初三数学知识点专题讲解与训练4---根与系数关系(培优版)
苏科版九年级上册数学 1.3 根与系数的关系 知识点与训练(解析版)
根与系数的关系一.韦达定理如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a=.(隐含的条件:0∆≥)特别地,当一元二次方程的二次项系数为1时,设1x ,2x 是方程20x px q ++=的两个根,则12x x p +=-,12x x q ⋅=.二.韦达定理与根的符号关系在24b ac ∆=-≥0的条件下,若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥)我们有如下结论:1.1200c x x a <⇒<,若0b a -≥,则12x x ≥;若0ba -<,则12x x <.2.1200c x x a >⇒>.若0b a ->,则120x x ≥>;若0ba -<,则210x x ≤<.更一般的结论是:若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地:(1)121()()0x m x m x m --<⇔>,2x m <(2)12()()0x m x m -->且12()()0x m x m -+->1x m ⇔>,2x m > (3)12()()0x m x m -->且12()()0x m x m -+-<1x m ⇔<,2x m <特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件.一.考点:韦达定理二.重难点:韦达定理的应用1.已知方程的一个根,求另一个根以及确定方程参数的值; 2.已知方程,求关于方程的两根的代数式的值; 3.已知方程的两根,求作方程;4.结合根的判别式,讨论根的符号特征;5.逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理.三.易错点:在使用韦达定理的时候没有提前检验0∆≥是否成立知识精讲三点剖析题模精讲题模一:韦达定理例 4.1.1若方程240x x c-+=的一个根为2+,则方程的另一个根为______,c=______.【答案】21c=【解析】根据韦达定理,124x x+=,因为12x=+,所以22x=,所以(12221c x x=⋅==例4.1.2如果a,b都是质数,且213a a m-+,2130b b m-+=,求b aa b+的值.【答案】当a b=时,2b aa b+=;当a b≠时,12522b aa b+=【解析】当a b=时,2b aa b+=;当a b≠时,a、b为方程2130x x m-+=的两个根,所以13a b+=,则2a=,11b=或2b=,11a=.所以21112511222b aa b+=+=.例 4.1.3设1x、2x是方程()222120x k x k-+++=的两个不同的实根,且()()12118x x++=,则k的值是.【答案】1k=【解析】由根与系数的关系得()1221x x k+=+,2122x x k⋅=+.且有()()224142840k k k∆=+-+=->,即12k>.所以()()12118x x++=.从而2230k k+-=,解之得3k=-或1k=.又12k>,所以1k=.例4.1.4已知关于x的方程211300x x a-++=的两根都大于5,求a的取值范围.【答案】14a<≤【解析】设1x,2x是方程的两根,1212121212(5)(5)5()250301112141200x x x x x xx x ax xa--=-++>⎧⎪=+⎪⎨+=⎪⎪∆=--⎩≥,解得14a<≤.随练 4.1 已知m ,n 是有理数,并且方程20x mx n ++=有一个根是52-,那么m n +=_______. 【答案】 3【解析】 由于m ,n 是有理数,并且方程20x mx n ++=有一个根是52-,所以方程的另一个根是52--.由韦达定理知:(52)(52)m -=--+-,(52)(52)n =--⨯-∴4m =,1n =-,∴4mn =-,3m n +=.随练4.2 已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值. 【答案】 -1【解析】 有实数根,则△≥0,且22121216x x x x +=+,联立解得m 的值.依题意有:12212221212222(2)5164(2)4(5)0x x m x x m x x x x m m +=-+⎧⎪=-⎪⎨+=+⎪⎪∆=+--≥⎩由①②③解得:1m =-或15m =-,又由④可知m ≥94-∴15m =-舍去,故1m =-随练4.3 已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.【答案】 52m >【解析】 设1x ,2x 是方程的两根,且11x >,21x <,即110x ->,210x -<, 因此1212121212(1)(1)()10284164(28)0x x x x x x x x m x x m --=-++<⎧⎪=-+⎪⎨+=⎪⎪∆=+->⎩,解得52m >.随练4.4 如果实数,a b 分别满足222a a +=,222b b +=,求11a b+的值 【答案】 当a b ≠时,111a b +=;当a b =时,当13a b ==-+时,1131a b+=+,当13a b ==--时,1113a b+=- 随堂练习【解析】 由题意知:,a b 为方程2220x x +-=的两个根,且0,0a b ≠≠,解方程2220x x +-=得:11x =-+21x =--⑴当a b ≠时,有2a b +=-,2ab =-,11212a b a b ab +-∴+===-;⑵当a b =时,方程的根为11x =-+21x =--当1a b ==-+1121a b a ∴+==;当1a b ==-1121a b a ∴+===-。
一元二次方程根与系数的关系同步培优题典(解析版)
专题1.6一元二次方程根与系数的关系姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•遵化市模拟)关于x的一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x1x2=2C.x1+x2=2D.x12﹣2x1=0【分析】根据方程的系数结合根的判别式可得出△=4>0,进而可得出x1≠x2,结论A正确;利用一元二次方程的解及根与系数的关系可得出x12﹣2x1=0,x1•x2=0,x1+x2=2,即结论C,D正确,结论B 错误,此题得解.【解析】∵△=(﹣2)2﹣4×1×0=4>0,∴关于x的一元二次方程x2﹣2x=0有两个不相等的实数根,∴x1≠x2,结论A正确;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x12﹣2x1=0,x1•x2=0,x1+x2=2,∴结论C,D正确,结论B错误.故选:B.2.(2020•天心区校级模拟)已知m,n是方程x2+2x﹣1=0的两个实数根,则m2﹣2n+2015的值是()A.2021B.2020C.2019D.2018【分析】根据一元二次方程的解及根与系数的关系可得出m2+2m=1,m+n=﹣2,将其代入m2﹣2n+2015=(m2+2m)﹣2(m+n)+2015中即可求出结论.【解析】∵m,n是方程x2+2x﹣1=0的两个实数根,∴m2+2m=1,m+n=﹣2,∴m2﹣2n+2015=(m2+2m)﹣2(m+n)+2015=1+4+2015=2020.故选:B.3.(2019秋•中山市校级期末)关于x的方程x2﹣mx﹣3=0的一个根是x1=3,则它的另一个根x2是()A.0B.1C.﹣1D.2【分析】根据根与系数的关系即可求出答案.【解析】由根与系数的关系可知:3x2=﹣3,解得x2=﹣1.故选:C.4.(2019秋•新会区期末)关于x的方程x2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是()A.﹣5B.5C.﹣2D.2【分析】根据两根之积可得答案.【解析】设方程的另一个根为a,∵关于x的方程x2﹣mx+6=0有一根是﹣3,∴﹣3a=6,解得a=﹣2,故选:C.5.(2020春•西湖区期末)关于x的方程k2x2+(2k﹣1)x+1=0有实数根,则下列结论正确的是()A.当k=12时,方程的两根互为相反数B.当k=0时,方程的根是x=﹣1C.若方程有实数根,则k≠0且k≤1 4D.若方程有实数根,则k≤1 4【分析】因为已知没有明确此方程是否是一个一元二次方程,所以方程有两种情况,既可以是一元一次方程,也可以一元二次方程,所以分两种情况分别去求k的取值范围,然后结合选项判断选择什么.【解析】若k=0,则此方程为﹣x+1=0,所以方程有实数根为x=1,则B错误;若k≠0,则此方程是一元二次方程,由于方程有实数根,∴△=(2k﹣1)2﹣4k2=﹣4k+1≥0,∴k≤14且k≠0;综上所述k的取值范围是k≤1 4.故A错误,C错误,D正确.故选:D.6.(2020•红桥区模拟)一元二次方程x2﹣4x+2=0根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3D.有两个正根,且有一根大于3【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号、以及两根的和,两根的积就可以了.【解析】∵a=1,b=﹣4,c=2,∴△=b2﹣4ac=(﹣4)2﹣4×1×2=8>0,∴方程有两个不相等的实数根,∵两根的和为4,两根的积为2,∴有两个正根,且有一根大于3.故选:D.7.(2020•湖北)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【分析】根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=﹣2(m﹣1),α•β=m2﹣m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.【解析】∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.8.(2020•南京)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【分析】先把方程(x﹣1)(x+2)=p2化为x2+x﹣2﹣p2=0,再根据方程有两个不相等的实数根可得△=1+8+4p2>0,由﹣2﹣p2>0即可得出结论.【解析】∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为﹣2﹣p2<0,∴一个正根,一个负根,故选:C.9.(2020•日照一模)已知m,n(m≠n)满足方程x2﹣5x﹣1=0,则m2﹣mn+5n=()A.﹣23B.27C.﹣25D.25【分析】由根与系数的关系可得出m+n=5、mn=﹣1,m2﹣5m=1,将m2﹣mn+5n变形为m2﹣5m﹣mn+5(m+n),代入数据即可得出结论.【解析】∵m,n(m≠n)满足方程x2﹣5x﹣1=0,∴m+n=5,mn=﹣1,m2﹣5m=1,∴m2﹣mn+5n=m2﹣5m﹣mn+5(m+n)=1+1+25=27.故选:B.10.(2020•文登区模拟)已知a,b是方程x2+3x﹣5=0的两个实数根,则a2﹣3b+2020的值是()A.2016B.2020C.2025D.2034【分析】利用根与系数的关系,求出a2+3a=5,a+b=﹣3,再代入计算即可求解.【解析】∵a,b是方程x2+3x﹣5=0的两个实数根,∴a2+3a=5,a+b=﹣3,则a2﹣3b+2020=a2+3a﹣3(a+b)+2020=5+9+2020=2034.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020•泰州)方程x2+2x﹣3=0的两根为x1、x2,则x1•x2的值为﹣3.【分析】根据方程的系数结合根与系数的关系,即可得出x1•x2的值.【解析】∵方程x2+2x﹣3=0的两根为x1、x2,∴x1•x2=ca=−3.故答案为:﹣3.12.(2020•南昌一模)已知α、β是方程x2﹣2x﹣3=0的两个实数根,则α2﹣3α﹣αβ的值为3或7.【分析】由一元二次方程的解及根与系数的关系可得出α2﹣2α=3,αβ=﹣3,将其代入α2﹣3α﹣αβ中可得出α2﹣3α﹣αβ=6﹣α,利用因式分解法解一元二次方程可求出α的值,再将其代入6﹣α中即可求出结论.【解析】∵α、β是方程x2﹣2x﹣3=0的两个实数根,∴α2﹣2α=3,αβ=﹣3,∴α2﹣3α﹣αβ=α2﹣2α﹣α﹣αβ=3﹣α﹣(﹣3)=6﹣α.∵x2﹣2x﹣3=0,即(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴α=3或﹣1,∴6﹣α=3或7.故答案为:3或7.13.(2020•泉州模拟)已知m,n是方程x2+2x﹣1=0的两个根,则m2n+mn2=2.【分析】先根据根与系数的关系得到m+n=﹣2,mn=﹣1,再利用因式分解法得到m2n+mn2=mn(m+n),然后利用整体代入的方法计算.【解析】根据题意得m+n=﹣2,mn=﹣1,所以m2n+mn2=mn(m+n)=﹣1×(﹣2)=2.故答案为2.14.(2020•青海)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=2,x2=3;小刚看错了常数项c,得到的解为x1=1,x2=5.请你写出正确的一元二次方程x2﹣6x+6=0.【分析】利用根与系数的关系得到2×3=c,1+5=﹣b,然后求出b、c即可.【解析】根据题意得2×3=c,1+5=﹣b,解得b=﹣6,c=6,所以正确的一元二次方程为x2﹣6x+6=0.故答案为x2﹣6x+6=0.15.(2020•太仓市模拟)已知a,b是一元二次方程x2﹣2x﹣2020=0的两个根,则a2+2b﹣3的值等于2021.【分析】根据根与系数的关系以及方程的解的定义即可求出答案.【解析】由题意可知:a2﹣2a=2020,由根与系数的关系可知:a+b=2,∴原式=a2﹣2a+2a+2b﹣3,=2020+2(a+b)﹣3=2020+2×2﹣3=2021,故答案为:2021.16.(2020•南昌县模拟)若方程x2﹣4x+2=0的两个根为x1,x2,则x1(1+x2)+x2的值为6.【分析】欲求x1(1+x2)+x2=x1+x2+x1•x2的值,根据一元二次方程根与系数的关系,求得两根的和与积,代入数值计算即可.【解析】根据题意x1+x2=4,x1•x2=2,∴x1(1+x2)+x2=x1+x2+x1•x2=4+2=6.故答案为:6.17.(2020•荆门)已知关于x的一元二次方程x2﹣4mx+3m2=0(m>0)的一个根比另一个根大2,则m的值为1.【分析】设方程的两根分别为t,t+2,利用根与系数的关系得到t+t+2=4m,t(t+2)=3m2,利用代入消元法得到(2m﹣1)(2m+1)=3m2,然后解关于m的方程得到满足条件的m的值.【解析】设方程的两根分别为t,t+2,根据题意得t+t+2=4m,t(t+2)=3m2,把t=2m﹣1代入t(t+2)=3m2得(2m﹣1)(2m+1)=3m2,整理得m2﹣1=0,解得m=1或m=﹣1(舍去),所以m的值为1.故答案为1.18.(2020•内江)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为−13.【分析】把x=﹣1代入原方程求出m的值,进而确定关于x的一元二次方程,根据根与系数的关系可求出方程的另一个根.【解析】把x=﹣1代入原方程得,(m﹣1)2﹣3m+3=0,即:m2﹣5m+4=0,解得,m=4,m=1(不合题意舍去),当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,由根与系数的关系得:x1•x2=13,又x1=﹣1,∴x2=−1 3故答案为:−1 3.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•孝南区期末)关于x的方程x2﹣2x+2m﹣1=0有实根.(1)求m的取值范围;(2)设方程的两实根分别为x1,x2且x1﹣x2=﹣2,求m的值.【分析】(1)根据判别式的意义得到△=(﹣2)2﹣4(2m﹣1)≥0,然后就解关于m的不等式;(2)利用根与系数的关系得到x1+x2=2,x1•x2=2m﹣1,而x1﹣x2=﹣2,则可先求出x1、x2的值,然后计算m的值.【解析】(1)根据题意得△=(﹣2)2﹣4(2m﹣1)≥0,解得m≤1;(2)由根与系数的关系可得x1+x2=2,x1•x2=2m﹣1,∵x1﹣x2=﹣2,∴x1=0,x2=2,∴2m﹣1=0,解得m=1 2.20.(2019秋•鞍山期末)已知关于x的一元二次方程x2+(2k+1)x+k2=0有实数根.(1)求k的取值范围.(2)设方程的两个实数根分别为x1、x2,若2x1x2﹣x1﹣x2=1,求k的值.【分析】(1)由△≥0,求出k的范围;(2)由根与系数的关系可知:x1+x2=﹣2k﹣1,x1x2=k2,代入等式求解即可.【解析】(1)∵一元二次方程x2+(2k+1)x+k2=0有实数根,∴△=(2k+1)2﹣4k2≥0,∴k≥−1 4;(2)由根与系数的关系可知:x1+x2=﹣2k﹣1,x1x2=k2,∴2x1x2﹣x1﹣x2=2k2+2k+1=1,∴k=0或k=﹣1,∵k≥−1 4;∴k=0.21.(2020•玉林)已知关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求aa+1−1b+1的值.【分析】(1)根据方程有两个不相等的实数根可得△=4+4k>0,解不等式求出k的取值范围;(2)由根与系数的关系可得a+b=﹣2,a•b=﹣k,代入整理后的代数式,计算即可.【解析】(1)∵方程有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,解得k>﹣1.∴k的取值范围为k>﹣1;(2)由根与系数关系得a+b=﹣2,a•b=﹣k,a a+1−1b+1=ab−1ab+a+b+1=−k−1−k−2+1=1.22.(2020•黄石)已知:关于x的一元二次方程x2+√m x﹣2=0有两个实数根.(1)求m的取值范围;(2)设方程的两根为x1、x2,且满足(x1﹣x2)2﹣17=0,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=m+8≥0,根据二次根式的意义即可得出m ≥0,从而得出m的取值范围;(2)根据根与系数的关系可得x1+x2=−√m,x1•x2=﹣2,结合(x1﹣x2)2﹣17=0即可得出关于m的一元一次方程,解之即可得出结论.【解析】(1)∵关于x的一元二次方程x2+√m x﹣2=0有两个实数根,∴△=[√m]2﹣4×1×(﹣2)=m+8≥0,且m≥0,解得:m≥0.(2)∵关于x的一元二次方程x2+√m x﹣2=0有两个实数根x1、x2,∴x1+x2=−√m,x1•x2=﹣2,∴(x1﹣x2)2﹣17=(x1+x2)2﹣4x1•x2﹣17=0,即m+8﹣17=0,解得:m=9.23.(2019秋•南充期末)已知关于x的方程ax2+(3﹣2a)x+a﹣3=0.(1)求证:无论a为何实数,方程总有实数根.(2)如果方程有两个实数根x1,x2,当|x1﹣x2|=32时,求出a的值.【分析】(1)证明一元二次方程根的判别式恒大于等于0,即可解答;(2)根据一元二次方程根与系数的关系x1+x2=2a−3a,以及x1•x2=a−3a,由|x1﹣x2|=32即可求得a的值.【解答】(1)证明:①当a=0时,方程为3x﹣3=0,是一元一次方程,有实数根;②当a≠0时,方程是一元二次方程,∵关于x的方程ax2+(3﹣2a)x+a﹣3=0中,△=(3﹣2a)2﹣4a(a﹣3)=9>0,∴无论a为何实数,方程总有实数根.(2)解:如果方程的两个实数根x1,x2,则x1+x2=2a−3a,x1•x2=a−3a,∵|x1﹣x2|=3 2,∴√(2a−3a)2−4×a−3a=32,解得a=±2.故a的值是﹣2或2.24.(2020•广东)已知关于x,y的方程组{ax+2√3y=−10√3,x+y=4与{x−y=2,x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【分析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.【解析】(1)由题意得,关于x ,y 的方程组的相同解,就是方程组{x +y =4x −y =2的解, 解得,{x =3y =1,代入原方程组得,a =﹣4√3,b =12; (2)当a =﹣4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2﹣4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.。
数学九年级下册考点强化专训一元二次方程的根与系数的关系
数学九年级下册解码专训一元二次方程根与系数的关系学习目标一、1.掌握一元二次方程根与系数的关系,运用根与系数的关系解决相关待定系数的值。
2.通过对一元二次方程根与系数关系的探讨,经历和体验数学的发现过程,提高探究性学习的能力。
二、学习重点重点:运用根与系数的关系求相关待定系数的值。
难点:运用根与系数的关系解题必须是在b 2-4ac 不小于0的情况下。
