命题与充要条件试题
命题及其关系、充分条件与必要条件
命题及其关系、充分条件与必要条件1.判断下列结论正误(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.( )(2)当q是p的必要条件时,p是q的充分条件.( )(3)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( )2. 设a,b∈R且ab≠0,则ab>1是a>1b的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠14. 能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.5. 已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.6. 直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.考点一命题及其关系【例1】 (1)下列说法正确的是( )A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.存在x0∈(0,+∞),使3x0>4x0成立D.“若sin α≠12,则α≠π6”是真命题(2) 能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.【训练1】 (1) 下列说法中正确的是( )A.若函数f(x)为奇函数,则f(0)=0B.若数列{a n}为常数列,则{a n}既是等差数列也是等比数列C.在△ABC中,A>B是sin A>sin B的充要条件D.命题“若an+a n+12<a n,n∈N*,则{a n}为递减数列”的逆命题为假命题(2) 命题“在空间中,若四点不共面,则这四点中任何三点都不共线”的逆否命题是________.考点二充分条件与必要条件的判定【例2】 (1) 若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【训练2】 (1) 设x∈R,则“0<x<5”是“|x-1|<1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)“a=0”是“函数f(x)=sin x-1x+a为奇函数”的________条件.考点三充分、必要条件的应用【例3】已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P 是x∈S的必要条件,求实数m的取值范围.【迁移1】本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件?并说明理由.【迁移2】设p:P={x|x2-8x-20≤0},q:非空集合S={x|1-m≤x≤1+m},且綈p是綈q的必要不充分条件,求实数m的取值范围.【训练3】若关于x的不等式|x-1|<a成立的充分条件是0<x<4,则实数a的取值范围是( )A.(-∞,1]B.(-∞,1)C.(3,+∞)D.[3,+∞)一、选择题1.命题“若a,b,c成等比数列,则b2=ac”的逆否命题是( )A.“若a,b,c成等比数列,则b2≠ac”B.“若a,b,c不成等比数列,则b2≠ac”C.“若b2=ac,则a,b,c成等比数列”D.“若b2≠ac,则a,b,c不成等比数列”2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定3. 设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.设a>b,a,b,c∈R,则下列命题为真命题的是( )A.ac2>bc2B.ab>1 C.a-c>b-c D.a2>b25.原命题:设a,b,c∈R,若“a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个6.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]7. 已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.下列结论错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”二、填空题9. 设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的________条件.10.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题. 其中真命题的序号是________.11.若不等式m-1<x<m+1成立的充分不必要条件是13<x<12,则实数m的取值范围是________.12.“a=1”是“函数f(x)=e xa-ae x是奇函数”的__________条件.13.已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件14. 已知a,b∈R,那么“2a>2b”是“a2>b2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件15.已知p:实数m满足3a<m<4a(a>0),q:方程x2m-1+y22-m=1表示焦点在y轴上的椭圆,若p是q的充分条件,则a的取值范围是________________.16. 设p:ln(2x-1)≤0,q:(x-a)[x-(a+1)]≤0,若q是p的必要而不充分条件,则实数a的取值范围是________.17. 能说明“若a>b,则1a<1b”为假命题的一组a,b的值依次为________.答案命题及其关系、充分条件与必要条件1.判断下列结论正误(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.( )(2)当q是p的必要条件时,p是q的充分条件.( )(3)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( )解析(1)错误.该语句不能判断真假,故该说法是错误的.答案(1)×(2)√(3)√(4)√2.(新教材必修第一册P34复习参考题T5改编)设a,b∈R且ab≠0,则ab>1是a>1b的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若“ab>1”,当a=-2,b=-1时,不能得到“a>1b ”,若“a>1b”,例如当a=1,b=-1时,不能得到“ab>1”,故“ab>1”是“a>1b”的既不充分也不必要条件.答案 D3. 命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4D.若tan α≠1,则α=π4解析命题“若p,则q”的逆否命题是“若綈q,则綈p”,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案 C4. 能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.解析a>b>c,取a=-2,b=-4,c=-5,则a+b=-6<c.答案-2,-4,-5(答案不唯一)5. 已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.解析由已知,可得{x|2<x<3}{x|x>a},∴a≤2.答案 (-∞,2]6. 直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.解析直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于|1-0-k|2<2,解得-1<k<3.答案-1<k<3考点一命题及其关系【例1】 (1)下列说法正确的是( )A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.存在x0∈(0,+∞),使3x0>4x0成立D.“若sin α≠12,则α≠π6”是真命题(2) 能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.解析 (1)对于选项A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,A错;对于B 项,若“am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时am 2=bm 2,所以其逆命题为假命题,B 错;对于C 项,由指数函数的图象知,∀x ∈(0,+∞),都有4x >3x ,C 错; 对于D 项,原命题的逆否命题为“若α=π6,则sin α=12”是真命题,故原命题是真命题.(2)根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0).答案 (1)D (2)f (x )=sin x ,x ∈[0,2](答案不唯一 ,再如f (x )=⎩⎨⎧0,x =0,1x,0<x ≤2) 规律方法 1.写一个命题的其他三种命题时,需注意: (1)对于不是“若p ,则q ”形式的命题,需先改写; (2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断. 【训练1】 (1) 下列说法中正确的是( ) A.若函数f (x )为奇函数,则f (0)=0B.若数列{a n }为常数列,则{a n }既是等差数列也是等比数列C.在△ABC 中,A >B 是sin A >sin B 的充要条件D.命题“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”的逆命题为假命题(2) 命题“在空间中,若四点不共面,则这四点中任何三点都不共线”的逆否命题是________.解析 (1)A 错,f (x )=1x为奇函数,但f (0)无意义;B 错,a n =0为常数列,但{a n }不是等比数列;C正确,由于A>B⇔a>b⇔sin A>sin B.D错,若{a n}递减,则a n+1<a n⇒an+a n+12<a n,n∈N*,所以逆命题为真命题,D不正确.(2)逆否命题的条件和结论分别是原命题结论的否定和条件的否定.故逆否命题在空间中,若四点中存在三点共线,则这四点共面.答案(1)C (2)在空间中,若四点中存在三点共线,则这四点共面考点二充分条件与必要条件的判定【例2】 (1) 若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析(1)当a>0,b>0时,得4≥a+b≥2ab,即ab≤4,充分性成立;当a=4,b=1时,满足ab≤4,但a+b=5>4,不满足a+b≤4,必要性不成立,故“a +b≤4”是“ab≤4”的充分不必要条件.(2)由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p q,所以綈p⇒綈q,綈q綈p,所以綈p是綈q的充分不必要条件,故选A.答案(1)A (2)A规律方法充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.【训练2】 (1) 设x∈R,则“0<x<5”是“|x-1|<1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的________条件.解析 (1)由|x -1|<1可得0<x <2,由“0<x <5”不能推出“0<x <2”,但由“0<x <2”可以推出“0<x <5”,故“0<x <5”是“|x -1|<1”的必要而不充分条件.(2)显然a =0时,f (x )=sin x -1x为奇函数;当f (x )为奇函数时,f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x+a =0. 因此2a =0,故a =0.所以“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的充要条件.答案 (1)B (2)充要考点三 充分、必要条件的应用【例3】 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求实数m 的取值范围. 解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P . ∴⎩⎨⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0. 综上,m 的取值范围是[0,3].【迁移1】 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.解 由例题知P ={x |-2≤x ≤10}. 若x ∈P 是x ∈S 的充要条件,则P =S , ∴⎩⎨⎧1-m =-2,1+m =10,∴⎩⎨⎧m =3,m =9, 这样的m 不存在.【迁移2】 设p :P ={x |x 2-8x -20≤0},q :非空集合S ={x |1-m ≤x ≤1+m },且綈p 是綈q 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}. ∵綈p 是綈q 的必要不充分条件,p 是q 的充分不必要条件. ∴p ⇒q 且qp ,即P S .∴⎩⎨⎧1-m ≤-2,1+m >10或⎩⎨⎧1-m <-2,1+m ≥10, ∴m ≥9,又因为S 为非空集合, 所以1-m ≤1+m ,解得m ≥0, 综上,实数m 的取值范围是[9,+∞).规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【训练3】 若关于x 的不等式|x -1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是( )A.(-∞,1]B.(-∞,1)C.(3,+∞)D.[3,+∞)解析 |x -1|<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分条件是0<x <4,所以(0,4)⊆(1-a ,1+a ),所以⎩⎨⎧1-a ≤0,1+a ≥4,解得a ≥3.答案 D一、选择题1.命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是( ) A.“若a ,b ,c 成等比数列,则b 2≠ac ” B.“若a ,b ,c 不成等比数列,则b 2≠ac ”C.“若b2=ac,则a,b,c成等比数列”D.“若b2≠ac,则a,b,c不成等比数列”解析命题“若a,b,c成等比数列,则b2=ac”的逆否命题是“若b2≠ac,则a,b,c不成等比数列”.答案 D2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定解析命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.答案 B3. 设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析∵f(x)=cos x+b sin x为偶函数,∴对任意的x∈R,都有f(-x)=f(x),即cos(-x)+b sin(-x)=cos x+b sin x,∴2b sin x=0.由x的任意性,得b=0.故f(x)为偶函数⇒b=0.必要性成立.反过来,若b=0,则f(x)=cos x是偶函数.充分性成立.∴“b=0”是“f(x)为偶函数”的充分必要条件.故选C.答案 C4.设a>b,a,b,c∈R,则下列命题为真命题的是( )A.ac2>bc2B.ab>1 C.a-c>b-c D.a2>b2解析对于选项A,a>b,若c=0,则ac2=bc2,故A错;对于选项B,a>b,若a>0,b<0,则ab<1,故B错;对于选项C,a>b,则a-c>b-c,故C正确;对于选项D,a>b,若a,b均小于0,则a2<b2,故D错.答案 C5.原命题:设a,b,c∈R,若“a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个解析原命题:若c=0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为:设a,b,c∈R,若“ac2>bc2,则a>b”.由ac2>bc2知c2>0,∴由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.答案 C6.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.答案 A7. 已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若m⊄α,n⊂α,m∥n,由线面平行的判定定理知m∥α.若m∥α,m⊄α,n⊂α,不一定推出m∥n,直线m与n可能异面,故“m∥n”是“m∥α”的充分不必要条件.答案 A8.下列结论错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D.命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题.答案 C 二、填空题9. 设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的________条件.解析 存在负数λ,使得m =λn ,则m ·n =λn ·n =λ|n |2<0;反之m ·n =|m ||n |cos 〈m ,n 〉<0⇒cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π,当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件.答案 充分不必要 10.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”,错误;②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,正确;③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,正确. 答案 ②③11.若不等式m -1<x <m +1成立的充分不必要条件是13<x <12,则实数m 的取值范围是________.解析 由题意可知⎝ ⎛⎭⎪⎫13,12(m -1,m +1),借助数轴得⎩⎪⎨⎪⎧13≥m -1,12≤m +1,解得-12≤m ≤43,故实数m 的取值范围是⎣⎢⎡⎦⎥⎤-12,43.答案 ⎣⎢⎡⎦⎥⎤-12,4312.“a =1”是“函数f (x )=e xa -aex 是奇函数”的__________条件.解析 当a =1时,f (-x )=-f (x )(x ∈R),则f (x )是奇函数,充分性成立. 若f (x )为奇函数,恒有f (-x )=-f (x ),得(1-a 2)(e 2x +1)=0,则a =±1,必要性不成立.故“a =1”是“函数f (x )=e xa -ae x 是奇函数”的充分不必要条件.答案 充分不必要13.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 解析 由S 4+S 6-2S 5=S 6-S 5-(S 5-S 4)=a 6-a 5=d ,所以S 4+S 6>2S 5⇔d >0,所以“d >0”是“S 4+S 6>2S 5”的充要条件. 答案 C14. 已知a ,b ∈R,那么“2a >2b ”是“a 2>b 2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件解析 2a >2b ⇔a >ba 2>b 2; a 2>b 2a >b ,即a 2>b 22a >2b ,∴“2a>2b”是“a 2>b 2”的既不充分也不必要条件. 答案 D15.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________. 解析 由2-m >m -1>0,得1<m <32,即q :1<m <32.因为p 是q 的充分条件,所以⎩⎨⎧3a ≥1,4a ≤32,解得13≤a ≤38. 答案 ⎣⎢⎡⎦⎥⎤13,3816. 设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是________. 解析 p 对应的集合A ={x |y =ln(2x -1)≤0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |12<x ≤1,q 对应的集合B ={x |(x -a )[x -(a +1)]≤0}={x |a ≤x ≤a +1}.由q 是p 的必要而不充分条件,知A B .所以a ≤12且a +1≥1,因此0≤a ≤12.答案 ⎣⎢⎡⎦⎥⎤0,12 17. 能说明“若a >b ,则1a <1b”为假命题的一组a ,b 的值依次为________.解析 若a >b ,则1a <1b 为真命题,则1a -1b =b -aab<0,∵a >b ,∴b -a <0,则ab >0.故当a >0,b <0时,均能说明“若a >b ,则1a <1b”为假命题.答案 a =1,b =-1(答案不唯一,只需a >0,b <0)。
