ax 2+bx +c .据题意得:09303a b c a b c c ⎧++=⎪++=⎨⎪=⎩解之得:a =33, b =433-, c =3. ∴二次函数关系式为:2343333y x x =-+.……………………9分 ②解法一:设直线BP 的解析式为:y =ux +v ,据题意得:23u v u v +=⎧⎪⎨+=⎪⎩解之得:u =3, v =33-.∴直线BP 的解析式为:333y x =-.过点A 作直线AM ∥PB ,则可得直线AM 的解析式为:33y x =+.解方程组:233343333y x y x x ⎧=+⎪⎨=-+⎪⎩O AP 23y x=xyB C图2GM。
2018年中考数学真题分类汇编第三期专题40动态问题试题含解析
动态问题一.选择题1.(2018·辽宁省葫芦岛市) 如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C 的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.【解答】解:在Rt△ABC中,∠BAC=90°,AB=6,BC=10,∴AC==8.当0≤x≤6时,AP=6﹣x,AQ=x,∴y=PQ2=AP2+AQ2=2x2﹣12x+36;当6≤x≤8时,AP=x﹣6,AQ=x,∴y=PQ2=(AQ﹣AP)2=36;当8≤x≤14时,CP=14﹣x,CQ=x﹣8,∴y=PQ2=CP2+CQ2=2x2﹣44x+260.故选B.2.(2018•广安•3分)已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,PM总上等于半径,则可对D进行判断,从而得到正确选项.【解答】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B.C选项不正确;D选项中的封闭图形为圆,y为定中,所以D选项不正确;A选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.故选:A.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.3.(2018•莱芜•3分)如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b 垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t的函数图象大致为()A.B.C.D.【分析】依据a和b同时向右移动,分三种情况讨论,求得函数解析式,进而得到当0≤t<1时,函数图象为开口向上的抛物线的一部分,当1≤t<2时,函数图象为开口向下的抛物线的一部分,当2≤t≤3时,函数图象为开口向上的抛物线的一部分.【解答】解:如图①,当0≤t<1时,BE=t,DE=t,∴s=S△BDE=×t×t=;如图②,当1≤t<2时,CE=2﹣t,BG=t﹣1,∴DE=(2﹣t),FG=(t﹣1),∴s=S五边形AFGED=S△ABC﹣S△BGF﹣S△CDE=×2×﹣×(t﹣1)×(t﹣1)﹣×(2﹣t)×(2﹣t)=﹣+3t﹣;如图③,当2≤t≤3时,CG=3﹣t,GF=(3﹣t),∴s=S△CFG=×(3﹣t)×(3﹣t)=﹣3t+,综上所述,当0≤t<1时,函数图象为开口向上的抛物线的一部分;当1≤t<2时,函数图象为开口向下的抛物线的一部分;当2≤t≤3时,函数图象为开口向上的抛物线的一部分,故选:B.【点评】本题主要考查了动点问题的函数图象,函数图象是典型的数形结合,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二.填空题1.(2018·辽宁省盘锦市)如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A 方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为24.【解答】解:从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24.故答案为:24.三.解答题1.(2018·广西贺州·12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A.B两点(A在B 的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A.B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B.D两点间的一个动点(点P不与B.D两点重合),PA.PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】解:(1)由抛物线y=ax2+bx+c交x轴于A.B两点(A在B的左侧),且OA=3,OB=1,得A点坐标(﹣3,0),B点坐标(1,0);(2)设抛物线的解析式为y=a(x+3)(x﹣1),把C点坐标代入函数解析式,得a(0+3)(0﹣1)=3,解得a=﹣1,抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(3)EF+EG=8(或EF+EG是定值),理由如下:过点P作PQ∥y轴交x轴于Q,如图.设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,AQ=3+t,QB=1﹣t,∵PQ∥EF,∴△AEF∽△AQP,∴=,∴EF===×(﹣t2﹣2t+3)=2(1﹣t);又∵PQ∥EG,∴△BEG∽△BQP,∴=,∴EG===2(t+3),∴EF+EG=2(1﹣t)+2(t+3)=8.2.(2018·湖北江汉·12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A.B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B.C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E.点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).3.(2018·四川省攀枝花)如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cosA的值;(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.解:(1)如图1中,作BE⊥AC于E.∵S△ABC=•AC•BE=,∴BE=.在Rt△ABE中,AE==6,∴coaA===.(2)如图2中,作PH⊥AC于H.∵PA=5t,PH=3t,AH=4t,HQ=AC﹣AH﹣CQ=9﹣9t,∴PQ2=PH2+HQ2=9t2+(9﹣9t)2.∵S△PQM=S△QCN,∴•PQ2=וCQ2,∴9t2+(9﹣9t)2=×(5t)2,整理得:5t2﹣18t+9=0,解得t=3(舍弃)或,∴当t=时,满足S△PQM=S△QCN.(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴PH=HQ,∴3t=(9﹣9t),∴t=.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得PH=QH,∴3t=(9t﹣9),∴t=.综上所述:当t=s或s时,△PQM的某个顶点(Q点除外)落在△QCN的边上.4.(2018·吉林长春·10分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A.B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【解答】解:(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=2,∵PD⊥AC,∴∠ADP=∠CDP=90°,在Rt△ADP中,AP=2t,∴DP=t,AD=APcosA=2t×=t,∴CD=AC﹣AD=2﹣t(0<t<2);(2)在Rt△PDQ中,∵∠DPC=60°,∴∠PQD=30°=∠A,∴PA=PQ,∵PD⊥AC,∴AD=DQ,∵点Q和点C重合,∴AD+DQ=AC,∴2×t=2,∴t=1;(3)当0<t≤1时,S=S△PDQ=DQ×DP=×t×t=t2;当1<t<2时,如图2,CQ=AQ﹣AC=2AD﹣AC=2t﹣2=2(t﹣1),在Rt△CEQ中,∠CQE=30°,∴CE=CQ•tan∠CQE=2(t﹣1)×=2(t﹣1),∴S=S△PDQ﹣S△ECQ=×t×t﹣×2(t﹣1)×2(t﹣1)=﹣t2+4t﹣2,∴S=;(4)当PQ的垂直平分线过AB的中点F时,如图3,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2,∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=;当PQ的垂直平分线过AC的中点M时,如图4,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t,在Rt△NMQ中,NQ==t,∵AN+NQ=AQ,∴+t=2t,∴t=,当PQ的垂直平分线过BC的中点时,如图5,∴BF=BC=1,PE=PQ=t,∠H=30°,∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1,在Rt△PEH中,PH=2PE=2t,∴AH=AP+PH=AB+BH,∴2t+2t=5,∴t=,中小学教育教学资料即:当线段PQ的垂直平分线经过△ABC一边中点时,t的值为秒或秒或秒.【点评】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.。
