2014高考数学一轮复习课件_1.1元二次不等式及其解法
高考数学一轮复习 第7章 不等式 第2节 一元二次不等式及其解法课件 文
12/8/2021
第二十二页,共五十二页。
4.已知函数 f(x)=x-2+x22+x,2xx,≥x0<,0,解不等式 f(x)>3.
解:由题意xx≥ 2+02,x>3或x-<x02,+2x>3,解得 x>1. 故原不等式的解集为{x|x>1}.
12/8/2021
第二十三页,共五十二页。
三、易错自纠 4.不等式-x2-3x+4>0 的解集为________.(用区间表示) 解析:由-x2-3x+4>0 可知,(x+4)(x-1)<0,解得-4<x<1. 答案:(-4,1)
12/8/2021
第十四页,共五十二页。
5.设二次不等式 ax2+bx+1>0 的解集为x-1<x<13,则 ab 的值为________. 解析:由不等式 ax2+bx+1>0 的解集为x-1<x<13,知 a<0 且 ax2+bx+1=0 的两 根为 x1=-1,x2=13,由根与系数的关系知- -113+ =131a= ,-ba, 所以 a=-3,b=-2,所以 ab=6. 答案:6
12/8/2021
第五页,共五十二页。
2.三个“二次”间的关系
判别式Δ=b2-4ac
Δ>0
Δ=0
二次函数 y=ax2+bx +c(a>0)的图象
一元二次方程 ax2+bx 有两相异实根 x1,
+c=0 (a>0)的根
x2(x1<x2)
有两相等实根 x1=x2 =-2ba
Δ<0 没有实数根
12/8/2021
第七章 不等式
第二节 一元(yī yuán)二次不等式及 其解法
2014高考数学一轮复习课件1.1元二次不等式及其解法
1.不等式ax2+bx+c>0的解是全体实数(或恒成立)的 a>0, 条件是当a=0时,b=0,c>0;当a≠0时, 不等式 Δ<0; ax2+bx+c<0的解是全体实数(或恒成立)的条件是当a=0 a<0, 时,b=0,c<0;当a≠0时, Δ<0. 2.解决恒成立问题一定要搞清谁是主元,谁是参数, 一般地,知道谁的范围,谁就是主元,求谁的范围,谁就 是参数.
解含参数的一元二次不等式的步骤 (1)二次项若含有参数应讨论参数是等于0,小于0,还是 大于0,然后将不等式转化为二次项系数为正的形式. (2)判断方程实根的个数,讨论判别式Δ与0的关系.
(3)确定方程无实根时可直接写出解集,确定方程有两
个相异实根时,要讨论两实根的大小关系,从而确定解集形 式.
解关于x的不等式x2-(a+1)x+a<0.
1 【解析】 2x +x-1>0的解集为{x|x> 或x<-1}, 2 1 1 2 2 故由x> ⇒2x +x-1>0,但2x +x-1>0D⇒/x> . 2 2 1 则“x> ”是“2x2+x-1>0”的充分不必要条件. 2
2
【答案】
A
2.(2013·清远模拟)不等式ax2 +4x+a>1-2x2 对一切
x∈R恒成立,则实数a的2)x2+4x+a-1>0 对一切x∈R恒成立,则有 a+2>0, 解得a>2. Δ=16-4(a+2)(a-1)<0,
【答案】 (2,+∞)
课后作业(一)
ax2+bx+c>0(a≠0)对一切x∈R恒成立的条件是什么?
【提示】 a>0且b2-4ac<0.
1.(人教A版教材习题改编)不等式2x2-x-1>0的解集 是( ) 1 A.(- ,1) B.(1,+∞) 2 1 C.(-∞,1)∪(2,+∞) D.(-∞,- )∪(1,+∞) 2
高考数学第一轮知识点总复习 第二节 一元二次不等式及其解法
解得0<x< 1 . 3
0
x
1,
12. (2009·南京模拟)已知不等式ax2 - 3x 6 4 的解集为{x|x<1或x>b}.
学后反思 解不等式应用题,可分以下几步思考: (1)认真审题,抓住问题中的关键词,找准不等关系; (2)引进数学符号,用不等式表示不等关系,使其数学化; (3)求解不等式; (4)还原实际问题.
举一反三
4.已知汽车从刹车到停车所滑行的距离(m)与时速(km/h)的平方及 汽车总重量成正比例.设某辆卡车不装货物以时速50 km/h行驶时,从刹车 到停车走了20 m.如果这辆卡车装着等于车重的货物行驶时,发现前面20 m处有障碍物,这时为了能在离障碍物5 m以外处停车,最大限制时速应是多 少(结果只保留整数部分,设卡车司机发现障碍物到刹车需经过1 s)?
解(1)∵x∈R时,有 x2 ax 3- a 0恒成立,
则 a2 - 4(3 - a) 0,
即 a2 4a -12 0,-6 a 2.
(2)方法一:当x∈[-2,2]时,gx x2 ax 3 - a 0 ,分如下三种
情况讨论:
图1
图2
图3
①如图1,当g(x)的图象恒在x轴上方时,有 a2 - 4(3 - a) 0 ,即-6≤a≤2.
x2
的解集为B,若
A
,B则实数a的取值范围是.
解析: ∵A={x|2<x≤3},B={x|x>a},又 A,∴a≤B2.
x2 1 x a 0
答案: (-∞,2]
11. 某摩托车厂上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万 元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品质量,适度 增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应地 提高比例为 0.75x,同时预计年销售量增加的比例为0.6x,已知年利润y=(出 厂价-投入成本)×年销售量. (1)写出本年度预计的年利润y与投入成本增加的比例x的关系式; (2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在 什么范围内?