02命题及其关系充分必要条件(经典题型+答案)
命题及其关系、充分条件与必要条件一、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.二、四种命题及其关系1.四种命题间的相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系。
三、充分条件与必要条件1.如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件.2.如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.抓住关键词:大必小充。
即大范围推小范围时,大范围是必要条件,小范围是充分条件。
例1:|x|>1是x>1的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 解: |x|>1⇔x>1或x<-1,故x>1⇒|x|>1,但|x|>1 x>1,∴|x|>1是x>1的必要不充分条件.另解:根据大必小充原理,容易判断|x|>1是大范围,x>1是小范围,故|x|>1是x>1的必要不充分条件. 例2:下列命题是真命题的为 ( )A .若1x =1y,则x =y B .若x 2=1,则x =1 C .若x =y ,则x =y D .若x <y ,则x 2<y 2 解:由1x =1y得x =y ,A 正确,易知B 、C 、D 错误. 3.命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是 ( )A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0 解:写逆否命题只要交换命题的条件与结论,并分别否定条件与结论即可.答案D 。
充要条件练习题
充要条件练习题周末到了,小明坐在书桌前准备复习数学知识。
他在学习充要条件(也叫充要性)这一概念时,遇到了一些练习题。
下面是小明在练习中遇到的几个问题,请你看看能否帮助他解答。
问题一:已知命题p:“如果一个数是偶数,则它能被2整除。
”命题q:“如果一个数不能被2整除,则它是奇数。
”请判断以下命题的真假并给出理由:a) 命题p与命题q是互为充要条件的。
b) 若命题p为真,则命题q为真。
c) 若命题q为假,则命题p为假。
问题二:已知命题p:“如果一只动物是鸟类,则它拥有翅膀。
”命题q:“如果一只动物没有翅膀,则它不是鸟类。
”请判断以下命题的真假并给出理由:a) 命题p与命题q是互为充要条件的。
b) 若命题p为假,则命题q为假。
c) 若命题q为假,则命题p为真。
问题三:已知命题p:“一个人高中毕业,则他符合大学录取条件。
”命题q:“一个人不符合大学录取条件,则他没有高中毕业。
”请判断以下命题的真假并给出理由:a) 命题p与命题q是互为充要条件的。
b) 若命题p为真,则命题q为真。
c) 若命题q为真,则命题p为真。
问题四:已知命题p:“如果一个人是中国公民,则他具有中国护照。
”命题q:“如果一个人不具有中国护照,则他不是中国公民。
”请判断以下命题的真假并给出理由:a) 命题p与命题q是互为充要条件的。
b) 若命题p为假,则命题q为真。
c) 若命题q为真,则命题p为真。
解答:问题一:命题p:“如果一个数是偶数,则它能被2整除。
”命题q:“如果一个数不能被2整除,则它是奇数。
”a) 命题p与命题q是互为充要条件的。
两个命题的主语和谓语分别相反,且根据偶数和奇数的定义,可以得到两者之间的互为充要条件的关系。
b) 若命题p为真,则命题q为真。
根据偶数的定义,偶数一定可以被2整除,因此命题p为真。
命题q即为奇数的定义,因此当一个数是偶数时,它就不能被2整除,故命题q为真。
c) 若命题q为假,则命题p为假。
根据奇数的定义,奇数一定不能被2整除,因此当一个数能被2整除时,它就不是奇数,即命题q为假。
高中数学命题与充要条件练习题附答案精选全文完整版
可编辑修改精选全文完整版1.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0B.1C.2 D.3解析:选C.命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上3个命题中真命题的个数是2.故选C.2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B.命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.3.(2018·陕西质量检测(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a -b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,选A.4.在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2R sin A>2R sin B,即a>b;若a>b,则a2R>b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,故选C.5.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C .①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.6.(2018·石家庄模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A .由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x >8”的充分不必要条件,故选A .7.已知直线l ,m ,其中只有m 在平面α内,则“l ∥α”是“l ∥m ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B .当l ∥α时,直线l 与平面α内的直线m 平行、异面都有可能,所以l ∥m 不一定成立;当l ∥m 时,根据直线与平面平行的判定定理知直线l ∥α,即“l ∥α”是“l ∥m ”的必要不充分条件,故选B .8.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B .要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.9.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C .因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C .10.(2018·惠州第三次调研)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C .设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C .11.(2018·贵阳检测)设向量a =(1,x -1),b =(x +1,3),则“x =2”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .依题意,注意到a ∥b 的充要条件是1×3=(x -1)(x +1),即x =±2.因此,由x =2可得a ∥b ,“x =2”是“a ∥b ”的充分条件;由a ∥b 不能得到x =2,“x =2”不是“a ∥b ”的必要条件,故“x =2”是“a ∥b ”的充分不必要条件,选A .12.(2018·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A .命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有⎩⎪⎨⎪⎧a =01>0或⎩⎪⎨⎪⎧a >0a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件,故选A . 13.下列命题中为真命题的是________. ①命题“若x >1,则x 2>1”的否命题; ②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若x 2>1,则x >1”的逆否命题.解析:对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若x 2>1,则x >1”的逆否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故④为假命题.答案:②14.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________.解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.答案:115.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0. 答案:[-3,0]16.(2018·长沙模拟)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;②“x <0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x <0”,所以“x <0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f (x )=cos 2ax -sin 2ax =cos 2ax ,若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;④“平面向量a 与b 的夹角是钝角”可以推出“a·b <0”,但由“a·b <0”,得“平面向量a 与b 的夹角是钝角或平角”,所以“a·b <0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②1.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .因为⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,⎝⎛⎭⎫0,π6⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,所以“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 2.下列选项中,p 是q 的必要不充分条件的是( ) A .p :x =1,q :x 2=x B .p :|a |>|b |,q :a 2>b 2 C .p :x >a 2+b 2,q :x >2ab D .p :a +c >b +d ,q :a >b 且c >d解析:选D.A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1⇒/ x =1,故p 是q 的充分不必要条件;B 中,因为|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,因为a 2+b 2≥2ab ,由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但是a <b ,c >d ,反之,由同向不等式可加性得a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.综上所述,故选D.3.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:选B .由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B .4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.解析:因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.答案:m >25.已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,因为x ∈⎣⎡⎦⎤34,2,所以716≤y ≤2, 所以A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, 所以B ={x |x ≥1-m 2}.因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 6.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:因为mx 2-4x +4=0是一元二次方程,所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1, 所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.。
命题及充要条件
第I 卷(选择题)一、选择题(题型注释)1.已知命题P “,x y x y ≠≠则”,以下关于命题P 的说法正确的个数是( ) ①命题P 是真命题 ②命题P 的逆命题是真命题 ③命题P 的否命题是真命题 ④命题P 的逆否命题是真命题 A .0B .1C .2D .4答案及解析:1.C2.已知原命题:“若0>m ,则关于x 的方程02=-+m x x 有实根,”下列结论中正确的是( )A .原命题和逆否命题都是假命题B .原命题和逆否命题都是真命题C .原命题是真命题,逆否命题是假命题D .原命题是假命题,逆否命题是真命题答案及解析:2.B3.给定两个命题p 、q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案及解析:3.A 略4.命题“若00,022===+b a b a 且则”的逆否命题是( )A .若00,022≠≠≠+b a b a 且则B .若00,022≠≠≠+b a b a 或则C .若则0,0022≠+==b a b a 则且D .若0,0022≠+≠≠b a b a 则或答案及解析:4.D 略5.下列命题为真命题的是( )A .若ac bc >,则a b >B .若22a b >,则a b >C .若11a b>,则a b < D <a b < 答案及解析:5.D6.设y x ,是两个实数,命题:“y x ,中至少有一个数大于1”成立的充分不必要条件是( )A.2x y +=B.2x y +>C.222x y +>D.1xy >答案及解析:6.B 略7.命题“若a >b ,则2a >2b -1”的否命题为( )A. 若a >b ,则有2a ≤2b -1.B. 若a ≤b ,则有2a ≤2b -1.C. 若a ≤b ,则有2a >2b -1.D. 若2a ≤2b -1,则有a ≤b .答案及解析:7.B 略8.命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B.若tan α≠1,则α≠4π C.若α=4π,则tan α≠1 D.若tan α≠1,则α=4π 答案及解析:8.B 略9.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的( )条件A 必要不充分B 充分不必要C 充要D 既不充分也不必要答案及解析:9.B 略10.命题……若a ,b ,c 成等比数列,则2b ac =”的逆否命题是 (A)若a ,b ,c 成等比数列,则2b ac ≠ (B)若a ,b ,c 不成等比数列,则2b ac ≠(C)若2b ac =,则a ,b ,c 成等比数列 (D)若2b ac ≠,则a ,b ,c 不成等比数列答案及解析:10.D 略11.设b a ,是向量,命题“若b a -=,则b a =”的逆命题是( ) .A 若b a =,则b a -= .B 若b a -≠,则b a ≠ .C 若b a ≠,则b a -≠ .D 若b a -=,则b a ≠答案及解析:11.A12.下列命题中正确的是 ( )①“若220x y +≠,则x ,y 不全为零”的否命题 ②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题 ④“矩形的对角线相等”的逆命题A.①②③B.②③④C.①③④D.①④ 答案及解析:12.C 略13.下列说法正确的是…………………………………………………( )A .命题“若12=x ,则1=x ”的否命题是“若12=x ,则1≠x ” B .“1-=x ”是“022=--x x ”的必要不充分条件C .命题“若y x =,则y x sin sin =”的逆否命题是真命题D .“1tan =x ”是“4π=x ”的充分不必要条件答案及解析:13.C14.命题“若12<x ,则11<<-x ”的逆否命题是( ) A.若12≥x ,则1≥x 或1-≤x B.若11<<-x ,则12<xC.211,1x x x ><->若或则D.211,1x x x ≥≤-≥若或则答案及解析:14.D 略15.设原命题:若a+b ≥2,则a,b 中至少有一个不小于1。
