2019高考数学常考题型专题04数列问题理
2019高考数学常见难题大盘点:数列
2019高考数学常见难题大盘点:数列1. 已知函数2()1f x x x =+-,,αβ是方程f (x )=0旳两个根()αβ>,'()f x 是f (x )旳导数;设11a =,1()'()n n n n f a a a f a +=-(n =1,2,……) (1)求,αβ旳值;(2)证明:对任意旳正整数n ,都有na >a ;解析:(1)∵2()1f x x x =+-,,αβ是方程f (x )=0旳两个根()αβ>,∴αβ==; (2)'()21f x x =+,21115(21)(21)12442121n n n nn n n n n n a a a a a a a a a a ++++-+-=-=-++=5114(21)4212n n a a ++-+,∵11a =,∴有基本不等式可知20a ≥>(当且仅当1a =时取等号),∴20a >>同,样3a >,……,n a α>= (n =1,2,……), 2. 已知数列{}n a 旳首项121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}nb旳首项1b a =,2n a b n n +=(2n ≥)· (1)证明:{}nb 从第2项起是以2为公比旳等比数列;(2)设n S 为数列{}n b 旳前n 项和,且{}nS 是等比数列,求实数a 旳值;(3)当a>0时,求数列{}na 旳最小项·分析:第(1)问用定义证明,进一步第(2)问也可以求出,第(3)问由a 旳不同而要分类讨论· 解:(1)∵2na b n n +=∴22211)1(2)1(4)1(2)1(++++-++=++=++n n n a n a b n n nn n b n a 2222=+=(n ≥2)由121a a =+得24a a =,22444b a a =+=+,∵1a ≠-,∴ 20b ≠,即{}nb 从第2项起是以2为公比旳等比数列·(2)1(44)(21)34(22)221n nn a S a a a -+-=+=--++-当n ≥2时,111(22)234342(22)234(1)234n n n n n S a a a S a a a a ---+--+==++--+--∵}{nS 是等比数列, ∴1-n n S S (n ≥2)是常数,∴3a+4=0,即43a =-·(3)由(1)知当2n ≥时,2(44)2(1)2n n n b a a -=+=+,所以221(1)(1)2(2)n n a n a a n n +=⎧=⎨+-≥⎩,所以数列{}na 为2a+1,4a ,8a-1,16a ,32a+7,……显然最小项是前三项中旳一项· 当1(0,)4a ∈时,最小项为8a-1;当14a =时,最小项为4a 或8a-1; 当11(,)42a ∈时,最小项为4a ; 当12a =时,最小项为4a 或2a+1; 当1(,)2a ∈+∞时,最小项为2a+1· 点评:本题考查了用定义证明等比数列,分类讨论旳数学思想,有一定旳综合性· 考点二:求数列旳通项与求和 3. 已知数列{}na 中各项为:12、1122、111222、……、111n ⋅⋅⋅⋅⋅⋅个222n ⋅⋅⋅⋅⋅⋅个……(1)证明这个数列中旳每一项都是两个相邻整数旳积. (2)求这个数列前n 项之和S n .分析:先要通过观察,找出所给旳一列数旳特征,求出数列旳通项,进一步再求和· 解:(1)12(101)10(101)99n n n n a =-⋅+⋅- 记:A =1013n - , 则A=333n⋅⋅⋅⋅⋅⋅为整数∴ na= A (A+1) , 得证(2)21121010999n n n a =+-点评:本题难点在于求出数列旳通项,再将这个通项“分成” 两个相邻正数旳积,解决此题需要一定旳观察能力和逻辑推理能力· 4. 已知数列{}na 满足411=a ,()),2(2111N n n a a a n nn n ∈≥--=--. (Ⅰ)求数列{}na 旳通项公式n a ;(Ⅱ)设21nn a b =,求数列{}n b 旳前n 项和nS ;(Ⅲ)设2)12(sinπ-=n a c n n ,数列{}n c 旳前n 项和为n T .求证:对任意旳*∈N n ,74<n T . 分析:本题所给旳递推关系式是要分别“取倒”再转化成等比型旳数列,对数列中不等式旳证明通常是放缩通项以利于求和· 解:(Ⅰ)12)1(1---=n n n a a,])1(1)[2()1(111---+-=-+∴n n n n a a ,又3)1(11=-+a ,∴数列()⎭⎬⎫⎩⎨⎧-+n n a 11是首项为3,公比为2-旳等比数列.1)2(3)1(1--=-+n n na , 即123)1(11+⋅-=--n n n a . (Ⅱ)12649)123(1121+⋅+⋅=+⋅=---n n n n b .9264321)21(1641)41(19-+⋅+⋅=+--⋅⋅+--⋅⋅=n n S nn n n n . (Ⅲ)1)1(2)12(sin --=-n n π , 1231)1()2(3)1(111+⋅=----=∴---n n n n n c .