高考数学大一轮复习第六章不等式推理与证明第二节一元二次不等式及其解法课件文
所以f(x)min=f(-1)=-1-2+b2-b+1=b2-b-2, f(x)>0恒成立,即b2-b-2>0恒成立,
解得b<-1或b>2.∴b的取值范围为(-∞,-1)∪(2,+∞)
角度三:形如f(x)≥0(参数m∈[a,b])确定x的范围
3.对任意m∈[-1,1],函数f(x)=x2+(m-4)x+4-2m的值 恒大于零,求x的取值范围.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问 题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
13是ax2+bx+2=0的两根,
则a=-12,b=-2.
所以a+b=-14.
答案:-14
1.对于不等式ax2+bx+c>0,求解时不要忘记讨论a=0时 的情形.
2.当Δ<0时,ax2+bx+c>0(a≠0)的解集为R还是∅,要注意 区别.
3.含参数的不等式要注意选好分类标准,避免盲目讨论.
[小题纠偏]
解:要使 f(x)<-m+5 在[1,3]上恒成立,则 mx2-mx+m-6 <0,即 mx-122+34m-6<0 在 x∈[1,3]上恒成立. 因为 x2-x+1=x-122+34>0,又因为 m(x2-x+1)-6<0,所 以 m<x2-6x+1. 因为函数 y=x2-6x+1=x-1262+34在[1,3]上的最小值为67,所以只需 m<67即可.因为 m≠0,所以 m 的取值范围是(-∞,0)∪0,67.
高三数学一轮复习精品课件:§7.2 一元二次不等式及其解法
命题点2 含参不等式 例2 解关于x的不等式:x2-(a+1)x+a<0. 解答
由x2-(a+1)x+a=0,得(x-a)(x-1)=0, ∴x1=a,x2=1, ①当a>1时,x2-(a+1)x+a<0的解集为{x|1<x<a}, ②当a=1时,x2-(a+1)x+a<0的解集为∅, ③当a<1时,x2-(a+1)x+a<0的解集为{x|a<x<1}.
2.常用结论 (x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法
解集
不等式
a<b
a=b
a>b
(x-a)·(x-b)>0 {x|x<a或x>b} _{_x_|x_≠__a_}_ _{_x_|x_<_b_或__x_>_a_}_
(x-a)·(x-b)<0 _{_x_|_a_<_x_<_b_}_
一元二次不等式 ax2+bx+c>0 {_x_|_x_<_x_1或__x_>_x_2_}
__{_x_|x_≠__-__2b_a_}__
(a>0)的解集
一元二次不等式
ax2+bx+c<0
_{_x_|_x1_<__x_<_x_2}_
__∅__
(a>0)的解集
_{_x_|_x∈__R__}__ __∅__
路漫漫其修远兮,吾将上下而求索!
基础知识 次”的关系
判别式 Δ>0
Δ=b2-4ac
Δ=0
二次函数
y=ax2+bx+
c (a>0)的图象
一元二次方程 ax2+bx+c=0 (a>0)的根
高考数学一轮复习 第六章 不等式 6.2 一元二次不等式及其解法课件
12/8/2021
第十八页,共三十九页。
当2a<-1,即-2<a<0 时,解得2a≤x≤-1. 综上所述,当 a=0 时,不等式的解集为{x|x≤-1};
当-2<a<0 时,不等式的解集为x2a≤x≤-1
;
当 a=-2 时,不等式的解集为{-1};
பைடு நூலகம்
当 a<-2 时,不等式的解集为x-1≤x≤2a
.
1.思考辨析 判断下列结论正误(在括号内打“√”或“×”)
(1)a>b⇔ac2>bc2.( × )
(2)若方程 ax2+bx+c=0(a<0)没有实数根,则不等式 ax2+bx+c>0
的解集为 R.( × )
(3)不等式 ax2+bx+c≤0 在 R 上恒成立的条件是 a<0 且 Δ=b2-
4ac≤0.( × )
12/8/2021
第二十二页,共三十九页。
2.求不等式 12x2-ax>a2(a∈R)的解集. 解:原不等式可化为 12x2-ax-a2>0, 即(4x+a)(3x-a)>0,令(4x+a)(3x-a)=0, 解得 x1=-a4,x2=a3. 当 a>0 时,不等式的解集为 -∞,-a4∪a3,+∞; 当 a=0 时,不等式的解集为(-∞,0)∪(0,+∞); 当 a<0 时,不等式的解集为 12/8/202-1 ∞,a3∪-a4,+∞.
解析:当 k=0 时,不等式 kx2-6kx+k+8≥0 化为 8≥0,其 对任意的 x∈R 恒成立;当 k<0 时,不等式 kx2-6kx+k+8≥0 不 能恒成立;当 k>0 时,要使不等式 kx2-6kx+k+8≥0 对任意的 x ∈R 恒成立,对于方程 kx2-6kx+k+8=0,需 Δ=36k2-4(k2+ 8k)≤0,得 0<k≤1.综上,实数 k 的取值范围是[0,1],故选 A.
2014届高考数学一轮复习 1.2 含绝对值的不等式及一元二次不等式的解法配套课件 理 人教版
解绝对值不等式关键是正确去掉绝对值符号,转化为一般 不等式求解,去绝对值常用的方法是定义法和平方法.