高考理科数学真题练习题命题及其关系充分条件与必要条件理含解析
高考数学复习 课时作业2 命题及其关系、充分条件与必要条件一、选择题1.命题“若xy =0,则x =0”的逆否命题是( D ) A .若xy =0,则x ≠0 B.若xy ≠0,则x ≠0 C .若xy ≠0,则y ≠0 D.若x ≠0,则xy ≠0解析:“若xy =0,则x =0”的逆否命题为“若x ≠0,则xy ≠0”.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( D )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( D )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.已知p :-1<x <2,q :log 2x <1,则p 是q 成立的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件解析:由log 2x <1,解得0<x <2,所以-1<x <2是log 2x <1的必要不充分条件,故选B. 5.(2019·郑州质量预测)下列说法正确的是( D ) A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4 x 0成立 D .“若sin α≠12,则α≠π6”是真命题解析:对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以其逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,且其逆否命题为真命题,所以原命题为真命题,故选D.6.一次函数y =-m nx +1n的图象同时经过第一、三、四象限的必要不充分条件是( B )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:因为y =-m nx +1n的图象经过第一、三、四象限,故-m n>0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.7.“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( C ) A .m >14B .0<m <1C .m >0D .m >1解析:不等式x 2-x +m >0在R 上恒成立⇔Δ<0,即1-4m <0,∴m >14,同时要满足“必要不充分”,在选项中只有“m >0”符合.故选C.8.(2019·洛阳市高三统考)已知圆C :(x -1)2+y 2=r 2(r >0),设p :0<r ≤3,q :圆上至多有两个点到直线x -3y +3=0的距离为1,则p 是q 的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:对于q ,圆(x -1)2+y 2=r 2(r >0)上至多有两个点到直线x -3y +3=0的距离为1,又圆心(1,0)到直线的距离d =|1-3×0+3|2=2,则r <2+1=3,所以0<r <3,又p :0<r ≤3,所以p 是q 的必要不充分条件,故选B.二、填空题9.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角.解析:原命题的条件:在△ABC 中,∠C =90°,结论:∠A ,∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”.10.(2019·山西太原联考)已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.解析:充分性:若2a >2b ,则2a -b >1,∴a -b >0,∴a >b .当a =-1,b =-2时,满足2a >2b,但a 2<b 2,故由2a >2b 不能得出a 2>b 2,因此充分性不成立.必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满足a 2>b 2,但2-2<21,即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是(0,3).解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.12.下列命题中为真命题的序号是②④. ①若x ≠0,则x +1x≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 解析:当x <0时,x +1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.13.已知m ,n 为两个非零向量,则“m 与n 共线”是“m ·n =|m ·n |”的( D ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m ·n <0,而|m ·n |>0,故充分性不成立.若m ·n =|m ·n |,则m ·n =|m |·|n |cos 〈m ,n 〉=|m |·|n |·|cos〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m ·n =|m ·n |”的既不充分也不必要条件,故选D.14.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎢⎡⎦⎥⎤12,1[a ,a +1].∴a ≤12,且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.尖子生小题库——供重点班学生使用,普通班学生慎用15.定义在R 上的可导函数f (x ),其导函数为f ′(x ),则“f ′(x )为偶函数”是“f (x )为奇函数”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.16.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是⎣⎢⎡⎦⎥⎤13,38. 解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q的充分不必要条件,所以⎩⎪⎨⎪⎧3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,38.。
充要条件练习题
充要条件练习题一、选择题1. 已知命题P:x²-4=0,命题Q:x=2或x=-2。
以下哪个选项正确描述了P和Q的关系?A. P是Q的充分条件B. P是Q的必要条件C. P是Q的充要条件D. P和Q是互不相关的2. 如果“x>0”是“x²>0”的什么条件?A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件3. 下列哪个命题的逆命题是真命题?A. 如果两个角是对顶角,则这两个角相等。
B. 如果两个角相等,则这两个角是对顶角。
C. 两个直角三角形是相似的。
D. 两个相似的三角形是直角三角形。
二、填空题4. 如果命题P:x>0,命题Q:x²>0,那么P是Q的_________条件。
5. 命题P:x>1,命题Q:x>0,Q是P的_________条件。
6. 命题P:x²-1=0,命题Q:x=1或x=-1,P是Q的_________条件。
三、判断题7. 如果命题P是命题Q的充分条件,那么P成立时Q一定成立。
()8. 如果命题P是命题Q的必要条件,那么Q成立时P一定成立。
()9. 如果命题P是命题Q的充要条件,那么P和Q是等价的。
()四、解答题10. 已知命题P:x>3,命题Q:x>2,证明P是Q的充分条件,但不是必要条件。
11. 给定命题P:x²-4x+4=0,命题Q:x=2,证明P是Q的充要条件。
12. 已知命题P:x²+y²=1,命题Q:x和y的绝对值都小于1。
证明P是Q的必要条件,但不是充分条件。
五、证明题13. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
14. 证明:如果一个数的平方根是正数,那么这个数本身是正数。
15. 证明:如果两个角的和是180度,那么这两个角是互补的,并且互补角是互为充要条件。
六、逻辑推理题16. 在一个班级中,如果一个学生是班长,那么他一定是班级的积极分子。
1.4 充分、必要条件(精炼)(解析版)
1.4 充分、必要条件(精炼)【题组一 命题及其判断】1.(2020·黑龙江道里。
哈尔滨三中高二期末(文))下列说法正确的是( ) A .命题“若x 2=1,则x =1”为真命题 B .命题“若x 2=1,则x =1”的逆命题为假命题C .命题“若x 2=1,则x =1”的逆否命题为“若x ≠1,则x 2≠1”D .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” 【答案】C【解析】若x 2=1,则1x =±,故A 选项不正确;“若x 2=1,则x =1”的逆命题为“若x =1,则x 2=1”且该命题是真命题,故B 选项不正确; 命题“若x 2=1,则x =1”的逆否命题为“若x ≠1,则x 2≠1”,故C 选项正确; 命题“若x 2=1,则x =1”的否命题为“若21x ≠,则x ≠1”,故D 选项不正确, 故选:C.2.(2019·黑龙江大庆实验中学高二期末)已知原命题:已知0ab >,若a b >,则11a b<,则其逆命题、否命题、逆否命题和原命题这四个命题中真命题的个数为( ) A .0 B .2C .3D .4【答案】D【解析】由题原命题:已知0ab >,若a b >,则11a b<,为真命题,所以逆否命题也是真命题;逆命题为:已知0ab >,若11a b<,则a b >,为真命题,所以否命题也是真命题。
故选D.3.(2019·阿城区第二中学高二期中(文))命题“若3x <,则29x ≤”的逆否命题是( ) A .若29x >,则3x ≥ B .若29x ≤,则3x < C .若3x ≥,则29x > D .若29x ≥,则3x >【答案】A【解析】由逆否命题的定义可得命题“若3x <,则29x ≤”的逆否命题是“若29x >,则3x ≥”故答案选A 4.对任意的实数,,a b c ,在下列命题中的真命题是( ) A .“ac bc >”是“a b >”的必要不充分条件B .“ac bc =”是“a b =”的必要不充分条件C .“ac bc >”是“a b >”的充分不必要条件D .“ac bc =”是“a b =”的充分不必要条件 【答案】B【解析】因为实数c 不确定,“ac bc >”与“a b >”既不充分也不必要,又“ac bc a b =⇐=” 得“ac bc =”是“a b =”的必要不充分条件,所以正确选项为B.【题组二 充分、必要条件】1.下列哪一项是“1a >”的必要条件( ) A . 2a < B . 2a >C . 0a <D .0a >【答案】D【解析】由题意,“选项”是“1a >”的必要条件,表示“1a >”推出“选项”,所以正确选项为D.2.(北师大版新教材2.1必要条件与充分条件)如果命题“p q ⇒”是真命题,那么①p 是q 的充分条件 ② p 是q 的必要条件 ③ q 是p 的充分条件 ④ q 是p 的必要条件 ,其中一定正确的是( )A .①③B .①④C .②③D .②④【答案】B【解析】根据必要条件和充分条件的含义,p q ⇒为真,则p 是q 的充分条件,q 是p 的必要条件,所以①④正确,所以正确选项为B.3.已知:p A φ=,:q A B φ⋂=,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由已知A A B φφ=⇒⋂=,反之不成立,得p 是q 的充分不必要条件,所以正确选项为A. 4.若p 是q 的充分不必要条件,则下列判断正确的是( ) A .p ⌝是q 的必要不充分条件 B .q ⌝是p 的必要不充分条件 C .p ⌝是q ⌝的必要不充分条件 D .q ⌝是p ⌝的必要不充分条件 【答案】C【解析】由p 是q 的充分不必要条件可知,p q q p ⇒⇒.由互为逆否命题的等价性,可知,q p p q ⌝⌝⌝⌝⇒⇒/.所以p ⌝是q ⌝的必要不充分条件.故选:C.5.(湖南省怀化市2020届高三下学期第二次模拟考试数学(文)试题)除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ). A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意可得,“获取胜利”是“收兵”的必要条件故选:B6.(2020届广东省广州普通高中毕业班综合测试(一)数学(理)试题)已知1223p x q x +><<:,:,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意:1212p x x +>⇔+>或121x x +<-⇔>或3x <-, 由“1x >或3x <-”不能推出“23x <<”; 由“23x <<”可推出“1x >或3x <-”; 故p 是q 的必要不充分条件.故选:B.【题组三 求参数】1.(上海市格致中学2019-2020学年高一上学期期末数学试题) 若“3x >”是“x a >“的充分不必要条件,则实数a 的取值范围是_____. 【答案】3a <【解析】因为“3x >”是“x a >”的充分不必要条件, ∴3a <. 故答案为:3a <.2.已知“()(),20,x ∈-∞-⋃+∞”是“[],1x k k ∈+”的必要不充分条件,则k 的取值范围是___________. 【答案】3k <-或0k >【解析】由已知“()(),20,x ∈-∞-⋃+∞”是“[],1x k k ∈+”的必要不充分条件,则,[]()(),1,20,k k +-∞-⋃+∞,所以12k +<-或0k >,得3k <-或0k >,所以答案为3k <-或0k >.3.已知{|12}A x x =≤≤,{|}B x x a =<,如果B 的充分条件是A ,则实数a 的取值范围是_________.【答案】2a >【解析】“B 的充分条件是A ”,即A 是B 的充分条件,得A B ⇒,即A B ⊆,得2a >,所以答案为“2a >”. 4.已知集合A ={x |a +1≤x ≤2a +3},B ={x |x 2﹣3x ﹣4≤0}.若x ∈A 是x ∈B 的充分条件,则实数a 的取值范围是_______ 【答案】1,2⎛⎤-∞ ⎥⎦⎝【解析】B ={x |x 2﹣3x ﹣4≤0}={x |﹣1≤x ≤4}, ∵若x ∈A 是x ∈B 的充分条件, ∴A ⊆B ,若A =∅,则2a +3<a +1,即a <﹣2时,满足题意;若A ≠∅,则满足223411a a a ≥-⎧⎪+≤⎨⎪+≥-⎩,即2122a a a ≥-⎧⎪⎪≤⎨⎪≥-⎪⎩,此时﹣2≤a ≤12.综上a ≤12. 故答案为1,2⎛⎤-∞ ⎥⎦⎝5..(河南省2019-2020学年高三核心模拟卷)已知:12p x -≤,()22:2100q x x a a -+-≥>,若p 是q⌝的必要不充分条件,则实数a 的取值范围是__________. 【答案】(0,2]【解析】∵12x -≤,∴13x -≤≤,即:13p x -≤≤; ∵222100x x a a -+-≥>(),∴1x a ≤-或1x a ≥+, ∴:11q a x a ⌝-<<+, ∵p 是q ⌝的必要不充分条件,∴01113a a a >⎧⎪-≥-⎨⎪+≤⎩,解得02a <≤, ∴所求实数a 的取值范围是(0,2]. 故答案为:(0,2]6.(2019版导学教程一轮复习数学(人教版))已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________. 【答案】()0,3【解析】令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴M ⫋N ,∴014a a >⎧⎨+<⎩,解得0<a <3.故填()0,37.(山东省青岛市第二中学2019-2020学年高一上学期期末数学试)已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围 .【答案】302a <<【解析】解出{}|23B x x x =≤-≥或,{}|20A x x a x a a =<>>或, 因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集.所以2323020a a a a >-⎧⎪<⇒<<⎨⎪>⎩故答案为:302a <<8.命题2:03x P x ->-;命题2:2210q x ax a b +++-> (1)若4b =时,22210x ax a b +++->在x R ∈上恒成立,求实数a 的取值范围; (2)若p 是q 的充分必要条件,求出实数a ,b 的值 【答案】(1)(1,3)-;(2)52a =-,12b =。
1.2命题与充要条件
例题:判断下面结论是否正确(请在括号中打“√”或“×” ) (1)“ x2+2x- 3<0”是命题. (2)“ sin 45° = 1”是命题. (3)命题“三角形的内角和是 180° ”的否命题是三角形的内角和不是 180° . (4)若一个命题是真命题,则其逆否命题是真命题. (5)“ a= 2”是“(a- 1)(a- 2)=0”的必要不充分条件. 3 (6)若 α∈ (0,2π),则“ sin α=- 1”的充要条件是“ α= π”. 2 ( ( ( ( ( ( ) ) ) ) ) )
跟踪训练1
1 π D.若 cos α≠ ,则 α≠ 2 3 π 1 1 π 解析 命题“若 α= , 则 cos α= ”的逆命题是“若 cos α= , 则 α= ”. 3 2 2 3
解析答案
(2)命题“若a2+b2=0,则a=0且b=0”的逆否命题是 D (
A.若a2+b2≠0,则a≠0且b≠0 B.若a2+b2≠0,则a≠0或b≠0 C.若a=0且b=0,则a2+b2≠0 D.若a≠0或b≠0,则a2+b2≠0
)
∵sin α=cos α⇒cos 2α=cos2α-sin2α=0; sin α=cos α,故选A.
