嵊泗县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嵊泗县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则
{}的前20项和为( )
A
.
B
.
C
.
D
.
2. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( ) A .两个点 B .四个点
C .两条直线
D .四条直线
3. 复数满足2+2z
1-i =i z ,则z 等于( )
A .1+i
B .-1+i
C .1-i
D .-1-i 4. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( )
A .8
B .10
C .6
D .4
5.
双曲线
的焦点与椭圆
的焦点重合,则m 的值等于( )
A .12
B .20
C
.
D
.
6. 已知双曲线22
22:1(0,0)x y C a b a b
-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上
的一点,圆M 为三角形12PF F 的内切圆,
PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐
近线平行且距离为
2
,则双曲线C 的离心率是( ) A
B .2 C
D
7. 设f (x )=(e -x -e x )(12x +1-1
2
),则不等式f (x )<f (1+x )的解集为( )
A .(0,+∞)
B .(-∞,-1
2
)
C .(-12,+∞)
D .(-1
2
,0)
8. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶
段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 9. 抛物线
y=x 2的焦点坐标为( ) A .(0,
)
B .(
,0)
C .(0,4)
D .(0,2)
10.已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A
B =ð( )
A .{}2,4,6
B .{}1,3,5
C .{}2,4,5
D .{}2,5
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
11.有下列四个命题:
①“若a2+b2=0,则a,b全为0”的逆否命题;
②“全等三角形的面积相等”的否命题;
③“若“q≤1”,则x2+2x+q=0有实根”的逆否命题;
④“矩形的对角线相等”的逆命题.
其中真命题为()
A.①②B.①③C.②③D.③④
12.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式为()
A.B.
C.D.
二、填空题
13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值
是.
14.在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:
①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;
②若点P到点A的距离为,则动点P的轨迹所在曲线是圆;
③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;
④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;
⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.
其中真命题是(写出所有真命题的序号)
15.若6()mx y +展开式中33x y 的系数为160-,则m =__________.
【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.
16.向区域
内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .
17.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 18.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )
A .2
B .3
C .2
D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.
三、解答题
19.(本小题满分10分)选修4-5:不等式选讲 设函数()5f x x a x =-+.
(1)当1a =-时,求不等式()53f x x ≤+的解集; (2)若1x ≥-时有()0f x ≥,求a 的取值范围.
20.(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,且60o
ABC ∠=,侧面PDC 为等边三角形,
且与底面ABCD 垂直,M 为PB 的中点. (Ⅰ)求证:PA ⊥DM ;
(Ⅱ)求直线PC 与平面DCM 所成角的正弦值.
21.已知函数f (x )=. (1)求f (x )的定义域;
(2)判断并证明f (x )的奇偶性;
(3)求证:f ()=﹣f (x ).
22.关于x 的不等式a 2x+b 2(1﹣x )≥[ax+b (1﹣x )]2
(1)当a=1,b=0时解不等式; (2)a ,b ∈R ,a ≠b 解不等式.
23.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O
为AD的中点,且CD⊥A1O
(Ⅰ)求证:A1O⊥平面ABCD;
(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.
24.已知函数f(x)=|x﹣1|+|x﹣a|.
(I)若a=﹣1,解不等式f(x)≥3;
(II)如果∀x∈R,f(x)≥2,求a的取值范围.
嵊泗县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】B
【解析】解:在等差数列{a n }中,由a 4+a 8=22,得2a 6=22,a 6=11.
又a 3=5,得d=,∴a 1=a 3﹣2d=5﹣4=1.
{}的前20项和为:
=
=
.
故选:B .
2. 【答案】B
【解析】解:方程(x 2﹣4)2+(y 2﹣4)2
=0
则x 2
﹣4=0并且y 2
﹣4=0,
即,
解得:
,
,
,
,
得到4个点. 故选:B .
【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.
3. 【答案】
【解析】解析:选D.法一:由2+2z
1-i =i z 得
2+2z =i z +z , 即(1-i )z =-2,
∴z =-21-i =-2(1+i )2=-1-i.
法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,
∴⎩
⎪⎨⎪⎧2+2a =a -b
2b =a +b , ∴a =b =-1,故z =-1-i. 4. 【答案】A
【解析】解:由题意,p=2,故抛物线的准线方程是x=1,
∵抛物线y 2
=﹣4x 的焦点作直线交抛物线于A (x 1,y 1)B (x 2,y 2)两点
∴|AB|=2﹣(x 1+x 2), 又x 1+x 2=﹣6
∴∴|AB|=2﹣(x 1+x 2)=8 故选A
5. 【答案】A
【解析】解:椭圆的焦点为(±4,0),
由双曲线的焦点与椭圆的重合,可得
=4,解得m=12.