自主预习三、解下列方程,将得到的根填入下面的表格中,观察表格中两个根的和与积,它们和原来的方程的系数有什么?(1)2x -2x =0; (2)2x +3x -4=0; (3)22x -5x-7=0.方程1x 2x 21x x 21x x 2x -2x =02x +3x -4=022x -5x-7=0请根据以上表格中的观察、发现进一步猜想:若方程ax 2+bx +c =0(a ≠0)的根是1x 、2x ,则21x x = ,21x x = ,并加以证明。
因为一元二次方程ax 2+bx +c =0(a ≠0)的求根公式x=a acb b 242 ,所以21x x = =21x x = =合作探究四、 1.已知关于x 的方程(k-1)2x +(2k-3)x+k+1=0有两个不相等的实数根1x 、2x .求k 的取值范围;(1)是否存在实数k ,使方程的两个实数根互为相反数?如果存在求出k 的值;如果不(2)存在,请说明理由。
巩固反馈五、1.已知1x 、2x 是方程2x -x-3=0的两个实数根,则21x x = , 21x x = 。
2.若方程x 2+px+2=0的一个根是2,则另一个根是 ,p= 。
5.下列方程两根的和与两根的积各是多少?①2y -3y+1=0 ② 32x -2x=2③22x +3x=0 ④4p(p-1)=36.已知 ,是方程2x +2x -5=0的实数根,求 22 的值。
九年级上册数学根与系数的关系
九年级上册数学根与系数的关系稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊九年级上册数学里超有趣的根与系数的关系,准备好跟我一起探索这个奇妙的数学世界了吗?你知道吗?一元二次方程的根与系数之间藏着神秘的联系呢。
比如说,对于方程 ax^2 + bx + c = 0(a≠0),如果它有两个根 x_1 和 x_2 ,那么就有 x_1 + x_2 = \frac{b}{a} ,x_1x_2 =\frac{c}{a} 。
这是不是很神奇?就好像是数学给我们开的一个小秘密通道。
比如说,给你一个方程 x^2 5x + 6 = 0 ,咱们很快就能知道它的根的和是 5,根的积是 6 。
然后一分解,嘿,原来方程的根就是 2 和3 。
这在解题的时候可太有用啦!有时候题目不给咱具体的根,只给方程的系数,让咱求根的和或者积,咱们用这个关系就能轻松搞定。
而且哦,根与系数的关系还能帮我们检验算出的根对不对。
算完根之后,代入这两个关系式看看,对得上就是正确的,对不上那可得重新算啦。
怎么样,是不是觉得根与系数的关系就像一个神奇的魔法棒,能在数学的世界里帮我们解决好多难题呀!稿子二哈喽呀,小伙伴们!今天咱们来唠唠九年级上册数学里那个有点神秘但又超级好玩的根与系数的关系。
想象一下,一元二次方程就像一个藏着宝贝的小盒子,而根与系数的关系就是打开这个盒子的钥匙。
比如说,对于方程 ax^2 + bx + c = 0(a≠0),一旦知道了 a 、b 、c 的值,咱们就能通过神奇的公式算出根之间的关系。
你看哈,如果方程有两个根 x_1 和 x_2 ,那么 x_1 + x_2 = \frac{b}{a} ,x_1x_2 = \frac{c}{a} 。
这可太酷了!咱们来举个例子感受一下。
比如方程 2x^2 3x 5 = 0 ,咱们一下子就能算出根的和是 \frac{3}{2} ,根的积是 \frac{5}{2} 。
有时候做题,题目会故意不直接告诉我们根是多少,而是让我们通过根与系数的关系去推理、去计算。
根的判别式及根与系数的关系大题专练(重难点培优60题)-九年级数学上册尖子生培优必刷题【人教版】
【拔尖特训】2023-2024学年九年级数学上册尖子生培优必刷题(人教版)专题21.12根的判别式及根与系数的关系大题专练(重难点培优60题)一.解答题(共60小题)1.(2023春•鼓楼区校级期末)关于x的一元二次方程x2﹣kx﹣k﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一个根大于0,求k的取值范围.2.(2023春•淮北期末)已知:关于x的方程x2+2kx+k2﹣1=0.(1)试说明无论k取何值时,方程总有两个不相等的实数根;(2)如果方程有一个根为3,试求2k2+12k+2023的值.3.(2023春•凤阳县期末)关于x的一元二次方程mx2+(2m+3)x+m+1=0有两个不等的实数根.(1)求m的取值范围;(2)当m取最小整数时,求x的值.4.(2023•西宁二模)已知关于x的一元二次方程x2﹣3x+2a﹣1=0有两个不相等的实数根.(1)求a的取值范围;(2)若a为正整数,求一元二次方程的解.5.(2023春•惠城区校级期末)已知关于x的一元二次方程x2﹣2mx+3=0.(1)当m=1时,判断方程根的情况;(2)当m=2时,求方程的根.6.(2022秋•方城县期末)已知:关于x的方程x2+2mx+m2﹣1=0.(1)请说明:方程总有两个不相等的实数根;(2)若方程有一个根为3,求m的值.7.(2023春•丰城市校级期末)已知关于x的一元二次方程(x﹣1)(x﹣2k)+k(k﹣1)=0.(1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根x1,x2是一个矩形的一边长和对角线的长,且矩形的另一边长为5,试求k的值.8.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.9.(2023•梁山县二模)定义:若一元二次方程ax2+bx+c=0(a≠0)满足b=a+c.则称该方程为“和谐方程”.(1)下列属于和谐方程的是;①x2+2x+1=0;②x2﹣2x+1=0;③x2+x=0.(2)求证:和谐方程总有实数根;(3)已知:一元二次方程ax2+bx+c=0(a≠0)为“和谐方程”,若该方程有两个相等的实数根,求a,c的数量关系.10.(2023春•海淀区校级期末)已知关于x的一元二次方程mx2+(2﹣3m)x+(2m﹣4)=0.(1)求证:方程总有两个实数根;(2)若m为整数,当此方程有两个互不相等的正整数根时,求m的值.11.(2023春•鼓楼区校级期末)已知关于x的一元二次方程x2﹣ax+a﹣1=0.(1)求证:方程总有两个实数根;(2)若该方程有一实数根大于3,求a的取值范围.12.(2023春•安庆期末)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根.(1)求m的取值范围;(2)设p是方程的一个实数根,且满足(p2﹣2p+3)(m+4)=7,求m的值.13.(2023•保康县模拟)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.14.(2023春•延庆区期末)关于x的方程x2﹣4x+2(m+1)=0有两个实数根.(1)求m的取值范围;(2)当m为正整数时,求此时方程的根.15.(2023•北京二模)已知关于x的一元二次方程x2﹣4x+m+2=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,求此时方程的根.16.(2023春•瑶海区期末)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有实数根x1,x2.(1)求m的取值范围;(2)若满足x12+x22=2,求m的值.17.(2023春•南岗区期末)已知:方程(m﹣2)x|m|﹣x+n=0是关于x的一元二次方程.(1)求m的值;(2)若该方程无实数根,求n的取值范围.18.(2023•延庆区一模)已知关于x的一元二次方程x2+mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)如果方程有一个根为正数,求m的取值范围.19.(2023春•肇东市期末)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0,(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+3x1x2=﹣1,求m的值.20.(2023春•龙口市期中)已知关于x的一元二次方程mx2−(m+2)x+m4=0两个不相等的实数根x1,x2,若1x1+1x2=4m,求m的值.21.(2023•邗江区二模)已知关于x的一元二次方程x2﹣(m﹣1)x+m﹣2=0.(1)求证:该方程总有两个实数根;(2)若该方程两个实数根的差为3,求m的值.22.(2023春•如东县期末)已知关于x的一元二次方程x2+(2m+1)x+2m=0.(1)求证无论实数m取何值,此方程一定有两个实数根;(2)设此方程的两个实数根分别为x1x2,若x12+x22=13,求m的值.23.(2023春•环翠区期末)已知:关于x的方程x2+(8﹣4m)x+4m2=0.(1)若方程有两个相等的实数根,求m的值,并求出这时方程的根.(2)问:是否存在正数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.24.(2023春•霍邱县期末)已知关于x的一元二次方程2x2+4x+m=0.(1)若x=1是方程的一个根,求m的值和方程的另一根.(2)若x1x2是方程的两个实数根,且满足x12+x22+5x1x2−x12x22=0,求m的值.25.(2023春•莒县期末)(1)解方程:(2x+1)(x﹣4)=5;(2)已知方程x2+(2k﹣1)x+k2+3=0的两实数根的平方和比两根之积大15,求k的值.26.(2023春•青阳县期末)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.27.(2023春•广饶县期中)关于x的一元二次方程x2+mx+m﹣2=0.(1)若﹣2是该方程的一个根,求该方程的另一个根;(2)求证:无论m取任何实数,此方程总有两个不相等的实数根.28.(2023春•贵池区期末)已知:关于x的方程x2+mx﹣8=0有一个根是﹣4,求另一个根及m的值.29.(2023春•大观区校级期末)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=x1x2+x2x1+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.30.(2023•湟中区校级开学)关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若x1+x2﹣2x1x2=0,求m的值.31.(2023•襄州区模拟)已知关于x的一元二次方程x2﹣3x+2﹣m2﹣m=0.(1)求证:无论m为何实数,方程总有两个实数根;(2)若方程x2﹣3x+2﹣m2﹣m=0,的两个实数根α、β满足α2+β2=9,求m的值.32.(2023•惠州一模)若关于x的一元二次方程(m﹣1)x2﹣2mx+m﹣2=0有两个实数根x1,x2.(1)试确定实数m的取值范围;(2)若(x1+2)(x2+2)﹣2x1x2=17,求m的值.33.(2023•鼓楼区校级模拟)已知关于m的方程x2﹣(2m+1)x+m2=0(m≠0)有两实数根x1,x2,请用m表示x12+x22的值并求出m的取值范围.34.(2023春•宁波期末)阅读材料,根据上述材料解决以下问题:材料1:若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1x2,则x1+x2=−bax1x2=c a材料2:已知实数m,n满足m2﹣m﹣1=0n2﹣n﹣1=0,且m≠n,则m,n是方程x2﹣x﹣1=0 的两个不相等的实数根.(1)材料理解:一元二次方程3x2﹣6x+1=0 两个根为x1x2,则x1+x2=,x1x2=.(2)应用探究:已知实数m,n满足9m2﹣9m﹣1=09n2﹣9n﹣1=0,且m≠n,求m2n+mn2的值.(3)思维拓展:已知实数s、t分别满足9s2+9s+1=0t2+9t+9=0,其中st≠1且st≠0.求3st+9s+3t的值.35.(2023春•合肥期末)已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x1,x2满足x12+x22−x1x2=18,求a的值.36.(2023春•长沙期末)已知关于x的一元二次方程x2﹣2kx+k2+k+1=0有两个实数根.(1)求k的取值范围;(2)若x1x2﹣x1﹣x2=3,求k的值.37.(2023春•莱芜区期末)已知:关于x的一元二次方程x2﹣mx﹣1=0.(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根是√2,求另一个根及m的值.38.(2023春•长沙期末)方程x2+2x+m﹣1=0是关于x的一元二次方程,该方程的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若x12+x22+3x1x2+10=0,求m的值.39.(2023•广陵区校级一模)已知关于x的方程x2﹣(k+1)x+2k﹣2=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的三边a,b,c中a=3,另两边b、c恰好是这个方程的两个根,求k值.40.(2023•沙市区模拟)已知关于x的一元二次方程x2+(2m+1)x+3m﹣1=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且(x1﹣1)(x2﹣1)=6,求m的值.41.(2023•襄阳模拟)已知关于x的一元二次方程x2+(m+2)x+m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+2x1x2=3,求m的值.42.(2023•蓬江区校级一模)关于x的一元二次方程x2﹣3x﹣k+1=0有两个不相等的实数根.(1)求k的取值范围;(2)若x12+x22=3,求k的值.43.(2023春•淮北月考)关于x的一元二次方程mx2+(2m+1)x+m﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)若已知此方程的一个根为﹣2,求m的值以及方程的另一根.44.(2023春•岳麓区校级期末)已知关于x的一元二次方程x2﹣3x+m﹣3=0.(1)若此方程有两个不相等的实数根x1,x2,求m的取值范围;(2)若此方程的两根互为倒数,求x12+x22的值.45.(2023•襄阳模拟)已知关于x的一元二次方程x2﹣6x+2m﹣1=0有x1,x2两实数根.(1)求m的取值范围;(2)是否存在实数m,满足(x1﹣1)(x2﹣1)=−6m−7?若存在,求出实数m的值;若不存在,请说明理由.46.(2023春•房山区期末)已知关于x的一元二次方程x2+nx﹣6=0.(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根是1,求方程的另一个根.47.(2023春•顺义区期末)已知关于x的一元二次方程x2+bx﹣3=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的一个根是1,求b的值及方程的另一个根.48.(2023春•思明区校级期末)已知关于x的一元二次方程x2﹣(m+5)x+5m=0.(1)求证:此一元二次方程一定有两个实数根;(2)设该一元二次方程的两根为a,b,且6,a,b分别是一个直角三角形的三边长,求m的值.49.(2023春•虹口区期末)设x1,x2为关于x的方程x2﹣2px﹣p=0的两根,P为实数.(1)求证:2px1+x22+3p≥0.(2)当|x1﹣x2|≤|2p﹣3|时,求p的最大值.50.(2023春•蒙城县校级期中)关于x的一元二次方程为x2﹣2x﹣m(m+2)=0.(1)求证:无论m为何实数,方程总有实数根;(2)若方程的两根之积等于0,求m的值.51.(2023春•蚌山区月考)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0,若△ABC的两边AB,AC 的长是这个方程的两个实数根,第三边BC的长为5.(1)若k=3时,请判断△ABC的形状并说明理由;(2)若△ABC是等腰三角形,求k的值.52.(2023•海淀区二模)已知关于x的一元二次方程x2﹣2x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为﹣1,求m的值和方程的另一个根.53.(2022秋•自贡期末)已知关于x的方程x2+nx+2m=0.(1)求证:当n=m+3时,方程总有两个不相等实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.54.(2023春•建邺区校级期末)已知关于x 的一元二次方程x 2﹣(k +1)x +2k ﹣2=0.(1)求证:方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.55.(2023春•蓬莱区期中)已知关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0,(1)若方程有实数根,求a 的取值范围;(2)是否存在这样的实数a ,使方程的两根x 1,x 2满足x 1+x 2+x 1x 2=3,若存在,求出实数a 的值;若不存在,请说明理由.56.(2023•海淀区校级三模)已知关于x 的方程mx 2﹣(m +3)x +3=0(m ≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.57.(2023•石景山区二模)已知关于x 的一元二次方程x 2﹣2mx +m 2﹣1=0(1)求证:该方程总有两个不相等的实数根;(2)若m >1,且该方程的一个根是另一个根的2倍,求m 的值.58.(2023•郓城县一模)已知关于x 的一元二次方程12x 2+(m ﹣3)x ﹣m +2=0. (1)求证:不论m 取何值,该方程都有两个不相等的实数根;(2)设方程的两个根分别为x 1,x 2,且x 1>x 2,若x 1﹣x 2=2√10,求m 的值.59.(2023春•绍兴期中)已知有关于x 的一元二次方程(k +1)x 2﹣(3k +1)x +2k =0.(1)求k 的取值范围,并判断该一元二次方程根的情况;(2)若方程有一个根为﹣2,求k 的值及方程的另一个根;(3)若方程的一个根是另一个根3倍,求k 的值.60.(2023春•肇源县月考)已知关于x 的一元二次方程x 2﹣3x +2a +1=0有两个不相等的实数根.(1)求实数a 的取值范围;(2)若a 为符合条件的最大整数,且一元二次方程x 2﹣3x +2a +1=0的两个根为x 1,x 2,求x 12x 2+x 1x 22的值.。
《一元二次方程的根与系数的关系》解答题专题培优提升训练(附答案)