cos 2α=0⇔cos α=±sin α
解析答案
(2)若命题p:φ=π +kπ,k∈Z,命题q:f(x)=sin(ωx+φ)(ω≠0) 是偶函数,则p是q的(
2
)
A.充要条件 C.必要不充分条件
由cos A+sin A=cos B+sin B两边平方,
故“cos A+sin π A=cos B+sin B”是“∠C=90°”的必要
2
思维升华
解析答案
充要条件练习题
课时作业(三)[学业水平层次]一、选择题1.(2013·福建高考)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 ∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.【答案】 A2.(2014·镇海高二检测)已知命题甲:“a ,b ,c 成等差数列”,命题乙:“a b +c b =2”,则命题甲是命题乙的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件【解析】 若a b +c b =2,则a +c =2b ,由此可得a ,b ,c 成等差数列;当a ,b ,c 成等差数列时,可得a +c =2b ,但不一定得出a b +c b=2,如a =-1,b =0,c =1.所以命题甲是命题乙的必要而不充分条件.【答案】 A3.(2014·湖南省株洲二中期中考试)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若φ=0,则f(x)=cos(x+φ)=cos x为偶函数,充分性成立;反之,若f(x)=cos(x+φ)为偶函数,则φ=kπ(k∈Z),必要性不成立,故选A.【答案】 A4.(2014·山东省实验中学月考)“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】本题综合考查函数零点与充要条件的判断.当a=-1时,函数f(x)=ax2+2x-1=-x2+2x-1只有一个零点1;但若函数f(x)=ax2+2x-1只有一个零点,则a=-1或a=0.所以“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的充分不必要条件,故选B.【答案】 B二、填空题5.“b2=ac”是“a、b、c成等比数列”的________条件.【解析】“b2=ac”“a,b,c成等比数列”,如b2=ac =0;而“a,b,c成等比数列”⇒“b2=ac”.【答案】必要不充分6.“a=-1”是“l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行”的________条件.【解析】 若直线l 1:x +ay +6=0与l 2:(3-a )x +2(a -1)y +6=0平行,则需满足1×2(a -1)-a ×(3-a )=0,化简整理得a 2-a -2=0,解得a =-1或a =2,经验证得当a =-1时,两直线平行,当a =2时,两直线重合,故“a =-1”是“l 1:x +ay +6=0与l 2:(3-a )x +2(a -1)y +6=0平行”的充要条件.【答案】 充要7.在下列各项中选择一项填空:①充分不必要条件;②必要不充分条件;③充要条件;④既不充分也不必要条件.(1)记集合A ={-1,p,2},B ={2,3},则“p =3”是“A ∩B =B ”的________;(2)“a =1”是“函数f (x )=|2x -a |在区间[12,+∞)上是增函数”的________.【解析】 本题考查命题的充要条件的判断.(1)当p =3时,A ={-1,2,3},此时A ∩B =B ;若A ∩B =B ,则必有p =3.因此“p =3”是“A ∩B =B ”的充要条件.(2)当a =1时,f (x )=|2x -a |=|2x -1|在[12,+∞)上是增函数;但由f (x )=|2x -a |在区间[12,+∞)上是增函数不能得到a =1,如当a =0时,函数f (x )=|2x -a |=|2x |在区间[12,+∞)上是增函数.因此“a =1”是“函数f (x )=|2x -a |在区间[12,+∞)上是增函数”的充分不必要条件.【答案】 (1)③ (2)①三、解答题8.(2014·陕西省西工大附中月考)下列各题中,p 是q 的什么条件,q 是p 的什么条件,并说明理由.(1)p :|x |=|y |,q :x =y ;(2)在△ABC ,p :sin A >12,q :A >π6.【解】 (1)因为|x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |, 所以p 是q 的必要不充分条件,q 是p 的充分不必要条件.(2)因为A ∈(0,π)时,sin A ∈(0,1],且A ∈⎝ ⎛⎦⎥⎤0,π2时,y =sin A 单调递增,A ∈⎣⎢⎡⎭⎪⎫π2,π时,y =sin A 单调递减,所以sin A >12⇒A >π6,但A >π6 sin A >12.所以p 是q 的充分不必要条件,q 是p 的必要不充分条件.9.设a ,b ,c 分别是△ABC 的三个内角A 、B 、C 所对的边,证明:“a 2=b (b +c )”是“A =2B ”的充要条件.【证明】 充分性:由a 2=b (b +c )=b 2+c 2-2bc cos A 可得1+2cos A =c b =sin C sin B .即sin B +2sin B cos A =sin(A +B ).化简,得sin B =sin(A -B ).由于sin B >0且在三角形中,故B =A -B ,即A =2B .必要性:若A =2B ,则A-B=B,sin(A-B)=sin B,sin(A+B)=sin A cos B+cos A sin B,sin(A-B)=sin A cos B-cos A sin B. ∴sin(A+B)=sin B(1+2cos A).∵A、B、C为△ABC的内角,∴sin(A+B)=sin C,即sin C=sin B(1+2cos A).∴sin Csin B=1+2cos A=1+b2+c2-a2bc=b2+c2-a2+bcbc,即cb=b2+c2+bc-a2bc.化简得a2=b(b+c).∴“a2=b(b+c)”是“A=2B”的充要条件.[能力提升层次]1.如果A是B的必要不充分条件,B是C的充要条件,D是C 的充分不必要条件,那么A是D的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解析】由条件,知D⇒C⇔B⇒A,即D⇒A,但A D,故选A.【答案】 A2.(2014·马鞍山四校联考)设有如下命题:甲:相交两直线l、m 在平面α内,且都不在平面β内.乙:l、m中至少有一条与β相交.丙:α与β相交.那么当甲成立时()A.乙是丙的充分不必要条件B.乙是丙的必要不充分条件C .乙是丙的充分必要条件D .乙既不是丙的充分条件,又不是丙的必要条件【解析】 当l 、m 中至少有一条与β相交时,α与β有公共点,则α与β相交,即乙⇒丙,反之,当α与β相交时,l 、m 中也至少有一条与β相交,否则若l 、m 都不与β相交,又都不在β内,则l ∥β,m ∥β,从而α∥β,与α与β相交矛盾,即丙⇒乙,故选C.【答案】 C3.已知f (x )是R 上的增函数,且f (-1)=-4,f (2)=2,设P ={x |f (x +t )<2},Q ={x |f (x )<-4},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是________.【解析】 因为f (x )是R 上的增函数,f (-1)=-4,f (x )<-4,f (2)=2,f (x +t )<2,所以x <-1,x +t <2,x <2-t .又因为“x ∈P ”是“x ∈Q ”的充分不必要条件,所以2-t <-1,即t >3.【答案】 (3,+∞)4.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.【证明】 充分性:因为q =-1,所以a 1=S 1=p -1.当n ≥2时,a n =S n -S n -1=p n -1(p -1),显然,当n =1时,也成立.因为p ≠0,且p ≠1,所以a n +1a n=p n (p -1)p n -1(p -1)=p , 即数列{a n }为等比数列,必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1). 因为p ≠0,且p ≠1,所以a n +1a n=p n (p -1)p n -1(p -1)=p . 因为{a n }为等比数列,所以a 2a 1=a n +1a n=p ,即p 2-p p +q =p . 所以-p =pq ,即q =-1. 所以数列{a n }为等比数列的充要条件为q =-1.。
必修一命题充要条件专题-带答案
必修一命题充要条件专题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知条件 ;条件 .若 是 的必要不充分条件,则实数 的取值范围是( )A .B .C .D . 【答案】B 【解析】试题分析:设集合 或 , .因为 是 的必要不充分条件,则 是 的真子集,所以 或 ,即 或 ,选B .考点:1、充要条件;2、二次不等式. 2.0a <,0b <的一个必要条件为( ) A.1ab> B.1ab<- C.0a b +< D.0a b ->【答案】C 【解析】 【分析】选择0a <,0b <的一个必要条件,即选出可以由0a <,0b <推出的结果。
【详解】0a <,00b a b <⇒+<,故选C .【点睛】本题考查必要条件的定义,根据结果找条件,需要注意分清楚谁是条件,谁是结果,谁是谁的什么条件,谁可以推出谁。
属于基础题。
3.使3x >成立的一个充分条件是( ) A.4x > B.0x > C.2x > D.2x <【答案】A 【解析】 【分析】根据充分条件的定义:若p q ⇒ ,那么p 是q 的充分条件,以及“大范围可以推小范围,小范围不能推大范围”,即选项的范围应该比3x >的小,即可选出答案。
∵43x x >⇒>,∴4x >是3x >成立的一个充分条件. 【点睛】本题考查充分条件的定义,根据结果找条件,需要注意分清楚谁是条件,谁是结果,谁可以推出谁,属于基础题。
4.钱大姐常说”好货不便宜”,她这句话的意思是“好货”是“不便宜”的( ) A.充分条件 B.必要条件C.无法判断D.既不充分也不必要条件【答案】A 【解析】 【分析】根据充分条件的定义:若p q ⇒ ,那么p 是q 的充分条件,判断即可得出答案。
高考充分、必要、充要条件复习及答案
1-2[高效训练·能力提升]A 组 基础达标一、选择题1.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤0解析 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.答案 D2.关于命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题的真假性,下列结论成立的是A .都真B .都假C .否命题真D .逆否命题真解析 原命题为真命题,则其逆否命题为真命题.答案 D3. “x =1”是“x 2-2x +1=0”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析 因为x 2-2x +1=0有两个相等的实数根为x =1,所以“x =1”是“x 2-2x +1=0”的充要条件. 答案 A4. (2017·北京)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 存在负数λ,使得m =λn ,则m ·n =λn ·n =λ|n |2<0,因而是充分条件,反之m ·n <0,不能推出m ,n 方向相反,则不是必要条件,故选A.答案 A5. (2018·江西九江十校联考)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥-1,ln (-x ),x <-1,则“x =0”是“f (x )=1”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析若x=0,则f(x)=1,若f(x)=1,则e x=1或ln(-x)=1,解得x=0或x=-e,故“x=0”是“f(x)=1”的充分不必要条件,故选B.答案 B6.(2018·福州质检)已知a,b∈R,则“0≤a≤1且0≤b≤1”是“0≤ab≤1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若“0≤a≤1且0≤b≤1”,则“0≤ab≤1”.当a=-1,b=-1时,满足0≤ab≤1,但不满足0≤a≤1且0≤b≤1,∴“0≤a≤1且0≤b≤1”是“0≤ab≤1”成立的充分不必要条件.故选A.答案 A7.下列结论错误的是A.命题“若x2-2x-3=0,则x=3”的逆否命题为“若x≠3,则x2-2x-3≠0”B.“x=3”是“x2-2x-3=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”解析C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m≥0,,不能推出m>0.所以不是真命题.即m≥-14答案 C二、填空题8.“若a≤b,则ac2≤bc2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析其中原命题和逆否命题为真命题,逆命题和否命题为假命题.答案 29.“sin α=cos α”是“cos 2α=0”的________条件.解析cos 2α=0等价于cos2α-sin2α=0,即cos α=±sin α.由cos α=sin α得到cos 2α=0;反之不成立.∴“sin α=cos α”是“cos 2α=0”的充分不必要条件.答案充分不必要10.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________. 解析 令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴MN ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3. 答案 (0,3)B 组 能力提升1. (2018·湖北联考)若x >2m 2-3是-1<x <4的必要不充分条件,则实数m 的取值范围是A .[-3,3]B .(-∞,-3]∪[3,+∞)C .(-∞,-1]∪[1,+∞)D .[-1,1]解析 x >2m 2-3是-1<x <4的必要不充分条件,∴(-1,4)⊆(2m 2-3,+∞),∴2m 2-3≤-1,解得-1≤m ≤1,故选D.