例1 解不等式:(1)3<|2x-3|<5; (2)|x-1|+|x+2|<5. 【思路分析】 对于第(1)题,可从以下角度考虑:由于原不
等式等价于|2x-3|>3且|2x-3|<5,因此可先分别解出两个绝
考向瞭望把脉高考Biblioteka 命题预测 绝对值不等式与一元二次不等式是高中数学的基本内容,是
高考命题的重点.试题的命制常以这两类不等式为载体,既
考查不等式的解法,又考查对集合概念和运算的熟练掌握程 度.2012年高考中,绝大多数省份试题以选择题、填空题形 式出现,少数省份的高考题以解答题的某一步出现.
如2012年重庆卷,考查的分式不等式的解法,山东卷、上海 卷、广东卷考查的绝对值不等式的解法. 预测2014年的高考题对绝对值不等式和一元二次不等式仍坚 持如上述内容的考查.特别是一元二次不等式的解法、分式 不等式的解法要熟练掌握.
2.一元二次不等式的解集
判别式 Δ=b2-4ac 二次函数 y=ax2+ bx+c(a>0)的图象 x1,2= b 一元二次方程 ax2 2 - -b± b -4ac 2a +bx+c=0(a>0)的 x1=x2=______ 2a 根 (x1<x2) b xx≠- , 2 ax +bx+c>0(a>0) {x|x>x2 或 2a 的解集 x<x1} 且x∈R ax2+bx+c<0(a>0) {x|x1<x<x2} 的解集
法二:不等式|x-1|+|x+2|<5 的几何意义为数轴上到-2,1 两 个点的距离之和小于 5 的点组成的集合, 而-2,1 两个端点之间 的距离为 3, 由于分布在-2,1 以外的点到-2,1 的距离要计算两 次,而在-2,1 内部的距离则只计算一次,因此只要找出-2 左 5-3 边到-2 的距离等于 =1 的点-3,以及 1 右边到 1 的距离 2 5-3 等于 =1 的点 2,则原不等式的解集为{x|-3<x<2}. 2
高考数学一轮复习 第7章 不等式 2 第2讲 一元二次不等式及其解法教案 理-高三全册数学教案
第2讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ;(2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.三个“二次”间的关系判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx+c (a >0)的 图象一元二次方 程ax 2+bx +c =0(a >0)的根有两相异实 根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b 2a没有实 数根ax 2+bx +c>0(a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-b 2aRax 2+bx +c<0(a >0) 的解集{x |x 1<x <x 2}∅∅(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0);(2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.4.绝对值不等式的解法(1)|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2;(2)|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); (3)|f (x )|<g (x )⇔-g (x )<f (x )<g (x ).判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( ) (2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√(教材习题改编)不等式2x 2-x -3>0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <32B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <1 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <-32解析:选B.2x 2-x -3>0⇒(x +1)(2x -3)>0, 解得x >32或x <-1.所以不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1. 不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1B.⎣⎢⎡⎦⎥⎤-12,1 C.⎝ ⎛⎭⎪⎫-∞,-12∪[1,+∞)D.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞)解析:选A.由不等式x -12x +1≤0,可得⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x ≤1,所以不等式的解集为⎝ ⎛⎦⎥⎤-12,1.设二次不等式ax2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,则ab 的值为________. 解析:由不等式ax2+bx +1>0的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13,知a <0且ax2+bx +1=0的两根为x 1=-1,x 2=13,由根与系数的关系知⎩⎪⎨⎪⎧-1+13=-b a,-13=1a ,所以a =-3,b =-2,ab =6. 答案:6若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________.解析:因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4.答案:(-∞,-4)∪(4,+∞)一元二次不等式的解法(高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题.高考对一元二次不等式解法的考查主要有以下三个命题角度:(1)解不含参数的一元二次不等式; (2)解含参数的一元二次不等式;(3)已知一元二次不等式的解集求参数.[典例引领]角度一 解不含参数的一元二次不等式(1)解不等式:-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.【解】 (1)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0.方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(2)由题意⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}.角度二 解含参数的一元二次不等式(分类讨论思想)解关于x 的不等式:12x 2-ax >a 2(a ∈R ).【解】 因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0};③当a <0时,-a 4>a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.角度三 已知一元二次不等式的解集求参数已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=b a,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.即不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)解一元二次不等式的方法和步骤 (2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.②判断相应方程的根的个数,讨论判别式Δ与0的关系. ③确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[通关练习]1.(2018·陕西西安模拟)若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0,B ={x |x 2<2x },则A ∩B =( ) A .{x |0<x <1} B .{x |0≤x <1} C .{x |0<x ≤1} D .{x |0≤x ≤1}解析:选A.因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0={x |0≤x <1}, B ={x |x 2<2x }={x |0<x <2},所以A ∩B ={x |0<x <1},故选A.2.(2018·广东清远一中模拟)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A .(-∞,-1)∪(3,+∞) B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析:选C.关于x 的不等式ax -b <0的解集是(1,+∞),即不等式ax <b 的解集是(1,+∞),所以a =b <0,所以不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,所以所求解集是(-1,3).故选C.3.不等式0<x 2-x -2≤4的解集为________.解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0,即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]一元二次不等式恒成立问题(高频考点)一元二次不等式恒成立问题是每年高考的热点,题型多为选择题和填空题,难度为中档题.