北师大版七年级数学下册第2章相交线与平行线期末综合训练(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021北师大版七年级数学下册《第2章相交线与平行线》期末综合专题提升训练(附答案)1.下列说法正确的有()
①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;
③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;
④同一平面内两条直线的位置关系可能是平行或垂直;
⑤有公共顶点并且相等的角是对顶角.
A.1个B.2个C.3个D.4个
2.如图,下列条件中,不能判定l1∥l2的是()
A.∠1=∠3B.∠2+∠4=180°C.∠2=∠3D.∠4+∠5=180°3.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,
⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()
A.3个B.4个C.5个D.6个
4.下列语句正确的是()
A.60°角的余角是120°B.平面内,过一点有且只有一条直线与已知直线垂直C.不相交的两条直线叫平行线D.同旁内角互补
5.如图所示,下列判断错误的是()
A.若∠1=∠3,AD∥BC,则BD是∠ABC的平分线
B.若AD∥BC,则∠1=∠2=∠3
C.若∠3+∠4+∠C=180°,则AD∥BC
D.若∠2=∠3,则AD∥BC
6.已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥c
C.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c
7.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.
8.如图,下列条件中:①∠BAD+∠ABC=180°;②∠1=∠2;③∠3=∠4;④∠BAD=∠BCD,能判定AD∥BC的是.
9.如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是.
10.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=(度).
11.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)
12.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是.
13.如图,AD⊥BC,EF⊥BC,∠BEF=∠ADG,求证:DG∥BA.
14.完成下面的证明:
如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.
证明:∵BE平分∠ABD()
∴∠ABD=2∠α()
∵DE平分∠BDC(已知)
∵∠BDC=()
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()
∵∠α+∠β=90°(已知)
∴∠ABD+∠BDC=180°()
∴AB∥CD()
15.如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.试判断CD和AB的位置关系,并说明理由.
16.阅读理解,补全证明过程及推理依据.
已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.
求证∠A=∠F
证明:∵∠1=∠2(已知)
∠2=∠DGF()
∴∠1=∠DGF(等量代换)
∴∥()
∴∠3+∠=180°()
又∵∠3=∠4(已知)
∴∠4+∠C=180°(等量代换)
∴∥()
∴∠A=∠F()
17.“村村通”是国家的一个系统工程,其中包涵公路、电力、生活和饮用水、电话网、有线电视网、互联网等等,现计划在A,B,C周边修公路,公路从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,那么要想从C村修路CE,沿什么方向修,可以保证CE与AB平行?
18.如图,把一张长方形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF应为多少度时,才能使AB′∥BD?
19.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.
参考答案
1.解:∵同位角不一定相等,∴①错误;
∵互补或互余是两个角之间的关系,∴说∠A+∠B+∠C=180°,则∠A、∠B、∠C互补错误,∴②错误;
∵同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交,∴③正确;
∵同一平面内两条直线的位置关系可能是平行或相交,∴④错误;
∵如图,
∠ABC=∠ABD,∠ABC和∠ABD有公共顶点并且相等的角,但不是对顶角,∴⑤错误;
即正确的个数是1个,
故选:A.
2.解:A、∵∠1=∠3,
∴直线l1∥l2,故此选项不合题意;
B、∵∠2+∠4=180°,
∴直线l1∥l2,故此选项不合题意;
C、∠2=∠3,不能得出直线l1∥l2,故此选项符合题意;
D、∵∠2=∠5,4+∠5=180°,
∴4+∠2=180°,
∴直线l1∥l2,故此选项不合题意.
故选:C.
3.解:①由∠1=∠2,可得a∥b;
②由∠3+∠4=180°,可得a∥b;
③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;
④由∠2=∠3,不能得到a∥b;
⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;
⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;
故选:C.
4.解:A、60°角的余角是30°,不合题意;
B、平面内,过一点有且只有一条直线与已知直线垂直,符合题意;
C、在同一平面内,不相交的两条直线叫平行线,不合题意;
D、同旁内角不一定互补,不合题意.
故选:B.
5.解:A、∵AD∥BC,
∴∠2=∠3,
又∵∠1=∠3,
∴∠1=∠2,则BD是∠ABC的平分线;
B、∠2,∠3是直线AD和直线BC被直线BD所截形成的内错角,若AD∥BC,则∠2
=∠3,∠1是直线AB和直线AD被直线BD所截形成的角,因此,若AD∥BC,不能证明∠1=∠2=∠3;
C、∠3+∠4+∠C=180°,即同旁内角∠ADC+∠C=180°,则AD∥BC;
D、内错角∠2=∠3,则AD∥BC.