答案 D2. (2017·广雅中学、南昌二中联考)给出下列命题:①“∃x 0∈R ,x 20-x 0+1≤0”的否定; ②“若x 2+x -6≥0,则x >2”的否命题;③命题“若x 2-5x +6=0,则x =2”的逆否命题.其中真命题的个数是A .0B .1C .2D .3解析 ①“∃x 0∈R ,x 20-x 0+1≤0”的否定是“∀x ∈R ,x 2-x +1>0”;∵判别式Δ=(-1)2-4×1×1=-3<0,∴∀x ∈R ,x 2-x +1>0恒成立,故①正确;②“若x 2+x -6≥0,则x >2”的否命题是“若x 2+x -6<0,则x ≤2”;由x 2+x -6<0得-3<x <2,则否命题成立,故②正确;③由x 2-5x +6=0,得x =2或3,则原命题为假命题,根据等价命题同真同假可知逆否命题也为假命题,故③错误,故正确的命题是①②,故选C.答案 C3. (2017·江西红色七校二模)在△ABC 中,角A ,B 均为锐角,则cos A >sin B 是△ABC 为钝角三角形的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 因为cos A >sin B ,所以cos A >cos ⎝ ⎛⎭⎪⎫π2-B ,又因为角A ,B ,均为锐角,所以π2-B 为锐角,又因为余弦函数y =cos x 在(0,π)上单调递减,所以A <π2-B ,所以A +B <π2,△ABC 中,A +B +C =π,所以C >π2,所以△ABC 为钝角三角形,若△ABC 为钝角三角形,角A ,B 均为锐角,则C >π2,所以A +B <π2,所以A <π2-B ,所以cos A >cos ⎝ ⎛⎭⎪⎫π2-B ,即cos A >sin B ,故cos A >sin B 是△ABC 为钝角三角形的充要条件,故选C. 答案 C4.已知在实数a ,b 满足某一前提条件时,命题“若a >b ,则1a <1b”及其逆命题、否命题和逆否命题都是假命题,则实数a ,b 应满足的前提条件是________.解析 显然ab ≠0,当ab >0时,1a <1b ⇔1a ·ab <1b·ab ⇔b <a ,所以四种命题都是正确的.当ab <0时,若a >b ,则必有a >0>b ,故1a >0>1b ,所以原命题是假命题;若1a <1b ,则必有1a <0<1b,故a <0<b ,所以其逆命题也是假命题;由命题的等价性可知,四种命题都是假命题.从而本题应填ab <0.答案 ab <05.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.答案 (2,+∞)6. (2018·临沂模拟)下列四个结论中正确的是________(填序号).①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”;③“若x =π3,则tan x =3”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0. 解析 ①中“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误.对于②,命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”,故②正确.对于③,“若x =π3,则tan x =3”的逆命题为“若tan x =3,则x =π3”,其为假命题,故③错误.对于④,若f (x )是R 上的奇函数,则f (-x )+f (x )=0, ∵log 32=1log 23≠-log 32,∴log 32与log 23不互为相反数,故④错误. 答案 ②。
课后练习——命题及其关系、充分条件与必要条件 (解析版)
课后练习——命题及其关系、充分条件与必要条件建议用时:45分钟一、选择题1.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定B [命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.]2.原命题“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4C [当c =0时,ac 2=bc 2,所以原命题是假命题;由于原命题与逆否命题的真假一致,所以逆否命题也是假命题;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是真命题;由于否命题与逆命题的真假一致,所以否命题也是真命题.综上所述,真命题有2个.]3.设x ∈R ,则“2-x ≥0”是“(x -1)2≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B [2-x ≥0,则x ≤2,(x -1)2≤1,则-1≤x -1≤1,即0≤x ≤2,据此可知:“2-x ≥0”是“(x -1)2≤1”的必要不充分条件.]4.设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件A [由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1.所以“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.故选A .] 5.(2019·庆阳模拟)有下列命题:①“若x +y >0,则x >0且y >0”的否命题;②“矩形的对角线相等”的否命题;③“若m >1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题.其中为真命题的是( )A .①②③B .②③④C .①③④D .①④C [①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题;③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m >1”, ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1. ∴③是真命题;④原命题为真,逆否命题也为真.综上得①③④为真命题,故选C .]6.下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题是“若x 2=1,则x ≠1”B .“x =-1”是“x 2-x -2=0”的必要不充分条件C .命题“若x =y ,则sin x =sin y ”的逆否命题是真命题D .“tan x =1”是“x =π4”的充分不必要条件C [对A 项,由原命题与否命题的关系知,原命题的否命题是“若x 2≠1,则x ≠1”,即A 错误;因为x 2-x -2=0⇔x =-1或x =2,所以由“x =-1”能推出“x 2-x -2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 错误;因为由x =y 能推出sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推出tan x =1,但由tan x =1推不出x =π4,所以“x =π4”是“tan x =1”的充分不必要条件,即D错误.]7.若x>2m2-3是-1<x<4的必要不充分条件,则实数m的取值范围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.(-∞,-1]∪[1,+∞)D.[-1,1]D[∵x>2m2-3是-1<x<4的必要不充分条件,∴(-1,4)(2m2-3,+∞),∴2m2-3≤-1,解得-1≤m≤1,故选D.]二、填空题8.在△ABC中,“A=B”是“tan A=tan B”的________条件.充要[由A=B,得tan A=tan B,反之,若tan A=tan B,则A=B+kπ,k∈Z.∵0<A<π,0<B<π,∴A=B,故“A=B”是“tan A=tan B”的充要条件.]9.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)充分不必要[当x>1,y>1时,x+y>2一定成立,即p⇒q,当x+y>2时,可令x=-1,y=4,即q⇒/ p,故p是q的充分不必要条件.]10.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.k∈(-1,3)[直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于|1-0-k|<2,解之得-1<k<3.]21.设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件C[由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a2+9b2-6a·b=9a2+b2+6a·b.因为a,b均为单位向量,所以a2=b2=1,所以a·b=0,能推出a⊥b.由a⊥b得|a-3b|=10,|3a+b|=10,能推出|a-3b|=|3a+b|,所以“|a-3b|=|3a+b|”是“a⊥b”的充要条件.]2.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,“攻破楼兰”是“返回家乡”的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件B[“不破楼兰终不还”的逆否命题为:“若返回家乡,则攻破楼兰”,所以“攻破楼兰”是“返回家乡”的必要条件.]3.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.②③[①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.]4.已知集合A=,B={x|-1<x<m+1,m∈R},若x∈B成立的一个充分不必要条件是x∈A,则实数m的取值范围是________.(2,+∞)[因为A=={x|-1<x<3},x∈B成立的一个充分不必要条件是x∈A,所以A B,所以m+1>3,即m>2.]1.下面四个条件中,使a>b成立的充分而不必要的条件是() A.a>b+1 B.a>b-1C.a2>b2D.a3>b3A[a>b+1⇒a>b,但反之未必成立,故选A.]2.给出下列说法:①“若x+y=π2,则sin x=cos y”的逆命题是假命题;②“在△ABC中,sin B>sin C是B>C的充要条件”是真命题;③“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件;④命题“若x<-1,则x2-2x-3>0”的否命题为“若x≥-1,则x2-2x -3≤0”.以上说法正确的是________(填序号).①②④[对于①,“若x+y=π2,则sin x=cos y”的逆命题是“若sin x=cos y,则x+y=π2”,当x=0,y=3π2时,有sin x=cos y成立,但x+y=3π2,故逆命题为假命题,①正确;对于②,在△ABC中,由正弦定理得sin B>sin C⇔b >c⇔B>C,②正确;对于③,“a=±1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.]。
人教A版理科数学课时试题及解析(2)命题、充要条件
高考数学复习 课时作业(二) [第2讲 命题、充要条件][时间:45分钟 分值:100分]基础热身1.已知命题p :若x =y ,则x =y ,那么下列叙述正确的是( )A .命题p 正确,其逆命题也正确B .命题p 正确,其逆命题不正确C .命题p 不正确,其逆命题正确D .命题p 不正确,其逆命题也不正确2.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( )A .1≤a ≤3B .-1≤a ≤1C .-3≤a ≤1D .-1≤a ≤33.记等比数列{a n }的公比为q ,则“q >1”是“a n +1>a n (n ∈N *)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.“a =2”是“直线(a 2-a )x +y =0和直线2x +y +1=0互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件能力提升5.已知a ,b ,c ,d 为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 已知条件p :-2<m <0,0<n <1;条件q :关于x 的方程x 2+mx +n =0有两个小于1的正根,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知命题p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,命题q :关于x 的函数y =(2a -1)x 在R 上为减函数,若p 且q 为真命题,则a 的取值范围是( )A .a ≤23B .0<a <12C.12<a ≤23D.12<a <1 8. “a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.设命题p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,命题q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.在下列四个结论中,正确的有________(填序号).①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件;②“⎩⎪⎨⎪⎧ a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件; ③“x ≠1”是“x 2≠1”的充分不必要条件;④“x ≠0”是“x +|x |>0”的必要不充分条件.11.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.12. 在△ABC 中,“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的________条件.13.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是________(填序号).14.(10分) 命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,命题q :实数x 满足x2-x -6≤0或x 2+2x -8>0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.15.