和龙市民族中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和龙市民族中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为(

A .
B .(4+π)
C .D

 2. 椭圆=1的离心率为( )
A
.B .
C .
D

3. 在等差数列中,首项公差,若,则
{}n a 10,a =0d ≠1237k a a a a a =++++L k =A 、B 、
C 、
D 、22
232425
4. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
A .0.648
B .0.432
C .0.36
D .0.312
5. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( )A .2
B .﹣2
C .8
D .﹣8
6. 已知椭圆C :
+
=1(a >b >0)的左、右焦点为F 1、F 2,离心率为
,过F 2的直线l 交C 于A 、B
两点,若△AF 1B 的周长为4,则C 的方程为( )A .
+
=1
B . +y 2=1
C .
+
=1
D .
+=1
7. sin570°的值是( )
A .
B .﹣
C .
D .﹣
8. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (
x ){g ′
(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断
下列各函数值中最小的是(

班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .h ()
B .h ()
C .h ()
D .h ()
9. 某三棱锥的三视图如图所示,该三棱锥的体积是( )
A . 2
B .4
C .
D .
3
43
8【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
10.已知函数,若存在常数使得方程有两个不等的实根21
1,[0,)22
()13,[,1]
2
x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩()f x t =12
,x x (),那么的取值范围为( )
12x x <12()x f x ∙A .
B .
C .
D .3[,1)
4
1[831[,1623
[,3)8
11.集合,是的一个子集,当时,若有,则称为的一个“孤立
{}5,4,3,2,1,0=S A S A x ∈A x A x ∉+∉-11且x A 元素”.集合是的一个子集, 中含4个元素且中无“孤立元素”,这样的集合共有个B S B B B A.4 B. 5 C.6 D.7
12.已知函数,关于的方程()有3个相异的实数根,则的
()x e f x x
=x 2()2()10f x af x a -+-=a R Îa 取值范围是(

A .
B .
C .
D .21(,)21e e -+¥-21(,)21e e --¥-21(0,21e e --2121e e ìü-ïï
í-ïïîþ
【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.
二、填空题
13.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 .
14.已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为2,
M N 、2
4y x =F MN
,则直线的方程为_________.
||||10MF NF +=MN 15.对于集合M ,定义函数
对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}
.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .
16.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:
①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为
,则动点P 的轨迹所在曲线是圆;
③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;
④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线;⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝.其中真命题是 (写出所有真命题的序号)
17.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 . 
18.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .
三、解答题
19.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.
(Ⅰ)求证:EF ⊥平面DCE ;
(Ⅱ)当AB 的长为何值时,二面角A ﹣EF ﹣C 的大小为60°.
20.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).
21.已知函数f(x)=在(,f())处的切线方程为8x﹣9y+t=0(m∈N,t∈R)
(1)求m和t的值;
(2)若关于x的不等式f(x)≤ax+在[,+∞)恒成立,求实数a的取值范围.
22.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.
组号分组回答正确的
人数回答正确的人数占本组的频率
第1组[15,25)a0.5
第2组[25,35)18x
第3组[35,45)b0.9
第4组[45,55)90.36
第5组[55,65]3y
(Ⅰ)分别求出a,b,x,y的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
23.关于x的不等式a2x+b2(1﹣x)≥[ax+b(1﹣x)]2
(1)当a=1,b=0时解不等式;
(2)a,b∈R,a≠b解不等式.
24.若{a n}的前n项和为S n,点(n,S n)均在函数y=的图象上.
(1)求数列{a n}的通项公式;
(2)设,T n是数列{b n}的前n项和,求:使得对所有n∈N*都成立的最大正整数m.
和龙市民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1. 【答案】 D
【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,
四棱锥的高与圆锥的高相同,高是=

∴几何体的体积是=

故选D .
【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察. 
2. 【答案】D
【解析】解:根据椭圆的方程=1,可得a=4,b=2