2021-2022学年北师大版九年级数学上册《2.5一元二次方程的根与系数的关系》解答题专题培优提升训练(附答案)1.已知关于x的方程2mx2﹣(5m﹣1)x+3m﹣1=0.(1)求证:无论m为任意实数,方程总有实数根.(2)如果这个方程的根的判别式的值等于1,求m的值.2.关于x的一元二次方程x2﹣2x+3m﹣2=0有实数根.(1)求m的取值范围;(2)若m为正整数,求出此时方程的根.3.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根,求m的取值范围.4.已知关于x的一元二次方程x2﹣3x+a﹣1=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数时,求此时方程的解.5.已知y1=x2﹣2x+3.y2=x+m.(1)若m=1,当x取何值时y1=y2?(2)若y1=2y2,当m为何范围时,存在两个不同的x值?6.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.7.已知关于x的一元二次方程x2+(2k﹣1)x+k2﹣3=0有实数根.(ⅰ)求实数k的取值范围;(ⅱ)当k=2时,方程的根为x1,x2,求代数式(x12+2x1﹣1)(x22+4x2+3)的值.8.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c,恰好是这个方程的两个实数根,求△ABC的周长.(3)若方程的两个实数根之差等于3,求k的值.9.已知关于x的一元二次方程x2﹣(2m+4)x+m2+4m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根.(2)设方程的两个实数根分别为x1,x2;①求代数式﹣4x1x2的最大值;②若方程的一个根是6,x1和x2是一个等腰三角形的两条边,求等腰三角形的周长.10.关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根.(1)求k的取值范围;(2)若方程的两根x1,x2满足(x1﹣1)(x2﹣1)=6,求k的值.11.已知关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)设两个实数根是x1和x2,且x1+x2﹣2x1x2=2,则k的值为.12.关于x的一元二次方程x2+2mx+m2+m=0有两个不相等的实数根.(1)求m的取值范围.(2)设出x1、x2是方程的两根,且x12+x22=12,求m的值.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.14.关于x的一元二次方程x2﹣4x+k﹣3=0的两个实数根是x1、x2.(1)已知k=2,求x1+x2+x1x2.(2)若x1=3x2,试求k值.15.已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.16.已知m为实数,关于x的方程为mx2+(m﹣2)x﹣1=0.(1)求证:不论m为何实数,方程总有实数根.(2)若方程有两实根x1,x2,当x1x2﹣2x1﹣2x2=3时,求m的值.17.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0(1)若该方程有两个实数根,求k的最大整数值.(2)若该方程的两个实数根为x1,x2,是否存在实数k,使得x1x2﹣x12﹣x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.18.关于x的一元二次方程x2+(2m﹣3)x+m2=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1、x2是方程的两根,且+=1,求m的值.19.若x1,x2与是方程x2+x﹣3=0的两个实数根,求x13﹣4x22+22的值.20.已知关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)若方程的两个根为x1,x2,且=0,求k的值.21.已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.参考答案1.解:(1)①当m=0时,该方程是关于x的一元一次方程,符合题意;②关于x的一元二次方程2mx2﹣(5m﹣1)x+3m﹣1=0.∵△=(5m﹣1)2﹣8m(3m﹣1)=(m﹣1)2≥0,∴无论m为任何实数,方程总有实根.(2)由题意得,△=(m﹣1)2=1,解得m1=0,m2=2,而m≠0,∴m=2.2.解:(1)∵方程有实数根,∴(﹣2)2﹣4×1×(3m﹣2)≥0,∴m≤1;(2)∵m为正整数,∴m=1,∴方程为:x2﹣2x+1=0,∴x1=x2=1.3.解:∵关于x的一元二次方程x2﹣2(m+1)x+m2+5=0有两个实数根,∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16≥0,∴m≥2.4.解:(1)∵关于x的一元二次方程x2﹣3x+a﹣1=0有实数根,∴△=(﹣3)2﹣4(a﹣1)=﹣4a+13≥0,解得:a≤,即a的取值范围是a≤;(2)∵a的取值范围是a≤,∴整数a的最大值是3,把a=3代入方程x2﹣3x+a﹣1=0得:x2﹣3x+2=0,解得:x1=1,x2=2.5.解:(1)当m=1时,根据题意,得x2﹣2x+3=x+1,整理,得(x﹣1)(x﹣2)=0.所以x﹣1=0或x﹣2=0.解得x1=1,x2=2;(2)根据题意,得x2﹣2x+3=2x+2m,整理,得x2﹣4x+3﹣2m=0,所以△=(﹣4)2﹣4×1×(3﹣2m)>0.解得m>﹣.所以当m>﹣时,存在两个不同的x值.6.解:(1)把k=3代入|x2﹣1|=(x﹣1)(kx﹣2)中,得|x2﹣1|=(x﹣1)(3x﹣2),当x2>1,即x>1或x<﹣1时,原方程可化为:x2﹣1=(x﹣1)(3x﹣2),解得,x=1(舍),或x=;当x2≤1,即﹣1≤x≤1时,原方程可化为:1﹣x2=(x﹣1)(3x﹣2),解得,x=1,或x=;综上,方程的解为x1=,x2=1,x3=;(2)∵x=1恒为方程|x2﹣1|=(x﹣1)(kx﹣2)的解,∴当x≠1时,方程两边都同时除以x﹣1得,,要使此方程只有一个解,只需函数y=与函数y=kx﹣2的图象只有一个交点.∵函数:,作出函数图象,由图象可知,当k<0时,直线y=kx﹣2与函数y=图象只有一个交点;当k=0时,直线y=kx﹣2=﹣2与函数y=图象只有一个交点;当k=1时,y=kx﹣2=x﹣2与y=x+1平行,则与函数y=图象只有一个交点;∵当直线y=kx﹣2过(1,2)点时,2=k﹣2,则k=4,∴函数图象可知,当k≥4时,直线y=kx﹣2与函数y=图象也只有一个交点,∴要使函数图象与y=kx﹣2图象有且只有一个交点,则实数k的取值范围是k≤0或k=1或k≥4.综上,实数k的取值范围:k≤0或k=1或k≥4.7.解:(i)∵方程有实数根,∴△=(2k﹣1)2﹣4(k2﹣3)≥0,解得:k≤;(ii)当k=2时,方程化为x2+3x+1=0,∴x1+x2=﹣3,x1x2=1,∵x1,x2是方程的解,∴x12+3x1+1=0,x22+3x2+1=0,∴x12+3x1=﹣1,x22+3x2=﹣1,∴原式=(﹣1﹣x1﹣1)(﹣1+x2+3)=﹣(x1+2)(x2+2)=﹣[x1x2+2(x1+x2)+4]=﹣(1﹣6+4)=1.8.解:(1)△=(2k+1)2﹣4×1×4(k﹣)=4k2﹣12k+9=(2k﹣3)2,∵无论k取何值,(2k﹣3)2≥0,故这个方程总有两个实数根;(2)由求根公式得x=,∴x1=2k﹣1,x2=2.∵另两边长b、c,恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a,b为腰时,则a=b=4,即2k﹣1=4,计算得出k=,此时三角形周长为4+4+2=10;当b,c为腰时,b=c=2,此时b+c=a,构不成三角形,故此种情况不存在.综上所述,△ABC周长为10.(3)∵方程的两个实数根之差等于3,∴,解得:k=0或3.9.解:(1)△=(2m+4)2﹣4(m2+4m)=16,16>0,∴此方程总有两个不相等的实数根.(2)①﹣4x1x2=(x1+x2)2﹣6x1x2,∵x1+x2==2m+4,x1x2=m2+4m,∴(x1+x2)2﹣6x1x2=(2m+4)2﹣6(m2+4m)=﹣2m2﹣8m+16=﹣2(m+2)2+24,∴当m=﹣2时﹣4x1x2的最大值为24.②把x=6代入原方程可得m2﹣8m+12=0,解得m=2或m=6,当m=2时,原方程化简为x2﹣8x+12=0,解得x=2或x=6,三角形三边长为6,6,2时三角形周长为14,三角形边长为2,2,6时不存在.当m=6时,原方程化简为x2﹣16x+60,解得x=6或x=10.三角形三边长为6,6,10时三角形周长为22,三角形三边长为10,10,6时,三角形周长为26.∴等腰三角形周长为14或22或26.10.解:(1)∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,∴△=[2(k﹣1)]2﹣4(k2﹣1)=﹣8k+8≥0,解得:k≤1.∴k的取值范围为:k≤1.(2)由根与系数关系得:x1+x2=﹣2(k﹣1),x1x2=k2﹣1,所以(x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1=k2﹣1+2(k﹣1)+1=6.解得k=2(舍去)或k=﹣4.故k的值是﹣4.11.解:(1)∵一元二次方程x2+2x+k﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4(k﹣1)>0,解得k<2,即k的取值范围是k<2;(2)∵一元二次方程x2+2x+k﹣1=0的两个实数根是x1和x2,∴x1+x2=﹣2,x1x2=k﹣1,∵x1+x2﹣2x1x2=2,∴﹣2﹣2(k﹣1)=2,∴k=﹣1,故答案为:﹣1.12.解:(1)根据题意得:△=(2m)2﹣4(m2+m)>0,解得:m<0.∴m的取值范围是m<0.(2)根据题意得:x1+x2=﹣2m,x1x2=m2+m,∵x12+x22=12,∴﹣2x1x2=12,∴(﹣2m)2﹣2(m2+m)=12,∴解得:m1=﹣2,m2=3(不合题意,舍去),∴m的值是﹣2.13.解:(1)由题意得:△≥0且m﹣2≠0,∴(2m+1)2﹣4m(m﹣2)≥0解得m≥﹣且m≠2(2)由题意得有两种情况:①当x1=x2,则△=0,所以m=﹣,x1=x2=﹣×=.②当x1=﹣x2时,则x1+x2=0.,所以m=﹣,因为m≥﹣且m≠2,所以此时方程无解.综上所述,m=﹣,x1=x2=.14.解:(1)∵方程x2﹣4x+k﹣3=0的两个实数根是x1、x2,k=2,∴x1+x2=4,x1x2=k﹣3=﹣1,∴x1+x2+x1x2=4﹣1=3.(2)∵x1+x2=4,x1=3x2,∴x1=3,x2=1,∴k=x1x2+3=6.15.解:(1)证明:∵在方程x2﹣6x﹣k2=0中,△=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.16.(1)证明:当m=0时,已经方程为﹣2x﹣1=0,有实数根;当m≠0时,已经方程是一元二次方程,△=(m﹣2)2﹣4m×(﹣1)=m2+4>0,该方程有两个不等实根;综上,不论m为何实数,方程总有实数根;(2)由根与系数的关系可得,,,∵x1x2﹣2x1﹣2x2=3,∴x1x2﹣2(x1+x2)=3,∴,解得m=﹣5,经检验,m=﹣5是原分式方程的解,即m的值是﹣5.17.解:(1)由题意得:此方程的根的判别式△=[﹣(2k+1)]2﹣4(k2+2k)≥0,整理得:﹣4k+1≥0,解得,则k的最大整数值是0;(2)存在,由根与系数的关系得:x1+x2=2k+1,x1x2=k2+2k,∵=,∴﹣(2k+1)2+3(k2+2k)=﹣16,整理得:k2﹣2k﹣15=0,解得k=﹣3或k=5,由(1)可知,,则k=﹣3.18.解:(1)根据题意,知(2m﹣3)2﹣4m2>0,解得m<;(2)由题意知x1+x2=﹣(2m﹣3)=3﹣2m,x1•x2=m2,由+=1,即=1可得=1,解得:m=1(舍去)或m=﹣3,所以m的值是﹣3.19.解:∵x1是方程x2+x﹣3=0的实数根,∴x12+x1﹣3=0,∴x12=﹣x1+3,x1=﹣x12+3,∴x13=﹣x12+3x1,∴x13﹣4x22+22=﹣x12+3x1﹣4x22+22=﹣4x12+9﹣4x22+22=﹣4(x1+x2)2+8x1•x2+31,∵x1、x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,∴原式=﹣4×(﹣1)2+8×(﹣3)+31=3.20.(1)证明:①当k=1时,该方程有一个实数根,符合题意.②当k≠1时,∵△=(2k)2﹣4(k﹣1)×2=4(k﹣1)2+4>0,∴当k≠1时,方程总有实数根.综上所述,无论k取任何值,方程总有实数根.(2)∵x1、x2是方程的两个根,∴x1+x2=,x1•x2=,∴=+x1x2=+=0.解得k=2或k=﹣1.经检验,k=2或k=﹣1都符合题意.所以k=2或k=﹣1.21.解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.。
【中考冲刺】初三数学培优专题 04 根与系数关系(含答案)(难)
根与系数关系阅读与思考根与系数的关系称为韦达定理,其逆定理也成立,是由16世纪的法国数学家韦达所发现的.韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1.求方程中字母系数的值或取值范围; 2.求代数式的值;3.结合根的判别式,判断根的符号特征; 4.构造一元二次方程; 5.证明代数等式、不等式.当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思路,需要注意的是,应用根与系数的关系的前提条件是一元二次方程有两个实数根,所以,应用根与系数的关系解题时,必须满足判别式△≥0.例题与求解【例1】设关于x 的二次方程22(4)(21)10m x m x -+-+=(其中m 为实数)的两个实数根的倒数和为s ,则s 的取值范围是_________.【例2】 如果方程2(1)(2)0x x x m --+=的三个根可以作为一个三角形的三边长,那么,实数m 的取值范围是_________.A .01m ≤≤B .34m ≥C .314m <≤D .314m ≤≤【例3】已知α,β是方程2780x x -+=的两根,且αβ>.不解方程,求223βα+的值.【例4】 设实数,s t 分别满足22199910,99190s s t t ++=++=并且1st ≠,求41st s t++的值.【例5】(1)若实数,a b 满足258a a +=,258b b +=,求代数式1111b a a b --+--的值; (2)关于,,x y z 的方程组32236x y z axy yz zx ++=⎧⎨++=⎩有实数解(,,)x y z ,求正实数a 的最小值;(3)已知,x y 均为实数,且满足17xy x y ++=,2266x y xy +=,求432234x x y x y xy y ++++的值.【例6】 ,,a b c 为实数,0ac <0++=,证明一元二次方程20ax bx c ++=有大于1的根.能力训练A 级1.已知m ,n 为有理数,且方程20x mx n ++=2,那么m n += .2.已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,则m 的值为 . 3.当m = 时,关于x 的方程228(26)210x m m x m -+-+-=的两根互为相反数; 当 时,关于x 的方程22240x mx m -+-=的两根都是正数;当 时,关于m的方程23280x x m ++-=有两个大于2-的根.4.对于一切不小于2的自然数n .关于x 的一元二次方程22(2)20x n x n -+-=的两根记为,n n a b (2)n ≥则223320072007111(2)(2)(2)(2)(2)(2)a b a b a b +++=------ .5.设12,x x 是方程222(1)(2)0x k x k -+++=的两个实根,且12(1)(1)8x x ++=,则k 的值为( ) A .31-或 B .3- C .1 D .12k ≥的一切实数 6.设12,x x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且1210,30x x x <-<,则 ( )A .12m n >⎧⎨>⎩B .12m n >⎧⎨<⎩C .12m n <⎧⎨>⎩D .12m n <⎧⎨<⎩7.设12,x x 是方程220x x k +-=的两个不等的实数根,则22122x x +-是( )A .正数B .零C .负数D .不大于零的数8.如图,菱形ABCD 的边长是5,两对角线交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的根,那么m 的值是( )A .3-B .5C .53-或D .53-或9.已知关于x 的方程:22(2)04m x m x --=. (1)求证:无论m 取什么实数值,方程总有两个不相等的实数根;(2)若这个方程的两个根是12,x x ,且满足212,x x =+求m 的值及相应的12,x x .10.已知12,x x 是关于x 的一元二次方程2430kx x +-=的两个不相等的实数根. (1)求k 的取值范围;(2)是否存在这样的实数k ,使12123222x x x x +-=成立?若存在,求k 的值;若不存在,说明理由.11.如图,已知在△ABC 中,∠ACB =90°,过C 点作CD ⊥AB 于D ,设AD =m ,BD =n ,且AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.DBAC12.已知,m n 是正整数,关于x 的方程2()0x mnx m n -++=有正整数解,求,m n 的值.B 级1.设1x ,2x 是二次方程032=-+x x 的两根,则3212419x x -+= .2.已知1ab ≠,且有25199580a a ++=及28199550b b ++=则ab= . 3.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12,x x ,且221224x x +=,则k = .4.已知12,x x 是关于x 的一元二次方程22x ax a ++=的两个实数根,则1221(2)(2)x x x x --的最大值为 .5.如果方程210x px ++=(p >0)的两根之差为1,那么p 等于( )A .2B .4CD 6.已知关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12,x x ,且22127x x +=,则212()x x -的值是 ( )A .1B .12C .13D .257.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是 ( ) A .23 B .25C .5D .2 8.设213a a +=,213b b +=且a b ≠,则代数式2211a b +的值为( ) A .5 B .7 C .9 D .119.已知,a b 为整数,a b >,且方程233()40x a b x ab +++=的两个根,αβ满足关系式(1)(1)(1)(1)ααββαβ+++=++.试求所有整数点对(,)a b .10.若方程2310x x ++=的两根,αβ也是方程620x px q -+=的两根,其中,p q 均为整数,求,p q 的值.11. 设,a b 是方程2310x x -+=的两根,c ,d 是方程2420x x -+=的两根,已知a b c dM b c d c d a d a b a b c+++=++++++++.求证:(1)222277a b c d M b c d c d a d a b a b c +++=-++++++++; (2)33334968a b c d M b c d c d a d a b a b c+++=-++++++++.12.设m 是不小于1-的实数,使得关于x 的一元二次方程222(2)310x m x m m +-+-+=有两个不相等实数根12,x x .(1)若22126x x +=,求m 的值;(2)求22121211mx mx x x +--的最大值.13.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.根与系数的关系例1. 152s ≥-且3,5s s ≠-≠ 例2. C 提示: 设三根为121,,x x ,则121x x -< 例 3. 设223,A βα=+223,B αβ=+ 31004A B += ①A B -= ② 解由① ②联立的 方程组得1(4038A =-例 4. 0,s ≠故第一个等式可变形为211()99()190,s s ++= 又11,,st t s≠∴是一元二次方程299190x x ++=的两个不同实根, 则1199,19,t t s s+=-=即199,19.st s t s +=-=故41994519st s s st s++-+==- 例5. (1) 当a b =时, 原式=2; 当a b ≠时, 原式=-20, 故原式的值为2或-20 (2) 由方程组得232,326(6),x y a z x y z az +=-=-+易知3,2x y 是一元二次方程22()6(6)0t a z t z az --+-+=的两个实数根,0∴∆≥, 即2223221440z az a -+-≤,由z 为实数知,22'(22)423(144)0,a a ∆=--⨯⨯-≥解得a 故正实数a(3) xy 与x y +是方程217660m m -+=的两个实根,解得11,6x y xy +=⎧⎨=⎩或6,()xy 11.x y +=⎧⎨=⎩舍原式=()()222222212499x y x y xy x y +-++=.例6 解法一:∵ac <0,2=40b ac ∆->,∴原方程有两个异号实根,不妨设两个根为x 1,x 2,且x 1<0<x 2,由韦达定理得x 1+ x 2=b a -,12c x x a =,由0+=,得0b ca a =,即)12120x x x ++=,解得2x =,假设2x,则,由10x <推得3-不成立,故2x ;假设21x ≥1,由10x <推得10x ,矛盾.故21x <21x <.解法二:设()2f x ax bx c =++,由条件得)b =,得)3355f a c a c =++=+=, ()1f a b c a a c ⎤=++=-⎦.若a >0,0c <,则0f <,()10f >;若a <0,0c >,则0f >,()10f <.∴0ac <时,总有()10f f .<1之间.A 级 1.3 2.2 3.-2 m >2 0<m ≤183提示:12x ->,22x ->与124x x +->,124x x ⋅>不等价.4.100134016- 提示:由条件得2n n a b n +=+,22n n a b n ⋅=-,则()()()2221n n a b n n --=-+,则()()211112221n a b n n ⎛⎫=-- ⎪--+⎝⎭.5.C 6.C 7.A 8.A 9.提示:(1)()2=2120m ∆-+> (2)2124m x x =-≤0,m =4或m =0. 10.(1)43k ->且0k ≠ (2)存在k =4 11.由题意得2m n =,224840n m n --+<.当n =1时,m =2;当n =2时,m =4. 12.设方程两根为1x ,2x ,则1212,.x x mn x x m n +=⎧⎨=+⎩∵m ,n ,1x ,2x 均为正整数,设121x x ≥≥,1m n ≥≥,则()1212x x x x mn m n +-=-+,即有()()()()1211112x x m n --+--=,则()()()()12112,1,0,110,1,2.x x m n ⎧--=⎪⎨--=⎪⎩∴123,2,5,2,2,1,5,2,3,1,2,2.x x m n =⎧⎪=⎪⎨=⎪⎪=⎩故5,2,3,1;2; 2.m m m n n n ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ B 级 1.0 提示:由条件得21130x x +-=,22230x x +-=,∴2113x x =-,2223x x =-,∴()3211111111333343x x x x x x x x =-=-+=-+=-,∴原式=()()121212434319431241944x x x x x x ---+=--++=++.又∵121x x +=-,∴原式=0. 2.853.5 4.638- 提示:()2=240a ∆-+>,原式=2963632488a ⎛⎫---- ⎪⎝⎭≤. 5.D 6.C 7.B 8.B9.()231αβαβ+-=,由根与系数关系得()241a b ab +-=,即()21a b -=,a -b =1.又由0∆≥得()2316a b ab +≥,从而()24a b +≤.由a -b =1,()24a b +≤,得满足条件的整数点对(a ,b )是(1,0)或(0,-1). 104447αβ+=,662248p αβαβ-==-,()2244227q αβαβαβ-==-. 11.a +b =3,c +d =4,ab =1,cd =2,a +b +c +d =7,222219a b c d +++=.(1)原式=()()()()7a a b c d a b c d d a b c d d a b c aa b c d a b c b c d+++-+++++-+++=-++++++…+77777.b c d b c d M c d a d a b a b c+-+-+-=-++++++(2)原式=()()()()2222a a b c d a b c d d a b c d d a b c b c da b c+++-+++++-+++=++++…+()()22227774968M a b c d M --+++=-.12.(1)m =. (2)原式=()()()22212121221212352312122m x x x x x x m m m x x x x ⎡⎤+-+⎛⎫⎣⎦=-+=-- ⎪-++⎝⎭.∵11m -≤≤,∴当m =-1时,22121211mx mx x x +--的最大值为10. 13.设20x ax b ++=的两根分别为,αβ(其中,αβ为整数且αβ≤),则方程20x cx a ++=的两根分别为1,1αβ++,又∵,(1)(1)a a αβαβ+=-++=,两式相加,得2210αβαβ+++=,即(2)(2)3αβ++=,从而2123αβ+=⎧⎨+=⎩,或2321αβ+=-⎧⎨+=-⎩,解得12αβ=-⎧⎨=⎩,或53αβ=-⎧⎨=-⎩,∴012a b c =⎧⎪=-⎨⎪=-⎩,或8156a b c =⎧⎪=⎨⎪=⎩,∴3a b c ++=-或29.。