(13分)已知a ,b 是实数,求证:a 4-b 4-2b 2=1成立的充要条件是a 2-b 2=1.难点突破16.(12分) 已知全集U =R ,非空集合A =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x -2x -3a -1<0,B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -a 2-2x -a <0. (1)当a =12时,求(∁U B )∩A ; (2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.课时作业(二)【基础热身】1.C [解析] 当x 、y 为负值时,命题p 不正确,而当x =y 时,有x =y ,故p 的逆命题正确.2.D [解析] x 2+(a -1)x +1≥0恒成立,所以(a -1)2-4≤0,得-1≤a ≤3.3.D [解析] 可以借助反例说明:①如数列:-1,-2,-4,-8公比为2,但不是增数列;②如数列:-1,-12,-14,-18是增数列,但是公比为12<1. 4.A [解析] 因为两直线平行,则(a 2-a )×1-2×1=0,解得a =2或-1,所以选A.【能力提升】5.B [解析] 显然,充分性不成立.若a -c >b -d 和c >d 都成立,则同向不等式相加得a >b ,即由“a -c >b -d ”⇒“a >b ”.6.B [解析] 设关于x 的方程x 2+mx +n =0有两个小于1的正根x 1,x 2,则x 1+x 2=-m ,x 1·x 2=n ,∵0<x 1<1,0<x 2<1,∴0<-m <2,0<n <1,∴-2<m <0,0<n <1,这说明p 是q 的必要条件.设-2<m <0,0<n <1,则关于x 的方程x 2+mx +n =0不一定有两个小于1的正根,如m =-1,n =34时,方程x 2-x +34=0没有实数根,这说明p 不是q 的充分条件,故p 是q 的必要不充分条件.7.C [解析] 已知命题p 为真,则3a 2≤1,∴a ≤23;已知命题q 为真,则0<2a -1<1,∴12<a <1;综合以上得12<a ≤23. 8.A [解析] 函数y =cos 2ax -sin 2ax =cos2ax 的最小正周期为π⇔a =1或a =-1,所以“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充分不必要条件.故选A.9.B [解析] f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x 恒成立,故Δ≤0,即m ≥43;m ≥8x x 2+4对任意x >0恒成立,即m ≥⎝⎛⎭⎫8x x 2+4max ,8x x 2+4=8x +4x ≤824=2,即m ≥2.则因为{m |m ≥⎩⎨⎧ m ⎪⎪⎭⎬⎫m ≥43,正确选项为B.10.①②④ [解析] 根据命题的等价性,结论①正确;根据二次函数图象与不等式的关系,结论②正确;结论③即x 2=1是x =1的充分不必要条件,显然错误;x ≠0也可能x +|x |=0,故条件不充分,反之x ≠0,结论④正确.11.[-3,0] [解析] ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0, 故-3≤a ≤0.12.充要 [解析] AB →·AC →=BA →·BC →⇔AB →· AC →-BA →·BC →=0,⇔AB →(AC →+BC →)=0⇔(AC →-BC →)(BC →+AC →)=0⇔BC →2=AC →2⇔|AC →|=|BC →|,于是“AB →·AC →=BA →·BC →”是“|AC →|=|BC →|”的充要条件.13.② [解析] ①的逆命题是:若四点中任何三点都不共线,则这四点不共面.在平行四边形A 1B 1C 1D 1中,A 1、B 1、C 1、D 1任何三点都不共线,但A 1、B 1、C 1、D 1四点共面,所以①的逆命题不真.②的逆命题是:若两条直线是异面直线,则这两条直线没有公共点.由异面直线的定义可知,成异面直线的两条直线没有公共点.所以②的逆命题是真命题.14.[解答] 设A ={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},B ={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0}={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.因为綈p 是綈q 的必要不充分条件,所以綈q ⇒綈p ,且綈p 推不出綈q ,而∁R B ={x |-4≤x <-2},∁R A ={x |x ≤3a ,或x ≥a ,a <0},所以{x |-4≤x <-x |x ≤3a 或x ≥a ,a <0},则⎩⎪⎨⎪⎧ 3a ≥-2,a <0或⎩⎪⎨⎪⎧ a ≤-4,a <0, 即-23≤a <0或a ≤-4. 15.[解答] 证法一:证明:充分性:若a 2-b 2=1,则a 4-b 4-2b 2=(a 2+b 2)(a 2-b 2)-2b 2=a 2+b 2-2b 2=a 2-b 2=1,所以a 2-b 2=1是a 4-b 4-2b 2=1成立的充分条件.必要性:若a 4-b 4-2b 2=1,则a 4-(b 2+1)2=0,即(a 2+b 2+1)(a 2-b 2-1)=0,因为a ,b 是实数,所以a 2+b 2+1≠0,所以a 2-b 2-1=0,即a 2-b 2=1,所以a 2-b 2=1是a 4-b 4-2b 2=1成立的必要条件.证法二:证明:a 4-b 4-2b 2=1⇔a 4=b 4+2b 2+1⇔a 4=(b 2+1)2⇔a 2=b 2+1,a 4-b 4-2b 2=1成立的充要条件是a 2=b 2+1.综上所述,a 4-b 4-2b 2=1成立的充要条件是a 2-b 2=1.【难点突破】16.[解答] (1)当a =12时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 2<x <52,B =⎩⎨⎧⎭⎬⎫x ⎪⎪ 12<x <94,所以(∁U B )∩A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 94≤x <52. (2)若q 是p 的必要条件,即p ⇒q ,可知B ⊇A .因为a 2+2>a ,所以B ={x |a <x <a 2+2}.当3a +1>2,即a >13时,A ={x |2<x <3a +1}, 由⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52. 当3a +1=2,即a =13时,A =∅符合题意; 当3a +1<2,即a <13时,A ={x |3a +1<x <2}, 由⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2,解得-12≤a <13. 综上,a ∈⎣⎢⎡⎦⎥⎤-12,3-52.。
充分条件与必要条件·典型例题
充分条件与必要条件·典型例题能力素质例1 已知p :x 1,x 2是方程x 2+5x -6=0的两根,q :x 1+x 2=-5,则p 是q 的[ ]A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 分析 利用韦达定理转换.解 ∵x 1,x 2是方程x 2+5x -6=0的两根, ∴x 1,x 2的值分别为1,-6, ∴x 1+x 2=1-6=-5.因此选A .说明:判断命题为假命题可以通过举反例. 例2 p 是q 的充要条件的是[ ]A .p :3x +2>5,q :-2x -3>-5B .p :a >2,b <2,q :a >bC .p :四边形的两条对角线互相垂直平分,q :四边形是正方形D .p :a ≠0,q :关于x 的方程ax =1有惟一解 分析 逐个验证命题是否等价.解 对A .p :x >1,q :x <1,所以,p 是q 的既不充分也不必要条件; 对B .p q 但q p ,p 是q 的充分非必要条件; 对C .pq 且qp ,p 是q 的必要非充分条件;对.且,即,是的充要条件.选.D p q q p p q p q D ⇒⇒⇔说明:当a =0时,ax =0有无数个解.例3 若A 是B 成立的充分条件,D 是C 成立的必要条件,C 是B 成立的充要条件,则D 是A 成立的[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 通过B 、C 作为桥梁联系A 、D .解 ∵A 是B 的充分条件,∴A B ① ∵D 是C 成立的必要条件,∴CD ②∵是成立的充要条件,∴③C B C B ⇔由①③得A C ④ 由②④得A D .∴D 是A 成立的必要条件.选B . 说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A ,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C),但AB 不成立, 综上所述:“A B ”“A(B ∪C)”,而“A (B ∪C)”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p :ab =0,q :a 2+b 2=0; (2)p :xy ≥0,q :|x|+|y|=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件 (2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.点击思维例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d ”是“e≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b(逆否命题).而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法. 例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s ,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q ,q s) r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p) 说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B ,结合数轴,构造不等式(组),求出a . 解 A ={x|2a ≤x ≤a 2+1},B ={x|(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.学科渗透例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a 2b 1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴qp .上述讨论可知:a >2,b >1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.高考巡礼例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[ ] A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
命题与充要条件-高考数学基础训练
阶段检测四一、选择题1.(2017烟台)某城市几条道路的位置关系如图所示,已知AB∥CD,AE 与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为( )A.48°B.40°C.30°D.24°2.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是( )A.①②B.①④C.②③D.③④3.根据下列条件,能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=DFC.∠B=∠E,∠A=∠D,AC=EFD.AB=DE,BC=EF,∠B=∠D4.已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边的长,则△ABC的周长为( )A.7B.10C.11D.10或115.如图,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是( )A.①②③B.②③④C.①③⑤D.①③④6.如图,在△ABC中,D,E分别是AB,AC的中点,下列说法中不正确的是( )A.DE=BCB.=C.△ADE∽△ABCD.S△ADE∶S△ABC=1∶27.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为( )A.1B.2C.3D.48.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB'C'D',边BC与D'C'交于点O,则四边形ABOD'的周长是( )A.6B.6C.3D.3+39.如图,已知AD为△ABC的高,AD=BC,以AB为底边作等腰Rt△ABE,EF∥AD,交AC于点F,连接ED,EC,有以下结论:①△ADE≌△BCE;②CE⊥AB;③BD=2EF;④S△BDE=S△ACE.其中正确的是( )A.①②③B.②④C.①③D.①③④10.如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P,Q分别在直线BC 上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为( )11.若点O是等腰三角形ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为( )A.2+B.C.2+或2-D.4+2或2-二、填空题12.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF 分别交l1,l2,l3于点D,E,F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则= .13.(2017湖北黄冈)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4 cm,将△AOB绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D= cm.14.如图,在平面直角坐标系中,已知点A(-3,6),B(-9,-3),以原点O 为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是.15.