高考对一元二次不等式恒成立问题的考查有以下三个命题角度:(1)形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围; (2)形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围; (3)形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围.[典例引领]角度一 形如f (x )≥0(f (x )≤0)(x ∈R )确定 参数的范围若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则实数a 的取值范围是________.【解析】 当a -2=0,即a =2时不等式为-4<0, 对一切x ∈R 恒成立.当a ≠2时,则⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0,即⎩⎪⎨⎪⎧a <2-2<a <2,解得-2<a <2. 所以实数a 的取值范围是(-2,2]. 【答案】 (-2,2]角度二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围(转化与化归思想)若不等式x 2+mx -1<0对于任意x ∈[m ,m +1]都成立,则实数m 的取值范围是________.【解析】 由题意,得函数f (x )=x 2+mx -1在[m ,m +1]上的最大值小于0,又抛物线f (x )=x 2+mx -1开口向上,所以只需⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 即⎩⎪⎨⎪⎧2m 2-1<0,2m 2+3m <0, 解得-22<m <0.【答案】⎝⎛⎭⎪⎪⎫-22,0 角度三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.【解】 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9,则-1≤a ≤1. 因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.则实数x 的取值范围为(-∞,2)∪(4,+∞).(1)不等式恒成立问题的求解方法①一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.②一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.③一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)求解不等式恒成立问题的数学思想求解此类问题常利用分类讨论思想及转化与化归思想,如例22是不等式与函数的转化,例23是主元与次元的转化,而例21是对二次项系数是否为0进行讨论.[通关练习]1.若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________.解析:要使y =mx 2-(1-m )x +m 有意义,即mx 2-(1-m )x +m ≥0对∀x ∈R 恒成立,则⎩⎪⎨⎪⎧m >0,(1-m )2-4m 2≤0,解得m ≥13.答案:m ≥132.若关于x 的不等式4x-2x +1-a ≥0在[1,2]上恒成立,则实数a的取值范围为________. 解析:因为不等式4x-2x +1-a ≥0在[1,2]上恒成立,所以4x-2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x+1-1=(2x-1)2-1.因为1≤x ≤2,所以2≤2x≤4.由二次函数的性质可知:当2x=2,即x =1时,y 取得最小值0, 所以实数a 的取值范围为(-∞,0]. 答案:(-∞,0]解分式不等式的关键是先将给定不等式移项,通分,整理成一边为商式,另一边为0的形式,再通过等价转化化成整式不等式(组)的形式进行求解.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. 易错防范(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形.(2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别.(3)不同参数范围的解集切莫取并集,应分类表述. 1.设集合A ={x |x 2+x -6≤0},集合B 为函数y =1x -1的定义域,则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2)D .(1,2]解析:选D.A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -ba 的值为( ) A.56 B.16 C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-ba=-12+13=-16,则a -b a =1-b a =1-16=56. 3.不等式x -43-2x<0的解集是( )A .{x |x <4}B .{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x <4 解析:选C.不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,所以不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >4.4.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( ) A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析:选A.x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4即可,解得-1≤a ≤4.5.(2018·福建龙岩模拟)已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫12,+∞B.⎝ ⎛⎭⎪⎫-32,12 C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫32,+∞D.⎝ ⎛⎭⎪⎫-12,32 解析:选A.不等式f (x )>0的解集是(-1,3),故f (x )<0的解集是{x |x <-1或x >3},故f (-2x )<0的解集为{x |-2x <-1或-2x >3},即⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-32或x >12.6.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.答案:{x |0<x <2}7.函数y =lg (1-x )-2x 2+12x +32的定义域为________. 解析:由题意,得⎩⎪⎨⎪⎧-2x 2+12x +32>0,1-x >0,即⎩⎪⎨⎪⎧x 2-6x -16<0,1-x >0,解得-2<x <1, 即原函数的定义域为{x |-2<x <1}.答案:(-2,1)8.(2018·江西南昌模拟)在R 上定义运算:x *y =x (1-y ).若不等式(x -y )*(x +y )<1对一切实数x 恒成立,则实数y 的取值范围是________.解析:由题意,知(x -y )*(x +y )=(x -y )·[1-(x +y )]<1对一切实数x 恒成立,所以-x 2+x +y 2-y -1<0对于x ∈R 恒成立.故Δ=12-4×(-1)×(y 2-y -1)<0,所以4y 2-4y -3<0,解得-12<y <32.答案:⎝ ⎛⎭⎪⎫-12,329.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.10.(2018·合肥市第二次教学质量检测)已知函数f (x )=4-|ax -2|(a ≠0). (1)求函数f (x )的定义域;(2)若当x ∈[0,1]时,不等式f (x )≥1恒成立,求实数a 的取值范围.解:(1)要使函数有意义,需4-|ax -2|≥0,即|ax -2|≤4,|ax -2|≤4⇔-4≤ax -2≤4⇔-2≤ax ≤6. 当a >0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-2a≤x ≤6a ;当a <0时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪6a≤x ≤-2a .(2)f (x )≥1⇔|ax -2|≤3,记g (x )=|ax -2|,因为x ∈[0,1],所以需且只需⎩⎪⎨⎪⎧g (0)≤3g (1)≤3⇔⎩⎪⎨⎪⎧2≤3|a -2|≤3⇔-1≤a ≤5,又a ≠0,所以-1≤a ≤5且a ≠0.1.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( ) A .(-1,0) B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.2.(2018·陕西咸阳模拟)已知a ∈Z ,关于x 的一元二次不等式x2-6x +a ≤0的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18 C .21D .26解析:选C.设f (x )=x 2-6x +a ,其图象为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧f (2)≤0,f (1)>0,即⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0,解得5<a ≤8,又a ∈Z ,故a =6,7,8.则所有符合条件的a 的值之和是6+7+8=21.3.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n+1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8). 答案:[2,8)4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________.解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立, 所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得,Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案:[-8,4]5.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.6.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), 因为a >0,且0<x <m <n <1a,所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .。