2020年全国中考数学试卷分类汇编(一)专题40 动态问题(含解析)
动态问题一.选择题1.(2020•湖北孝感•3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.【分析】分别求出点P在AB上运动、点P在BC上运动、点P在CD上运动时的函数表达式,进而求解.【解答】解:①当点P在AB上运动时,y=AH×PH=×APsinA×APcosA=×x2×=x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=ABsinA=4×=2,同理AH′=2,则y=×AH×PH=(2+x﹣4)×2=2﹣4+x,为一次函数;③当点P在CD上运动时,同理可得:y=×(2+6)×(4+6+2﹣x)=(3)(12﹣x),为一次函数;故选:D.【点评】本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二.填空题三.解答题1. (2020•江苏省常州市•10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接A C.B C.B D.C D.(1)填空:b=﹣4;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD =∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.【分析】(1)将点C坐标代入解析式可求解;(2)分两种情况讨论,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,可得点E(1,3),CE=BE=3,AE=1,可得∠EBC=∠ECB=45°,tan∠ACE =,∠BCF=45°,由勾股定理逆定理可得∠BCD=90°,可求∠ACE=∠DBC,可得∠ACB=∠CFD,可得点F与点Q重合,即可求点P坐标;当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,先求直线BD解析式,点F坐标,由中点坐标公式可求点Q 坐标,求出CQ解析式,联立方程组,可求点P坐标;(3)设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,先求出∠CNH=45°,由轴对称的性质可得EN=NF,∠ENB =∠FNB=45°,由“AAS”可证△EMN≌△NKF,可得EM=NK=,MN=KF,可求CF =6,由轴对称的性质可得点G坐标,即可求解.【解答】解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),∴0=1+b+3,∴b=﹣4,故答案为:﹣4;(2)∵b=4,∴抛物线解析式为y=x2﹣4x+3∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,∴点A(0,3),3=x2﹣4x,∴x1=0(舍去),x2=4,∴点B(4,3),∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点D坐标(2,﹣1),如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,∴点E(1,3),CE=BE=3,AE=1,∴∠EBC=∠ECB=45°,tan∠ACE=,∴∠BCF=45°,∵点B(4,3),点C(1,0),点D(2,﹣1),∴BC==3,CD==,BD==2,∵BC2+CD2=20=BD2,∴∠BCD=90°,∴tan∠DBC====tan∠ACE,∴∠ACE=∠DBC,∴∠ACE+∠ECB=∠DBC+∠BCF,∴∠ACB=∠CFD,又∵∠CQD=∠ACB,∴点F与点Q重合,∴点P是直线CF与抛物线的交点,∴0=x2﹣4x+3,∴x1=1,x2=3,∴点P(3,0);当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,∵CH⊥DB,HF=QH,∴CF=CQ,∴∠CFD=∠CQD,∴∠CQD=∠ACB,∵CH⊥BD,∵点B(4,3),点D(2,﹣1),∴直线BD解析式为:y=2x﹣5,∴点F(,0),∴直线CH解析式为:y=﹣x+,∴,解得,∴点H坐标为(,﹣),∵FH=QH,∴点Q(,﹣),∴直线CQ解析式为:y=﹣x+,联立方程组,解得:或,∴点P(,﹣);综上所述:点P的坐标为(3,0)或(,﹣);(3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,∵点A(0,3),点C(1,0),∴直线AC解析式为:y=﹣3x+3,∴,∴,∴点N坐标为(,﹣),∵点H坐标为(,﹣),∴CH2=(﹣1)2+()2=,HN2=(﹣)2+(﹣+)2=,∴CH=HN,∴∠CNH=45°,∵点E关于直线BD对称的点为F,∴EN=NF,∠ENB=∠FNB=45°,∴∠ENF=90°,∴∠ENM+∠FNM=90°,又∵∠ENM+∠MEN=90°,∴∠MEN=∠FNM,∴△EMN≌△NKF(AAS)∴EM=NK=,MN=KF,∴点E的横坐标为﹣,∴点E(﹣,),∴MN==KF,∴CF=+﹣1=6,∵点F关于直线BC对称的点为G,∴FC=CG=6,∠BCF=∠GCB=45°,∴∠GCF=90°,∴点G(1,6),∴AG==.【点评】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定和性质,轴对称性质,等腰三角形的性质,锐角三角函数等知识,综合性强,求出∠CNH=45°是本题的关键.2. (2020•江苏省淮安市•12分)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为AM=BM;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与。
2019年全国各地中考数学试题分类汇编之专题40 动态问题(含解析)
动态问题一.选择题1.(2019•湖北武汉•3分)如图,AB是⊙O的直径,M、N是(异于A.B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C 从点M运动到点N时,则C.E两点的运动路径长的比是()A.B.C.D.【分析】如图,连接EB.设OA=r.易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,由题意∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,利用弧长公式计算即可解决问题.【解答】解:如图,连接EB.设OA=r.∵AB是直径,∴∠ACB=90°,∵E是△ACB的内心,∴∠AEB=135°,∵∠ACD=∠BCD,∴=,∴AD=DB=r,∴∠ADB=90°,易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α∴==.故选:A.【点评】本题考查弧长公式,圆周角定理,三角形的内心等知识,解题的关键是理解题意,正确寻找点的运动轨迹,属于中考选择题中的压轴题.2.(2019•湖南衡阳•3分)如图,在直角三角形A BC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1△S=正方形的面积﹣EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;【解答】解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,△S=正方形的面积﹣EE′H的面积=a2﹣t2;=(2a﹣t)2=t2﹣2at+2a2,当移动的距离>a时,如图2,S=△S AC′H∴S关于t的函数图象大致为C选项,故选:C.【点评】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.3.(2019•浙江衢州•3分)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C,设P点经过的路径长为△x,CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A B C D 【答案】C【考点】动点问题的函数图象【解析】【解答】解:①当点P在AE上时,∵正方形边长为4,E为AB中点,∴AE=2,∵P点经过的路径长为x,∴PE=x,∴y=△SCPE=·PE·BC=×x×4=2x,②当点P在AD上时,∵正方形边长为4,E为AB中点,∴AE=2,∵P点经过的路径长为x,∴AP=x-2,DP=6-x,∴y=△SCPE =S正方形ABCD-S△BEC-△SAPE-△SPDC,=4×4-×2×4-×2×(x-2)-×4×(6-x),=16-4-x+2-12+2x,=x+2,③当点P在DC上时,∵正方形边长为4,E为AB中点,∴AE=2,∵P点经过的路径长为x,∴PD=x-6,PC=10-x,∴y=△SCPE=·PC·BC=×(10-x)×4=-2x+20,综上所述:y与x的函数表达式为:y=.故答案为:C.【分析】结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.4.(2019•甘肃武威•3分)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为△x,AOP 的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A.3B.4C.5D.6【分析】当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP 面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB<AD,即AB<BC,所以AB=3,BC=4.