根与系数的关系(压轴题专项讲练)(解析版)—2024-2025学年九年级数学上册压轴题专项(人教版)
根与系数的关系分类讨论思想:当问题所给的对象不能进行统一研究时,我们就需要对研究对象进行分类,然后对每一类分别进行研究,得出每一类的结论,最后综合各类的结果,得到整个问题的解答。
分类讨论的分类并非是随心所欲的,而是要遵循以下基本原则:1. 不重(互斥性)不漏(完备性);2. 按同一标准划分(同一性);3. 逐级分类(逐级性)。
一、一元二次方程的根与系数的关系如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根是,那么,.注意:它的使用条件为a≠0,Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.【典例1】已知:关于x的一元二次方程kx2+2x+1―2k=0有两个实数根x1,x2.(1)若|x1|+|x2|=k的值;(2)当k取哪些整数时,x1,x2均为整数;(3)当k取哪些有理数时,x1,x2均为整数.(1)分两种情况:①若两根同号,②若两根异号;根据根与系数的关系结合根的判别式解答即可;(2)根据根与系数的关系可得若x1+x2=―2k为整数,可得整数k=±1,±2,然后结合两根之积、解方程分别验证即可;(3)显然,当k=―1时,符合题意;由两根之积可得k应该是整数的倒数,不妨设k=1m,则方程可变形21xx,abxx-=+21acxx=21为x 2+2mx +m ―2=0,即为(x +m )2=m 2―m +2,再结合整数的意义即可解答.解:(1)∵Δ=22―4k (1―2k )=4―4k +8k 2=8k 2―12k =8k+72>0,∴不论k 为何值,关于x 的一元二次方程kx 2+2x +1―2k =0都有两个实数根x 1,x 2,∵关于x 的一元二次方程kx 2+2x +1―2k =0有两个实数根x 1,x 2,∴x 1+x 2=―2k ,x 1x 2=1―2kk,分两种情况:①若两根同号,由|x 1|+|x 2|=x 1+x 2=x 1+x 2=―当x 1+x 2=―2k =k =―当x 1+x 2=――2k =―k =②若两根异号,由|x 1|+|x 2|=(x 1―x 2)2=8,即(x 1+x 2)2―4x 1x 2=8,∴――4×1―2kk=8,解得:k =1,综上,k 的值为1或 ±(2)∵关于x 的一元二次方程kx 2+2x +1―2k =0有两个实数根x 1,x 2,∴x 1+x 2=―2k ,x 1x 2=1―2k k,若x 1,x 2均为整数,则x 1+x 2=―2k 为整数,∴整数k =±1,±2,当k =±2时,x 1x 2=1―2kk不是整数,故应该舍去;当k =1时,此时方程为x 2+2x ―1=0,方程的两个根不是整数,故舍去;当k =―1时,此时方程为―x 2+2x +3=0,方程的两个根为x 1=―1,x 2=3,都是整数,符合题意;综上,当k 取―1时,x 1,x 2均为整数;(3)显然,当k =―1时,符合题意;当k 为有理数时,由于x 1x 2=1―2kk=1k ―2为整数,∴k应该是整数的倒数,不妨设k=1m(m≠0),m为整数,则方程kx2+2x+1―2k=0即为x2+2mx+m―2=0,配方得:(x+m)2=m2―m+2,即x=―m±当m=2即k=12时,方程的两根为x1=0,x2=―4,都是整数,符合题意;当m≠2时,m2―m+2=(m―12)2+74不是完全平方数,故不存在其它整数m的值使上式成立;综上,k=―1或12.1.(22-23九年级上·湖北襄阳·自主招生)设方程ax2+bx+c=0(a≠0)有两个根x1和x2,且1<x1<2< x2<4,那么方程cx2―bx+a=0的较小根x3的范围为( )A.12<x3<1B.―4<x3<―2C.―12<x3<―14D.―1<x3<―12【思路点拨】由根与系数的关系得出x1+x2=―ba ,x1⋅x2=ca,再设方程cx2―bx+a=0的为m,n,根据根与系数的关系得出m+n=―(1x2+1x1),mn=x1⋅x2,从而得出方程cx2―bx+a=0的两根为―1x1,―1x2,然后由1<x1<2<x2<4,求出―1x1,―1x2的取值范围,从而得出结论.【解题过程】解:∵方程ax2+bx+c=0(a≠0)有两个根x1和x2,∴x1+x2=―ba ,x1⋅x2=ca,设方程cx2―bx+a=0的两根为m,n,则m+n=bc ,mn=ac,∵m+n=bc =―ba⋅(―ac),mn=1x1⋅x2,∴m+n=―(x1+x2)⋅1x1⋅x2=―x1+x2x1⋅x2=―(1x2+1x1),∴方程cx2―bx+a=0的两根为―1x1,―1x2,∵1<x1<2,2<x2<4,∴12<1x1<1,14<1x2<12,∴―1<―1x1<―12,―12<―1x2<―14,∵―1x1<―1x2,∴方程cx2―bx+a=0的较小根x3的范围为―1<x3<―12.故选:D.2.(22-23九年级下·安徽安庆·阶段练习)若方程x2+2px―3p―2=0的两个不相等的实数根x1、x2满足x12+x13=4―(x22+x23),则实数p的所有值之和为()A.0B.―34C.―1D.―54【思路点拨】先根据一元二次方程解的定义和根与系数的关系得到x12+2px1―3p―2=0,x1+x2=―2p,进而推出x13=3px1+2x1―2px12,则x13+x12=3px1+2x1―2px12+x12,x23+x22=3px2+2x2―2px22+x22,即可推出(3p+2)(x1+x2)+(1―2p)(x12+x22)=4,然后代入x1+x2=―2p,x12+x22=(x1+x2)2―4p 得到2p(4p+3)(p+1)=0,再根据判别式求出符号题意的值即可得到答案.【解题过程】解:∵x1、x2是方程x2+2px―3p―2=0的两个相等的实数根,∴x12+2px1―3p―2=0,x1+x2=―2p,x1x2=―3p―2,∴x12+2px1=3p+2,∴x13+2px12=3px1+2x1,∴x13=3px1+2x1―2px12,∴x13+x12=3px1+2x1―2px12+x12,同理得x23+x22=3px2+2x2―2px22+x22,∵x12+x13=4―(x22+x23),∴x12+x13+(x22+x23)=4,∴3px1+2x1―2px12+x12+3px2+2x2―2px22+x22=4,∴(3p+2)(x+x)+(1―2p)(x2+x2)=4,∴(3p+2)(―2p)+(1―2p)(―2p)2―2(―3p―2)=4,∴―6p2―4p+(1―2p)4p2+6p+4=4,∴―6p2―4p+4p2+6p+4―2p4p2+6p+4=4,∴―2p2+2p―2p4p2+6p+4=0,∴―2p4p2+6p+4+p―1=0,∴2p4p2+7p+3=0,∴2p(4p+3)(p+1)=0,,解得p1=0,p2=―1,p3=―34∵Δ=(2p)2+4(3p+2)>0,∴p2+3p+2>0,∴(p+1)(p+3)>0,∴p=―1不符合题意,∴p1+p3=―34∴符合题意,故选B.3.(22-23八年级下·安徽合肥·期末)若关于x的一元二次方程x2―2x+a2+b2+ab=0的两个根为x1=m,x2=n,且a+b=1.下列说法正确的个数为( )①m·n>0;②m>0,n>0;③a2≥a;④关于x的一元二次方程(x+1)2+a2―a=0的两个根为x1=m―2,x2=n―2.A.1B.2C.3D.4【思路点拨】根据根与系数的关系得x1x2=mn=a2+b2+ab,利用a+b=1消去b得到mn=a2―a+1=a+34 >0,从而即可对①进行判断;由于x1+x2=m+n=2>0,x1x2=mn>0,利用有理数的性质可对②进行判断;根据根的判别式的意义得到Δ=4―4(a2+b2+ab)≥0,即4―4(a2―a+1)≥0,则可对③进行判断;利用a2+b2+ab=a2―a+1把方程x2―2x+a2+b2+ab=0化为(x―1)2+a2―a+1=0,由于方程(x―1)2+a2―a=0可变形为[(x+2)―1]2+a2―a=0,所以x+2=m或x+2=n,于是可对④进行判断.【解题过程】解:根据根与系数的关系得x1x2=mn=a2+b2+ab,∵a+b=1,∴b=1―a,>0,所以①正确;∴mn=a2+(1―a)2+a(1―a)=a2―a+1=a―+34∵x1+x2=m+n=2>0,x1x2=mn>0,∴m>0,n>0,所以②正确;∵Δ≥0,∴4―4(a2+b2+ab)≥0,即4―4(a2―a+1)≥0,∴a≥a2,所以③错误;∵a2+b2+ab=a2―a+1,∴方程x2―2x+a2+b2+ab=0化为(x―1)2+a2―a+1=0,即(x―1)2+a2―a=0,∵方程(x+1)2+a2―a=0可变形为[(x+2)―1]2+a2―a=0,∴x+2=m或x+2=n,解得x1=m―2,x2=n―2,所以④正确.故选:C.4.(22-23九年级上·浙江·自主招生)设a、b、c、d是4个两两不同的实数,若a、b是方程x2―8cx―9d=0的解,c、d是方程x2―8ax―9b=0的解,则a+b+c+d的值为.【思路点拨】由根与系数的关系得a+b,c+d的值,两式相加得的值,根据一元二次方程根的定义可得a2―8ac―9d=0,代入可得a2―72a+9c―8ac=0,同理可得c2―72c+9a―8ac=0,两式相减即可得a+c 的值,进而可得a+b+c+d的值.【解题过程】解:由根与系数的关系得a+b=8c,c+d=8a,两式相加得a+b+c+d=8(a+c).因为a是方程x2―8cx―9d=0的根,所以a2―8ac―9d=0,又d=8a―c,所以a2―72a+9c―8ac=0①同理可得c2―72c+9a―8ac=0②①-②得(a―c)(a+c―81)=0.因为a≠c,所以a+c=81,所以a+b+c+d=8(a+c)=648.故答案为648.5.(23-24九年级上·江苏南通·阶段练习)已知实数a,b,c满足:a+b+c=2,abc=4.求|a|+|b|+|c|的最小值【思路点拨】用分类讨论的思想,解决问题即可.【解题过程】解:不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,且b+c=2―a,bc=4,a=0的两实根,于是b,c是一元二次方程x2―(2―a)x+4a≥0,即(a2+4)(a―4)≥0,∴Δ=(2―a)2―4×4a所以a≥4.又当a=4,b=c=―1时,满足题意.故a,b,c中最大者的最小值为4.因为abc=4>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,a,b,c4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,不妨设a>0,b<0,c<0,则|a|+|b|+|c|=a―b―c=a―(2―a)=2a―2,∵a≥4,故2a―2≥6,当a=4,b=c=―1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.故答案为:6.6.(22-23九年级上·四川成都·期末)将两个关于x的一元二次方程整理成a(x+ℎ)2+k=0(a≠0,a、h、k均为常数)的形式,如果只有系数a不同,其余完全相同,我们就称这样的两个方程为“同源二次方程”.已知关于x的一元二次方程ax2+bx+c=0(a≠0)与方程(x+1)2―2=0是“同源二次方程”,且方程ax2+bx+c=0(a≠0)有两个根为x1、x2,则b-2c=,ax1+x1x2+ax2的最大值是.【思路点拨】利用ax2+bx+c=0(a≠0)与方程(x+1)2―2=0是“同源二次方程”得出b=2a,c=a―2,即可求出b―2c;利用一元二次方程根与系数的关系可得x1+x2=―2,x1x2=a―2,进而得出ax1+x1x2+ax2=―2a=t(t>0),得a2―t⋅a+1=0,根据方程a2―t⋅a+1=0有正数解可知Δ=t2a+1,设a+1a―4≥0,求出t的取值范围即可求出ax1+x1x2+ax2的最大值.【解题过程】解:根据新的定义可知,方程ax2+bx+c=0(a≠0)可变形为a(x+1)2―2=0,∴a(x+1)2―2=ax2+bx+c,展开,ax2+2ax+a―2=ax2+bx+c,可得b=2a,c=a―2,∴b―2c=2a―2(a―2)=4;∵x1+x2=―2,x1x2=a―2,a=―2a++1,∴ax1+x1x2+ax2=a(x1+x2)+x1x2=―2a+a―2a∵方程ax2+bx+c=0(a≠0)有两个根为x1、x2,∴Δ=b2―4ac=(2a)2―4a(a―2)8a≥0,且a≠0,∴a>0,=t(t>0),得a2―t⋅a+1=0,设a+1a∵方程a2―t⋅a+1=0有正数解,∴Δ=t2―4≥0,≥2,解得t≥2,即a+1a∴ax1+x1x2+ax2=―2a+1≤―3.故答案为:4,-3.7.(23-24九年级上·山东济南·期末)已知xy+x+y=44,x2y+xy2=484,求x3+y3.【思路点拨】本题主要考查了代数式求值、一元二次方程的根与系数的关系、因式分解的应用等知识点,综合应用所学知识成为解题的关键.设xy=m,x+y=n,等量代换后可得44=m+n、484=mn,则m、n为t2―44t+484=0的根,可解得m=n=22,然后再对x3+y3变形后将m=n=22代入计算即可.【解题过程】解:设xy=m,x+y=n,∴44=xy+x+y=m+n,484=x2y+xy2=xy(x+y)=mn,∴m、n为t2―44t+484=0的根,∴m=n=22,∴x3+y3=(x+y)x2+y2―xy=(x+y)(x+y)2―3xy=n[n2―3m]=n3―3mn=9196.8.(2024九年级·全国·竞赛)记一元二次方程x2+3x―5=0的两根分别为x1、x2.(1)求1x1―1+1x2―1的值;(2)求3x21+6x1+x22的值.【思路点拨】本题考查了一元二次方程根与系数的关系、一元二次方程的解.在利用根与系数的关系x1⋅x2=ca,x1+x2=―ba时,需要弄清楚a、b、c的意义.(1)利用根与系数的关系求得求1x1―1+1x2―1的值的值;(2)由一元二次方程的解可得x21+3x1―5=0,再利用根与系数的关系求解即可.【解题过程】(1)∵x1+x2=―3,x1x2=―5,∴1x1―1+1x2―1=x2―1+x1―1 (x1―1)(x2―1)=x1+x2―2x1x2―(x1+x2)+1=―3―2―5―(―3)+1=5;(2)∵x1是一元二次方程x2+3x―5=0的根,∴x21+3x1―5=0,∴x21+3x1=5,又∵x1+x2=―3,x1x2=―5,∴3x21+6x1+x22=2x21+3x1+(x1+x2)2―2x1x2=29.9.(23-24九年级下·北京·开学考试)已知关于x的方程x2―2mx+m2―n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为符合条件的最小整数,且该方程的较大根是较小根的3倍,求m的值.【思路点拨】本题考查一元二次方程根的判别式及根与系数的关系,对于一元二次方程ax2+bx+c=0(a≠0),当判别式Δ>0时方程有两个不相等的实数根,Δ=0时方程有两个相等的实数根,Δ<0时方程没有实数根,若方程的两个实数根为x1、x2,则x1+x2=―ba ,x1⋅x2=ca.(1)根据方程x2―2mx+m2―n=0有两个不相等的实数根得出判别式Δ>0,列出不等式即可得答案;(2)根据(1)中结果得出n值,利用一元二次方程根与系数的关系列方程求出m的值即可.【解题过程】(1)解:∵关于x的方程x2―2mx+m2―n=0有两个不相等的实数根,∴Δ=(―2m)2―4(m2―n)>0,解得:n>0.(2)设方程的两个实数根为x1、x2,且x1>x2,∴x1+x2=2m,x1⋅x2=m2―n,由(1)可知:n>0,∵n为符合条件的最小整数,∴n=1,∵该方程的较大根是较小根的3倍,∴x1=3x2,∴4x2=2m,3x22=m2―1,∴3×m24=m2―1,解得:m1=―2,m2=2.当m=2时,x2=1,则x1=3x2=3,符合题意,当m=―2时,x2=―1,则x1=3x2=―3<x2,与x1>x2不符,舍去,∴m=2.10.(23-24九年级上·安徽淮南·阶段练习)若关于x的一元二次方程x2+2x―m2―m=0.(1)若α和β分别是该方程的两个根,且αβ=―2,求m的值;(2)当m=1,2,3,⋅⋅⋅,2024时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,⋅⋅⋅,α2024、β2024,求1α1+1β1+1α2+1β2+⋯+1α2024+1β2024的值.【思路点拨】(1)根据一元二次方程的根与系数的关系进行求解即可;(2)根据一元二次方程的根与系数的关系x1+x2=―ba ,x1⋅x2=ca可得:1x1+1x2=x1+x2x1⋅x2=2m2+m,进一步可寻找1α2024+1β2024的规律,即可求解.【解题过程】(1)解:∵关于x的一元二次方程x2+2x―m2―m=0,α和β分别是该方程的两个根,∴αβ=―m2―m∵αβ=―2,∴―2=―m2―m∴m=1或m=―2;(2)解:设方程x2+2x―m2―m=0的两个根为:x1,x2则x1+x2=―ba =―2,x1⋅x2=ca=―m2―m,∴1 x1+1x2=x1+x2x1·x2=2m2+m=2m(m+1)∴1α1+1β1=21×2,1α2+1β2=22×3,1α3+1β3=23×4…..1α2024+1β2024=22024×2025∴1+1+1+1+⋯+1+1=2×+1+...+=2×1―12+12―13+...+12024=2×1―=4048202511.(22-23九年级上·湖北武汉·期中)已知α、β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根(1)直接写出m 的取值范围(2)若满足1α+1β=―1,求m 的值.(3)若α>2,求证:β>2;【思路点拨】(1)根据一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,得Δ>0,即可列式作答;(2)结合一元二次方程根与系数的关系,得α+β=―(2m +3)和αβ=m 2,因为1α+1β=―1,所以2m+3m 2=1,解得m 1=3,m 2=―1,结合m >―34,即可作答;(3)因为(α―2)(β―2)=αβ―2(α+β)+4,结合α+β=―(2m +3)和αβ=m 2,得m 2+2(2m +3)+4=(m +2)2+6,则(α―2)(β―2)≥6>0,又因为α>2,即可证明β>2.【解题过程】(1)解:∵一元二次方程x 2+(3)x +m 2=0的两个不相等的实数根∴Δ=b 2―4ac =(2m +3)2―4×1×m 2=4m 2+12m +9―4m 2=12m +9>0,即m >―34;(2)解:∵1α+1β=βαβ+ααβ=α+βαβ=―1,且α+β=―b a =―(2m +3),αβ=ca =m 2∴2m+3m 2=1整理得m 2―2m ―3=0,解得:m 1=3,m 2=―1∵由(1)知m >―34,∴m =3检验:当m =3时,m 2≠0,即m =3;(3)证明:因为(α―2)(β―2)=αβ―2(α+β)+4,把α+β=―(2m+3)和αβ=m2代入上式,得m2+2(2m+3)+4=m2+4m+10=(m+2)2+6,∵(m+2)2≥0,∴(m+2)2+6≥6∴(α―2)(β―2)≥6>0∵α>2,∴α―2>0,∴β―2>0,即β>2.12.