[创新设计]2014届高考数学人教a版(理)一轮复习[配套word版文档]:第七篇 第2讲 一元二次不等式及其解法
第2讲 一元二次不等式及其解法A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2012·南通二模)已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为( ).A .{x |x ≥4}B .{x |x <4}C .{x |-3<x <0}D .{x |x <-3}解析 f (4)=42=2,不等式即为f (x )<2. 当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0. 综上,x <4.故f (x )<f (4)的解集为{x |x <4}. 答案 B2.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是 ( ). A .[-4,4]B .(-4,4)C .(-∞,-4]∪[4,+∞)D .(-∞,-4)∪(4,+∞)解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4,故选D. 答案 D3.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c = ( ). A .1∶2∶3 B .2∶1∶3 C .3∶1∶2D .3∶2∶1解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -ba . ∵不等式的解集为{x |-2<x <1}, ∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎪⎨⎪⎧b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3. 答案 B4.(2013·莆田二模)不等式(x 2-2)log 2x >0的解集是( ).A .(0,1)∪(2,+∞)B .(-2,1)∪(2,+∞)C .(2,+∞)D .(-2,2)解析 原不等式等价于⎩⎨⎧ x 2-2>0,log 2x >0或⎩⎨⎧x 2-2<0,log 2x <0.∴x >2或0<x <1,即不等式的解集为(0,1)∪(2,+∞). 答案 A二、填空题(每小题5分,共10分)5.(2013·烟台模拟)已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x -a >0的解集为________.解析 由ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12知a <0,且-13,12为方程ax 2+2x +c=0的两个根,由根与系数的关系得-13+12=-2a ,-13×12=ca ,解得a =-12,c =2,∴-cx 2+2x -a >0,即2x 2-2x -12<0,其解集为(-2,3). 答案 (-2,3)6.在实数集上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则实数a 的取值范围是________.解析 由题意知(x -a )⊗(x +a )=(x -a )(1-x -a )=-x 2+x +a 2-a .故-x 2+x +a 2-a <1对任意x ∈R 都成立.即-x 2+x <-a 2+a +1对任意x ∈R 都成立.而-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14≤14,只需-a 2+a +1>14即可,即4a 2-4a -3<0,解得-12<a <32. 答案 ⎝ ⎛⎭⎪⎫-12,32三、解答题(共25分)7.(12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1. 由根与系数的关系,得⎩⎪⎨⎪⎧1+b =3a ,1×b =2a .解得⎩⎨⎧a =1,b =2.(2)由(1)知不等式ax 2-(ac +b )x +bc <0为x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.①当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c };②当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};③当c =2时,不等式(x -2)(x -c )<0的解集为∅.综上所述:当c >2时,不等式的解集为{x |2<x <c }; 当c <2时,不等式的解集为{x |c <x <2}; 当c =2时,不等式的解集为∅.8.(13分)(2013·淮南质检)已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ). (1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围. 解 (1)根据题意,m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)(-1)>0,得m 2>0, 所以m ≠1且m ≠0.(2)在m ≠0且m ≠1的条件下,⎩⎪⎨⎪⎧x 1+x 2=m -21-m ,x 1·x 2=11-m ,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2 =(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ).A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,∴-32<a <-56,又a ∈Z , ∴a =-1,不等式f (x )>1即为-x 2-x >0, 解得-1<x <0. 答案 C2.(2012·南通期末)若不等式x 2-2ax +a >0对x ∈R 恒成立,则关于t 的不等式a 2t +1<at 2+2t -3<1的解集为( ).A .(1,2)B .(-2,1)C .(-2,2)D .(-3,2)解析 若不等式x 2-2ax +a >0对x ∈R 恒成立,则Δ=4a 2-4a <0,所以0<a <1.又a 2t +1<at 2+2t -3<1,则2t +1>t 2+2t -3>0,即⎩⎨⎧2t +1>t 2+2t -3,t 2+2t -3>0,所以1<t <2. 答案 A二、填空题(每小题5分,共10分)3.(2013·大同一模)已知函数f (x )=-x 2+2x +b 2-b +1(b ∈R ),若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________. 解析 依题意,f (x )的对称轴为x =1,且开口向下, ∴当x ∈[-1,1]时,f (x )是增函数.若f (x )>0恒成立,则f (x )min =f (-1)=-1-2+b 2-b +1>0,即b 2-b -2>0,∴(b -2)(b +1)>0,∴b >2或b <-1. 答案 (-∞,-1)∪(2,+∞)4.(2012·浙江)设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =________. 解析 显然a =1不能使原不等式对x >0恒成立,故a ≠1且当x 1=1a -1,a ≠1时原不等式成立.对于x 2-ax -1=0,设其两根为x 2,x 3,且x 2<x 3,易知x 2<0,x 3>0.当x >0时,原不等式恒成立,故x 1=1a -1满足方程x 2-ax -1=0,代入解得a =32或a =0(舍去). 答案 32三、解答题(共25分)5.(12分)设函数f (x )=a 2ln x -x 2+ax ,a >0. (1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立. 注 e 为自然对数的底数.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0, 所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x.由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞).(2)由题意得,f (1)=a -1≥e -1,即a ≥e. 由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2,对x ∈[1,e]恒成立, 只要⎩⎨⎧f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2,解得a =e. 6.(13分)(2013·金华模拟)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .。
高中数学一轮复习 一元二次不等式及其解法
(Ⅱ)若 ax2+bx+c≤0 的解集为 R,求实数 c 的取值范围.