故选:B.【点评】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.5.2.(2019甘肃省天水市)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A. B. C. D.【答案】D【解析】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B.C选项不正确;A选项中的封闭图形为圆,开始y随x的增大而增大,然后y随x的减小而减小,所以A选项不正确;D选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.故选:D.先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,开始y随x的增大而增大,然后y随x的减小而减小,则可对D进行判断,从而得到正确选项.本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.6.7.8.9.10.二.填空题1.(2019•浙江嘉兴•4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接△B D,则ABD的面积最大值为(24+36﹣12)cm2.【分析】过点 D '作 D 'N ⊥AC 于点 N ,作 D 'M ⊥BC 于点 M ,由直角三角形的性质可得 BC = 4 cm ,AB =8 cm ,ED =DF =6 cm ,由“AAS ”可证 △D 'NE △'≌ D 'MF ',可得 D 'N = D 'M ,即点 D '在射线 CD 上移动,且当 E 'D '⊥AC 时,DD '值最大,则可求点 D 运动的路径长,由三角形面积公式可求 △S AD'B = BC ×AC + ×AC ×D 'N ﹣ ×BC ×D 'M =24 + (12 ﹣4)×D 'N ,则 E 'D '⊥AC 时,△S AD'B 有最大值. 【解答】解:∵AC =12cm ,∠A =30°,∠DEF =45°∴BC =4 cm ,AB =8 cm ,ED =DF =6 cm 如图,当点 E 沿 AC 方向下滑时,得 △E 'D 'F ',过点 D '作 D 'N ⊥AC 于点 N ,作 D 'M ⊥BC 于 点 M∴∠MD 'N =90°,且∠E 'D 'F '=90°∴∠E 'D 'N =∠F 'D 'M ,且∠D 'NE '=∠D 'MF '=90°,E 'D '=D 'F ' ∴ △D 'NE △'≌ D 'MF '(AAS )∴D 'N =D 'M ,且 D 'N ⊥AC ,D 'M ⊥CM ∴CD '平分∠ACM即点 E 沿 AC 方向下滑时,点 D '在射线 CD 上移动,∴当 E 'D '⊥AC 时,DD '值最大,最大值= ED ﹣CD =(12﹣6 )cm ∴当点 E 从点 A 滑动到点 C 时,点 D 运动的路径长=2×(12﹣6 )=(24﹣12 cm如图,连接 BD ',AD ',)∵△S AD'B =△S ABC +△S AD'C ﹣△S BD'C ∴△S AD'B = BC ×AC + ×AC ×D 'N ﹣ ×BC ×D 'M =24+ (12﹣4 )×D 'N当 E 'D '⊥AC 时,△S AD'B 有最大值, ∴△S AD'B 最大值=24 + (12﹣4 )×6 =(24 +36 ﹣12 )cm 2.故答案为:(24﹣12 ),(24 +36 ﹣12 )【点评】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的 性质,三角形面积公式等知识,确定点 D 的运动轨迹是本题的关键.1.(2019•广东•7分)如题25-1图,在平面直角坐标系中,抛物线y=3②直接回答这样的点P共有几个?33x-73=三.解答题3373x2+x-与848x轴交于点A.B(点A在点B右侧),点D为抛物线的顶点.点C在y轴的正半轴上,CD交x轴于点F△,CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A.B.D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如题25-2图,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x 轴,点M为垂足,使得△PAM△与DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;....【答案】(1)解:由y=3x2+3(x+3)-23得点D坐标为(﹣3,23)8488令y=0得x1=﹣7,x2=1∴点A坐标为(﹣7,0),点B坐标为(1,0)(2)证明:∴ DG∴ 3 ( 3 + 2 3 ) =6(3)解:①设点 P 坐标为(m , 3△ PAM △与 DD A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得 AD =4,过点 D 作 DG ⊥y 轴交于点 G ,设点 C 坐标为(0,m ) ∴∠DGC =∠FOC =90°,∠DCG =∠FCO ∴△DGC ∽△FOCCG=FO CO由题意得 CA =CF ,CD =CE ,∠DCA =∠ECF ,OA =1,DG =3,CG =m+ 2 3∵CO ⊥F A ∴FO =OA =1m + 2 3 = ,解得 m= 3 (或先设直线 CD 的函数解析式为 y =kx +b ,用 D.F 两点坐1 m标求出 y = 3 x + 3 ,再求出点 C 的坐标)∴点 C 坐标为(0, 3 )∴CD =CE = 32+2∵tan ∠CFO =CO FO= 3∴∠CFO =60°∴△FCA 是等边三角形 ∴∠CFO =∠ECF ∴EC ∥BA∵BF =BO -FO =6 ∴CE =BF∴四边形 BFCE 是平行四边形3 3 7 3 m 2 +m-),且点 P 不与点 A.B.D 重合.若8481 1 DD 1=2 3(b △)当 PAM ∽△ADD 1,则∠PAM =∠ADD 1,此时PM3 , (b △)当 PAM ∽△ADD 1,则∠PAM =∠ADD 1,此时PM3 (a △)当 PAM ∽△DAD 1,则∠PAM =∠DAD 1,此时PM= 24 3 (b △)当 PAM ∽△ADD 1,则∠PAM =∠ADD 1,此时PM综上所述,点 P 的横坐标为 - 5(A )当 P 在点 A 右侧时,m >1 (a △)当 PAM ∽△DAD 1,则∠PAM =∠DAD 1,此时 P 、A.D 三点共线,这种情况不存在AD=AM DD 113 ∴ 8 3 3 7 3m 2 + m- 4 8 m -1 = 4 2 3,解得 m 1= - 5 (舍去) m 2=1(舍去),这种不存在(B )当 P 在线段 AB 之间时,﹣7<m <1(a △)当 PAM ∽△DAD 1,则∠PAM =∠DAD 1,此时 P 与 D 重合,这种情况不存在AD=AM DD 113 ∴ 83 3 7 3m 2 + m- 4 8 m -1 = 4 2 3,解得 m 1= - 5 ,m 2=1(舍去)(C )当 P 在点 B 左侧时,m <﹣7DD=AM AD1 13 ∴﹣ 8 3 3 7 3m 2 + m- 4 8 m -1 2 43,解得 m 1=﹣11,m 2=1(舍去)AD=AM DD 113 ∴﹣ 83 3 7 3m 2 + m- 4 8 m -1 = 4 2 3,解得 m 1= - 37 ,m 2=1(舍去)37,﹣11, - ,三个任选一个进行求解即可.3 3②一共存在三个点 P ,使得△ PAM △与 DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想2.(2019•江苏泰州•12 分)如图,线段 A B =8,射线 BG ⊥AB ,P 为射线 BG 上一点,以 AP为边作正方形 APCD ,且点 C.D 与点 B 在 AP 两侧,在线段 DP 上取一点 E ,使∠EAP =∠BAP ,直线 CE 与线段 AB 相交于点 F (点 F 与点 A.B 不重合).((△1)求证: AEP ≌△CEP ;(2)判断 CF 与 AB 的位置关系,并说明理由;(△3)求 AEF 的周长.【分析】 1)四边形 APCD 正方形,则 DP 平分∠APC ,PC =PA ,∠APD =∠CPD =45°,即可求解;(△2) AEP ≌△CEP ,则∠EAP =∠ECP ,而∠EAP =∠BAP ,则∠BAP =∠FCP ,又∠FCP +∠CMP =90°,则∠AMF +∠P AB =90°即可求解;(△3)证明 PCN ≌△APB (AAS ),则 CN =PB =BF ,PN =AB ,即可求解.【解答】解:(1)证明:∵四边形 APCD 正方形,∴DP 平分∠APC ,PC =PA ,∴∠APD =∠CPD =45°,∴△AEP ≌△CEP (AAS );(2)CF ⊥AB ,理由如下:∵△AEP ≌△CEP ,∴∠EAP =∠ECP ,∵∠EAP =∠BAP ,∴∠BAP =∠FCP ,∵∠FCP +∠CMP =90°,∠AMF =∠CMP ,∴∠AMF +∠P AB =90°,∴∠AFM =90°,∴CF ⊥AB ;(3)过点 C 作 CN ⊥PB .3∵CF ⊥AB ,BG ⊥AB ,∴FC ∥BN ,∴∠CPN =∠PCF =∠EAP =∠P AB ,又 AP =CP ,∴△PCN ≌△APB (AAS ),∴CN =PB =BF ,PN =AB ,∵△AEP ≌△CEP ,∴AE =CE ,∴AE +EF +AF=CE +EF +AF=BN +AF=PN +PB +AF=AB +CN +AF=AB +BF +AF=2AB=16.