如图所示,△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是.16.如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C 出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.若△BPQ与△ABC相似,则t的值为.17.如图,已知点A(1,2)是反比例函数y=的图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点.若△PAB是等腰三角形,则点P的坐标是.三、解答题18.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数;(2)求线段CE的长.19.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF并延长交AC于点E.若AB=10,BC=16,求线段EF的长.20.如图,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于点D.(1)若∠BAC=30°,求证:AD=BD;(2)若AP平分∠BAC且交BD于点P,求∠BPA的度数.21.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”形道路连通,其中AB段与高速公路l1成30°角,长为20 km;BC段与AB,CD段都垂直,长为10 km,CD段长为30 km.求两高速公路间的距离(结果保留根号).22.(2017泰安模拟)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)当点P与点Q重合时,如图1,写出QE与QF的数量关系,不证明;(2)当点P在线段AB上且不与点Q重合时,如图2,(1)中的结论是否成立?并证明;(3)当点P在线段BA(或AB)的延长线上时,如图3,此时(1)中的结论是否成立?请画出图形并给予证明.阶段检测四一、选择题1.D ∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E,∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故选D.2.C ①相似图形不一定是位似图形,位似图形一定是相似图形,故①错误;②位似图形一定有位似中心,故②正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形,故③正确;④位似图形上任意一对对应点到位似中心的距离之比等于位似比,故④错误.故选C.3.B 根据三角形的判定定理ASA可得选项B可以判定两个三角形全等,故选B.4.D 把x=3代入方程得9-3(m+1)+2m=0,解得m=6,则原方程为x2-7x+12=0,解得x1=3,x2=4.由题意得这个方程的两个根恰好是等腰三角形ABC的两边长,①当△ABC的腰长为4,底边长为3时,△ABC的周长为4+4+3=11;②当△ABC的腰长为3,底边长为4时,△ABC的周长为3+3+4=10. 综上所述,△ABC的周长为10或11.5.D ∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE(ASA);③△BDA≌△CEA(ASA);④△BOE≌△COD(AAS或ASA).故选D.6.D ∵D,E分别是AB,AC的中点, ∴DE∥BC,DE=BC,∴===,△ADE∽△ABC,∴S△ADE∶S△ABC==.∴选项A,B,C正确,选项D错误.7.A ∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°.∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD.∵BC=3,∴CD=DE=1.8.A 连接BC'.∵旋转角∠BAB'=45°,∴∠BAD'=45°,∴B在对角线AC'上.∵B'C'=AB'=3,∴在Rt△AB'C'中,AC'='''=3,∴BC'=3-3.在等腰Rt△OBC'中,OB=BC'=3-3,OC'=×(3-3)=6-3,∴OD'=3-OC'=3-3,∴四边形ABOD'的周长为2AD'+OB+OD'=6+3-3+3-3=6.故选A.9.D 如图,延长CE交AD于点K,交AB于点H.设AD交BE于点O.∵∠ODB=∠OEA,∠AOE=∠DOB,∴∠OAE=∠OBD.∵AE=BE,AD=BC,∴△ADE≌△BCE,故①正确.∴∠AED=∠BEC,DE=EC,∴∠AEB=∠DEC=90°,∴∠ECD=∠ABE=45°.∵∠AHC=∠ABC+∠HCB=90°+∠EBC>90°,∴EC不垂直于AB,故②错误.∵∠AEB=∠HED,又∵AE=BE,∠KAE=∠EBD,∴△KAE≌△DBE,∴BD=AK.∵△DCK是等腰直角三角形,DE平分∠CDK,∴EC=EK.∵EF∥AK,∴AF=FC,∴AK=2EF,∴BD=2EF,故③正确.∵EK=EC,∴S△AKE=S△AEC.∵△KAE≌△DBE,∴S△KAE=S△BDE,∴S△BDE=S△AEC,故④正确.故选D.10.A ∵△ABC中,AB=AC,∠BAC=20°,∴∠ACB=80°,又∵∠PAQ=∠PAB+∠BAC+∠CAQ=100°,∴∠PAB+∠CAQ=80°.在△ABC中,∠ACB=∠CAQ+∠AQC=80°,同理,∠P=∠CAQ.∴△APB∽△QAC,∴=,即=.则函数解析式是y=.故选A.11.C 由题意可得,如图所示.存在两种情况:①当△ABC为△A1BC时,连接OB,OC.∵点O是等腰三角形ABC的外心,且∠BOC=60°,底边BC=2,OB=OC, ∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=-=,∴△==(-)=2-.②当△ABC为△A2BC时,连接OB,OC.∵点O是等腰三角形ABC的外心,且∠BOC=60°,底边BC=2,OB=OC, ∴△OBC为等边三角形,OB=OC=BC=2,OA2⊥BC于点D,∴CD=1,OD=-=,∴△==()=2+.由上可得,△ABC的面积为2-或2+,二、填空题12.答案解析∵AH=2,HB=1,∴AB=AH+BH=3.∵l1∥l2∥l3,∴==.13.答案 1.5解析∵在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm,∴AB==5 cm.∵点D为AB的中点,∴OD=AB=2.5 cm.∵将△AOB绕顶点O按顺时针方向旋转到△A1OB1处,∴OB1=OB=4 cm,∴B1D=OB1-OD=1.5 cm.14.答案(-1,2)或(1,-2)解析∵点A(-3,6),以原点O为位似中心,相似比为,把△ABO缩小, ∴点A的对应点A'的坐标是(-1,2)或(1,-2).15.答案30解析BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.∵E是AC的中点,∴S△AGE=S△GEC,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△GEC+S△GDC=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.16.答案1或解析设运动时间为t秒(0<t<2),则BP=5t cm,CQ=4t cm,BQ=(8-4t)cm.∵∠ACB=90°,AC=6 cm,BC=8 cm,∴AB==10(cm).当△BPQ∽△BAC时,=,即=-,解得t=1;当△BPQ∽△BCA时,=,即=-,解得t=,即当t=1或时,△BPQ与△ABC相似.故答案为1或.17.答案(-3,0)或(5,0)或(3,0)或(-5,0)解析∵反比例函数y=的图象关于原点对称,∴A,B两点关于原点对称,∴B点的坐标为(-1,-2).∴当△PAB为等腰三角形时,有PA=AB或PB=AB.设P点坐标为(x,0).∵A(1,2),B(-1,-2),∴AB=-(-) -(-) =2,PA=(-)(-),PB=()().当PA=AB时,则有(-)(-)=2,解得x=-3或5,此时P点坐标为(-3,0)或(5,0);当PB=AB时,则有()()=2,解得x=3或-5,此时P点坐标为(3,0)或(-5,0).综上可知P点的坐标为(-3,0)或(5,0)或(3,0)或(-5,0).三、解答题18.解析(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°-42°=138°.(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC-AE=9-6=3.19.解析∵AF⊥BF,∴∠AFB=90°.∵AB=10,D为AB中点,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴=,即=,解得DE=8,∴EF=DE-DF=3.20.解析(1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°.又∵BD平分∠ABC,∴∠ABD=30°,∴∠BAC=∠ABD,∴BD=AD.(2)解法一:∵∠C=90°,∴∠BAC+∠ABC=90°,∴(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠BAP=∠BAC,∠ABP=∠ABC,即∠BAP+∠ABP=45°,∴∠APB=180°-45°=135°.解法二:∵∠C=90°,∴∠BAC+∠ABC=90°,∴(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠DBC=∠ABC,∠PAC=∠BAC,∴∠DBC+∠PAD=45°.∴∠BPA=∠PDA+∠PAD=∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.21.解析过B点作BE⊥l1,交l1于点E,交CD于F点,交l2于点G. 在Rt△ABE中,BE=AB sin 30°=20×=10(km),在Rt△BCF中,BF=BC÷cos 30°=10÷=(km),CF=BF sin 30°=×=(km),DF=CD-CF=-km.在Rt△DFG中,FG=DF sin 30°=-×=-km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.22.解析(1)QE=QF.理由:∵Q为AB的中点,∴AQ=BQ.∵BF⊥CP,AE⊥CP,∴∠BFQ=∠AEQ=90°.在△BFQ和△AEQ中,,,,∴△BFQ≌△AEQ(AAS),∴QE=QF.(2)(1)中的结论仍然成立.证明:如图①,延长FQ交AE于点D.∵Q为AB的中点,∴AQ=BQ.∵BF⊥CP,AE⊥CP,∴BF∥AE,∴∠QAD=∠FBQ.在△FBQ和△DAQ中,,,,∴△FBQ≌△DAQ(ASA),∴QF=QD.∵AE⊥CP,∴EQ是Rt△DEF斜边上的中线,∴QE=QF=QD,即QE=QF.(3)(1)中的结论仍然成立.证明:如图②,点P在线段BA的延长线上,延长EQ,FB交于点D. ∵Q为AB的中点,∴AQ=BQ.∵BF⊥CP,AE⊥CP,∴BF∥AE,∴∠1=∠D.在△AQE和△BQD中,, , ,∴△AQE≌△BQD(AAS),∴QE=QD.∵BF⊥CP,∴FQ是Rt△DEF斜边DE上的中线,∴QE=QF.同样,点P在线段AB的延长线上时,(1)中的结论也成立.。
命题及其关系、充分条件与必要条件
命题及其关系、充分条件与必要条件一、单选题1.下列说法错误的是( )A .“若x ≠3,则x 2﹣2x ﹣3≠0”的逆否命题是“若x 2﹣2x ﹣3=0,则x =3”B .“∀x ∈R ,x 2﹣2x ﹣3≠0”的否定是“∃x 0∈R ,x 02﹣2x 0﹣3=0”C .“x >3”是“x 2﹣2x ﹣3>0”的必要不充分条件D .“x <﹣1或x >3” 是“x 2﹣2x ﹣3>0”的充要条件 【答案】C 【详解】根据命题“若p 则q ”的逆否命题为“若q ⌝则p ⌝”,可知“若x ≠3,则x 2﹣2x ﹣3≠0”的逆否命题是“若x 2﹣2x ﹣3=0,则x =3”,即A 正确;根据全称命题的否定是特称命题可知,“∀x ∈R ,x 2﹣2x ﹣3≠0”的否定是“∃x 0∈R ,x 02﹣2x 0﹣3=0,即B 正确;不等式x 2﹣2x ﹣3>0的解为x <﹣1或x >3,故“x >3”可推出“x 2﹣2x ﹣3>0”,但 “x 2﹣2x ﹣3>0”推不出“x >3”,即“x >3”是“x 2﹣2x ﹣3>0”的充分不必要条件,C 错误,“x <﹣1或x >3” 是“x 2﹣2x ﹣3>0”的充要条件,D 正确. 故选:C.2.下列叙述中正确的是( )A .命题“∃x 0∈R ,2021x 02-2x 0+1≤0”的否定是“∃x 0∈R ,2021x 02-2x +1>0”B .“a 2=1”是“直线x +y =0和直线x -ay =0垂直”的充分而不必要条件C .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0且n ≠0”D .若p ∨q 为真命题,p ∧q 为假命题,则p ,q 一真一假 【答案】D 【详解】对于A 选项:命题“∃x 0∈R ,2021x 02-2x 0+1≤0”的否定是“∀x ∈R ,2021x 2-2x +1>0,A 错误;对于B 选项:若直线x +y =0和直线x -ay =0垂直,则1·1-a =0得a =1,而a 2=1是a =1或a =-1,即“a 2=1”是“直线x +y =0和直线x -ay =0垂直”的必要不充分条件,B 错误;对于C 选项:命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,C 错误;对于D 选项:若p ∨q 为真命题,则p ,q 至少有一个为真命题,若p ∧q 为假命题,则p ,q 至少有一个为假命题,于是p ,q 一真一假,D 正确. 故选:D3.下列命题中,真命题是( )A .命题“若sin x =sin y ,则x =y ”的逆否命题是真命题B .命题“∀x ∈R ,x 2≥0”的否定是“∀x ∈R ,x 2<0”C .“x >1”是“x 2>1”的必要不充分条件D .对任意x ∈R ,e x +e -x ≥2 【答案】D 【详解】选项A :因为命题“若sin x =sin y ,则x =y ”是假命题,所以它的逆否命题也是假命题,选项A 错误;选项B :命题“∀x ∈R ,x 2≥0”的否定是“∃x ∈R ,x 2<0”,所以选项B 错误;选项C :若1x >,则21x >成立;而若21x >,则1x >或1x <-,所以“x >1”是“x 2>1”的充分不必要条件,所以选项C 错误;选项D :因为0x e >,所以12x x x x e e e e -+=+≥,当且仅当1x x e e =即1x =时等号成立,所以选项D 正确. 