故选:A .
6. 【答案】C 【解析】
试题分析:由题意知()1,0到直线0bx ay -=
=
,得a b =,则为等轴双曲
故本题答案选C. 1 考点:双曲线的标准方程与几何性质.
【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得;(2)建立,,a b c 的齐次关系式,将用,a c 表示,令两边同除以或2
a 化为的关系式,解方程或者不等式求值或取值范围.
7. 【答案】
【解析】选C.f (x )的定义域为x ∈R ,
由f (x )=(e -x -e x )(12x +1-1
2)得
f (-x )=(e x -e -x )(12-x +1-1
2)
=(e
x
-e -x )(
-1
2x +1+12) =(e -x -e x )(12x +1-1
2)=f (x ),
∴f (x )在R 上为偶函数,
∴不等式f (x )<f (1+x )等价于|x |<|1+x |,
即x 2<1+2x +x 2,∴x >-1
2
,
即不等式f (x )<f (1+x )的解集为{x |x >-1
2},故选C.
8. 【答案】B
【解析】
试题分析:设从青年人抽取的人数为800,,2050600600800
x x x ∴=∴=++,故选B . 考点:分层抽样. 9. 【答案】D
【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y , ∴焦点坐标为(0,2). 故选:D .
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.
10.【答案】A
考点:集合交集,并集和补集.
【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目. 11.【答案】B
【解析】解:①由于“若a 2+b 2
=0,则a ,b 全为0”是真命题,因此其逆否命题是真命题;
②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;
③若x 2+2x+q=0有实根,则△=4﹣4q ≥0,解得q ≤1,因此“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题是真命题;
④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.
综上可得:真命题为:①③.
故选:B .
【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.
12.【答案】 B
【解析】解:∵函数的周期为T==
,
∴ω=
又∵函数的最大值是2,相应的x 值为
∴=
,其中k ∈Z
取k=1,得φ=
因此,f (x )的表达式为,
故选B
【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.
二、填空题
13.【答案】 6 .
【解析】解:第一次循环:S=0+=,i=1+1=2;
第二次循环:S=+=,i=2+1=3;
第三次循环:S=+=,i=3+1=4;
第四次循环:S=+=,i=4+1=5;
第五次循环:S=+=,i=5+1=6;输出S ,不满足判断框中的条件;
∴判断框中的条件为i <6?
故答案为:6.
【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题
14.【答案】 ①②④
【解析】解:对于①,∵BD 1⊥面AB 1C ,∴动点P 的轨迹所在曲线是直线B 1C ,①正确;
对于②,满足到点A 的距离为的点集是球,∴点P 应为平面截球体所得截痕,即轨迹所在曲线为圆,
②正确;
对于③,满足条件∠MAP=∠MAC 1 的点P 应为以AM 为轴,以AC 1 为母线的圆锥,平面BB 1C 1C 是一个与轴AM 平行的平面,
又点P 在BB 1C 1C 所在的平面上,故P 点轨迹所在曲线是双曲线一支,③错误; 对于④,P 到直线C 1D 1 的距离,即到点C 1的距离与到直线BC 的距离比为2:1, ∴动点P 的轨迹所在曲线是以C 1 为焦点,以直线BC 为准线的双曲线,④正确; 对于⑤,如图建立空间直角坐标系,作PE ⊥BC ,EF ⊥AD ,PG ⊥CC 1,连接PF ,
设点P 坐标为(x ,y ,0),由|PF|=|PG|,得,即x 2﹣y 2
=1,
∴P 点轨迹所在曲线是双曲线,⑤错误. 故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
15.【答案】2-
【解析】由题意,得33
6160C m =-,即3
8m =-,所以2m =-.
16.【答案】 .
【解析】解:不等式组的可行域为:
由题意,A (1,1),∴区域
的面积为
=(x3)
=,
由
,可得可行域的面积为:1=,
∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与
与坐标原点连线的斜率大于1的概率为: =
故答案为:.
【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.
17.【答案】21 7
【解析】
18.【答案】A
【解析】
三、解答题
19.【答案】
【解析】(1)当1a =-时,不等式()53f x x ≤+, ∴5315x x x ≤+++, ∴13x +≤,∴24x -≤≤.