【点评】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(),证 明△PCN ≌△APB (AAS ),是本题的关键.3.((2019,山西,13 分)综合与探究如图,抛物线 y = ax 2 + bx + 6 经过点 A (-2,0),B (4,0)两点,与 y 轴交于点 C ,点 D是抛物线上一个动点,设点 D 的横坐标为 m (1 < m < 4) .连接 AC ,BC ,DB ,DC.(1)求抛物线的函数表达式;(2△) BCD 的面积等于△ AOC 的面积的 3 4时,求 m 的值;(3)在(2)的条件下,若点 M 是 x 轴上的一个动点,点 N 是抛物线上一动点,试判断是⎪⎪ 4 ⎧4a - 2b + 6 = 0 3 ⎩16a + 4b + 6 = 0 ⎪b = 3 ∴△S OAC = 1 ⋅ OA ⋅ OC = ⨯ 2 ⨯ 6 = 6 ,∵S △ BCD = △SAOC = ⨯ 6 =⎧4k + n = 0 ⎪k = -设直线 BC 的函数表达式为 y = kx + n ,由 B ,C 两点的坐标得 ⎨ ,解得 ⎨ 2⎩ ⎪⎩n = 6 ⎩ = ( - 3 m 2 + 3m )⨯ 4 = - m 2+ 6m 2 2否存在这样的点 M ,使得以点 B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直 接写出点 M 的坐标;若不存在,请说明理由.【解析】.解:(1)抛物线 y = ax 2 + bx + c 经过点 A (-2,0),B (4,0),⎧3 a =-3∴ ⎨ ,解得 ⎨ ,∴抛物线的函数表达式为 y = - x 2 + x + 6 4 2⎪ 2(2)作直线 DE ⊥ x 轴于点 E ,交 BC 于点 G ,作 CF ⊥DE ,垂足为 F.∵点 A 的坐标为(-2,0),∴OA =2由 x = 0 ,得 y = 6 ,∴点 C 的坐标为(0,6),∴OC =61 3 3 92 2 442⎧ 3n = 6∴直线 BC 的函数表达式为 y = - 3 2x + 6 .3 3 3 3 3∴点 G 的坐标为 (m ,- m + 6), ∴ DG = - m 2 + m + 6 - (- m + 6) = - m 2 + 3m2 4 2 2 4∵点 B 的坐标为(4,0),∴OB =4S △ BCD =△S CDG +△S BDG = 1 1 1 1⋅ DG ⋅ C F + ⋅ DG ⋅ BE = ⋅ DG(CF + BE ) = ⋅ DG ⋅ BO2 2 2 21 32 4 23 9∴ - m 2 + 6m = ,解得 m = 1 (舍), m = 3 ,∴ m 的值为 31 2444244∴N,N的纵坐标为-时,-x2+x+6=-,x=1-14,x=1+14442444∵N(-1,15444(3)M(8,0),M(0,0),M(14,0),M(-14,0)1234如下图所示,以BD为边或者以BD为对角线进行平行四边形的构图以BD为边进行构图,有3种情况,采用构造全等发进行求解.∵D点坐标为(3,1515),所以N,N的纵坐标为123315-x2+x+6=,解得x=-1,x=3(舍)1215可得N(-1,),∴M(0,0)2215331534121515∴N(1+14,-),∴M(14,0),N(1-14,-),∴M(-14,0)3344以BD为对角线进行构图,有1种情况,采用中点坐标公式进行求解.1515),∴M(3+4-(-1),+0-),∴M(8,0)1114.(2019•湖南湘西州•22分)如图,抛物线y=ax2+b x(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C.D在抛物线上,∠BAD的平分线AM 交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点△P,使ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E在x轴正半轴且点A在线段OE上得到点A在x轴正半轴上,所以A(2,0);由OA=2,且OA:AD=1:3得AD=6.由于四边形ABCD为矩形,故有AD⊥AB,所以点D在第四象限,横坐标与A的横坐标相同,进而得到点D坐标.由抛物线经过点D.E,用待定系数法即求出其解析式.(2)画出四边形MNGF,由于点F、G分别在x轴、y轴上运动,故可作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',得FM=FM'、GN=GN'.易得当M'、F、G、N'在同一直线上时N'G+GF+FM'=M'N'最小,故四边形MNGF周长最小值等于MN+M'N'.根据矩形性质、抛物线线性质等条件求出点M、M'、N、N'坐标,即求得答案.(3)因为OD可求,且已知△ODP中OD边上的高,故可求△ODP的面积.又因为△ODP的面积常规求法是过点P作PE平行y轴交直线OD于点E,把△ODP拆分为△OPE 与△DPE的和或差来计算,故存在等量关系.设点P坐标为t,用t表示PE的长即列得方程.求得t的值要讨论是否满足点P在x轴下方的条件.(4)由KL平分矩形ABCD的面积可得K在线段AB上、L在线段CD上,画出平移后的抛物线可知,点K由点O平移得到,点L由点D平移得到,故有K(m,0),L(2+m,0).易证KL平分矩形面积时,KL一定经过矩形的中心H且被H平分,求出H坐标为(4,﹣3),由中点坐标公式即求得m的值.【解答】解:(1)∵点A在线段OE上,E(8,0),OA=2∴A(2,0)∵OA:AD=1:3M∴AD =3OA =6∵四边形 ABCD 是矩形∴AD ⊥AB∴D (2,﹣6)∵抛物线 y =ax 2+b x 经过点 D.E∴解得:∴抛物线的解析式为 y = x 2﹣4x(2)如图 1,作点 M 关于 x 轴的对称点点 M ',作点 N 关于 y 轴的对称点点 N ',连接 FM'、GN'、M 'N '∵y = x 2﹣4x = (x ﹣4)2﹣8∴抛物线对称轴为直线 x =4∵点 C.D 在抛物线上,且 CD ∥x 轴,D (2,﹣6)∴y C =y D =﹣6,即点 C.D 关于直线 x =4 对称∴x C =4+(4﹣x D )=4+4﹣2=6,即 C (6,﹣6)∴AB =CD =4,B (6,0)∵AM 平分∠BAD ,∠BAD =∠ABM =90°∴∠BAM =45°∴BM =AB =4∴M (6,﹣4)∵点 M 、M '关于 x 轴对称,点 F 在 x 轴上∴M '(6,4),FM =FM'∵N 为 CD 中点∴N (4,﹣6)∵点 N 、N '关于 y 轴对称,点 G 在 y 轴上∴N '(﹣4,﹣6),GN =GN'∴C 四边形NGF =MN +NG +GF +FM =MN +N 'G +GF +FM'∵当 M '、F 、G 、N '在同一直线上时,N 'G +GF +FM'=M 'N '最小∴△S ODP =△S OPE ﹣S △DPE = PE •x P ﹣ PE (x P ﹣x D )= PE (x P ﹣x P +x D )= PE •x D =∴C12四边形MNGF =MN +M 'N '= =2 +10 =∴四边形 MNGF 周长最小值为 12.(3)存在点 △P ,使 ODP 中 OD 边上的高为过点 P 作 PE ∥y 轴交直线 OD 于点 E∵D (2,﹣6).∴OD =,直线 OD 解析式为 y =﹣3x设点 P 坐标为(t , t 2﹣4t )(0<t <8),则点 E (t ,﹣3t )①如图 2,当 0<t <2 时,点 P 在点 D 左侧∴PE =y E ﹣y P =﹣3t ﹣( t 2﹣4t )=﹣ t 2+t∴S △ODP =S △OPE +S △DPE =PE •x P + PE •(x D ﹣x P )= PE (x P +x D ﹣x P )= PE •x D =PE =﹣ t 2+t∵△ODP 中 OD 边上的高 h =∴△S ODP = OD •h,∴﹣ t 2+t = ×2 ×方程无解②如图 3,当 2<t <8 时,点 P 在点 D 右侧∴PE =y P ﹣y E = t 2﹣4t ﹣(﹣3t )= t 2﹣t•PE = t 2﹣t∴ t 2﹣t = ×2×解得:t 1=﹣4(舍去),t 2=6∴P (6,﹣6)综上所述,点 P 坐标为(6,﹣△6)满足使 ODP 中 OD 边上的高为(4)设抛物线向右平移 m 个单位长度后与矩形 ABCD 有交点 K 、L∵KL 平分矩形 ABCD 的面积∴K 在线段 AB 上,L 在线段 CD 上,如图 4∴K (m ,0),L (2+m ,0)连接 AC ,交 KL 于点 H∵△S ACD =S 四边形 ADLK = S 矩形 ABCD∴△S AHK =△S CHL∵AK ∥LC∴△AHK ∽△CHL∴∴AH =CH ,即点 H 为 AC 中点∴H (4,﹣3)也是 KL 中点∴∴m =3∴抛物线平移的距离为 3 个单位长度..【点评】本题考查了矩形的性质,二次函数的图象与性质,轴对称求最短路径问题,勾股定理,坐标系中求三角形面积,抛物线的平移,相似三角形的判定和应用,中点坐标公式.易错的地方有第(1)题对点D.C.B坐标位置的准确说明,第(3)题在点D左侧不存在满足的P在点D左侧的讨论,第(4)题对KL必过矩形中心的证明.(5. (2019•湖南岳阳•10 分)操作体验:如图,在矩形 ABCD 中,点 E.F 分别在边 AD.BC 上,将矩形 ABCD 沿直线 EF 折叠,使点 D 恰好与点 B 重合,点 C 落在点 C ′处.点 P 为直线 EF 上一动点(不与 E.F 重合),过点 P 分别作直线 BE.BF 的垂线,垂足分别为点 M和 N ,以 PM 、PN 为邻边构造平行四边形 PMQN .(1)如图 1,求证:BE =BF ;(2)特例感知:如图 2,若 DE =5,CF =2,当点 P 在线段 EF 上运动时,求平行四边形 PMQN 的周长;(3)类比探究:若 DE =a ,CF =b .