故选:D.4.设a R ∈,则“0a >”是“0a <”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【详解】因为{}{}00a a a a >⊄<且{}{}00a a a a <⊄>, 因此,“0a >”是“0a <”的既不充分也不必要条件. 故选:D.5.“0x >”是“sin x x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 【答案】C 【详解】设()sin f x x x =-,则()1cos f x x '=-,因为()0f x '≥,则函数()f x 在(,)-∞+∞上单调递增, 因为(0)0f =,所以当0x >时,()0f x >,即sin x x >, 则“0x >”是“sin x x >”的充要条件, 故选:C. 6.2a >是23a a+>的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【详解】由不等式23a a +>,即2232(1)(2)30a a a a a a a a-+--+-==>,解得01a <<或2a >,即不等式的解集为{|01a a <<或2}a >, 所以2a >是23a a+>的充分不必要条件. 故选:C.二、多选题7.已知:p x y >,22:q x y >.若,x y R ∈,则( ) A .p 是q 的充分条件 B .q 不是p 的必要条件C .q 是p 的充分条件D .p 是q 的既不充分也不必要条件【答案】BD 【详解】若1x =,2y =-,满足:p x y >,不满足22:q x y >,所以p q ⇒/ 若2x =-,1y =,满足22:q x y >,不满足:p x y >,所以q p ⇒/. 所以q 不是p 的必要条件,p 是q 的既不充分也不必要条件. 故选:BD8.下列命题中为真命题的是( ) A .“0a b -=”的充要条件是“1ab=” B .“a b >”是“11a b<”的既不充分也不必要条件 C .命题“x ∃∈R ,220x x -<”的否定是“x ∀∈R ,220x x -≥” D .“2a >,2b >”是“4ab >”的必要条件 【答案】BC对于A ,当0b =时,ab不存在,A 错;对于B ,充分性:因为a b >,当1a =,1b =-时,11a b<不成立,充分性不成立. 必要性:当11a b<时,取1a =-,1b =,则a b >不成立,必要性不成立. 故“a b >”是“11a b<”的既不充分也不必要条件,B 对; 对于C ,根据特称命题的否定的定义知C 对;对于D ,充分性:若2a >,2b >,由不等式的性质可得4ab >,充分性成立. 必要性:若4ab >,取3a b ==-,则“2a >,2b >”不成立,必要性不成立. 故“2a >,2b >”是“4ab >”的充分条件,不是必要条件,D 错. 故选:BC.第II 卷(非选择题)三、填空题9.条件:24p x -<<,条件()():20q x x a ++<.若p 是q 的充分不必要条件,则a 的取值范围是________. 【答案】4a【详解】当2a -<-时,即当2a >时,解不等式()()20x x a ++<可得2a x -<<-, 此时{}{}242x x x a x -<<⊄-<<-,与题意矛盾;当2a -=-时,即当2a =时,不等式()()20x x a ++<无解,与题意矛盾; 当2a ->-时,即当2a <时,解不等式()()20x x a ++<可得2x a -<<-, 因此,p 是q 的充分不必要条件,则{}24x x -<< {}2x x a -<<-,则4a ->,即4a .综上所述,实数a 的取值范围是4a .故答案为:4a .四、双空题10.已知0a >,0b >,21a b +=,且1b a b+的最小值是M ,则M =___________;若“,x m ,2x M ”是真命题,则实数m 的取值范围是___________.【答案】4 [)2,+∞(1)因为21a b +=,0a >,0b >, 所以122224b b a b b a b aa ba ba b a b,当且仅当13a b ==时取等号,故4M =, (2)命题“,x m ,2x M ”即“,x m ,24x ≥”,24x ≥,即2x ≥或2x -≤,则2m ≥,实数m 的取值范围是[)2,+∞.故答案为:4,[)2,+∞.五、解答题11.已知命题2:320p x x -+≤,命题22:210q x x m -+-≤(m R ∈) (1)若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围;(2)若4m =,且命题p 与q 有且只有一个为真命题,求实数x 的取值范围. 【答案】(1) (][),11,-∞-+∞;(2) [)(]3,12,5-⋃.【详解】解不等式2320x x -+≤,得12x ≤≤,命题p :12x ≤≤;解不等式22210x x m -+-≤,得11m x m -≤≤+,命题q :11m x m -≤≤+; (1) 若p ⌝是q ⌝的必要不充分条件,则由逆否命题知,q 是p 的必要不充分条件, 有11,12m m ⎧-≤⎪⎨+≥⎪⎩,解得1m ≤-或m 1≥.所以实数m 的取值范围为(][),11,-∞-+∞.(2)当4m =时,q :35x -≤≤因为命题p 与q 有且只有一个为真命题 当p 真q 假时,由12,35x x x ≤≤⎧⎨-⎩或得,x ∈∅;当p 假q 真时,由3521x x x -≤≤⎧⎨><⎩或得,31x -≤<或25x <≤.综上可知,实数x 的取值范围为[)(]3,12,5-⋃12.已知集合2{|11}{|22}A x m x m B x x =-<<+=-<<,.(1)当2m =时,求A B A B ⋃⋂,;(2)若''''x A ∈是''''x B ∈成立的充分不必要条件,求实数m 的取值范围. 【答案】(1){}|25{|12}A B x x A B x x ⋃=-<<⋂=<<,;(2)11m -<≤. 【详解】(1)当2m =时,{|15}{|22}A x x B x x =<<=-<<,,{}|25{|12}A B x x A B x x ⋃=-<<⋂=<<,;(2)若''''x A ∈是''''x B ∈成立的充分不必要条件,则A 是B 的真子集,所以当A =∅时,211m m -≥+,即220m m -+≤,因为()214270∆=--⨯=-<,所以原不等式无解,解集为∅;当A ≠∅时22111212m m m m ⎧-<+⎪-≥-⎨⎪+≤⎩,解得11m -≤≤,因为1m =-时{|22}A x x =-<<,则''''x A ∈是''''x B ∈的充要条件,不合题意, 所以11m -<≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2命题及其关系、充分条件与必要条件
一、选择题
1.命题“若-1<x<1,则x2<1”的逆否命题是( )
A.若x≥1或x≤-1,则x2≥1 B.若x2<1,则-1<x<1
C.若x2>1,则x>1或x<-1 D.若x2≥1,则x≥1或x≤-1 4.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的( ).A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
5.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( ) A.若f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)不是奇函数,则f(x)不是奇函数
6.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
7.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=a2+b2-a-b,那么φ(a,b)=0是a与b互补的( ).
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要的条件
8.若不等式成立的充分不必要条件是,则实数的
取值范围是______
9.有三个命题:(1)“若x+y=0,则x,y互为相反数”的逆命题;(2)“若a>b,则a2>b2”的逆否命题;(3)“若x≤-3,则x2+x-6>0”的否命题.其中真命题的个数为________(填序号).
10.定义:若对定义域D上的任意实数x都有f(x)=0,则称函数f(x)为D上的零函数.根据以上定义,“f(x)是D上的零函数或g(x)是D上
的零函数”为“f (x )与g (x )的积函数是D 上的零函数”的________条件.
11.p :“向量a 与向量b 的夹角θ为锐角”是q :“a ·b >0”的___条件.
12.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 p 1:|a +b |>1⇔θ∈⎣
⎢⎡⎭⎪⎫0,2π3 p 2:|a +b |>1⇔θ∈⎝ ⎛⎦⎥⎤2π3,π p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3 p 4:|a -b |>1⇔θ∈⎝ ⎛⎦
⎥⎤
π3,π 其中真命题的个数是____________.
13.[2014·安徽卷] “x<0”是“ln(x +1)<0”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
14.设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
15.[2014·福建卷] 直线l :y =kx +1与圆O :x2+y2=1相交于A ,B
两点,则“k=1”是“△OAB 的面积为12
”的( ) A .充分而不必要条件 B .必要而不充分条件
C .充分必要条件
D .既不充分又不必要条件
16.[2014·湖北卷] U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A∩B=∅”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
17.[2014·天津卷] 设a ,b∈R,则“a>b”是“a|a|>b|b|”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
18.若a ∈R ,则“a=2”是“(a-1)(a-2)=0”的( )
A 充分而不必要条件
B 必要而不充分
C 充要条件
D 既不充分又不必要条件
19.若a∈R,则“a=1”是“|a|=1”的( )
(A)充分而不必要(B)必要而不充分C 充要条件D)既不充分又不必要条件
20.函数y=f (x ),x ∈R ,“y=|f(x)|的图象关于y 轴对称”是“y=f (x )是奇函数”的( )(A )充分而不必要条件(B )必要而不充分条件
(C )充要条件D )既不充分也不必要条件
21.设a ,b 是向量,命题“若a b =-,则||||a b =”的逆命题是 ( )
(A )若a b ≠-,则||||a b ≠ (B )若a b =-,则||||a b ≠
(C )若||||a b ≠,则a b ≠- (D )若||||a b =,则a b =-
22.设,∈x y R ,则“2≥x 且2≥y ”是“
224+≥x y ”的( ) A )充分而不必要条件B )必要而不充分条件(C )充分必要条件D )既不充分也不必要条件
23.设*n N ∈,一元二次方程2
40x x n -+=有整数根的充要条件是n = .
24.已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是
A .x =-12
B .x =-1
C .x =5
D .x =0 25. 已知集合M ={x|0<x<1},集合N ={x|-2<x<1},那么“a ∈N ”是“a ∈M ”的( )A .充分而不必要条件 B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
26.下列命题中为真命题的是( )
A .命题“若x>y ,则x>|y|”的逆命题
B .命题“若x>1,则x2>1”的否命题
C .命题“若x =1,则x 2+x -2=0”的否命题
D .命题“若x 2>0,则x>1”的逆否命题
27.已知p(x):x 2+2x -m>0,如果p(1)是假命题,p(2)是真命题,则实数m 的取值范围为.
28. (2011·陕西)设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充
要条件是n =
29.判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假.
30. 已知p :1x -2
≥1,q :|x -a|<1,若p 是q 的充分不必要条件,则实数a 的取值范围为 A .(-∞,3] B .[2,3]C .(2,3] D .(2,3)
31. 集合A ={x||x|≤4,x ∈R},B ={x|x<a},则“A ⊆B ”是“a>5”的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
32.设有两个命题p 、q.其中p :对于任意的x ∈R ,不等式ax 2+2x +1>0恒成立;命题q :f(x)=(4a -3)x 在R 上为减函数.如果两个命题中有且只有一个是真命题,那么实数a 的取值范围是____________.
40.命题若m>0,则方程20x x m +-=有实数根的逆命题是 .
41.命题若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )
A.若f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)不是奇函数,则f(x)不是奇函数
42.记实数
12x x ,,…n x ,中的最大数为max{12x x ,,…n x ,},最小数为min{1x ,2x ,…n x ,}.已知△ABC 的三边边长为(a b c a ,,≤b c ≤),定义它的倾斜度为=max {}a b c b c a ,,⋅min{a b b c c a ,,},则”1=”是”△ABC 为等边三角形”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
46.方程
23100(x x k k -+=∈R)有相异的两个同号实根的充要条件是 .。