(22-23九年级·浙江·自主招生)已知方程x2+4x+1=0的两根是α、β.(1)求|α―β|的值;(2(3)求作一个新的一元二次方程,使其两根分别等于α、β的倒数的立方.(参考公式:x3+y3=(x+y) x2+y2―xy.【思路点拨】(1α+β=―4,αβ=1,再求得(α―β)2的值,进而求得|α―β|的值.++α+β=―4,αβ=1代(2入计算即可;(3+的值,然后根据一元二次方程根与系数的关系即可解答.【解题过程】(1)解:∵方程x2+4x+1=0的两根是α、β∴α+β=―4,αβ=1∴(α―β)2=(α+β)2―4αβ=12∴|α―β|=(2)解:由(1)可知:α<0,β<0,∵+=αβ+βα+2=α2+β2αβ+2=(α+β)2―2αβαβ+2=16,=4(负值舍去);(3+=(1α+1β)+―=α+βαβ=α+βαβ=―411=―52==1所以新的一元二次方程x2+52x+1=0.13.(22-23九年级上·福建泉州·期末)已知关于x的方程mx2―(m―1)x+2=0有实数根.(1)若方程的两根之和为整数,求m的值;(2)若方程的根为有理根,求整数m的值.【思路点拨】(1)根据关于x的方程mx2―(m―1)x+2=0有两个根,且为实数根,先利用一元二次方程的根的判别式确定m的取值范围,再根据一元二次方程的根与系数的关系,可知x1+x2=m―1m,若方程的两根之和为整数,即m―1m为整数,即可确定m的值;(2)分两种情况讨论:当m=0时,此时关于x的方程为x+2=0,求解可得x=―2,符合题意;当m≠0时,对于关于x的方程mx2―(m―1)x+2=0可有x=m为整数,则Δ=m2―10m+1为某一有理数的平方,据此分析即可获得答案.【解题过程】(1)解:∵关于x的方程mx2―(m―1)x+2=0有两个根,且为实数根,∴m≠0,且Δ=[―(m―1)]2―4m×2=m2―10m+1≥0,根据一元二次方程的根与系数的关系,可知x1+x2=――(m―1)m =m―1m,若方程的两根之和为整数,即m―1m为整数,∵m―1m =1―1m,∴1m是整数,∴m=±1,当m=1时,Δ=1―10+1=―8<0,不符合题意;当m=―1时,Δ=1+10+1=12>0,m―1m =―1―1―1=2,为整数,符合题意;∴m的值为―1;(2)当m=0时,此时关于x的方程为x+2=0,解得x=―2;当m≠0时,对于关于x的方程mx2―(m―1)x+2=0的根为:x=若方程的根为有理根,且m为整数,则Δ=m2―10m+1为完全平方数,设m2―10m+1=k2(k为正整数),则:m==5±∵m为整数,设24+k2=n2(n为正整数),∴(k+n)(n―k)=24,∴k+n=12n―k=2或k+n=6n―k=4或k+n=8n―k=3或k+n=24n―k=1,解得:k=5n=7或k=1n=5或k=52n=11(不合题意,舍去)或k=232n=25(不合题意,舍去)∴m 2―10m +1=12=1或m 2―10m +1=52=25;当m 2―10m +1=1时,解得m =10或m =0(舍去);当m 2―10m +1=25时,解得m =―2或m =12,综上所述,若方程的根为有理根,则整数m 的值为0或10或―2或12.14.(22-23九年级下·浙江·自主招生)设m 为整数,关于x 的方程(m 2+m ―2)x 2―(7m +2)x +12=0有两个整数实根.(1)求m 的值.(2)设△ABC 的三边长a,b,c 满足c =2+a 2m ―12a =0,m 2+b 2m ―12b =0.求△ABC 的面积.【思路点拨】(1)设原方程的两个解分别为x 1,x 2,根据两个整数实根,则x 1+x 2=7m+2m 2+m―2,x 1x 2=12m 2+m―2都是整数,进而分类讨论,即可求解;(2)由(1)得出的m 的值,然后代入将m 2+a 2m ―12a =0,m 2+b 2m ―12b =0进行化简,得出a ,b 的值.然后再根据三角形三边的关系来确定符合条件的a ,b 的值,用三角形的面积公式得出三角形的面积.【解题过程】(1)解:∵m 2+m ―2≠0,∴m ≠―2或m =1,∵方程有两个实数根,∴Δ=b 2―4ac =[―(7m +2)]2―4×12×(m 2+m ―12)=m 2―20m +580=(m ―10)2+480>0设原方程的两个解分别为x 1,x 2∴x 1+x 2=7m+2m 2+m―2,x 1x 2=12m 2+m―2都是整数,∴m 2+m ―2=1,2,3,4,6,12m 2+m ―2=1,解得:m =m 2+m ―2=2,解得:m =m 2+m ―2=3,解得:m =m 2+m ―2=4,解得:m =―3或m =2m 2+m ―2=6,解得:m =m2+m―2=12,解得:m=当m=―3时,7m+2m2+m―2=―21+24=―194不是整数,舍去当m=2时,7m+2m2+m―2=14+24=4符合题意,综上所述,m=2;(2)把m=2代入两等式,化简得a2―6a+2=0,b2―6b+2=0,当a=b时,a=b=3当a≠b时,a、b是方程x2―6x+2=0的两根,而Δ>0,根据根与系数的关系可得,a+b=6>0,ab=2>0,则a>0、b>0,①a≠b,c=a2+b2=(a+b)2―2ab=36―4=32=c2,故△ABC为直角三角形,且∠C=90°,SΔABC=12ab=1;②a=b=3c=2(3―<故不能构成三角形,不合题意,舍去;;③a=b=3c=2(3+>SΔABC=12×=综上,△ABC的面积为1或15.(22-23九年级上·湖南常德·材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1x2=ca.材料2:已知一元二次方程x2―x―1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2―x―1=0的两个实数根分别为m,n,∴m+n=1,mn=―1,则m2n+mn2=mn(m+n)=―1×1=―1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x2―3x―1=0的两个根为x1,x2,则x1+x2=___________,x1x2= ___________.(2)类比应用:已知一元二次方程x2―3x―1=0的两根分别为m、n,求nm +mn的值.(3)思维拓展:已知实数s、t满足s2―3s―1=0,t2―3t―1=0,且s≠t,求1s ―1t的值.【思路点拨】(1)直接利用一元二次方程根与系数的关系求解即可;(2)利用一元二次方程根与系数的关系可求出m +n =―ba =3,mn =ca =―1,再根据nm +mn=m 2+n 2mn=(m+n )2―2mnmn,最后代入求值即可;(3)由题意可将s 、t 可以看作方程x 2―3x ―1=0的两个根,即得出s +t =―b a =3,s ⋅t =ca =―1,从而可求出(t ―s )2=(t +s )2―4st =13,即t ―s =t ―s =―【解题过程】(1)解:∵一元二次方程x 2―3x ―1=0的两个根为x 1,x 2,∴x 1+x 2=―ba =――31=3,x 1⋅x 2=c a =―11=―1.故答案为:3,―1;(2)∵一元二次方程x 2―3x ―1=0的两根分别为m 、n ,∴m +n =―ba =3,mn =ca =―1,∴nm +m n=m 2+n 2mn=(m +n )2―2mn mn =32―2×(―1)―1=―11;(3)∵实数s 、t 满足s 2―3s ―1=0,t 2―3t ―1=0,∴s 、t 可以看作方程x 2―3x ―1=0的两个根,∴s +t =―ba =3,st =ca =―1,∵(t ―s )2=(t +s )2―4st =32―4×(―1)=13∴t ―s =t ―s =―当t ―s =1s―1t =t―s st==―当t ―s =―1s―1t =t―s st==综上分析可知,1s ―1t 的值为16.(23-24八年级上·北京海淀·期中)小聪学习多项式研究了多项式值为0的问题,发现当mx +n =0或px +q =0时,多项式A =(mx +n )(px +q )=mpx 2+(mq +np )x +nq 的值为0,把此时x 的值称为多项式A 的零点.(1)已知多项式(3x +1)(x ―2),则此多项式的零点为__________;(2)已知多项式B =(x ―1)(bx +c )=ax 2―(a ―1)x ―a2有一个零点为1,求多项式B 的另一个零点;(3)小聪继续研究(x ―3)(x ―1),x (x ―4)及x ――x 轴上表示这些多项式零点的两个点关于直线x =2对称,他把这些多项式称为“2系多项式”.若多项式M =(2ax +b )(cx ―5c )=bx 2―4cx ―2a ―4是“2系多项式”,求a 与c 的值.【思路点拨】(1)根据多项式的零点的定义即可求解;(2)根据多项式的零点的定义将x =1代入ax 2―(a ―1)x ―a2=0,求得a =2,再解一元二次方程即可求解;(3)令cx ―5c =0,求得M 的一个零点为5,根据“2系多项式”的定义求得方程bx 2―4cx ―2a ―4=0的两个根为x 1=―1,x 2=5,再利用根与系数的关系即可求解.【解题过程】(1)解:令(3x +1)(x ―2)=0,∴3x +1=0或x ―2=0,∴x =―13或x =2,则此多项式的零点为―13或2;故答案为:―13或2;(2)解:∵多项式B =(x ―1)(bx +c )=ax 2―(a ―1)x ―a2有一个零点为1,∴将x =1代入ax 2―(a ―1)x ―a2=0,得a ―(a ―1)―a2=0,解得a =2,∴B=2x2―x―1=(x―1)(2x+1),令2x+1=0,解得x=―12,∴多项式B的另一个零点为―12;(3)解:∵M=(2ax+b)(cx―5c)=bx2―4cx―2a―4是“2系多项式”,令cx―5c=0,解得x=5,即M的一个零点为5,∴设M的另一个零点为y,则y+52=2,解得y=―1,即2ax+b=0时,x=―1,则―2a+b=0①,令M=bx2―4cx―2a―4=0,根据题意,方程bx2―4cx―2a―4=0的两个根为x1=―1,x2=5,∴x1+x2=――4cb =5+(―1)=4,x1⋅x2=―2a―4b=5×(―1)=―5,∴c=b②,5b―2a―4=0③,解①②③得c=b=1,a=12,∴a=12,c=1.17.(22-23九年级上·湖北黄石·期末)(1)x1,x2是关于x的一元二次方程x2―2(k+1)x+k2+2=0的两实根,且(x1+1)⋅(x2+1)=8,求k的值.(2)已知:α,β(α>β)x2―x―1=0的两个实数根,设s1=α+β,s2=α2+β2,…,s n=αn+βn.根据根的定义,有α2―α―1=0,β2―β―1=0,将两式相加,得α2+β2―(α+β)―2=0,于是,得s2―s1―2=0.根据以上信息,解答下列问题:①直接写出s1,s2的值.②经计算可得:s3=4,s4=7,s5=11,当n≥3时,请猜想s n,s n―1,s n―2之间满足的数量关系,并给出证明.【思路点拨】(1)根据一元二次方程根与系数的关系可得出x1+x2=2(k+1),x1x2=k2+2.由(x1+1)(x2+1)=8,可得x1x2+(x1+x2)+1=8,即得出关于k的一元二次方程,解出k的值,再根据一元二次方程根的判别式验证,舍去不合题意的值即可;(2)①根据一元二次方程根与系数的关系可得出α+β=―ba =1,αβ=ca=―1,进而可求出s1=α+β=1,s2=α2+β2=(α+β)2―2αβ=3;②由一元二次方程的解的定义可得出α2―α―1=0,两边都乘以αn―2,得:αn―αn―1―αn―2=0①,同理可得:βn―βn―1―βn―2=0②,再由①+②,得:(αn+βn)―αn―1+βn―1―αn―2+βn―2=0.最后结合题意即可得出s n―s n―1―s n―2=(αn+βn)―αn―1+βn―1―αn―2+βn―2=0,即s n=s n―1+s n―2.【解题过程】解:(1)∵x1,x2是关于x的一元二次方程x2―2(k+1)x+k2+2=0的两实根,∴x1+x2=―ba =――2(k+1)1=2(k+1),x1x2=ca=k2+21=k2+2,∴(x1+1)(x2+1)=x1x2+(x1+x2)+1=k2+2+2(k+1)+1=8,整理,得:k2+2k―3=0,解得:k1=―3,k2=1.当k=―3时,Δ=b2―4ac=[―2(k+1)]2―4(k2+2)=[―2(―3+1)]2―4(―32)+2=―28<0,∴此时原方程没有实数根,∴k=―3不符合题意;当k=1时,Δ=b2―4ac=[―2(k+1)]2―4(k2+2)=[―2×(1+1)]2―4(12+2)=4>0,∴此时原方程有两个不相等的实数根,∴k=1符合题意,∴k的值为1;(2)①∵x2―x―1=0,∴a=1,b=―1,c=―1.∵α,β(α>β)是一元二次方程x2―x―1=0的两个实数根,∴α+β=―ba =1,αβ=ca=―1,∴s1=α+β=1,s2=α2+β2=(α+β)2―2αβ=12―2×(―1)=3;②猜想:s n=s n―1+s n―2.证明:根据一元二次方程根的定义可得出α2―α―1=0,两边都乘以αn―2,得:αn―αn―1―αn―2=0①,同理可得:βn―βn―1―βn―2=0②,由①+②,得:(αn+βn)―αn―1+βn―1―αn―2+βn―2=0,∵s=α+β,s=α+β,s=α+β,∴s n―s n―1―s n―2=(αn+βn)―αn―1+βn―1―αn―2+βn―2=0,即s n=s n―1+s n―2.18.(23-24九年级上·福建宁德·期中)已知关于x的方程x2―(m+2)x+4m=0有两个实数根x1,x2,其中x1<x2.(1)若m=―1,求x12+x22的值;(2)一次函数y=3x+1的图像上有两点A(x1,y1),B(x2,y2),若AB=m的值;(3)边长为整数的直角三角形,其中两直角边的长度恰好为x1和x2,求该直角三角形的面积.【思路点拨】该题主要考查了一元二次方程的根判别式“Δ=b2―4ac”,根与系数关系“x1+x2=―ba ,x1⋅x2=ca”,一次函数的性质,直角三角形的性质,勾股定理“直角三角形两直角边的平方之和等于斜边的平方”等知识点,解题的关键是分类谈论思想的运用;(1)将m=―1代入方程得出方程,再根据根与系数关系得到x1+x2=―ba =1,x1⋅x2=ca=―4,将x12+x22转化即可求解;(2)根据点A(x1,y1),B(x2,y2)在函数图像上,得出A x1,3x1+1,B x2,3x2+1,再根据根与系数关系得到x1+x2=m+2,x1⋅x2=4m,根据AB=(3)根据直角三角形两直角边x1,x2为整数,得出Δ=b2―4ac=m2―12m+4,令m2―12m+4=k2(k为正整数),得出(m+k―6)(m―k―6)=32,又m+k―6>m―k―6,然后分三种情况取值即可解答;【解题过程】(1)当m=―1时,方程为x2―x―4=0,Δ=b2―4ac=(―1)2―4×1×(―4)=17>0,∴x1+x2=―ba =1,x1⋅x2=ca=―4,即x21+x22=(x1+x2)2―2x1x2=12―2×(―4)=9;(2)将A(x1,y1),B(x2,y2)代入y=3x+1可得A x1,3x1+1,B x2,3x2+1,又Δ=(m+2)2―4×4m>0,故x1+x2=m+2,x1⋅x2=4m,AB2=(x1―x2)2+(y1―y2)2=10(x1―x2)2,即10(x1―x2)2=10,(x1―x2)2=1,(x1―x2)2=(x1+x2)2―4x1x2=1,(m+2)2―4×4m=1,(m―6)2=33,m1=6+2=6―(3)∵直角三角形两直角边x1,x2为整数,∴Δ=b2―4ac=(m+2)2―4×4m=m2―12m+4为平方数,不妨令m2―12m+4=k2(k为正整数),(m―6)2―32=k2,(m+k―6)(m―k―6)=32,m+k―6>m―k―6,当①∴m+k―6=32,m―k―6=1,解得m=452(不合题意舍去);当②m+k―6=16,m―k―6=2,解得m=15,∴方程x2―17x+60=0,x1=12,x2=5,则斜边为13,即S=x1⋅x22=30;当③m+k―6=8,m―k―6=4,解得m=12,∴方程x2―14x+48=0,x1=6,x2=8,则斜边为10,即S=x1⋅x22=24,综上所述:该直角三角形的面积为30或24.19.(22-23九年级上·全国·单元测试)如果方程x2+px+q=0有两个实数根x1,x2,那么x1+x2=―p,x1x2=q,请根据以上结论,解决下列问题:(1)已知a,b是方程x2+15x+5=0的二根,则ab +ba=?(2)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知x =x 1y =y 1 和x =x 2y =y 2是关于x ,y 的方程组x 2―y +k =0x ―y =1的两个不相等的实数解.问:是否存在实数k ,使得y 1y 2―x 1x 2―x 2x 1=2?若存在,求出的k 值,若不存在,请说明理由.【思路点拨】(1)根据a ,b 是方程x 2+15x +5=0的二根,求出a +b ,ab 的值,即可求出ab +ba 的值;(2)根据a +b +c =0,abc =16,得出a +b =―c ,ab =16c,a 、b 是方程x 2+cx +16c=0的解,再根据c 2―4×16c≥0,即可求出c 的最小值;(3)运用根与系数的关系求出x 1+x 2=1,x 1x 2=k +1,再解y 1y 2―x 1x 2―x 2x 1=2,即可求出k 的值.【解题过程】(1)解:∵a ,b 是方程x 2+15x +5=0的二根,∴a +b =―15,ab =5,∴ab +ba =(a+b )2―2abab=(―15)2―2×55=43,∴ab +b a =43;(2)∵a +b +c =0,abc =16,∴a +b =―c ,ab =16c ,∴a 、b 是方程x 2+cx +16c=0的解,∴c 2―4×16c≥0,∴c 2―43c≥0,∵c 是正数,∴c 3―43≥0,∴c 3≥43,∴c ≥4,∴正数c 的最小值是4;(3)存在,当k =―2时,y 1y 2―x 1x 2―x 2x 1=2.理由如下:∵x2―y+k=0①x―y=1②,由①得:y=x2+k,由②得:y=x―1,∴x2+k=x―1,即x2―x+k+1=0,由题意思可知,x1,x2是方程x2―x+k+1=0的两个不相等的实数根,∴(―1)2―4(k+1)>0x1+x2=1x1x2=k+1,则k<―34,∵x=x1y=y1和x=x2y=y2是关于x,y的方程组x2―y+k=0x―y=1的两个不相等的实数解,∴y1y2=(x1―1)(x2―1),∴y1y2―x1x2―x2x1=(x1―1)(x2―1)―(x1+x2)2―2x1x2x1x2=2,∴x1x2―(x1+x2)+1―(x1+x2)2―2x1x2x1x2=2,∴k+1―1+1―1―2(k+1)k+1=2,整理得:k2+2k=0,解得:k1=―2,k2=0(舍去),∴k的值为―2.20.(22-23九年级上·四川资阳·期末)定义:已知x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,若x1<x2<0,且3<x1x2<4,则称这个方程为“限根方程”.如:一元二次方程x2+13x+30=0的两根为x1=―10,x2=―3,因―10<―3<0,3<―10―3<4,所以一元二次方程x2+13x+30=0为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程x2+9x+14=0是否为“限根方程”,并说明理由;(2)若关于x的一元二次方程2x2+(k+7)x+k2+3=0是“限根方程”,且两根x1、x2满足x1+x2+x1x2 =―1,求k的值;(3)若关于x的一元二次方程x2+(1―m)x―m=0是“限根方程”,求m的取值范围.【思路点拨】(1)解该一元二次方程,得出x 1=―7,x 2=―2,再根据“限根方程”的定义判断即可;(2)由一元二次方程根与系数的关系可得出x 1+x 2=―k+72,x 1x 2=k 2+32,代入x 1+x 2+x 1x 2=―1,即可求出k 1=2,k 2=―1.再结合“限根方程”的定义分类讨论舍去不合题意的值即可;(3)解该一元二次方程,得出x 1=―1,x 2=m 或x 1=m ,x 2=―1.再根据此方程为“限根方程”,即得出此方程有两个不相等的实数根,结合一元二次方程根的判别式即可得出Δ>0,m <0且m ≠―1,可求出m 的取值范围.最后分类讨论即可求解.【解题过程】(1)解:x 2+9x +14=0,(x +2)(x +7)=0,∴x +2=0或x +7=0,∴x 1=―7,x 2=―2.∵―7<―2,3<―7―2=72<4,∴此方程为“限根方程”;(2)∵方程2x 2+(k +7)x +k 2+3=0的两个根分比为x 1、x 2,∴x 1+x 2=―k+72,x 1x 2=k 2+32.∵x 1+x 2+x 1x 2=―1,∴―k+72+k 2+32=―1,解得:k 1=2,k 2=―1.分类讨论:①当k =2时,原方程为2x 2+9x +7=0,∴x 1=―72,x 2=―1,∴x 1<x 2<0,3<x 1x 2=72<4,∴此时方程2x 2+(k +7)x +k 2+3=0是“限根方程”,∴k =2符合题意;②当k =―1时,原方程为2x 2+6x +4=0,∴x 1=―2,x 2=―1,∴x 1<x 2<0,x 1x 2=2<3,∴此时方程2x2+(k+7)x+k2+3=0不是“限根方程”,∴k=―1不符合题意.综上可知k的值为2;(3)x2+(1―m)x―m=0,(x+1)(x―m)=0,∴x+1=0或x―m=0,∴x1=―1,x2=m或x1=m,x2=―1.∵此方程为“限根方程”,∴此方程有两个不相等的实数根,∴Δ>0,m<0且m≠―1,∴(1―m)2+4m>0,即(1+m)2>0,∴m<0且m≠―1.分类讨论:①当―1<m<0时,∴x1=―1,x2=m,∵3<x1x2<4,∴3<―1m<4,解得:―13<m<―14;②当m<―1时,∴x1=m,x2=―1,∵3<x1x2<4,∴3<m―1<4,解得:―4<m<―3.综上所述,m的取值范围为―13<m<―14或―4<m<―3.。