故选:B.
6.解:A、如果a∥b,a⊥c,那么b⊥c,说法正确;
B、如果b∥a,c∥a,那么b∥c,说法正确;
C、如果b⊥a,c⊥a,那么b⊥c,说法错误;
D、如果b⊥a,c⊥a,那么b∥c,说法正确;
故选:C.
7.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;
如图所示,当ED∥AC时,∠E=∠EAC=60°,
∴∠CAD=60°+90°=150°;
故答案为:30°或150°.
8.解:①由∠∠BAD+∠ABC=180°,得到AD∥BC,本选项符合题意;
②由∠1=∠2,得到AD∥BC,本选项符合题意;
③由∠3=∠4,得到AD∥BC,本选项符合题意;
④由∠BAD=∠BCD,不能判定出平行,本选项不合题意.
故答案为:①②③.
9.解:由图形得,有两个相等的同位角存在,
这样做的依据是:同位角相等,两直线平行.
故答案为:同位角相等,两直线平行.
10.解:如图所示:∠1+∠3=180°,
∵m∥n,
∴∠2=∠3,
∴∠1+∠2=180°,
∴3x+24+5x+20=180°,
解得:x=17,
则∠1=(3x+24)°=75°.
故答案为:75.
11.解:①∵∠CAB=∠EAD=90°,
∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,
∴∠1=∠3.
∴①正确.
②∵∠2=30°,
∴∠1=90°﹣30°=60°,
∵∠E=60°,
∴∠1=∠E,
∴AC∥DE.
∴②正确.
③∵∠2=30°,
∴∠3=90°﹣30°=60°,
∵∠B=45°,
∴BC不平行于AD.
∴③错误.
④由②得AC∥DE.
∴∠4=∠C.
∴④正确.
故答案为:①②④.
12.解:∵MC∥AB,NC∥AB,∴点M,C,N在同一条直线上,理由是:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.13.证明:∵AD⊥BC,EF⊥BC,
∴∠EFB=∠ADB=90°,
∴AD∥EF,
∴∠BEF=∠BAD,
∵∠BEF=∠ADG,
∴∠ADG=∠BAD,
∴AB∥DG.
14.证明:BE平分∠ABD(已知),
∴∠ABD=2∠α(角平分线的定义).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β(角平分线的定义)
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(等量代换).
∴AB∥CD(同旁内角互补,两直线平行).
故答案为:已知,角平分线的定义,2∠β,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.
15.解:CD∥AB.
理由:∵CE⊥DG,
∴∠ECG=90°,
∵∠ACE=140°,
∴∠ACG=∠ACE﹣∠ECG=50°,
∵∠BAF=50°,
∴∠BAF=∠ACG,
∴AB∥DG,即CD∥AB.
16.解:∵∠1=∠2(已知)
∠2=∠DGF(对顶角相等)
∴∠1=∠DGF(等量代换)
∴BD∥CE(同位角相等,两直线平行)
∴∠3+∠C=180°(两直线平行,同旁内角互补)
又∵∠3=∠4(已知)
∴∠4+∠C=180°
∴AC∥DF(同旁内角互补,两直线平行)
∴∠A=∠F(两直线平行,内错角相等);
故答案为:对顶角相等;BD;CE;同位角相等,两直线平行;C;两直线平行,同旁内角互补;AC,DF;同旁内角互补,两直线平行;两直线平行,内错角相等.17.解:使CE沿北偏东65°方向(或使CE与CB垂直),
即可保证CE与AB平行.
理由如下:
如图,由题意得,AD∥BF,
∴∠ABF=180°﹣65°=115°,
∴∠ABC=115°﹣25°=90°,
要使CE∥AB,
则∠ECB=∠CBD=90°,
∴CE⊥CB,
则CE应沿北偏东65°方向修.
18.解:∠BAF应为55度.
理由是:∵∠ADB=20°,四边形ABCD是长方形,∴∠ABD=70°.
∵要使AB′∥BD,需使∠BAB′=110°,
由折叠可知∠BAF=∠B′AF,
∴∠BAF应为55度.
19.证明:∵∠1+∠2=180°(已知)
∵∠1=∠4(对顶角相等)
∴∠2+∠4=180°(等量代换)
∴AB∥EF(同旁内角互补,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∵∠3=∠B(已知)
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行)。