①如图 3,当点 P 在线段 EF 的延长线上运动时,试用含 A.b 的式子表示 QM 与 QN 之间的数量关系,并证明;②如图 4,当点 P 在线段 FE 的延长线上运动时,请直接用含 A .b 的式子表示 QM 与 QN之间的数量关系.(不要求写证明过程)【分析】(1)证明∠BEF =∠BFE 即可解决问题(也可以利用全等三角形的性质解决问题即可).(2)如图 2 中,连接 BP ,作 EH ⊥BC 于 H ,则四边形 ABHE 是矩形.利用面积法证明PM +PN =EH ,利用勾股定理求出 AB 即可解决问题.(3)①如图 3 中,连接 BP ,作 EH ⊥BC 于 H .由 △S EBP ﹣S △BFP =△S EBF ,可得 BE •PM﹣ •BF •PN = •BF •EH ,由 BE =BF ,推出 PM ﹣PN =EH = ,由此即可解决问题.②如图 4,当点 P 在线段 FE 的延长线上运动时,同法可证: QM ﹣QN =PN ﹣PM =.【解答】 1)证明:如图 1 中,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠EFB,由翻折可知:∠DEF=∠BEF,∴∠BEF=∠EFB,∴BE=BF.(2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB.∵DE=EB=BF=5,CF=2,∴AD=BC=7,AE=2,在△Rt ABE中,∵∠A=90°,BE=5,AE=2,∴AB==,∵△S BEF=△S PBE+△S PBF,PM⊥BE,PN⊥BF,∴•BF•EH=•BE•PM+•BF•PN,∵BE=BF,∴PM+PN=EH=,∵四边形PMQN是平行四边形,∴四边形PMQN的周长=2(PM+PN)=2.(3)①证明:如图3中,连接BP,作EH⊥BC于H.B y∵ED =EB =BF =a ,CF =b ,∴AD =BC =a +b ,∴AE =AD ﹣DE =b ,∴EH =AB =,∵△S EBP ﹣△S BFP =S △EBF ,∴ BE •PM ﹣ •BF •PN = •BF •EH ,∵BE =BF ,∴PM ﹣PN =EH =,∵四边形 PMQN 是平行四边形,∴QN ﹣QM =(PM ﹣PN )=.② 如图 4,当点 P 在线段 FE 的延长线上运动时,同法可证: QM ﹣QN =PN ﹣PM =.【点评】本题属于四边形综合题,考查了矩形的性质和判定,翻折变换,等腰三角形的性质,平行四边形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,学会利用面积法证明线段之间的关系,属于中考压轴题.6.(2019•湖南岳阳•10 分)如图 △1, AOB 的三个顶点 A.O 、 分别落在抛物线 F 1:= x 2+ x的图象上,点 A 的横坐标为﹣4,点 B 的纵坐标为﹣2.(点 A 在点 B 的左侧)(1)求点 A.B 的坐标;(△2)将 AOB 绕点 O 逆时针旋转 △90°得到 A'OB',抛物线 F 2:y =ax 2+b x +4 经过 A'、B'两点,已知点 M 为抛物线 F 2 的对称轴上一定点,且点 A'恰好在以 OM 为直径的圆上,连接 OM 、A'△M ,求 OA'M 的面积;(3)如图 2,延长 OB'交抛物线 F 2 于点 C ,连接 A'C ,在坐标轴上是否存在点 D ,使得以 A.O 、D 为顶点的三角形与 △OA 'C 相似.若存在,请求出点 D 的坐标;若不存在,请( 说明理由.【分析】 1)把 x =﹣4 代入抛物线 F 1 解析式求得 y 即得到点 A 坐标;把 y =﹣2 代入抛物线 F 1 解析式,解方程并判断大于﹣4 的解为点 B 横坐标.(2)根据旋转 90°的性质特点可求点 A'、B'坐标(过点作 x 轴垂线,构造全等得到对应边相等)及 OA'的长,用待定系数法求抛物线 F 2 的解析式,进而求得对称轴.设点M 纵坐标为 m ,则能用 m 表示 A'M 、OM 的长度.因为点 A'恰好在以 OM 为直径的圆上,即∠OA'M 为圆周角,等于 90°,故能根据勾股定理列得关于 m 的方程,解方程求得 m 的值即求得 A'M 的长, OA'•A'M 即求得△OA 'M 的面积.(3)求直线 OB'解析式,与抛物线 F 2 解析式联立方程组,求解即求得点 C 坐标,发现A'与 C 纵坐标相同,即 A'C ∥x 轴,故∠OA'C =135°.以 A.O 、D 为顶点的三角形要与△OA 'C 相似,则△AOD 必须有一角为 135°.因为点 A (﹣4,﹣4)得直线 OA 与 x 轴夹角为 45°,所以点 D 不能在 x 轴或 y 轴的负半轴,在 x 轴或 y 轴的正半轴时,刚好有∠AOD =135°.由于∠AOD 的两夹边对应关系不明确,故需分两种情况讨论:△AOD∽ △OA 'C 或△DOA ∽ △OA 'C .每种情况下由对应边成比例求得 OD 的长,即得到点 D坐标.【解答】解:(1)当 x =﹣4 时,y = ×(﹣4)2+ ×(﹣4)=﹣4∴点 A 坐标为(﹣4,﹣4)当 y =﹣2 时, x 2+ x =﹣2解得:x 1=﹣1,x 2=﹣6∵点 A 在点 B 的左侧∴点 B 坐标为(﹣1,﹣2)(2)如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G ∴∠BEO=∠OGB'=90°,OE=1,BE=2∵将△AOB绕点O逆时针旋转△90°得到A'OB'∴OB=OB',∠BOB'=90°∴∠BOE+∠B'OG=∠BOE+∠OBE=90°∴∠B'OG=∠OBE在△B'OG与△OBE中∴△B'OG≌△OBE(AAS)∴OG=BE=2,B'G=OE=1∵点B'在第四象限∴B'(2,﹣1)同理可求得:A'(4,﹣4)∴OA=OA'=∵抛物线F2:y=ax2+b x+4经过点A'、B'∴解得:∴抛物线F2解析式为:y=x2﹣3x+4∴对称轴为直线:x=﹣=6∵点M在直线x=6上,设M(6,m)∴OM2=62+m2,A'M2=(6﹣4)2+(m+4)2=m2+8m+20∵点A'在以OM为直径的圆上∴∠OA'M=90°∴OA'2+A'M2=OM2∴(4)2+m2+8m+20=36+m2解得:m=﹣2∴A'M=∴△S OA'M=OA'•A'M==8(3)在坐标轴上存在点D,使得以A.O、D为顶点的三角形与△OA'C相似.∵B'(2,﹣1)∴直线OB'解析式为y=﹣x解得:(即为点B')∴C(8,﹣4)∵A'(4,﹣4)∴A'C∥x轴,A'C=4∴∠OA'C=135°∴∠A'OC<45°,∠A'CO<45°∵A(﹣4,﹣4),即直线OA与x轴夹角为45°∴当点D在x轴负半轴或y轴负半轴时,∠AOD=△45°,此时AOD不可能与△OA'C 相似∴点D在x轴正半轴或y轴正半轴时,∠AOD=∠OA'C=135°(如图2.图3)①若△AOD∽△OA'C,则=1∴OD=A'C=4∴D(4,0)或(0,4)②若△DOA∽△OA'C,则∴OD=OA'=8∴D(8,0)或(0,8)综上所述,点D坐标为(4,0)、(8,0)、(0,4)或(0,8)时,以A.O、D为顶点的三角形与△OA'C相似.【点评】本题考查了二次函数的图象与性质,旋转的性质,全等三角形的判定和性质,勾股定理,圆周角定理,解一元一次方程、二元一次方程组、一元二次方程,相似三角形的判定和性质.题目条件较多,图形有点复杂,需要细心根据条件逐步解决问题.第(2)题求点旋转90°后对应点的坐标,第(3)题相似三角形存在性问题中确定一角对应再分两种情况讨论,属于常考题型.7.(2019•湖南邵阳•10分)如图,二次函数y=﹣x2+b x+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P 向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.(【分析】1)根据点的坐标,利用待定系数法即可求出二次函数的解析式;(2)利用二次函数图象上点的坐标特征求出点A,B的坐标,进而可得出点C,D的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)由(2)可得出点A,B,C,D的坐标,根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可求出点E,F的坐标,由AQ∥EF且以A.E.F、Q四点为顶点的四边形为平行四边形可得出AQ=EF,分0<t≤4,4<t≤7,7<t≤8三种情况找出AQ,EF的长,由AQ =EF可得出关于t的一元二次方程,解之取其合适的值即可得出结论.【解答】解:(1)将(0,0),(8,0)代入y=﹣x2+b x+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣∴点A的坐标为(4﹣∴点D的坐标为(4﹣,x2=4+,,m),点B的坐标为(4+,0),点C的坐标为(4+,m),,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A.E.F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A.E.F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A.E.F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.(【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是: 1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于 m 的方程;(3)分 0<t ≤4,4<t ≤7,7<t ≤8 三种情况,利用平行四边形的性质找出关于 t 的一元二次方程.。