Байду номын сангаас解:(Ⅰ)依题意知,-3,2 是方程 ax2+(b-8)x-a-ab=0 的两
-3+2=-b-a 8,
根,且 a<0,则
所以 -3×2=-aa-ab,
a=-3,b=5,则
f(x)=-
1- k1-k2};
当 k=-1 时,不等式的解集为{x|x≠-1};
当 k<-1 时,不等式的解集为 R.
点 拨: 解一元二次不等式的步骤:第一步,将二次项系数化 为正数;第二步,解相应的一元二次方程;第三步,根据 一元二次方程的根,结合不等号的方向画图;第四步,写
出不等式的解集.容易出现的错误有:①未将二次项系数
-2152,所以实数 c 的取值范围为-∞,-2152.
点 拨: 三个“二次”在高考中举足轻重,每年高考中,至
少有三分之一的题目与之相关.直接考查的不多见,以 间接考查为主,贯穿高中数学的始终.其中二次函数居 核心地位.
(1) 已 知 不 等 式 ax2 - 3x + 6>4 的 解 集 为
+2>0 的解集为 R.
(2)若关于 x 的不等式 ax2-x+2a<0 的解集为∅,则
实数 a 的取值范围是________.
解:依题意知,问题等价于 ax2-x+2a≥0 恒成立, 当 a=0 时,-x≥0 不恒成立; 当 a≠0 时,要使 ax2-x+2a≥0 恒成立,
需aΔ>≤0,0,即1a->08,a2≤0,解得 a≥ 42,即 a 的取值
{x|x1<x<x2}
有两相等实根 x1=x2= -2ba
高考数学(理,北师大版)一轮复习课件第34讲 一元二次不等式及其解法(50张PPT)
②若 a=12,则不等式为(x-2)2<0,不等式的解集为∅;
③若 a>12,则1a<2,此时不等式的解集为1a,2.
返回目录
第34讲 一元二次不等式及其解法
(2)当 a=0 时,不等式为-x+2<0, 此时不等式的解集为(2,+∞).
点
(3)当 a<0 时,不等式可化为x-1a(x-2)>0.
面
(x-a)(x-b)≥0,
xx- -ab≥0 等价于_x_-___b_≠__0_____________;
xx- -ab≤0 等价于(x-x-b≠a)0. (x-b)≤0,
返回目录
第34讲 一元二次不等式及其解法
双
向
—— 链接教材 ——
固
基 础
1 . [ 教 材 改 编 ] 不 等 式 - x2 - x + 2≥0 的 解 集 是
础 间的函数关系式为 y=3000+20x-0.1x2(0<x<240,x∈N),
若每台产品的售价为 25 万元,则生产者不亏本(销售收入不
小于总成本)时的最低产量是________台.
[答案] 150
[解析] 根据题意,得 3000+20x-0.1x2≤25x,移项 整理,得 x2+50x-30 000≥0,解得 x≤-200(舍去)或 x ≥150.因为 x∈N,则生产者不亏本时的最低产量是 150 台.
即 0<|x|<2,解得-2<x<0 或 0<x<2,故所求的不等式的解
点 集是(-2,0)∪(0,2).
面 讲 考
(2)x-1x<0⇒x2-x 1<0⇒x<-1 或 0<x<1;x2-1x>0⇒x<0
第1章 1.1 不等式的基本性质和一元二次不等式的解法
上一 页
返回 首页
下一 页
[质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1: 解惑: 疑问 2: 解惑: 疑问 3: 解惑: _____________________________________________________ _______________________________________________________ _____________________________________________________ _______________________________________________________ ______________________________________________________ _______________________________________________________
上一 页
返回 首页
下一 页
[小组合作型] 比较大小 (1)已知x>3,比较x3+3与3x2+x的大小; (2)若m>0,试比较mm与2m的大小. 【精彩点拨】 (1)只需考查两者的差同0的大小关系;
(2)注意到2m>0,可求商比较大小,但要注意到用函数的性质.
上一 页
返回 首页
下一 页
【自主解答】
上一 页
返回 首页
下一 页
[基础· 初探] 教材整理 1 不等式的性质
1.对于任意两个实数 a,b,有且只有以下三种情况之一成立: a>b⇔ a-b>0 ;a<b⇔ a-b<0 ;a=b⇔a-b=0 .
上一 页
返回 首页
下一 页
2014高考数学(理)一轮复习学案课件 第5编 一元二次不等式及其解法
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 四 考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
考纲解读
返回
考向预测
返回
课前热身
பைடு நூலகம்返回
返回
返回
考点 一
考点突破
返回
返回
返回
返回
返回
考点 二
返回
返回
返回
考点 三
返回
返回
返回
返回
考点 四
返回
返回
返回
真题再现
返回
返回
误区警示
返回
规律探究
返回
即时巩固
返回
返回
返回
返回
返回
课后拔高
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
【名师伴你行】2014高考数学一轮复习 第七章 一元二次不等式及其解法课件 新人教A版
27
a a a a ③a<0时,-4>3,解集为{x|x<3或x>-4}. a 综上所述:当a>0时,不等式的解集为{x|x<- 4 或x> a 3 };当a=0时,不等式的解集为{x|x∈R且x≠0};当a<0
a a 时,不等式的解集为{x|x<3或x>-4}.
28
方法点睛
解含参数的一元二次不等式的一般步骤:①
7
0)(其中a>0)的形式,其对应的方程ax2+bx+c=0有两个不 等实根x1,x2,(x1<x2)(此时Δ=b2-4ac>0),则可根据“大 于取两边,小于夹中间”求解集.
8
●两个防范 (1)二次项系数中含有参数时,参数的符号影响不等式的 解集;不要忘了二次项系数是否为零的情况; (2)解含参数的一元二次不等式,可先考虑因式分解,再 对根的大小进行分类讨论;若不能因式分解,则可对判别式 进行分类讨论,分类要不重不漏.