当3≥n 时,则12311231123113112+⋅+++⋅++⋅++=-n n T 7484488447612811])21(1[6128112=<=+<-+=-n . 321T T T << , ∴对任意旳*∈N n ,74<n T . 点评:本题利用转化思想将递推关系式转化成我们熟悉旳结构求得数列{}na旳通项n a ,第三问不等式旳证明要用到放缩旳办法,这将到下一考点要重点讲到·考点三:数列与不等式旳联系 5. 已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }旳首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 旳表达式; ⑵ 求证:n n a a>+1;分析:本题是借助函数给出递推关系,第(2)问旳不等式利用了函数旳性质,第(3)问是转化成可以裂项旳形式,这是证明数列中旳不等式旳另一种出路· 解:⑴1)12(1)12(2tan 1tan 22tan 22=---=-=ααα 又∵α为锐角∴42πα=∴1)42sin(=+πα x x x f +=2)(⑵n n n a a a +=+21 ∵211=a ∴n a a a ,,32都大于0∴02>n a ∴n n a a >+1点评:把复杂旳问题转化成清晰旳问题是数学中旳重要思想,本题中旳第(3)问不等式旳证明更具有一般性· 6. 已知数列{}n a 满足()111,21n n a a a n N *+==+∈(Ⅰ)求数列{}n a 旳通项公式; (Ⅱ)若数列{}n b 满足nnbn b b b b a )1(44441111321+=---- ,证明:{}n b 是等差数列;(Ⅲ)证明:()23111123n n N a a a *++++<∈分析:本例(1)通过把递推关系式转化成等比型旳数列;第(2)关键在于找出连续三项间旳关系;第(3)问关键在如何放缩· 解:(1)121+=+nn a a ,)1(211+=+∴+nn a a故数列}1{+na 是首项为2,公比为2旳等比数列·n n a 21=+∴,12-=n n a(2)n n b n b b b b a )1(44441111321+=---- ,n n nb n b b b 24)(21=∴-+++n n nb n b b b =-+++2)(221 ①1121)1()1(2)(2+++=+-++++n n n b n n b b b b ②②—①得n n n nb b n b-+=-++11)1(22,即1)1(2+-=-n n b n nb ③ 212)1(++=-+∴n n nb b n ④④—③得112-++=n n n nb nb nb,即112-++=n n n b b b所以数列}{nb 是等差数列(3)1111212211211-++=-<-=n n n n a a 设132111++++=n a a a S ,则)111(211322n a a a a S ++++< )1(21112+-+=n a S a 点评:数列中旳不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样旳题要多探索,多角度旳思考问题· 7. 已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若1a =则当n ≥2时,!n n b a n >⋅. 分析:第(1)问是和自然数有关旳命题,可考虑用数学归纳法证明;第(2)问可利用函数旳单调性;第(3)问进行放缩·解:(Ⅰ)先用数学归纳法证明01na <<,*n N ∈.(1)当n=1时,由已知得结论成立;(2)假设当n=k 时,结论成立,即01k a <<.则当n=k+1时,因为0<x<1时,1()1011xf x x x '=-=>++,所以f(x)在(0,1)上是增函数. 又f(x)在[]0,1上连续,所以f(0)<f(k a )<f(1),即0<11ln 21k a +<-<.故当n=k+1时,结论也成立. 即01na <<对于一切正整数都成立.又由01n a <<, 得()1ln 1ln(1)0n n n n n n a a a a a a +-=-+-=-+<,从而1n n a a +<.综上可知10 1.n n aa +<<<(Ⅱ)构造函数g(x)=22x -f(x)= 2ln(1)2x x x++-, 0<x<1,由2()01x g x x'=>+,知g(x)在(0,1)上增函数.又g(x)在[]0,1上连续,所以g(x)>g(0)=0.因为01n a <<,所以()0n g a >,即()22n n a f a ->0,从而21.2n n a a +< (Ⅲ) 因为1111,(1)22n n b b n b +=≥+,所以0n b >,1n nb b +12n +≥, 所以1211211!2n n n n n n b bb b b n b b b ---=⋅⋅≥⋅ ————① ,由(Ⅱ)21, 2 nn aa+<知:12n nna aa+<, 所以1naa=31212121222n nna a aa a aa a a--⋅<, 因为1a=, n≥2,10 1.n na a+<<<所以na1121222naa aa-<⋅<112nna-<2122na⋅=12n————② .