高中生物中生物数学模型的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物中生物数学模型的应用
高中生物中生物数学模型的应用【】数学模型的教学方法在现代科学的教育中非常受重视。
数学模型,是把客观生物学现象与概念翻译成一套反映研究对象的数学关系,通过数学符号以及方程式来进行表达和运算。
在现今高中的生物学教学中,引导学生们去构建数学模型,这种方式有利于培养学生通过现象去揭示本质的洞察力,从而更好地深化对于知识的理解。
【】数学生物模型高中生物学教学应用
《普通高中生物课程标准》里要求学生们能领悟数学模型建立的科学方法和其在科学研究中的应用。
在高中生物教学中如果可以有效合理地去开展数学模型在生物教学中的应用,就可以在一定程度上培养学生们在解决实际的生物学问题时对建立数学模型的方法的应用。
另外也有益于学生们对数学模型思想方法的理解,本文列举以下一些常见的例题来阐述高中生物学教学中对于数学模型的应用。
一、在高中生物教学中数学模型的归类
高中生物学中的数学模型主要分为两类,一类是确定性的数学模型,一类是随机性的数学模型。
下面介绍这两类数学模型:
确定性的数学模型是用各种方程式、关系式、代数方程、微分方程和积分方程等来进行表示。
这类数学模型是目前最为普遍的一种数学模型,即运用数学的方法来研究和描述必然
备、建立模型的假设、数学模型的构建、数学模型的修正和验证、对已建立模型的应用,如下图:
下面以“种群数量的变化”中“构建种群数量增长模型”为例加以说明:
(一)明确研究目的。
自然界中细菌过多的滋生和繁殖会引发疾病,对于有害细菌的繁殖如何进行有效地控制?所以我们要找出细菌的变化规律。
(二)对于要建立的模型提出假设。
假设,在资源和空间无限充分,细菌种群的增长不会受到种群密度的增加以及其他生物制约的影响的理想条件下,预测细菌的变化规律。
(三)数学模型的构建。
在资源和空间无限充分的情况下,细菌的个体数增长呈指数增长方式。
如果用时间表示X轴,用细菌的数量表示Y轴,则可以画出“J”型的增长曲线。
(四)检验建立的模型。
在实际中,生物的生存资源和空间都不是无限充分的,种群间的竞争会在种群密度增大时加剧,同时该种群的天敌数量就会相应的增多,这就会导致死亡率增高,出生率降低,该种群的增长就会停止。
假设自然界中的生物种群都以“J”
型曲线增长,那么大自然是无法承受的。
特定时期,生物种群的增长会稳定在某一水平,如果用坐标图来进行表示,就呈现“S”曲线。
(五)模型的应用:实际运用,产生效应。
利用自然界的生物种群的“S”型增长曲线,可以在实际中来指导我们正确地利用野生生物资源,从而取得经济上的效益,生态上的效益和社会上的效益。
例如在海洋生态系统中的小黄鱼,自然条件下小黄鱼的数量增长呈“S”曲线。
全面禁止捕鱼,就会使鱼体的生长发育成熟后,体重不再增加,同时还要不断地吃掉其他生物;若过量的捕鱼使得小黄鱼的数量大大低于1/2K,则会经过很长一段时间才能恢复。
故而,适量、适时地捕捞,使小黄鱼的数量维持在1/2K左右,就能保持较高的增长率,这样既获得了产品,又能使种群数量快速地恢复,这就是所谓的“合理利用就是最好的保护”。