全国各地中考数学试卷分类汇编:动态问题.doc
动态问题一、选择题1.(2013江苏苏州,10,3分)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(33),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则P A +PC 的最小值为( ).A 13B 31C 319+D .7 /exercise/math/267610/?mty 2.(2013山东临沂,14,3分)如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动.设运动时间为t (s ),△OEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )/exercise/math/266570/?mty3(2013四川南充,10,3分)如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们的运动速度都是1cm/s .设P ,Q 出发秒时,△BPQ 的面积为y cm 2,已知y 与的函数关系的图象如图2(曲线OM 为抛物线的一部分).则下列结论: ①AD=BE=5cm ;②当0<≤5时,252t y =;③直线NH 的解析式为2725+-=t y ; ④若△ABE 与△QBP 相似,则429=t 秒.其中正确结论的个数为( ) A .4 B .3 C .2 D .1AB DOFO OOOt /s t /s t /s t /sS /cm 2 S /cm 2S /cm 2S /cm 28 4 1616 16168 884 4 4 88 88A .B .D ./exercise/math/266138/?mty4.(2013湖北荆门,12,3分)如图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右匀速(注:“匀速”二字为录入者所添加)平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是( )/exercise/math/268182/?mty5 (2013山东烟台,12,3分)如图1.E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE-—ED —DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止.它们的运动速度都是1cm /s .若点P ,Q 同时开始运动,设运动时间为t (s ),⊿BPQ 的面积y (cm 2).已知y 与t 的函数关系图像如图2,则下面结论错误的是( )A . cm AE 6=B . 54sin =∠EBC C . 当100≤<t 时,252t y =D .当s t 12=时,PBQ ∆是等腰三角形/exercise/math/266795/?mty二、填空题1. (2013杭州4分)射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2cm ,QM =4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,x yBADC (第12题)P l Sx O SSx OSA .B .C .D .经过t 秒,以点P 为圆心,cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t可取的一切值 (单位:秒)/exercise/math/267876/?mty.2(2013浙江湖州,16,4分)如图,已知点A 是第一象限内横坐标为23的一个定点,AC ⊥x 轴于点M ,交直线y x =-于点N .若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动,求当点P 从点O 运动到点N 时,点B 运动的路径长是__▲__./exercise/math/267918/?mty3.(2013山东菏泽,14,3分)如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于Q ,当CQ =13CE时, EP +BP =____________./exercise/math/266855/?mtyBCDEPFQ(第14题)三、解答题1. (2013杭州4分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)/exercise/math/267876/?mty2.(2013湖北孝感,25,12分)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标./exercise/math/268057/?mty3(2013·济宁,23,?分)如图,直线y=-x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P 、Q 作x 轴的垂线,交直线AB 、OC 于点E 、F ,连接EF .若运动时间为t 秒,在运动过程中四边形PEFQ 总为矩形(点P 、Q 重合除外). (1)求点P 运动的速度是多少?(2)当t 为多少秒时,矩形PEFQ 为正方形?(3)当t 为多少秒时,矩形PEFQ 的面积S 最大?并求出最大值./exercise/math/266707/?mty4.(2013·潍坊,24,13分)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由./exercise/math/266775/?mty5 .(2013湖北宜昌,22,12分)如图1,平面之间坐标系中,等腰直角三角形的直角边BC 在x 轴正半轴上滑动,点C 的坐标为(t ,0),直角边AC=4,经过O ,C 两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A(t,4),k=(k>0);(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围./exercise/math/268080/?mty.(2013湖南郴州,25,10分)如图,△ABC中,AB=BC,AC=8,tanA=k,P为AC边上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.(1)证明:△PCE是等腰三角形;(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值./exercise/math/268592/?mty8 .(2013湖南郴州,26,10分)如图,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O为原点,OC、OA所在直线为轴建立坐标系.抛物线顶点为A,且经过点C.点P在线段AO上由A向点O运动,点O在线段OC上由C向点O运动,QD⊥OC交BC于点D,OD所在直线与抛物线在第一象限交于点E.(1)求抛物线的解析式;(2)点E′是E关于y轴的对称点,点Q运动到何处时,四边形OEAE′是菱形?(3)点P、Q分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t秒,当t 为何值时,PB∥OD?/exercise/math/268594/?mty9..(2013湖南娄底,25,10分)如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC 重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围./exercise/math/268322/?mty10.(2013湖南张家界,25,12分)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ ∽△CDO;(4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由./exercise/math/268392/?mty11.(2013上海市,24,12分)如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0120AOB ∠=.(1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标./exercise/math/265744/?mty12.(2013山西,26,14分)综合与探究:如图,抛物线213442y x x =--与x 轴交于A,B 两点(点B 在点A 的右侧)与y 轴交于点C,连接BC,以BC 为一边,点O 为对称中心作菱形BDEC,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q(1)求点A,B,C 的坐标。
中考数学专题复习卷 几何图形的动态问题精编(含解析)-人教版初中九年级全册数学试题
几何图形的动态问题精编1.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B.C. D.【答案】A【解析】:分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E.∵∠B=45°,∴△ABE是等腰直角三角形.∵AB= ,∴AE=1,∴S= BP×AE= ×t×1= t;②当2<t≤ 时,S= = ×2×1=1;③当<t≤ 时,S= AP×AE= ×(-t)×1= (-t).故答案为:A.【分析】根据题意分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E;②当2<t≤ 2 +时;③当 2 + <t≤ 4 +时,分别求出S与t的函数解析式,再根据各选项作出判断,即可得出答案。