则c=
=2

则椭圆的离心率为e==,
故选D .
【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分. 
3. 【答案】A
【解析】,1237k a a a a a =++++L 176
72
a d ⨯=+121(221)d a d ==+-
∴.
22k =4. 【答案】A
【解析】解:由题意可知:同学3次测试满足X ∽B (3,0.6),该同学通过测试的概率为=0.648.
故选:A . 
5. 【答案】B
【解析】解:∵f (x+4)=f (x ),∴f (2015)=f (504×4﹣1)=f (﹣1),又∵f (x )在R 上是奇函数,∴f (﹣1)=﹣f (1)=﹣2.
故选B.
【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.
6.【答案】A
【解析】解:∵△AF1B的周长为4,
∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,
∴4a=4,
∴a=,
∵离心率为,
∴,c=1,
∴b==,
∴椭圆C的方程为+=1.
故选:A.
【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. 
7.【答案】B
【解析】解:原式=sin(720°﹣150°)=﹣sin150°=﹣.
故选B
【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
8.【答案】B
【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]
=x x(lnx+1),
令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,
∴h(x)在(0,)递减,在(,+∞)递增,
∴h()最小,
故选:B.
【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.
9.【答案】B
10.【答案】C 【解析】
试题分析:由图可知存在常数,使得方程有两上不等的实根,则
,由,可得()f x t =314t <<13
24
x +=
,由,可得(负舍),即有,则
14x =213x =x =12111,422x x ≤<≤≤2
21143
x ≤≤.故本题答案选C.
()212123133,162x f x x x ⎡⎫
=⋅∈⎪⎢⎣⎭
考点:数形结合.
【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.
11.【答案】C 【解析】
试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:,,,,,共6个。


{}0,1,3,4{}0,1,3,5{}0,1,4,5{}0,2,3,5{}0,2,4,5{}1,2,4,5
选C 。

考点:1.集合间关系;2.新定义问题。

12.【答案】
D
第Ⅱ卷(共90分)
二、填空题
13.【答案】 (﹣2,﹣6) .
【解析】解:向量4,4﹣2
,2(﹣),的有向线段首尾相接能构成四边形,
则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),
故答案为:(﹣2,﹣6).
【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.
14.【答案】20
x y --=【解析】解析: 设,那么,,∴线段1122(,)(,)M x y N x y 、12||||210MF NF x x +=++=128x x +=MN 的中点坐标为.由,两式相减得,而
,∴(4,2)2
114y x =2
224y x =121212()()4()y y y y x x +-=-12
22
y y +=,∴直线的方程为,即.
12
12
1y y x x -=-MN 24y x -=-20x y --=15.【答案】 {1,6,10,12} .
【解析】解:要使f A (x )f B (x )=﹣1,必有x ∈{x|x ∈A 且x ∉B}∪{x|x ∈B 且x ∉A}={6,10}∪{1,12}={1,6,10,12,},所以A △B={1,6,10,12}.故答案为{1,6,10,12}.
【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题. 
16.【答案】 ①②④ 
【解析】解:对于①,∵BD 1⊥面AB 1C ,∴动点P 的轨迹所在曲线是直线B 1C ,①正确;对于②,满足到点A 的距离为的点集是球,∴点P 应为平面截球体所得截痕,即轨迹所在曲线为圆,②
正确;
对于③,满足条件∠MAP=∠MAC 1 的点P 应为以AM 为轴,以AC 1 为母线的圆锥,平面BB 1C 1C 是一个与轴AM 平行的平面,
又点P 在BB 1C 1C 所在的平面上,故P 点轨迹所在曲线是双曲线一支,③错误;对于④,P 到直线C 1D 1 的距离,即到点C 1的距离与到直线BC 的距离比为2:1,∴动点P 的轨迹所在曲线是以C 1 为焦点,以直线BC 为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE ⊥BC ,EF ⊥AD ,PG ⊥CC 1,连接PF ,设点P 坐标为(x ,y ,0),由|PF|=|PG|,得,即x 2﹣y 2=1,
∴P 点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
17.【答案】 .
【解析】解:由方程组
解得,x=﹣1,y=2故A(﹣1,2).如图,
故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx
=﹣(﹣4)=
故答案为:
【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.
18.【答案】 .
【解析】解:∵=2,由正弦定理可得:,即c=2a.
b=2a,
∴==.
∴cosB=.
故答案为:.
【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.
三、解答题
19.【答案】
【解析】证明:(Ⅰ)在△BCE中,BC⊥CF,BC=AD=,BE=3,∴EC=,
∵在△FCE中,CF2=EF2+CE2,∴EF⊥CE由已知条件知,DC⊥平面EFCB,
∴DC⊥EF,又DC与EC相交于C,∴EF⊥平面DCE
解:(Ⅱ)
方法一:过点B作BH⊥EF交FE的延长线于H,连接AH.
由平面ABCD⊥平面BEFC,平面ABCD∩平面BEFC=BC,
AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF.
所以∠AHB为二面角A﹣EF﹣C的平面角.
在Rt△CEF中,因为EF=2,CF=4.EC=
∴∠CEF=90°,由CE∥BH,得∠BHE=90°,又在Rt△BHE中,BE=3,