初中数学九年级专题复习专题04 根与系数关系
专题04 根与系数关系阅读与思考根与系数的关系称为韦达定理,其逆定理也成立,是由16世纪的法国数学家韦达所发现的.韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1.求方程中字母系数的值或取值范围; 2.求代数式的值;3.结合根的判别式,判断根的符号特征; 4.构造一元二次方程; 5.证明代数等式、不等式.当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思路,需要注意的是,应用根与系数的关系的前提条件是一元二次方程有两个实数根,所以,应用根与系数的关系解题时,必须满足判别式△≥0.例题与求解【例1】设关于x 的二次方程22(4)(21)10m x m x -+-+=(其中m 为实数)的两个实数根的倒数和为s ,则s 的取值范围是_________.【例2】 如果方程2(1)(2)0x x x m --+=的三个根可以作为一个三角形的三边长,那么,实数m 的取值范围是_________.A .01m ≤≤B .34m ≥C .314m <≤D .314m ≤≤【例3】已知α,β是方程2780x x -+=的两根,且αβ>.不解方程,求223βα+的值.【例4】 设实数,s t 分别满足22199910,99190s s t t ++=++=并且1st ≠,求41st s t++的值.【例5】(1)若实数,a b 满足258a a +=,258b b +=,求代数式1111b a a b --+--的值; (2)关于,,x y z 的方程组32236x y z axy yz zx ++=⎧⎨++=⎩有实数解(,,)x y z ,求正实数a 的最小值;(3)已知,x y 均为实数,且满足17xy x y ++=,2266x y xy +=,求432234x x y x y xy y ++++的值.【例6】 ,,a b c 为实数,0ac <0++=,证明一元二次方程20ax bx c ++=有大于1的根.能力训练A 级1.已知m ,n 为有理数,且方程20x mx n ++=2,那么m n += .2.已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,则m 的值为 . 3.当m = 时,关于x 的方程228(26)210x m m x m -+-+-=的两根互为相反数; 当 时,关于x 的方程22240x mx m -+-=的两根都是正数;当 时,关于m的方程23280x x m ++-=有两个大于2-的根.4.对于一切不小于2的自然数n .关于x 的一元二次方程22(2)20x n x n -+-=的两根记为,n n a b (2)n ≥则223320072007111(2)(2)(2)(2)(2)(2)a b a b a b +++=------ .5.设12,x x 是方程222(1)(2)0x k x k -+++=的两个实根,且12(1)(1)8x x ++=,则k 的值为( )A .31-或B .3-C .1D .12k ≥的一切实数 6.设12,x x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且1210,30x x x <-<,则 ( ) A .12m n >⎧⎨>⎩ B .12m n >⎧⎨<⎩ C .12m n <⎧⎨>⎩ D .12m n <⎧⎨<⎩7.设12,x x 是方程220x x k +-=的两个不等的实数根,则22122x x +-是( )A .正数B .零C .负数D .不大于零的数8.如图,菱形ABCD 的边长是5,两对角线交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的根,那么m 的值是( )A .3-B .5C .53-或D .53-或9.已知关于x 的方程:22(2)04m x m x --=. (1)求证:无论m 取什么实数值,方程总有两个不相等的实数根;(2)若这个方程的两个根是12,x x ,且满足212,x x =+求m 的值及相应的12,x x .10.已知12,x x 是关于x 的一元二次方程2430kx x +-=的两个不相等的实数根. (1)求k 的取值范围;(2)是否存在这样的实数k ,使12123222x x x x +-=成立?若存在,求k 的值;若不存在,说明理由.11.如图,已知在△ABC 中,∠ACB =90°,过C 点作CD ⊥AB 于D ,设AD =m ,BD =n ,且AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.DBAC12.已知,m n 是正整数,关于x 的方程2()0x mnx m n -++=有正整数解,求,m n 的值.B 级1.设1x ,2x 是二次方程032=-+x x 的两根,则3212419x x -+= .2.已知1ab ≠,且有25199580a a ++=及28199550b b ++=则ab= . 3.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12,x x ,且221224x x +=,则k = .4.已知12,x x 是关于x 的一元二次方程22x ax a ++=的两个实数根,则1221(2)(2)x x x x --的最大值为 .5.如果方程210x px ++=(p >0)的两根之差为1,那么p 等于( )A .2B .4CD 6.已知关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12,x x ,且22127x x +=,则212()x x -的值是 ( )A .1B .12C .13D .257.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是 ( ) A .23 B .25C .5D .2 8.设213a a +=,213b b +=且a b ≠,则代数式2211a b +的值为( ) A .5 B .7 C .9 D .119.已知,a b 为整数,a b >,且方程233()40x a b x ab +++=的两个根,αβ满足关系式(1)(1)(1)(1)ααββαβ+++=++.试求所有整数点对(,)a b .10.若方程2310x x ++=的两根,αβ也是方程620x px q -+=的两根,其中,p q 均为整数,求,p q 的值.11.设,a b 是方程2310x x -+=的两根,c ,d 是方程2420x x -+=的两根,已知a b c dM b c d c d a d a b a b c+++=++++++++.求证:(1)222277a b c d M b c d c d a d a b a b c +++=-++++++++; (2)33334968a b c d M b c d c d a d a b a b c+++=-++++++++.12.设m 是不小于1-的实数,使得关于x 的一元二次方程222(2)310x m x m m +-+-+=有两个不相等实数根12,x x .(1)若22126x x +=,求m 的值;(2)求22121211mx mx x x +--的最大值.13.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.专题 04 根与系数的关系例1. 152s ≥-且3,5s s ≠-≠ 例2. C 提示: 设三根为121,,x x ,则121x x -<例 3. 设223,A βα=+223,B αβ=+ 31004A B += ①A B -= ② 解由① ②联立的 方程组得1(4038A =-例 4.0,s ≠故第一个等式可变形为211()99()190,s s ++= 又11,,st t s ≠∴是一元二次方程299190x x ++=的两个不同实根, 则1199,19,t t s s+=-=即199,19.st s t s +=-=故41994519st s s st s++-+==-例5. (1) 当a b =时, 原式=2; 当a b ≠时, 原式=-20, 故原式的值为2或-20(2) 由方程组得232,326(6),x y a z x y z az +=-=-+易知3,2x y 是一元二次方程22()6(6)0t a z t z az --+-+=的两个实数根,0∴∆≥, 即2223221440z az a -+-≤,由z 为实数知,22'(22)423(144)0,a a ∆=--⨯⨯-≥解得a ≥故正实数a(3) xy 与x y +是方程217660m m -+=的两个实根,解得11,6x y xy +=⎧⎨=⎩或6,()xy 11.x y +=⎧⎨=⎩舍原式=()()222222212499x y x y xy x y +-++=.例6 解法一:∵ac <0,2=40b ac ∆->,∴原方程有两个异号实根,不妨设两个根为x 1,x 2,且x 1<0<x 2,由韦达定理得x 1+ x 2=b a -,12c x x a =,由0c =,得0b ca a =,即)12120x x x x +=,解得2x =,假设2x,则,由10x <推得3-不成立,故2x 21x ≥1,由10x <推得10x ,矛盾.故21x <21x <.解法二:设()2f x ax bx c =++,由条件得)b =,得)3355f a c a c =+=++=, ()1f a b c a a c ⎤=++=-⎦.若a >0,0c <,则0f <,()10f >;若a <0,0c >,则0f >,()10f <.∴0ac <时,总有()10f f .<与1之间.A 级 1.3 2.2 3.-2 m >2 0<m ≤183提示:12x ->,22x ->与124x x +->,124x x ⋅>不等价.4.100134016-提示:由条件得2n n a b n +=+,22n n a b n ⋅=-,则()()()2221n n a b n n --=-+,则()()211112221n a b n n ⎛⎫=-- ⎪--+⎝⎭.5.C 6.C 7.A 8.A 9.提示:(1)()2=2120m ∆-+> (2)2124m x x =-≤0,m =4或m =0. 10.(1)43k ->且0k ≠ (2)存在k =4 11.由题意得2m n =,224840n m n --+<.当n =1时,m =2;当n =2时,m =4. 12.设方程两根为1x ,2x ,则1212,.x x mn x x m n +=⎧⎨=+⎩∵m ,n ,1x ,2x 均为正整数,设121x x ≥≥,1m n ≥≥,则()1212x x x x mn m n +-=-+,即有()()()()1211112x x m n --+--=,则()()()()12112,1,0,110,1,2.x x m n ⎧--=⎪⎨--=⎪⎩∴123,2,5,2,2,1,5,2,3,1,2,2.x x m n =⎧⎪=⎪⎨=⎪⎪=⎩故5,2,3,1;2; 2.m m m n n n ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ B 级 1.0 提示:由条件得21130x x +-=,22230x x +-=,∴2113x x =-,2223x x =-,∴()3211111111333343x x x x x x x x =-=-+=-+=-,∴原式=()()121212434319431241944x x x x x x ---+=--++=++.又∵121x x +=-,∴原式=0. 2.853.5 4.638- 提示:()2=240a ∆-+>,原式=2963632488a ⎛⎫---- ⎪⎝⎭≤. 5.D 6.C 7.B 8.B9.()231αβαβ+-=,由根与系数关系得()241a b ab +-=,即()21a b -=,a -b =1.又由0∆≥得()2316a b ab +≥,从而()24a b +≤.由a -b =1,()24a b +≤,得满足条件的整数点对(a ,b )是(1,0)或(0,-1). 104447αβ+=,662248p αβαβ-==-,()2244227q αβαβαβ-==-. 11.a +b =3,c +d =4,ab =1,cd =2,a +b +c +d =7,222219a b c d +++=.(1)原式=()()()()7a a b c d a b c d d a b c d d a b c aa b c d a b c b c d+++-+++++-+++=-++++++…+77777.b c d b c d M c d a d a b a b c +-+-+-=-++++++ (2)原式=()()()()2222a a b c d a b c d d a b c d d a b c b c da b c+++-+++++-+++=++++…+()()22227774968M a b c d M --+++=-.12.(1)m =. (2)原式=()()()22212121221212352312122m x x x x x x m m m x x x x ⎡⎤+-+⎛⎫⎣⎦=-+=-- ⎪-++⎝⎭.∵11m -≤≤,∴当m =-1时,22121211mx mx x x +--的最大值为10. 13.设20x ax b ++=的两根分别为,αβ(其中,αβ为整数且αβ≤),则方程20x cx a ++=的两根分别为1,1αβ++,又∵,(1)(1)a a αβαβ+=-++=,两式相加,得2210αβαβ+++=,即(2)(2)3αβ++=,从而2123αβ+=⎧⎨+=⎩,或2321αβ+=-⎧⎨+=-⎩,解得12αβ=-⎧⎨=⎩,或53αβ=-⎧⎨=-⎩,∴012a b c =⎧⎪=-⎨⎪=-⎩,或8156a b c =⎧⎪=⎨⎪=⎩,∴3a b c ++=-或29.。
苏科版九年级数学上册 一元二次方程的根与系数的关系- 专题培优训练【含答案】
苏科版九年级数学上册 一元二次方程的根与系数的关系- 专题培优训练一、选择题1、若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .﹣10B .10C .﹣16D .162、一元二次方程x 2+4x ﹣3=0的两根为x 1、x 2,则x 1•x 2的值是( )A .4B .﹣4C .3D .﹣33、已知x 1,x 2是一元二次方程2x 2﹣3x +1=0的两个根,下列结论正确的是( )A .x 1+x 2=-23B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是无理数4、已知关于x 的一元二次方程x 2+mx +n=0的两个实数根分别为x 1=﹣2,x 2=4,则m +n 的值是( )A .﹣10B .10C .﹣6D .2 5、若关于x 的方程x 2+3x +a=0有一个根为﹣1,则另一个根为( )A .﹣2B .2C .4D .﹣36、已知实数x 1,x 2满足x 1+x 2=7,x 1x 2=12,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣7x +12=0B .x 2+7x +12=0C .x 2+7x ﹣12=0D .x 2﹣7x ﹣12=07、若一元二次方程x 2﹣x ﹣2=0的两根为x 1,x 2,则(1+x 1)+x 2(1﹣x 1)的值是( )A .4B .2C .1D .﹣28、若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( )A .12B .10C .4D .﹣4 9、若α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,且βα11+=﹣32,则m 等于( ) A .﹣2 B .﹣3 C .2 D .310、关于x 的一元二次方程x 2+2mx +2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根; ②(m ﹣1)2+(n ﹣1)2≥2; ③﹣1≤2m ﹣2n ≤1, 其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个二、填空题11、若方程x 2﹣3x +2=0的两根是α、β,则α+αβ+β= .12、若方程240x x c -+=的一个根为23+,则方程的另一个根为 ,c = .13、设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是 .14、已知关于x 的方程x 2+(a ﹣2)x +a +1=0的两实根x 1、x 2满足42221=+x x ,则实数a = . 15、已知x 1,x 2是关于x 的一元二次方程x 2+2x +k ﹣1=0的两个实数根,且x 12+x 22﹣x 1x 2=13,则k 的值为 .16、已知关于x 的一元二次方程x 2﹣4x +m ﹣1=0的实数根x 1,x 2,满足3x 1x 2﹣x 1﹣x 2>2,则m 的取值范围是 .17、已知α,β是关于x 的一元二次方程(m ﹣1)x 2﹣x +1=0两个实根,且满足(α+1)(β+1)=m +1,则m 的值为 .18、关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是整数,则整数a = .19、已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1﹣1)(x 2﹣1)=8k 2,则k 的值为 .20、已知a ,b 是一元二次方程x 2+x ﹣1=0的两根,则3a 2﹣b 22a +的值是 . 三、解答题21、已知于x 的元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)若x 12+x 22﹣x 1x 2≤30,且a 为整数,求a 的值.22、已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.23、已知关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根为x 1、x 2,且|x 1﹣x 2|=4,求m 的值.24、已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.25、已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值.26、如果实数,a b 分别满足222a a +=,222b b +=,求11a b+的值一、选择题1、若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .﹣10B .10C .﹣16D .16【分析】根据一元二次方程的根与系数的关系得到两根之和即可.解:∵x 1,x 2一元二次方程x 2+10x +16=0两个根,∴x 1+x 2=﹣10.故选:A .2、一元二次方程x 2+4x ﹣3=0的两根为x 1、x 2,则x 1•x 2的值是( )A .4B .﹣4C .3D .﹣3【分析】根据根与系数的关系求解.解:x 1•x 2=﹣3. 故选D .3、已知x 1,x 2是一元二次方程2x 2﹣3x +1=0的两个根,下列结论正确的是( )A .x 1+x 2=-23B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是无理数【分析】利用根与系数的关系对A 、B 进行判断;根据根的判别式对C 、D 进行判断. x 1+x 2=23,x 1x 2=21,所以A 、B 选项错误,因为△=(﹣3)2﹣4×2×1=1,所以x1,x2都是有理数,则C选项正确,D选项错误.故选:C.4、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【分析】根据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.5、若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.6、已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0【分析】根据以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0,列出方程进行判断即可.解:以x1,x2为根的一元二次方程x2﹣7x+12=0,故选:A.7、若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)的值是()A.4 B.2 C.1 D.﹣2A解:根据题意得x1+x2=1,x1x2=﹣2,所以(1+x1)+x2(1﹣x1)=1+x1+x2﹣x1x2=1+1﹣(﹣2)=4.故选:A.8、若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为()A.12 B.10 C.4 D.