2.如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a,△BEF的周长最小值是( )A. B.C.D.【答案】B【解析】:连接BD∵四边形ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD 是等边三角形,∴AB=DB,∠BDF=60°∴∠A=∠BDF又∵AE+CF=a,∴AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS),∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形.∵E是异于A、D两点的动点,F是CD上的动点,要使△BEF的周长最小,就是要使它的边长最短∴当BE⊥AD时,BE最短在Rt△ABE中,BE==∴△BEF的周长为【分析】根据等边三角形的性质及菱形的性质,证明∠A=∠BDF,AE=DF,AB=AD,就可证明△ABE≌△DBF,根据全等三角形的性质,可证得BE=BF,∠ABE=∠DBF,再证明△BEF是等边三角形,然后根据垂线段最短,可得出当BE⊥AD时,BE最短,利用勾股定理求出BE的长,即可求出△BEF的周长。
中考数学动态型问题试题归类(含答案)
中考数学动态型问题试题归类(含答案)以下是查字典数学网为您推荐的中考数学动态型问题试题归类(含答案),希望本篇文章对您学习有所帮助。
中考数学动态型问题试题归类(含答案)18.(2019江苏苏州,18,3分)如图①,在梯形ABCD中,AD∥BC,A=60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了(4+2 ) 秒(结果保留根号).分析:根据图②判断出AB、BC的长度,过点B作BEAD 于点E,然后求出梯形ABCD的高BE,再根据t=2时△PAD 的面积求出AD的长度,过点C作CFAD于点F,然后求出DF的长度,利用勾股定理列式求出CD的长度,然后求出AB、BC、CD的和,再根据时间=路程速度计算即可得解. 解答:解:由图②可知,t在2到4秒时,△PAD的面积不发生变化,在AB上运动的时间是2秒,在BC上运动的时间是4﹣2=2秒,∵动点P的运动速度是1cm/s,AB=2cm,BC=2cm,过点B作BEAD于点E,过点C作CFAD于点F,则四边形BCFE是矩形,BE=CF,BC=EF=2cm,∵A=60,BE=ABsin60=2 = ,AE=ABcos60=2 =1,ADBE=3 ,即AD =3 ,解得AD=6cm,DF=AD﹣AE﹣EF=6﹣1﹣2=3,在Rt△CDF中,CD= = =2 ,所以,动点P运动的总路程为AB+BC+CD=2+2+2 =4+2 ,∵动点P的运动速度是1cm/s,点P从开始移动到停止移动一共用了(4+2 )1=4+2 (秒).23.(2019贵州省毕节市,23,12分)如图①,有一张矩形纸片,将它沿对角线AC剪开,得到△ACD和△ABC.(1)如图②,将△ACD沿AC边向上平移,使点A与点C重合,连接AD和BC,四边形ABCD是形;(2)如图③,将△ACD的顶点A与A点重合,然后绕点A沿逆时针方向旋转,使点D、A、B在同一直线上,则旋转角为度;连接CC,四边形CDBC是形;(3)如图④,将AC边与AC边重合,并使顶点B和D在AC 边的同一侧,设AB、CD相交于E,连接BD,四边形ADBC是什么特殊四边形?请说明你的理由。
2023年各地中考数学真题分类解析汇编动态问题
动态问题一、选择题1. ( 2023•安徽省,第9题4分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C旳方向在AB和BC上移动,记PA=x,点D到直线PA旳距离为y,则y有关x旳函数图象大体是( )A. ﻩB. C. ﻩD.ﻩ考点:动点问题旳函数图象.分析:ﻩ①点P在AB上时,点D到AP旳距离为AD旳长度,②点P在BC上时,根据同角旳余角相等求出∠APB=∠PAD,再运用相似三角形旳列出比例式整顿得到y与x旳关系式,从而得解.解答:ﻩ解:①点P在AB上时,0≤x≤3,点D到AP旳距离为AD旳长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:ﻩ本题考察了动点问题函数图象,重要运用了相似三角形旳鉴定与性质,难点在于根据点P旳位置分两种状况讨论.2. ( 2023•广西玉林市、防城港市,第12题3分)如图,边长分别为1和2旳两个等边三角形,开始它们在左边重叠,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动旳距离为x,两个三角形重叠面积为y,则y有关x旳函数图象是( )A. B. C. D.考点:动点问题旳函数图象.分析:根据题目提供旳条件可以求出函数旳解析式,根据解析式判断函数旳图象旳形状.解答:解:①t≤1时,两个三角形重叠面积为小三角形旳面积,∴y=×1×=,②当1<x≤2时,重叠三角形旳边长为2﹣x,高为,y=(2﹣x)×=x﹣x+,③当x≥2时两个三角形重叠面积为小三角形旳面积为0,故选:B.点评:本题重要考察了本题考察了动点问题旳函数图象,此类题目旳图象往往是几种函数旳组合体.3.(2023年山东泰安,第14题3分)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ旳面积为y,则y与x之间旳函数图象大体为( )AB C.D分析:分点Q在AC上和BC上两种状况进行讨论即可.解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°= ∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.点评:本题考察动点问题旳函数图象,有一定难度,解题关键是注意点Q在BC上这种状况.4.(2023•菏泽第8题3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF旳顶点D、F分别在AC、BC边上,C、D两点不重叠,设CD旳长度为x,△ABC与正方形CDEF重叠部分旳面积为y,则下图象中能表达y与x 之间旳函数关系旳是( )A. B. C. D.考点: 动点问题旳函数图象.专题: 数形结合.分析: 分类讨论:当0<x≤1时,根据正方形旳面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,运用重叠旳面积等于正方形旳面积减去等腰直角三角形MNE旳面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数旳性质对各选项进行判断.解答: 解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选A.二.填空题三.解答题1. ( 2023•广东,第25题9分)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm旳速度向点C匀速运动,与此同步,垂直于AD旳直线m从底边BC出发,以每秒2cm旳速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P抵达点C时,点P与直线m同步停止运动,设运动时间为t秒(t >0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成旳△PEF旳面积存在最大值,当△PEF旳面积最大时,求线段BP旳长;(3)与否存在某一时刻t,使△PEF为直角三角形?若存在,祈求出此时刻t旳值;若不存在,请阐明理由.考点:相似形综合题.分析: (1)如答图1所示,运用菱形旳定义证明;(2)如答图2所示,首先求出△PEF旳面积旳体现式,然后运用二次函数旳性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答: (1)证明:当t=2时,DH=AH=2,则H为AD旳中点,如答图1所示.又∵EF⊥AD,∴EF为AD旳垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10△PEF存在最大值,最大值为10,此时BP=3t=6.∴当t=2秒时,S△PEF(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥A D.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评: 本题是运动型综合题,波及动点与动线两种运动类型.第(1)问考察了菱形旳定义;第(2)问考察了相似三角形、图形面积及二次函数旳极值;第(3)问考察了相似三角形、勾股定理、解方程等知识点,重点考察了分类讨论旳数学思想.2.(2023•武汉2023•武汉,第24题10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm旳速度向点A匀速运动,同步动点Q从点C 出发,在CB边上以每秒4cm旳速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ. (1)若△BPQ与△ABC相似,求t旳值;(2)连接AQ,CP,若AQ⊥CP,求t旳值;(3)试证明:PQ旳中点在△ABC旳一条中位线上.考点: 相似形综合题分析:(1)分两种状况讨论:①当△BPQ∽△BAC时,=,当△BPQ∽△BCA时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出=,代入计算即可;(3)作PE⊥AC于点E,DF⊥AC于点F,先得出DF=,再把QC=4t,PE=8﹣BM=8﹣4t代入求出DF,过BC旳中点R作直线平行于AC,得出RC=DF,D在过R旳中位线上,从而证出PQ旳中点在△ABC旳一条中位线上.