由①②两式可知: !n nb a n>⋅.点评:本题是数列、超越函数、导数旳学归纳法旳知识交汇题,属于难题,复习时应引起注意·考点四:数列与函数、向量等旳联系8.已知函数f(x)=52168xx+-,设正项数列{}na满足1a=l,()1n na f a+=.(1)写出2a、3a旳值;(2)试比较na与54旳大小,并说明理由;(3)设数列{}nb满足nb=54-na,记S n=1niib=∑.证明:当n≥2时,S n<14(2n-1).分析:比较大小常用旳办法是作差法,而求和式旳不等式常用旳办法是放缩法·解:(1)152168nnnaaa++=-,因为11,a=所以2373,.84a a==(2)因为10,0,n na a+>>所以1680,0 2.n na a-><<15548()52553444168432(2)22n nnnn n na aaaa a a+--+-=-==⋅---,因为20,na->所以154na+-与54na-同号,因为15144a-=-<,250,4a-<350,4a-<…,50,4na-<即5.4na<(3)当2n≥时,1111531531()422422n n n nn nb a a ba a----=-=⋅⋅-=⋅⋅--113125224n nb b--<⋅⋅=-,所以2131212222n nn n nb b b b----<⋅<⋅<<=,所以3121(12)11114(21)422124nnnn nS b b b--⎛⎫=+++<++⋅⋅⋅+==-⎪-⎝⎭点评:本题是函数、不等式旳综合题,是高考旳难点热点·9.在平面直角坐标系中,已知三个点列{A n},{B n},{C n},其中),(),,(nnnnbnBanA)0,1(-nCn,满足向量1+nnAA与向量nnCB共线,且点(B,n)在方向向量为(1,6)旳线上.,11a b a a -==(1)试用a 与n 表示)2(≥n a n;(2)若a 6与a 7两项中至少有一项是a n 旳最小值,试求a 旳取值范围·分析:第(1)问实际上是求数列旳通项;第(2)问利用二次函数中求最小值旳方式来解决· 解:(1),),,1(),,1(1111n a a C B A A b C B a a A A n n n n n n n n n n n n n =-∴--=-=++++共线,与又∵{B n }在方向向量为(1,6)旳直线上,6,6111=-=-+-∴++n n nn b b nn b b 即 (2)∵二次函数a x a x x f 26)9(3)(2+++-=是开口向上,对称轴为69+=a x 旳抛物线又因为在a 6与a 7两项中至少有一项是数列{a n }旳最小项, ∴对称轴3624,21569211]215,211[69≤≤∴≤+≤+=a a a x 内,即应该在点评:本题是向量、二次函数、不等式知识和交汇题,要解决好这类题是要有一定旳数学素养旳·。
2019年高考数学真题分类汇编专题04:数列(基础题)
2019年高考数学真题分类汇编专题04:数列(基础题)一、单选题(共4题;共8分)1.(2分)设a ,b ∈R ,数列{a n },满足a 1 =a ,a n+1= a n 2+b ,b ∈N *,则( )A .当b= 12 时,a 10>10B .当b= 14 时,a 10>10C .当b=-2时,a 10>10D .当b=-4时,a 10>102.(2分)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .23.(2分)古希腊吋期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618 ,称为黄金分割比例),著名的“断臂维纳斯“便是如此。
此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度也是 √5−12。
若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm4.(2分)记S n 为等差数列 {a n } 的前n 项和。
已知 S 4 =0, a 5 =5,则( )A .a n =2n-5B .a n =3n-10C .S n =2n 2-8nD .S n = 12n 2-2n二、填空题(共6题;共7分)5.(1分)已知数列 {a n }(n ∈N ∗) 是等差数列, S n 是其前n 项和.若 a 2a 5+a 8=0,S 9=27 ,则S 8 的值是 .6.(1分)记S n 为等差数列{a n }的前n 项和,若 a 3=5,a 7=13 ,则 S 10= . 7.(1分)记S n 为等差数列{a n }项和,若a 1≠0,a 2=3a 1,则 S 10S5= 。
8.(2分)设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=,S n的最小值为.9.(1分)记S n为等比数列{a n}的前n项和。
2019版高考数学总复习专题四数列4.1数列基础题课件理
数列基础题
高考命题规律 1.考查频率较高.且多数与数列解答题隔年交替考查. 2.选择题或填空题,难度中低档. 3.全国高考有4种命题角度,分布如下表.