由二面角A﹣EF﹣C的平面角∠AHB=60°,在Rt△AHB中,解得,
所以当时,二面角A﹣EF﹣C的大小为60°
方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz .
设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).从而,
设平面AEF的法向量为,由得,,取x=1,
则,即,
不妨设平面EFCB的法向量为,
由条件,得
解得.所以当时,二面角A﹣EF﹣C的大小为60°.
【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题. 
20.【答案】
【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,
由题设f(x)=k 1x,g(x)=k2,(k1,k2≠0;x≥0)
由图知f(1)=,∴k1=
又g(4)=,∴k2=
从而f(x)=,g(x)=(x≥0)
(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元
y=f(x)+g(10﹣x)=,(0≤x≤10),
令,∴(0≤t≤)
当t=,y max≈4,此时x=3.75
∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.
【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.
21.【答案】
【解析】解:(1)函数f(x)的导数为f′(x)=,
由题意可得,f()=,f′()=,
即=,且=,
由m∈N,则m=1,t=8;
(2)设h(x)=ax+﹣,x≥.
h()=﹣≥0,即a≥,
h′(x)=a﹣,当a≥时,若x>,h′(x)>0,①
若≤x≤,设g(x)=a﹣,
g′(x)=﹣<0,g(x)在[,]上递减,且g()≥0,
则g(x)≥0,即h′(x)≥0在[,]上恒成立.②
由①②可得,a≥时,h′(x)>0,h(x)在[,+∞)上递增,h(x)≥h()=≥0,
则当a≥时,不等式f(x)≤ax+在[,+∞)恒成立;
当a<时,h()<0,不合题意.
综上可得a≥.
【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.
22.【答案】
【解析】解:(Ⅰ)由频率表中第4组数据可知,第4组总人数为,
再结合频率分布直方图可知n=,
∴a=100×0.01×10×0.5=5,b=100×0.03×10×0.9=27,

(Ⅱ)因为第2,3,4组回答正确的人数共有54人,
∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人;第3组:人;第4组:人
(Ⅲ)设第2组2人为:A1,A2;第3组3人为:B1,B2,B3;第4组1人为:C1.
则从6人中随机抽取2人的所有可能的结果为:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),
(A2,B1),(A2,B2),(A2,B3),(A2,C1),(B1,B2),(B1,B3),(B1,C1),(B2,B3),(B2,C1),(B3,C1)共15个基本事件,
其中恰好没有第3组人共3个基本事件,
∴所抽取的人中恰好没有第3组人的概率是:.
【点评】本题考查了频率分布表与频率分布直方图,考查了古典概型的概率计算,解题的关键是读懂频率分布直方图.
23.【答案】
【解析】解:(1)当a=1、b=0时,原不等式化为x≥x2,(2分)
即x(x﹣1)≤0;…(4分)
解得0≤x≤1,
∴原不等式的解集为{x|0≤x≤1};…(6分)
(2)∵a2x+b2(1﹣x)≥[ax+b(1﹣x)]2,
∴(a﹣b)2x≥(a﹣b)2x2,(10分)
又∵a≠b,
∴(a﹣b)2>0,
∴x≥x2;
即x(x﹣1)≤0,…(12分)
解得0≤x≤1;
∴不等式的解集为{x|0≤x≤1}.…(14分)
【点评】本题考查了不等式的解法与应用问题,解题时应对不等式进行化简,再解不等式,是基础题.
24.【答案】
【解析】解:(1)由题意知:S n=n2﹣n,
当n≥2时,a n=S n﹣S n﹣1=3n﹣2,
当n=1时,a1=1,适合上式,
则a n=3n﹣2;
(2)根据题意得:b n===﹣,T n=b1+b2+…+b n=1﹣+﹣+…+﹣=1﹣,
∴{T n}在n∈N*上是增函数,∴(T n)min=T1=,
要使T n>对所有n∈N*都成立,只需<,即m<15,
则最大的正整数m为14.。

相关文档
最新文档