解答:解:(1)①当△BPQ∽△BAC时,∵=,BP=5t,QC=4t,AB=10cm,BC=8cm,∴=,∴t=1;②当△BPQ∽△BCA时,∵=,∴=,∴t=,∴t=1或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴=,∴=,解得:t=;(3)如图,仍有PM⊥BC于点M,PQ旳中点设为D点,再作PE⊥AC于点E,DF⊥AC于点F,∵∠ACB=90°,∴DF为梯形PECQ旳中位线,∴DF=,∵QC=4t,PE=8﹣BM=8﹣4t,∴DF==4,∵BC=8,过BC旳中点R作直线平行于AC,∴RC=DF=4成立,∴D在过R旳中位线上,∴PQ旳中点在△ABC旳一条中位线上.点评:此题考察了相似形综合,用到旳知识点是相似三角形旳鉴定与性质、中位线旳性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种状况讨论.. 3.(2023·浙江金华,第23题10分)等边三角形ABC旳边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P.(1)若AE=CF.①求证:AF=BE,并求∠APB旳度数.旳值.②若AE=2,试求AP AF(2)若AF=BE,当点E从点A运动到点C时,试求点P通过旳途径长.【答案】(1)①证明见解析,120°;②12;(2)433.【解析】(注:没学习四点同圆和切割线定理旳可由△APE∽△ACF得比例式求解)(2)如图,作△ABP外接圆满⊙O,在⊙O旳优弧上取一点G,连接AG,BG,AO,BO,过点O作OH⊥AB于点H。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态问题
一.选择题
1.(2018·辽宁省葫芦岛市) 如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()
A.B.C.D.
【解答】解:在Rt△ABC中,∠BAC=90°,AB=6,BC=10,∴AC==8.
当0≤x≤6时,AP=6﹣x,AQ=x,∴y=PQ2=AP2+AQ2=2x2﹣12x+36;
当6≤x≤8时,AP=x﹣6,AQ=x,∴y=PQ2=(AQ﹣AP)2=36;
当8≤x≤14时,CP=14﹣x,CQ=x﹣8,∴y=PQ2=CP2+CQ2=2x2﹣44x+260.
故选B.
2. (2018•广安•3分)已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x 的函数图象大致如图所示,则该封闭图形可能是()
A.B.C.D.
【分析】先观察图象得到y与x的函数图象分三个部分,则可对有4边的封闭图形进行淘汰,利用圆的定义,P点在圆上运动时,PM总上等于半径,则可对D进行判断,从而得到正确选项.
【解答】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B.C选项不正确;D选项中的封闭图形为圆,y为定中,所以D 选项不正确;A选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值.
故选:A.
【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
3. (2018•莱芜•3分)如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC 夹在a和b之间的部分的面积为s,则s关于t的函数图象大致为()
A.B.C.
D.
【分析】依据a和b同时向右移动,分三种情况讨论,求得函数解析式,进而得到当0≤t <1时,函数图象为开口向上的抛物线的一部分,当1≤t<2时,函数图象为开口向下的抛物线的一部分,当2≤t≤3时,函数图象为开口向上的抛物线的一部分.
【解答】解:如图①,当0≤t<1时,BE=t,DE=t,
∴s=S△BDE=×t×t=;
如图②,当1≤t<2时,CE=2﹣t,BG=t﹣1,
∴DE=(2﹣t),FG=(t﹣1),
∴s=S五边形AFGED=S△ABC﹣S△BGF﹣S△CDE=×2×﹣×(t﹣1)×(t﹣1)﹣×(2﹣t)×(2﹣t)=﹣+3t﹣;
如图③,当2≤t≤3时,CG=3﹣t,GF=(3﹣t),
∴s=S△CFG=×(3﹣t)×(3﹣t)=﹣3t+,
综上所述,当0≤t<1时,函数图象为开口向上的抛物线的一部分;当1≤t<2时,函数图象为开口向下的抛物线的一部分;当2≤t≤3时,函数图象为开口向上的抛物线的一部分,故选:B.
【点评】本题主要考查了动点问题的函数图象,函数图象是典型的数形结合,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.
二.填空题
1.(2018·辽宁省盘锦市)如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿
A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y
与x的函数图象如图②所示,则矩形ABCD的面积为24 .
【解答】解:从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24.故答案为:24.
三.解答题
1. (2018·广西贺州·12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于
A.B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D (﹣1,4).
(1)求A.B两点的坐标;
(2)求抛物线的解析式;
(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B.D两点间的一个动点(点P 不与B.D两点重合),PA.PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.
【解答】解:(1)由抛物线y=ax2+bx+c交x轴于A.B两点(A在B的左侧),且OA=3,OB=1,得
A点坐标(﹣3,0),B点坐标(1,0);
(2)设抛物线的解析式为y=a(x+3)(x﹣1),
把C点坐标代入函数解析式,得
a(0+3)(0﹣1)=3,
解得a=﹣1,
抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
(3)EF+EG=8(或EF+EG是定值),理由如下:
过点P作PQ∥y轴交x轴于Q,如图.
设P(t,﹣t2﹣2t+3),
则PQ=﹣t2﹣2t+3,AQ=3+t,QB=1﹣t,
∵PQ∥EF,
∴△AEF∽△AQP,
∴=,
∴EF===×(﹣t2﹣2t+3)=2(1﹣t);
又∵PQ∥EG,
∴△BEG∽△BQP,
∴=,
∴EG===2(t+3),
∴EF+EG=2(1﹣t)+2(t+3)=8.
2. (2018·湖北江汉·12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.
(1)点A,B,D的坐标分别为(,0),(3,0),(,);
(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;
(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.
【分析】(1)利用二次函数图象上点的坐标特征可求出点A.B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;
(2)由点D的坐标结合对称找出点E的坐标,根据点B.C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;
(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.
【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,
解得:x1=,x2=3,
∴点A的坐标为(,0),点B的坐标为(3,0).
∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,
∴点D的坐标为(,).
故答案为:(,0);(3,0);(,).
(2)∵点E.点D关于直线y=t对称,
∴点E的坐标为(,2t﹣).
当x=0时,y=﹣x2+x﹣1=﹣1,
∴点C的坐标为(0,﹣1).
设线段BC所在直线的解析式为y=kx+b,
将B(3,0)、C(0,﹣1)代入y=kx+b,
,解得:,
∴线段BC所在直线的解析式为y=x﹣1.
∵点E在△ABC内(含边界),
∴,
解得:≤t≤.
(3)当x<或x>3时,y=﹣x2+x﹣1;
当≤x≤3时,y=x2﹣x+1.
假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.
①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,
∴CP⊥PQ,
∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,
∴点P的坐标为(,0)或(,0);
②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),
∵以CQ为直径的圆与x轴相切于点P,
∴CP⊥PQ,
∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,
解得:m3=,m4=2,
∴点P的坐标为(,0)或(1,0).。