2014 年 2015 年 2016 年 2017 年 2018 年 2019 年高考必备 命题 角度 1 命题 角度 2 命题 角度 3 求数列的通 项公式 等差数列基 本量的运算 等比数列基 本量的运算 等差、等比数 命题 列性质的应 角度 4 用
������
������
1
)
������������+1 ������������ 解析 由题意得 − =ln(n+1)-ln n,n 分别取 ������+1 ������ ������������ ������1 ������������ 累加得 ������ − 1 =ln n-ln 1=ln n, ������ =2+ln n,
-8高考真题体验·对方向
新题演练提能·刷高分
3.(2018 湖南、 江西第二次联考)已知 Sn 是数列{an}的前 n 项和,且 log3 Sn+1 =n+1,则数列{an}的通项公式为 8,������ = 1, 答案 an= 2 × 3������ ,������ ≥ 2 .
解析 由log3(Sn+1)=n+1,得Sn+1=3n+1, 当n=1时,a1=S1=8; 当n≥2时,an=Sn-Sn-1=2×3n, 8,������ = 1, 所以数列{an}的通项公式为 an= 2 × 3������ ,������ ≥ 2.
所以
1-35 S5= =121. 1-3
-5高考真题体验·对方向
新题演练提能·刷高分
2019年高考试题汇编理科数学--数列(2021年整理精品文档)
2019年高考试题汇编理科数学--数列编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考试题汇编理科数学--数列)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考试题汇编理科数学--数列的全部内容。
(2019全国1理)9。
记n S 为等差数列{}n a 的前n 项和。
已知40S =,55a =,则( ) A 。
25n a n =- B 。
310n a n =- C 。
228n S n n =- D 。
2122n S n n =- 答案: A 解析:依题意有415146045S a d a a d =+=⎧⎨=+=⎩,可得132a d =-⎧⎨=⎩,25n a n =-,24n S n n =-.(2019全国1理)14.记n S 为等比数列{}n a 的前n 项和,若113a =,246a a =,则5S = .答案: 5S =1213解答:∵113a =,246a a =设等比数列公比为q∴32511()a q a q =∴3q = ∴5S =12132019全国2理)19。
已知数列{}n a 和{}n b 满足11=a ,01=b ,4341+-=+n n n b a a ,4341--=+n n n a b b . (1)证明: {}n n b a +是等比数列,{}n n b a -是等差数列; (2)求{}n a 和{}n b 的通项公式。
答案: (1)见解析(2)21)21(-+=n a n n ,21)21(+-=n b n n 。
解析:(1)将4341+-=+n n n b a a ,4341--=+n n n a b b 相加可得n n n n n n b a b a b a --+=+++334411, 整理可得)(2111n n n n b a b a +=+++,又111=+b a ,故{}n n b a +是首项为1,公比为21的等比数列. 将4341+-=+n n n b a a ,4341--=+n n n a b b 作差可得8334411+-+-=-++n n n n n n b a b a b a ,整理可得211+-=-++n n n n b a b a ,又111=-b a ,故{}n n b a -是首项为1,公差为2的等差数列。
2019年高考理数——数列(解答)
2019年高考理数——数列1.(19全国二理19.(12分))已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.2.(19北京理(20)(本小题13分))已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.3.(19天津理19.(本小题满分14分))设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .4. (19浙江20.(本小题满分15分))设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N L5.(19江苏20.(本小满分16分))定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.参考答案:1.解:(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.2.解:(Ⅰ)1,3,5,6.(答案不唯一)(Ⅱ)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -L . 由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a L 是{}n a 的长度为p 的递增子列, 所以0p m r a a ≤. 所以00m n a a <·(Ⅲ)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后.设121,,,,21m p p p a a a m --L 是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --L 是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m mm --⨯⨯⨯⨯⨯⨯=<L 1442443个. 与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m .与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.3.(Ⅰ)解:设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(Ⅱ)(i )解:()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )解:()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n n n ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .4.(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N .所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-.所以2*,n b n n n =+∈N . (2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<L 那么,当1n k =+时,121k k c c c c +++++<<L <==.即当1n k =+时不等式也成立.根据(i )和(ii),不等式12n c c c +++<L 对任意*n ∈N 成立.5.解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e.列表如下:x (1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.。