∴不等式()53f x x ≤+的解集为[4,2]-. (2)若1x ≥-时,有()0f x ≥, ∴50x a x -+≥,即5x a x -≥-,
∴5x a x -≥-,或5x a x -≤,∴6a x ≤,或4a x ≥-, ∵1x ≥-,∴66x ≥-,44x -≤,∴6a ≤-,或4a ≥.
∴a 的取值范围是(,6][4,)-∞-+∞.
20.【答案】
【解析】由底面ABCD 为菱形且60o
ABC ∠=,∴ABC ∆,ADC ∆是等边三角形, 取DC 中点O ,有,OA DC OP DC ⊥⊥,
∴POA ∠为二面角P CD A --的平面角, ∴90o
POA ∠=.
分别以,,OA OC OP 所在直线为,,x y z 轴,建立空间直角坐标系如图,
则(0,1,0),
(0,1,0)A P D B C -. …… 3分
(Ⅰ)由M 为PB 中点,(
,1,22M ∴3
(2DM =(3,0,3),PA =-0),0,DC PA DM PA DC =∴== ∴ PA ⊥DM …… 6分
(Ⅱ)由(0,2,0)DC =,0PA DC ⋅=,∴PA ⊥DC , ∴ 平面DCM 的法向量可取(3,0,PA = …… (0,1,PC =, 设直线PC 与平面DCM 所成角为θ则sin |cos ,||
|||||6PC PA PC PA PC PA θ⋅=<>===.即直线PC 与平面DCM .…… 12分 21.【答案】
【解析】解:(1)∵1+x 2
≥1恒成立,∴f (x )的定义域为(﹣∞,+∞);
(2)∵f (﹣x )=
=
=f (x ),
∴f(x)为偶函数;
(3)∵f(x)=.
∴f()===﹣=﹣f(x).
即f()=﹣f(x)成立.
【点评】本题主要考查函数定义域以及函数奇偶性的判断,比较基础.
22.【答案】
【解析】解:(1)当a=1、b=0时,原不等式化为x≥x2,(2分)
即x(x﹣1)≤0;…(4分)
解得0≤x≤1,
∴原不等式的解集为{x|0≤x≤1};…(6分)
(2)∵a2x+b2(1﹣x)≥[ax+b(1﹣x)]2,
∴(a﹣b)2x≥(a﹣b)2x2,(10分)
又∵a≠b,
∴(a﹣b)2>0,
∴x≥x2;
即x(x﹣1)≤0,…(12分)
解得0≤x≤1;
∴不等式的解集为{x|0≤x≤1}.…(14分)
【点评】本题考查了不等式的解法与应用问题,解题时应对不等式进行化简,再解不等式,是基础题.
23.【答案】
【解析】满分(13分).
(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,
∴A1O==,…(2分)
∴+AD2=AA12,
∴A1O⊥AD.…(3分)
又A1O⊥CD,且CD∩AD=D,
∴A1O⊥平面ABCD.…(5分)
(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),
则A(0,﹣1,0),A
(0,0,),…(6分)
1
设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),
∵=,=(1,m+1,0),
且
取z=1,得=.…(8分)
又A1O⊥平面ABCD,A1O⊂平面A1ADD1
∴平面A1ADD1⊥平面ABCD.
又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,
∴CD⊥平面A1ADD1.
不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)
由题意得==,…(12分)
解得m=1或m=﹣3(舍去).
∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)
【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.
24.【答案】
【解析】解:(Ⅰ)当a=﹣1时,f(x)=|x+1|+|x﹣1|,
由f(x)≥3即|x+1|+|x﹣1|≥3
当x≤﹣1时,不等式可化为﹣x﹣1+1﹣x≥3,解得x≤﹣;
当﹣1<x<1时,不等式化为x+1+1﹣x≥3,不可能成立,即x∈∅;
当x≥1时,不等式化为x+1+x﹣1≥3,解得x≥.
综上所述,f(x)≥3的解集为(﹣∞,﹣]∪[,+∞);
(Ⅱ)由于|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|,
则f(x)的最小值为|a﹣1|.
要使∀x∈R,f(x)≥2成立,
则|a﹣1|≥2,解得a≥3或a≤﹣1,
即a的取值范围是(﹣∞,﹣1]∪[3,+∞).
【点评】本题考查绝对值不等式的解法,考查不等式恒成立问题转化为求函数的最值,运用分类讨论和绝对值不等式的性质,是解题的关键.。