即
解得m≤-5.
方法二:x∈(1,2)时x2+mx+4<0恒成立,等价于m<- 4 x- . x
19
x∈(1,2)恒成立. 4 又g(x)=-x- 在(1,2)上为增函数,∴g(x)>-5. x ∴m≤-5.
答案:m≤-5
20
考点一
一元二次不等式的解法
2 x +2x,x≥0, 2 -x +2x,x<0,
+∞)时,f(x)≥a恒成立,求a的取值范围.
40
解析:方法一:f(x)=(x-a)2+2-a2,此二次函数图像 的对称轴为x=a. ①当a∈(-∞,-1)时,f(x)在[-1,+∞)上单调递增, f(x)min=f(-1)=2a+3.要使f(x)≥a恒成立,只需f(x)min≥a, 即2a+3≥a,解得-3≤a<-1; ②当a∈[-1,+∞)时,f(x)min=f(a)=2-a2,由2- a2≥a,解得-1≤a≤1. 综上所述,所求a的取值范围为[-3,1].
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若不等式mx2-mx-1<0对一切实数x恒成立,求实 数m的取值范围. 【思路点拨】 分m=0与m≠0两种情况讨论,当m≠0
时,用判别式法求解.
【尝试解答】 要使mx2-mx-1<0对一切实数x恒成 立, 若m=0,显然-1<0; m<0, 若m≠0,则 解得-4<m<0, 2 Δ=m +4m<0, 故实数m的取值范围是(-4,0].
x∈R恒成立,则实数a的取值范围是________.
【解析】 由题意知,不等式(a+2)x2+4x+a-1>0 对一切x∈R恒成立,则有 a+2>0, 解得a>2. Δ=16-4(a+2)(a-1)<0,
【答案】 (2,+∞)
课后作业(一)
(2)-1≤x2+2x-1≤2;
【解】 (1)∵-2x2-5x+3>0,∴2x2+5x-3<0, ∴(2x-1)(x+3)<0, 1 ∴原不等式的解集为{x|-3<x< }. 2 (2)这是一个双向不等式,可转化为不等式组 x2+2x-1≥-1, 2 x +2x-1≤2,
x2+2x≥0, 即 2 x +2x-3≤0.
① ② 由①得x≥0或x≤-2; 由②得-3≤x≤1. 故得所求不等式的解集为{x|-3≤x≤-2或0≤x≤1}.
求不等式12x2-ax>a2(a∈R)的解集. 【思路点拨】 先求方程12x2-ax=a2的根,讨论根的
大小,确定不等式的解集.
【尝试解答】 ∵12x2-ax>a2,∴12x2-ax-a2>0, 即(4x+a)(3x-a)>0,令(4x+a)(3x-a)=0, a a 得:x1=- ,x2= . 4 3 a a a a ①a>0时,- < ,解集为{x|x<- 或x> }; 4 3 4 3
第一节
一元二次不等式及其解法
1.一元二次不等式与相应的二次函数及一元二次方程 的关系如下表 判别式 Δ=b2-4ac 二次函数 y=ax2+bx +c (a>0)的图像 Δ>0 Δ=0 Δ<0
一元二次方程 有两相异实根 2 ax +bx+c=0 x1,x2(x1<x2) (a>0)的根 一元二次不等 {x| x<x1 式 或x>x2 } ax2+bx+c>0 ____________ (a>0)的解集 ax2+bx+c<0 {x|x <x<x } 1 2 ___________ (a>0)的解集
善于联想:(1)二次函数y=ax2+bx+c的图象与x轴的交点, (2)方程ax2+bx+c=0(a≠0)的根,运用好“三个二次”间的 关系.
1.二次项系数中含有参数时,参数的符号影响不等式的
解集;不要忘了二次项系数是否为零的情况.
2.解含参数的一元二次不等式,可先考虑因式分解, 再对根的大小进行分类讨论;若不能因式分解,则可对判别 式进行分类讨论,分类要不重不漏. 3.不同参数范围的解集切莫取并集,应分类表述.
有两相同实根 b 没有实根 x1=x2=- 2a R
{x|x≠x1} ___________
∅
∅ ______
2.用程序框图表示一元二次不等式ax2+bx+c>0(a>0) 的求解过程
3.简单的分式不等式 f(x) f(x)· g(x)>0 (1) >0⇔_______________; g(x) f(x) f(x)· g(x)≤0且g(x)≠0 (2) ≤0⇔________________________. g(x)
ax2+bx+c>0(a≠0)对一切x∈R恒成立的条件是什么?
【提示】 a>0且b2-4ac<0.
1.(人教A版教材习题改编)不等式2x2-x-1>0的解集 是( ) 1 A.(- ,1) B.(1,+∞) 2 1 C.(-∞,1)∪(2,+∞) D.(-∞,- )∪(1,+∞) 2
【解析】 ∵2x2-x-1=(x-1)(2x+1)>0, 1 ∴x>1或x<- . 2 1 故原不等式的解集为(-∞,- )∪(1,+∞). 2 【答案】 D
1.不等式ax2+bx+c>0的解是全体实数(或恒成立)的 a>0, 条件是当a=0时,b=0,c>0;当a≠0时, 不等式 Δ<0; ax2+bx+c<0的解是全体实数(或恒成立)的条件是当a=0 a<0, 时,b=0,c<0;当a≠0时, Δ<0. 2.解决恒成立问题一定要搞清谁是主元,谁是参数, 一般地,知道谁的范围,谁就是主元,求谁的范围,谁就 是参数.