﹣4A解:∵方程x2﹣2x﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12;故选:A .9、若α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,且βα11+=﹣32,则m 等于() A .﹣2 B .﹣3 C .2 D .3B解:α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,∴α+β=2,αβ=m ,∵+===﹣,∴m =﹣3; 故选:B .10、关于x 的一元二次方程x 2+2mx +2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m ﹣1)2+(n ﹣1)2≥2; ③﹣1≤2m ﹣2n ≤1, 其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个【考点】根与系数的关系;根的判别式.【分析】①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用根与系数关系进行解答,据此即可得解.解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n>0,y1•y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,∵4m2﹣8n≥0,4n2﹣8m≥0,∴m2﹣2n≥0,n2﹣2m≥0,m2﹣2n+n2﹣2m+2=m2﹣2m+1+n2﹣2n+1≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③由根与系数关系可得2m﹣2n=y1y2+y1+y2=(y1+1)(y2+1)﹣1,由y1、y2均为负整数,故(y1+1)•(y2+1)≥0,故2m﹣2n≥﹣1,同理可得:2n﹣2m=x1x2+x1+x2=(x1+1)(x2+1)﹣1,得2n﹣2m≥﹣1,即2m﹣2n≤1,故③正确.故选:D.二、填空题11、若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.【分析】利用根与系数的关系可得出α+β=3,αβ=2,将其代入α+αβ+β中即可求出结论.∵方程x2﹣3x+2=0的两根是α、β,∴α+β=3,αβ=2,∴α+αβ+β=α+β+αβ=3+2=5.故5.12、若方程240x x c -+=的一个根为2+,则方程的另一个根为 ,c = .2-1c =根据韦达定理,124x x +=,因为12x =+22x =-所以(12221c x x =⋅==13、设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是 .1k =由根与系数的关系得()1221x x k +=+,2122x x k ⋅=+.且有()()224142840k k k ∆=+-+=->,即12k >. 所以()()12118x x ++=.从而2230k k +-=,解之得3k =-或1k =.又12k >,所以1k =.14、已知关于x 的方程x 2+(a ﹣2)x +a +1=0的两实根x 1、x 2满足42221=+x x ,则实数a = . 3﹣11解:∵关于x的方程x2+(a﹣2)x+a+1=0的两实根为x1、x2,∴△=(a﹣2)2﹣4(a+1)≥0,即a(a﹣8)≥0,∴当a≥0时,a﹣8≥0,即a≥8;当a<0时,a﹣8<0,即a<8,所以a<0.∴a≥8或a<0,∴x1+x2=2﹣a,x1•x2=a+1,∵x12+x22=4,(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,∴(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,解得a=3±11.∵3<11<4,∴6<3+<7(不合题意舍去),3﹣<0;∴a=3﹣.故a=3﹣11.15、已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为.—2解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,x12+x22﹣x1x2=13=﹣3x1x2=4﹣3(k﹣1)=13,k=﹣2,故﹣2.16、已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.3<m≤5解:依题意得:,解得3<m≤5.故答案是:3<m≤5.17、已知α,β是关于x的一元二次方程(m﹣1)x2﹣x+1=0两个实根,且满足(α+1)(β+1)=m+1,则m的值为.—1解:根据题意可得α+β=﹣=﹣=,αβ==,∴(α+1)(β+1)=αβ+α+β+1=++1=m+1,即m2﹣m﹣2=0,解得m=﹣1或m=2,∵m﹣1≠0,∴m≠1,当m=2时,△=b2﹣4ac=﹣3<0,无实数根,故m≠2,当m=﹣1时,△=b2﹣4ac=9>0,有实数根,故m=﹣1.故答案是﹣1.18、关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是整数,则整数a = .【分析】分两种情况讨论:当a =1时,x =1;当a ≠1时,△=4a 2≥0,x 1+x 2=a -12,再由已知,可得1﹣a =±1,1﹣a =±2,求出a 的值即可.当a =1时,2x ﹣2=0,解得x =1;当a ≠1时,(a ﹣1)x 2+2x ﹣a ﹣1=0,△=4a 2≥0,x 1+x 2=a -12,x 1•x 2=a a -+11=-112--a , ∵根都是整数,∴1﹣a =±1,1﹣a =±2,∴a =0或a =2或a =﹣1或a =3,故答案为0或1或﹣1或2或3.19、已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1﹣1)(x 2﹣1)=8k 2,则k 的值为 .1解:∵x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个实数根,∴x 1+x 2=﹣(3k +1),x 1x 2=2k 2+1.∵(x 1﹣1)(x 2﹣1)=8k 2,即x 1x 2﹣(x 1+x 2)+1=8k 2,∴2k 2+1+3k +1+1=8k 2,整理,得:2k 2﹣k ﹣1=0,解得:k 1=﹣,k 2=1.∵关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,∴△=(3k +1)2﹣4×1×(2k 2+1)>0,解得:k <﹣3﹣2或k >﹣3+2, ∴k =1.故1.20、已知a ,b 是一元二次方程x 2+x ﹣1=0的两根,则3a 2﹣b 22a +的值是 . 【分析】根据根与系数的关系即可求出答案.由题意可知:a +b =﹣1,ab =﹣1, a 2=1-a ,∴原式=3(1﹣a )﹣b +a -12=3﹣3a ﹣b+a -12=3﹣2a ﹣(a +b )+a-12 =3﹣2a +1+a -12=4﹣2a+a-12=4+a a a -+-12222 =4+aa a -+--122)1(2=4+4=8, 故8.三、解答题21、已知于x 的元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)若x 12+x 22﹣x 1x 2≤30,且a 为整数,求a 的值.(1)a <2(2)a 的值为﹣1,0,1解:(1)∵关于x 的一元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2,∴△>0,即(﹣6)2﹣4(2a +5)>0,解得a <2;(2)由根与系数的关系知:x 1+x 2=6,x 1x 2=2a +5,∵x 1,x 2满足x 12+x 22﹣x 1x 2≤30,∴(x 1+x 2)2﹣3x 1x 2≤30,∴36﹣3(2a +5)≤30,∴a ≥﹣,∵a 为整数,∴a 的值为﹣1,0,1.22、已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.-1有实数根,则△≥0,且22121216x x x x +=+,联立解得m 的值.依题意有:12212221212222(2)5164(2)4(5)0x x m x x m x x x x m m +=-+⎧⎪=-⎪⎨+=+⎪⎪∆=+--≥⎩由①②③解得:1m =-或15m =-,又由④可知m ≥94- ∴15m =-舍去,故1m =-23、已知关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根为x 1、x 2,且|x 1﹣x 2|=4,求m 的值.(1)m ≤2 (2)m=1解:(1)∵关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根,∴△=(﹣6)2﹣4×1×(4m +1)≥0, 解得:m ≤2.(2)∵方程x 2﹣6x +(4m +1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m +1,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=42,即32﹣16m =16,解得:m =1.24、已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.52m > 设1x ,2x 是方程的两根,且11x >,21x <,即110x ->,210x -<,因此1212121212(1)(1)()10284164(28)0x x x x x x x x m x x m --=-++<⎧⎪=-+⎪⎨+=⎪⎪∆=+->⎩,解得52m >.25、已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值. (1)k ≤49 ;(2)k=1 解:(1)当k =0时,原方程为﹣3x +1=0,解得:x =,∴k =0符合题意;当k ≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k ×1≥0,解得:k ≤49. 综上所述,k 的取值范围为k ≤.(2)∵x 1和x 2是方程kx 2﹣3x +1=0的两个根,∴x 1+x 2=,x 1x 2=.∵x 1+x 2+x 1x 2=4,∴+=4,解得:k =1, 经检验,k =1是分式方程的解,且符合题意.∴k 的值为1.26、如果实数,a b 分别满足222a a +=,222b b +=,求11a b+的值 当a b ≠时,111a b +=;当a b =时,当13a b ==-+1131a b +, 当13a b ==-1113a b+= 由题意知:,a b 为方程2220x x +-=的两个根,且0,0a b ≠≠,解方程2220x x +-=得:11x =-+21x =--⑴当a b ≠时,有2a b +=-,2ab =-,11212a b a b ab +-∴+===-;⑵当a b =时,方程的根为11x =-+21x =--当1a b ==-+1121a b a ∴+===+;当1a b ==--1121a b a ∴+==-。
九年级培优专题二一元二次方程的根与系数的关系课件
B.2
C.-2
D.-1
1
2
2.方程 6x2 -3x+2=0 的两根之和是__________,两根
1
3
之积是__________.
3、如果2是方程 x
2
6x m 0
4
8
的一个根,则另一个根是___m=____。
4、已知关于x的方程 x (m 1) x 2m 1 0
又∵x1+x2=m-1,x1x2=-m,且 m≠0,
1 1
2
x1+x2=-3.
x1+x2
2
∴ x x =-3.
1 2
m-1
2
∴
=-3.
-m
∴3m-3=2m.
∴m=3.
【跟踪训练】
7.已知关于 x 的一元二次方程 x2-6x+k+1=0 的两个实
数根是 x1,x2,且 x21+x22=24,则 k 的值是( D )
∵x1+x2=-3,
13
∴3×(-3)-4x2=4,x2=- 4 .
13
将 x2=- 4 代入原方程,得
13
13
13
2
- +3×- +m=0,m=- .
4
4
16
2
x
9、已知方程 kx k 2 0 的两个实数根
是
x1, x且
2
x x 4求k的值。
∴可设所求作的方程为
y2-(2x1+2x2)y+2x1·2x2=0.
即 y2+6y-8=0.
【跟踪训练】
5.请写出一个两实数根符号相反的一元二次方程
x2-x-6=0(答案不唯一)
_____________________________.
根与系数的关系知识点及综合应用
根与系数的关系知识点及综合应用一、一元二次方程根与系数的关系(1) 若方程02=++c bx ax (a ≠0)的两个实数根是x 1,x 2,则x 1+x 2= -a b ,x 1x 2=a c(2) 若一个方程的两个根为x 1,,x 2,那么这个一元二次方程为()[]021212=+++x x x x x x a (a ≠0) 二、根与系数的关系的应用:(1)验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;(2)判别一元二次方程两根的符号。
例1:不解方程,判别方程两根的符号。
分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。
因此解答此题的关键是:既要求出判别式的值,又要确定 或的正负情况。
解:∵,∴△=—4×2×(—7)=65>0∴方程有两个不相等的实数根。
设方程的两个根为, ∵<0∴原方程有两个异号的实数根。
说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。
(3)求根及未知数字母系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数字母系数.例2:已知方程的一个根为2,求另一个根及的值。
分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。
解法一:把代入原方程,得:即解得当时,原方程均可化为:,解得:∴方程的另一个根为4,的值为3或—1。
解法二:设方程的另一个根为,根据题意,利用韦达定理得:,∵,∴把代入,可得:∴把代入,可得:,即解得∴方程的另一个根为4,的值为3或—1。
说明:比较起来,解法二应用了韦达定理,解答起来较为简单。
九年级上册数学一元二次方程的根与系数的关系
九年级上册数学一元二次方程的根与系数的关系九年级上册数学一元二次方程的根与系数的关系一、一元二次方程根与系数的定义•一元二次方程是指形如ax2+bx+c=0的方程,其中a、b 和c是已知的实数,且a≠0。
•x是未知数,方程中该变量的二次项系数常被称为a,一次项系数常被称为b,常数项常被称为c。
•方程的根(或解)是满足方程的解x,使得当x代入方程中后等式成立。
二、一元二次方程的根与系数的关系•一元二次方程的根与其系数之间存在一定的关系,可以通过方程的系数推导出方程的根的性质。
判别式•一元二次方程的判别式通过系数a、b和c的值计算,其表达式为D=b2−4ac。
•判别式可以确定方程的根的性质:–当判别式D>0时,方程有两个不相等的实数根;–当判别式D=0时,方程有两个相等的实数根(重根);– 当判别式 D <0 时,方程没有实数根,但可以有两个共轭复数根。
根与系数的关系• 方程的两个根(或解)分别为 x 1 和 x 2,则有以下关系成立:– 根的和等于一次项系数的相反数的比值:x 1+x 2=−b a – 根的乘积等于常数项与二次项系数的比值:x 1⋅x 2=c a 三、示例题目1. 已知一元二次方程 2x 2−5x −3=0 的两个根为 x 1 和 x 2,根据根与系数的关系,求 x 1+x 2 和 x 1⋅x 2。
根据公式可知,该方程的系数分别为 a =2,b =−5 和 c =−3。
将其代入根与系数的关系公式中:$ x_1 + x_2 = - = - = $$ x_1 x_2 = = = -$所以 x 1+x 2=52,x 1⋅x 2=−32。
四、总结• 一元二次方程的根与系数之间存在一定的关系,可以通过方程的系数计算出方程的根的性质。
• 判别式可以确定方程的根的个数和根的类型。
•根与系数的关系可以通过根的和、根的乘积与方程的系数之间的比值来表示。
五、应用及拓展•一元二次方程的根与系数的关系在解决实际问题中有着广泛的应用,如在物理、经济等领域的模型建立和解析中都会遇到。
初中一元二次方程根与系数的关系知识点及练习题
学习必备欢迎下载知识点一、一元二次方程根与系数的关系(1)若方程ax2bx c 0(a≠ 0)的两个实数根是x1, x2,则 x1+x 2= - b, x1x2=ca a(2)若一个方程的两个根为x1,, x2,那么这个一元二次方程为a x 2x1x2 x x1 x2 0 (a≠0)(3)根与系数的关系的应用:①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数 .③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于 x1和 x2的代数式的值,如;④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式 .二、解一元二次方程应用题:它是列一元一次方程解应用题的拓展, 解题方法是相同的。
其一般步骤为:1.设:即适当设未知数(直接设未知数,间接设未知数),不要漏写单位名称,会用含未知数的代数式表示题目中涉及的量;2.列:根据题意,列出含有未知数的等式,注意等号两边量的单位必须一致;3.解:解所列方程,求出解来;4.验:一是检验是否为方程的解,二是检验是否为应用题的解;5.答:怎么问就怎么答,注意不要漏写单位名称。
一元二次方程的练习题1、若关于x 的二次方程(m+1)x 2-3x+2=0有两个相等的实数根,则m=__________2、设方程x 23x40 的两根分别为x1, x2,则x1+x 2=________, x1· x2=__________x 1 +x2 =_________,(x1-x 2)=__________,x1 +x1x2+3x1=____________ 24、两根之和等于-3,两根之积等于-7 的最简系数的一元二次方程是_____________2226、方程 kx +1=x-x 无实根,则k____________学习必备欢迎下载7、若方程 x2-x+p=0 的两根之比为3,则 p=__________8、方程 (x 2+3)(x 2-2)=0的解的个数是()(A)1 (B)2(C)3(D)49、方程x22(m 21) x3m0 的两个根是互为相反数,则m的值是()( A) m=± 1( B)m= -1(C) m=1( D) m=010、若方程2x( kx- 4)- x2+6=0 没有实数根,则k 的最小整数值是()A、 1B、 2C、 3D、 411、一元二次方程一根比另一根大8,且两根之和为6,那么这个方程是()A、 x2- 6x- 7=0 B 、 x2- 6x+7=0C、 x2+6x-7=0D、x2+6x+7=012、若方程 x2+px+q=0 的两根之比为 3∶2,则 p,q满足的关系式是( A) 3p2=25q( B) 6p2=25q( C) 25p2=3q(D)25p2=6q13 、设α、β是方程 x2+x-2012=0的两个实数根,则α2+2α + β的值(). A. 2009 B.2010 C.2011 D.201214、解方程:( 1)12x2402(3)(2x-3)2( 2)x +6x+6=0-5(2x-3)+6=0 215、方程 3x2-x-1=0的两个根是x ,x x1x2的值, 求代数式12x2 1x1 116、一元二次方程kx2(2k 1) x k 2 0 ,当k为何值时,方程有两个不相等的实数根?17、某城市居民最低生活保障在20XX年是 240 元,经过连续两年的增加,345.6 元,则该城市两年最低生活保障的平均年增长率是多少呢?到 20XX 年提高到。
专题09 根与系数的关系(韦达定理)(专项培优训练)(学生版)