2
1 1 b -a=-2+3 则 2=(- 1)×1 2 3 a ∴a+b=-14.
a=-12, 解得 b=-2,
【答案】
-14
解下列不等式 (1)3+2x-x2≥0; (2)x2+3>2x; 2x (3) ≤1. x-1
【思路点拨】
(1)先把二次项系数化为正数,再用因
式分解法;(2)用配方法或用判别式法求解;(3)移项通分,
②a=0时,x2>0,解集为{x|x∈R且x≠0}; a a a a ③a<0时,- > ,解集为{x|x< 或x>- }. 4 3 3 4 a 综上所述:当a>0时,不等式的解集为{x|x<- 或x> 4 a }; 3 当a=0时,不等式的解集为{x|x∈R且x≠0}; a a 当a<0时,不等式的解集为{x|x< 或x>- }. 3 4
1 【解析】 2x +x-1>0的解集为{x|x> 或x<-1}, 2 1 1 2 2 故由x> ⇒2x +x-1>0,但2x +x-1>0D⇒/x> . 2 2 1 则“x> ”是“2x2+x-1>0”的充分不必要条件. 2
2
【答案】
A
2.(2013·清远模拟)不等式ax2 +4x+a>1-2x2 对一切
R上恒成立,则实数a的取值范围是________.
【解析】 ∵x2-ax+2a>0在R上恒成立,
∴Δ=a2-4×2a<0,∴0<a<8. 【答案】 (0,8)
1 1 4.一元二次不等式ax +bx+2>0的解集是(- , ), 2 3 则a+b的值是________.
2
【解析】 1 . 3
1 由已知得方程ax +bx+2=0的两根为- , 2
x-1 2.不等式 ≤0的解集为( ) 2x+1 1 1 A.(- ,1] B.{x|x≥1或x<- } 2 2 1 1 C.[- ,1] D.{x|x≥1或x≤- } 2 2
【解析】 原不等式等价于 (x-1)(2x+1)<0或x-1=0. 1 ∴原不等式的解集为(- ,1]. 2
【答案】
A
3.(2012·福建高考)已知关于x的不等式x2-ax+2a>0在
(2)不会利用化归与转化思想化未知为已知,致使解题 时无从下手,盲目作答. 防范措施:(1)应熟练掌握一元二次方程与其判别式Δ之 间的关系,关于x的一元二次不等式有实根的充要条件是其 对应的判别式非负. (2)遇到一个问题,要注意寻找结论和已知间的关系,
化已知为未知或化未知为已知.
1 1.(2012· 天津高考)设x∈R,则“x> ”是“2x2+x- 2 1>0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
解含参数的一元二次不等式的步骤 (1)二次项若含有参数应讨论参数是等于0,小于0,还是 大于0,然后将不等式转化为二次项系数为正的形式. (2)判断方程实根的个数,讨论判别式Δ与0的关系.
(3)确定方程无实根时可直接写出解集,确定方程有两
个相异实根时,要讨论两实根的大小关系,从而确定解集形 式.
解关于x的不等式x2-(a+1)x+a<0.
1.熟记一元二次不等式的解集公式是掌握一元二次不
等式求解的基础,可结合一元二次方程及判别式或二次函数
的图象来记忆求解. 2.解一元二次不等式的步骤:(1)把二次项系数化为正 数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判 别式法;(3)写出不等式的解集.
解下列不等式: (1)-2x2-5x+3>0;
从近两年的高考试题来看,一元二次不等式的解法、含 参数不等式的解法以及二次函数、一元二次方程、一元二次 不等式的综合应用等问题是高考的热点.常与集合、函数、 导数等知识交汇命题,主要考查分析问题、解决问题的能
力、推理论证能力及转化与化归的思想.
ห้องสมุดไป่ตู้
思想方法之一 巧用一元二次不等式求代数式的最值
(2011·浙江高考)设x,y为实数,若4x2 +y2 +xy= 1,则2x+y的最大值是________.
若关于x的不等式 实数a的取值范围.
ax <1的解集是{x|x<1或x>2},求 x-1
(a-1)x+1 ax 【解】 <1⇔ <0⇔[(a-1)x+1](x x-1 x-1 -1)<0,由原不等式的解集是{x|x<1或x>2}, a-1<0, 1 知 1 ⇒a= . 2 -a-1=2 1 ∴实数a的取值范围是{ }. 2
【解】 原不等式可化为(x-a)(x-1)<0.
当a>1时,原不等式的解集为(1,a);
当a=1时,原不等式的解集为空集; 当a<1时,原不等式的解集为(a,1).
已知关于x的不等式x2 +ax+b<0的解集(-1,2),
试求关于x的不等式ax2+x+b<0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.
3 2x+y 2 5 ≥(2x+y) - ·( ) = (2x+y)2, 2 2 8 8 2 ∴(2x+y) ≤ , 5 8 8 ∴- ≤2x+y≤ , 5 5 2 10 2 10 即- ≤2x+y≤ . 5 5
2
【答案】
2 10 5
易错提示:(1)换元后,不会从关于x的一元二次方程有
实数解入手解决问题,致使思维受阻.
对任意a∈[-1,1]不等式x2 +(a-4)x+4-2a>0恒成 立,则实数x的取值范围是________.
【解析】 设f(a)=(x-2)a+x2-4x+4,则原问题可 转化为一次函数(或常数函数)f(a)在区间[-1,1]上恒正时x 应满足的条件, f(-1)>0, 故应有 f(1)>0. x2-5x+6>0, 即 2 x -3x+2>0,