专题09 根与系数的关系(韦达定理)(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.54姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2022秋•惠州校级月考)已知α,β是方程x2+2021x+1=0的两个根,则(1+2022a+α2)(1+2023β+β2)的值为()A.1 B.2 C.3 D.42.(2分)(2023•上杭县校级开学)若a,b是方程x2+2x﹣2024=0的两个实数根,则a2+3a+b的值是()A.2021 B.2022 C.2023 D.20243.(2分)(2023•丹徒区二模)若m,n是一元二次方程x2+4x﹣9=0的两个根,则m2+5m+n的值是()A.4 B.5 C.6 D.124.(2分)(2023•潮州模拟)设α,β是关于x的方程x2+x﹣2023=0的两个实数根,则α2+2α+β=()A.2021 B.2022 C.2023 D.20245.(2分)(2023•滕州市校级开学)已知关于x的一元二次方程x2+3x+1=0有两根为x1和x2,则x1x2+x1+x2的值是()A.2 B.﹣2 C.1 D.﹣16.(2分)(2023•泸州)若一个菱形的两条对角线长分别是关于x的一元二次方程x2﹣10x+m=0的两个实数根,且其面积为11,则该菱形的边长为()A.B.C.D.7.(2分)(2023•武汉模拟)已知a,b是一元二次方程x2﹣2x﹣2=0的两根,则﹣的值是()A.2 B.C.D.﹣28.(2分)(2022秋•南华县期末)已知一元二次方程x2﹣14x+48=0的两个根是菱形的两条对角线长,则这个菱形的周长为()A.20 B.24 C.40 D.489.(2分)(2023•沂源县一模)关于x的方程x2﹣2mx+m2=4的两个根x1,x2满足x1=2x2+3,且x1>x2,则m的值为()A.﹣3 B.1 C.3 D.910.(2分)(2021•武进区校级自主招生)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.评卷人得分二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023•吉安县校级模拟)已知x1,x2是关于x的一元二次方程x2﹣2x﹣c=0的两个根,且x1x2=﹣4,则c的值为.12.(2分)(2023•蕉城区校级开学)在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是﹣3,1,小明看错了一次项系数p,得到方程的两个根是5,﹣4,则原来的方程是.13.(2分)(2023•孝感一模)设x1,x2是方程x2﹣2x﹣3=0的两个实数根,则(x1﹣1)(x2﹣1)的值为.(2023•顺庆区校级三模)已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b﹣3的值是.(2分)14.15.(2分)(2023春•达川区校级期末)对于实数a,b,定义运算“a*b=,例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=.(2分)(2023•滕州市校级开学)已知关于x的方程x2+nx﹣m=0的两个根是0和﹣2,则m+n的值为.16.17.(2分)(2023•大冶市校级开学)已知关于x的方程x2+(2k+1)x+k2﹣1=0有两个实数根x1、x2满足+=16x1x2,则实数k=.18.(2分)(2023•下陆区校级开学)设a,b,c,d是四个不同的实数,如果a,b是方程x2﹣10cx﹣12d=0的两根,c,d是方程x2﹣10ax﹣12b=0的两根,那么a+b+c+d的值为.19.(2分)(2023春•定远县期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.20.(2分)(2020•大庆)已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.评卷人得分三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023•新罗区校级开学)已知关于x的一元二次方程x2﹣(m﹣1)x﹣2(m+3)=0.(1)试证:无论m取任何实数,方程都有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且,求m的值.22.(6分)(2023春•江岸区校级月考)已知关于x的一元二次方程2x2﹣5x﹣m=0(m为常数).若x=2是该方程的一个实数根,求m的值和另一个实数根.23.(8分)(2022秋•城厢区校级期末)已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的平方和为10,求m的值.24.(8分)(2023春•大观区校级期末)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=++x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.25.(8分)(2023•肇源县开学)若关于x的一元二次方程kx2+(k﹣2)x+=0有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.26.(8分)(2023春•开福区校级期末)若我们规定:在平面直角坐标系中,点P的坐标为(x,y1),点Q的坐标为(x,y2),y1和y2的差构成一个新函数y,即y=y1﹣y2.称y是y1﹣y2的“数天数函数”,P 为“天数点1”,Q为“天数点2”.(亲爱的同学们:愿你们在“数天数”中不负韶华,一次次交上自己满意的答卷.)(1)已知“天数点1”为点A(x,kx+4),“天数点2”为点B(x,2x).点C(2,3)在“数天数函数”y=y1﹣y2图象上,求y的解析式;(2)已知“天数点1”为点M(x,x2+3),“天数点2”为点N(x,3x),y是“数天数函数”,求x+y 的最小值;(3)关于x的方程的两个实数根x1、x2,“数天数函数”S=S1﹣S2.若S1=2x1,S2=﹣x2,且S1=m+1,求m的值.27.(8分)(2023•汝南县一模)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则,;材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mm2=mn(m+n)=﹣1×1=﹣1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=,x1x2=;(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值;(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.28.(8分)(2022秋•章贡区期中)阅读材料:材料1.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=﹣,x1x2=材料2.已知实数m、n满足m2﹣m﹣1=0、n2﹣n﹣1=0,且m≠n,求+的值.解:由题知m、n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1 ∴+====﹣3根据上述材料解决下面问题:(1)一元二次方程x2﹣4x﹣3=0的两根为x1、x2,则x1+x2=,x1x2=.(2)已知实数m、n满足2m2﹣2m﹣1=0、2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.(3)已知实数p、q满足p2=3p+2、2q2=3q+1,且p≠2q,求p2+4q2的值.。
初三根与系数的关系练习题
初三根与系数的关系练习题(篇首不需要再写一遍标题)初三根与系数的关系练习题根与系数是初中数学中的重要概念之一,理解它们之间的关系对于解题非常重要。
在本文中,我们将提供一些初三根与系数的关系练习题,帮助同学们巩固和加深对这一概念的理解。
练习题一:已知方程p(x)=0的一个根为x=3,且q(x)是p(x)的一个因式。
如果p(1)=2,求q(1)。
解答一:根据题意可知,p(x)=0的一个根为x=3,因此p(x)可以表示为p(x)=(x-3)f(x),其中f(x)为另外一个因式。
根据已知条件p(1)=2,我们可以得到:(1-3)f(1)=2-2f(1)=2f(1)=-1因此,q(x)=f(x)=(x-3)(-1)=(3-x),所以q(1)=3-1=2。
练习题二:已知方程mx^2+3x+n=0的一个根为x=-2,且另一个根的系数是3的两倍。
若方程的系数和n的和为21,求m的值。
解答二:根据题意可知,方程mx^2+3x+n=0的一个根为x=-2,且另一个根的系数是3的两倍。
设另一个根为x=a,则方程可以表示为mx^2+3x+n=m(x+2)(x-a)=0。
由此可得,方程的展开形式为mx^2+3x+n=mx^2+(2m-am)x-2ma=0。
根据已知条件可得方程的系数和n的和为21,即2m-am-2ma=21。
又因为另一个根的系数是3的两倍,可以表示为-a=3*2=-6。
解方程组2m-am-2ma=21,-a=-6,可得到m=7。
因此,方程的系数m的值为7。
练习题三:已知方程px^2-2px+2=0的两个根的乘积为3,求p的值。
解答三:根据题意可知,方程px^2-2px+2=0的两个根的乘积为3。
设方程的两个根为x=a和x=b,则方程可以表示为px^2-2px+2=p(x-a)(x-b)=0。
展开方程可得px^2-2px+2=px^2-p(a+b)x+pab=0。
由此可得,p(a+b)=-2p,pab=2。
根据已知条件可得ab=3。
初中数学九年级专项训练一元二次方程专题根与系数关系
一元二次方程专题复习(二)根与系数的关系及其应用如果一元二次方程ax 2+bx +c=0(a ≠0)的两根为x 1,x 2,那么反过来,如果x 1,x 2满足x 1+x 2=p ,x 1x 2=q ,则x 1,x 2是一元二次方程x 2-px+q=0的两个根.一元二次方程的韦达定理,揭示了根与系数的一种必然联系.利用这个关系,我们可以解决诸如已知一根求另一根、求根的代数式的值、构造方程、证明等式和不等式等问题,它是中学数学中的一个有用的工具.【典型例题】应用一:已知一个根,求另一个根;例1 : 方程(1998x)2-1997·1999x-1=0的大根为a ,方程x 2+1998x-1999=0的小根为b ,求a-b 的值.解 : 先求出a ,b .由观察知,1是方程(1998x)2-1997·1999x-1=0的根,于是由韦达定理知,另一根为219981-,于是可得a=1.又从观察知,1也是方程x 2+1998x-1999=0的根,此方程的另一根为-1999,从而b=-1999.所以a-b=1-(-1999)=2000.应用二:求根的代数式的值不解方程,利用一元二次方程根与系数的关系求两个代数式的值关键是把所给的代数式经过恒等变形,化为含,的形式,然后把,的值代入,即可求出所求代数式的值.常见的代数式变形有:① ②③ ④⑤例2: 已知二次方程x 2-3x +1=0的两根为α,β,求:(1)βα11+ (2)22βα+ (3)α3+β3解: 由韦达定理知 : α+β=3, α·β=1.(1)31311==+=+αββαβα(2)()72912322222=-=⨯-=-+=+αββαβα (3)α3+β3=(α+β)(α2-αβ+β2)=(α+β)[(α+β)2-3αβ]=3(9-3)=18;例3: 设方程4x 2-2x -3=0的两个根是α和β,求4α2+2β的值.解: 因为α是方程4x 2-2x -3=0的根,所以4α2-2α-3=0,即 4α2=2α+3.由韦达定理可知,21=+βα.所以4α2+2β=2α+3+2β=2(α+β)+3=4.例4: 已知α,β分别是方程x 2+x -1=0的两个根,求2α5+5β3的值.解: 由于α,β分别是方程x 2+x -1=0的根,所以α2+α-1=0,β2+β-1=0,即 α2=1-α,β2=1-β.α5=(α2)2·α=(1-α)2α=(α2-2α+1)α=(1-α-2α+1)α= -3α2+2α = -3(1-α)+2α=5α-3,β3=β2·β=(1-β)β=β-β2=β-(1-β)=2β-1.所以 2α5+5β3=2(5α-3)+5(2β-1)=10(α+β)-11=-21.说明: 此解法的关键在于利用α,β是方程的根,从而可以把它们的幂指数降次,最后都降到一次,这种方法很重要.应用三:与两根之比有关的问题;例5: 已知x 1,x 2是一元二次方程 4x 2-(3m -5)x -6m 2=0的两实数根,且23x x 21=,求m 的值.解: 首先,△=(3m -5)2+96m 2>0,方程有两个实数根.由韦达定理知从上面两式中消去k ,便得即 m 2-6m+5=0, 所以m 1=1,m 2=5.应用四:求作新的二次方程例6: 求一个一元二次方程,使它的两根分别是212313, 。
期北师大版数学九年级上册专题提高培优第4讲:根的判别式、根与系数的关系(无答案)
期北师大版数学九年级上册专题提高培优第4讲:根的判别式、根与系数的关系(无答案)【基础知识精讲】1.一元二次方程)0(02≠=++a c bx ax 根的判别式: ac b 42-=∆⑴ 事先0>∆,方程有两个不相等的实数根; (2) 事先0=∆,方程有两个相等的实数根; ⑶ 事先0<∆,方程没有实数根。
〔以上三点反之亦成立〕。
2.一元二次方程有实数根0≥∆⇔留意:(1)在运用根的判别式之前,应将一元二次方程化成普通式;(2)在确定一元二次方程待定系数的取值范围时,必需检验二次项系数0≠a (3)证明ac b 42-=∆恒为正数的常用方法:把△的表达式经过配方化成〝完全平方式+正数〞的方式。
3.一元二次方程根与系数的关系〔韦达定理〕:设21x x 、是一元二次方程)0(02≠=++a c bx ax 的两根,那么a bx x -=+21,ac x x =⋅21 4.设21x x 、是一元二次方程)0(02≠=++a c bx ax 的两根,那么:0,0121>>x x )(时,有⎪⎪⎩⎪⎪⎨⎧>=•>-=+002121a c x x ab x x0,0)2(21<<x x 时,有⎪⎪⎩⎪⎪⎨⎧>=•<-=+002121a c x x a b x x0,0)3(21<>x x 时,有021<=•acx x5.以两个数21x x 、为根的一元二次方程〔二次项系数为1〕是:0)(21212=++-x x x x x x 【例题巧解点拨】1---根的判别式:例1:1.方程012=--kx x 的根的状况是〔 〕A .方程有两个不相等的实数根 B.方程有两个相等的实数根C.方程没有实数根D.方程的根的状况与k 的取值有关2.假定一元二次方程06)4(22=+--x kx x 无实数根,那么k 的最小整数值是〔 〕 A.-1 B.2 C.3 D.43.假定关于x 的方程0)()(22=-+-+a b x b a ax 有两个相等的实数根,那么b a :等于( )A.-1或2B.1或12 C.-12或1 D.-2或1 4.假定关于y 的一元二次方程43342+=--y y ky 有实根,那么k 的取值范围是( )A.47->k B.047≠-≥k k 且 C.47-≥k D.047≠>k k 且 例2:关于x 的方程0)21(4)12(2=-++-k x k x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3/9
10.已知 x1, x2 是关于 x 的一元二次方程 kx2 + 4x − 3 = 0的两个不相等的实数根. (1)求k 的取值范围;
(2)是否存在这样的实数
k
,使
2 x1
+
2 x2
−
3 x1 x2
=
2
成立?若存在,求
k
的值;若不存在,说明理
由.
11.如图,已知在△ABC 中,∠ACB=90°,过 C 点作 ⊥ CD AB 于 D,设 AD=m,BD=n,且 : AC2 BC2 =2:1;又关于 x 的方程 1 x2 − 2(n −1)x + m2 −12 = 0两实数根的差的平方小于 192,求整数 、m n 的值.
5
能力训练
A级
1.已知 m , n 为有理数,且方程 x2 + mx + n = 0 有一个根是 5 − 2 ,那么 m + n =
.
2.已知关于 x 的方程 x2 −3x + m = 0的一个根是另一个根的 2 倍,则m 的值为
.
3.当 m =
时,关于 x 的方程8x2 − (2m2 + m − 6)x + 2m −1 = 0 的两根互为相反数;
x, yΒιβλιοθήκη xy + x + y = 17 x2 y + xy2 = 66 x4 + x3 y + x2 y2 + xy3 + y4
值.
【例 6】 a,b,c 为实数,ac < 0 ,且 2a + 3b + 5c = 0 ,证明一元二次方程 ax2 + bx + c = 0 有大于 3 而小于 1 的根.
12.设 m 是不小于 −1的实数,使得关于 x 的一元二次方程 x2 + 2(m − 2)x + m2 − 3m +1 = 0有两个不相 等实数根 x1, x2 . (1)若 x12 + x22 = 6 ,求 m 的值;
(2)求 mx12 + mx22 的最大值. 1− x1 1− x2
13.已知关于 x 的一元二次方程 x2 + cx + a = 0 的两个整数根恰好比方程 x2 + ax + b = 0 的两个根都大 1,求 a + b + c 的值.
(
)
.A 1
.B 12
.C 13
.D 25
7.在 △Rt ABC 中,∠C=90°,a 、b 、c 分别是∠A、∠B、∠C 的对边,a 、b 是关于 x 的方程 x2 −7x+c+7 = 0的两根,那么 AB 边上的中线长是 ( )
.A 3
.B 5
.C 5
.D 2
2
2
8.设 a2 .A 5
+1
=
3a
.
b
3.已知关于 x 的一元二次方程 x2 − 6x + k +1 = 0 的两个实数根是 x1, x2 ,且 x12 + x22 = 24 ,则
k=
.
4/9
4.已知 x1, x2 是关于 x 的一元二次方程 x2 + ax + a = 2 的两个实数根,则 (x1 − 2x2)(x2 − 2x1) 的最大
【例 5】(1)若实数 a,b 满足 a2 + 5 = 8a ,b2 + 5 = 8b ,求代数式 b −1 + a −1的值; a −1 b −1
(2)关于
x,
y,
z
的方程组
3x
+
2
y
+
z
=
a
有实数解(x, y, z) ,求正实数a 的最小值;
xy + 2 yz + 3zx = 6
( )已知 均为实数,且满足 , ,求 的 3
值为
.
5.如果方程 x2 + px +1= 0 ( p >0)的两根之差为 1,那么 p 等于( )
.A 2
.B 4
C. 3
D. 5
6.已知关于 x 的一元二次方程 x2 − mx + 2m −1 = 0 的两个实数根分别是 x1, x2 ,且 x12 + x22 = 7 ,则
的值是 (x1 − x2 )2
s
s
故 st + 4s + 1 = −99s + 4s = −5
t
19s
例 5. (1) 当 a 时 = b , 原式=2; 当 时 a ≠ b , 原式=-20, 故原式的值为 2 或-20
由方程组得 易知 是一元二次方程 (2)
3x + 2y = a − z, 3x 2y = 6(z2 − az + 6), 3x, 2 y
f
3 5
0
f (1) 0
a
> ,则
c0
f
< > , .∴ 时,总有 3
A. −3或1
.B −3
C.1
D.k ≥ 1 的一切实数 2
6.设 x1, x2 是关于 x 的一元二次方程 x2 + x + n − 2 = mx 的两个实数根,且 x1 < 0, x2 − 3x1 < 0,则
()
.m >1
A n > 2
.m >1
B n < 2
.m <1
C n > 2
.m <1
D n < 2
例题与求解
【例 1】设关于 x 的二次方程(m2 − 4)x2 + (2m −1)x +1= 0 (其中 m 为实数)的两个实数根的倒数和为 s ,则s 的取值范围是_________.
【例 2】 如果方程(x −1)(x2 − 2x + m) = 0 的三个根可以作为一个三角形的三边长,那么,实数m 的取 值范围是_________.
.A 0 ≤ m ≤ 1
.B m ≥ 3 4
.C 3 < m ≤ 1 4
.D 3 ≤ m ≤ 1 4
【例 3】已知α , β 是方程 x2 − 7x + 8 = 0 的两根,且α > β .不解方程,求 2 + 3β 2 的值. α
1/9
【例 4】 设实数 s,t 分别满足19s2 + 99s +1 = 0,t2 + 99t +19 = 0 并且 st ≠ 1,求 st + 4s +1 的值. t
)
.A −3
.B 5
C.5或 − 3
D. −5或3
9.已知关于 x 的方程: x2(m − 2)x − m2 = 0 . 4
(1)求证:无论m 取什么实数值,方程总有两个不相等的实数根; (2)若这个方程的两个根是 x1, x2 ,且满足 x2 = x1 + 2, 求 m 的值及相应的 x1, x2 .
6/9
专题 04 根与系数的关系答案
例 1. 且 s ≥ −15 s ≠ −3, s ≠ 5 2
例 2. 提示 设三根为 则 C
:
1, x1, x2 , x1 − x2 < 1
例 3. 设 ① A = 2 + 3β 2, B = 2 + 3α 2, A + B = 100 3
α
β
4
的 方程组得 A = 1 (403 − 85 17) 8
3 5
3x1 − 2 3 5x1 − 3 5
x1 0
−
≥10 − 3不成立,故 >x2
3 5
;假设
≥x2 1,则
3x1 − 5x1 −
2 3
≥1
,由
<x1 0
推得
≥x1
3− 5−
2>0 ,矛盾.故
3
<x2 1,综上所述
< < 3
5
x2 1
.解法二:设
f
( x) = ax2
+ bx + c ,由条件得b = −
的两个实数根 即 t2 − (a − z)t + 6(z2 − az + 6) = 0
,∴ ∆ ≥ 0 , 23z2 − 22az + 144 − a2 ≤ 0 ,
由 为实数知 解得 故正实数 的最小值为 z
, ∆ ' = (−22a)2 − 4 × 23× (144 − a2 ) ≥ 0,
a ≥ 23,
a + b + c + d = M .求证:
b+c+d c+d +a d +a+b a+b+c
( ) ; 1
a2 + b2 + c2 + d 2 = 7M − 7
b+c+d c+d+a d+a+b a+b+c
( ) . 2
a3 + b3 + c3 + d 3 = 49M − 68
b+c+d c+d+a d+a+b a+b+c
当
时,关于 x 的方程 x2 − 2mx + m2 − 4 = 0 的两根都是正数;当
时,关于 m
2/9
的方程3x2 + 2x + m −8 = 0 有两个大于 −2 的根. 4.对于一切不小于 2 的自然数 n .关于 x 的一元二次方程 x2 − (n + 2)x − 2n2 = 0 的两根记为
(a, b)