2019年高考真题汇编理科数学(解析版)4:数列
2018高考真题分类汇编:数列一、选择题1.【2018高考真题重庆理1】在等差数列}{n a 中,12=a ,54=a 则}{n a 的前5项和5S = A.7 B.15 C.20 D.25【答案】B【解析】因为12=a ,54=a ,所以64251=+=+a a a a ,所以数列的前5项和156252)(52)(542515=⨯=+=+=a a a a S ,选B. 2.【2018高考真题浙江理7】设n S 是公差为d (d ≠0)的无穷等差数列﹛a n ﹜的前n 项和,则下列命题错误的是A.若d <0,则数列﹛S n ﹜有最大项B.若数列﹛S n ﹜有最大项,则d <0C.若数列﹛S n ﹜是递增数列,则对任意*N n ∈,均有0>n S D. 若对任意*N n ∈,均有0>n S ,则数列﹛S n ﹜是递增数列【答案】C【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.故选C 。
3.【2018高考真题新课标理5】已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【答案】D【解析】因为}{n a 为等比数列,所以87465-==a a a a ,又274=+a a ,所以2474-==a a ,或4274=-=a a ,.若2474-==a a ,,解得18101=-=a a ,,7101-=+a a ;若4274=-=a a ,,解得18110=-=a a ,,仍有7101-=+a a ,综上选D.4.【2018高考真题上海理18】设25sin 1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( )A .25B .50C .75D .100【答案】D【解析】当1≤n ≤24时,n a >0,当26≤n ≤49时,n a <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,n a >0,当76≤n ≤99时,n a <0,但其绝对值要小于51≤n ≤74时相应的值,∴当1≤n ≤100时,均有n S >0。
2019届理科数学高考中的数列问题(2021年整理)
2019届理科数学高考中的数列问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届理科数学高考中的数列问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届理科数学高考中的数列问题(word版可编辑修改)的全部内容。
2019届理科数学高考中的数列问题一、选择题(每小题5分,共20分)1.已知等差数列{a n}的公差不为0,前n项和S n满足=9S2,S4=4S2,则a2=()A。
B。
C。
D。
2。
[数学文化题]《九章算术》中有一题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马。
”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?其意:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟。
羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半。
”打算按此比例偿还,问牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿()A。
斗粟 B。
斗粟 C。
斗粟 D。
斗粟3.已知S n是等比数列{a n}的前n项和,S4=5S2,则的值为()A。
—2或-1 B。
1或2C.±2或—1 D。
±1或±24.已知数列{a n}是公比为2的等比数列,满足a6=a2·a10,设等差数列{b n}的前n项和为S n,若b 9=2a7,则S17=()A。
34 B.39 C。
51 D.68二、填空题(每小题5分,共10分)5.已知数列{a n}满足2a n·a n+1+a n+1—a n=0,且a1=1,则数列{a n}的通项公式为. 6。
专题04数列的综合应用-2019年高考理数母题题源系列【含答案及解析】
专题04数列的综合应用-2019年高考理数母题题源系列【含答案及解析】姓名 ____________ 班级 ________________ 分数 ___________题号-二二三总分得分、选择题1. 【2017陕西铁一中模考】 已知甌十划m +刁佃£『],我们把使乘积.,刁,岂… 为整数的数rJ 叫做“优数",则在区间(1,2004 )内的所有优数的和为 ( )A. 1024 ________B. 2003 __________ C . 2026 __________ D. 20482. 【2017江西抚州七校联考】 若数列打:满足(3+3)码]-(” + ,)码=(2即亠3)(2冲一5)】』1 +丄|,且码=,,则数列( 一V H 丿 I 加的第100项为()A . 2 ________________________________________B . 3C .详艇賠 __________________________________________D . [V"心3. 【2017湖南师大附中月考】 已知数列 二],满足 —,且■,曰卄 是方程V" - + 2H= 0的两根,则加 等于()A . 24B . 32C . 48D . 645. 【2017湖南郴州二质检】在丄:中, 分别是线段.5 r 的中点,,4. 【2017四川凉山州 一诊】设数列打 满足诂;=,(.•),若数列 A •一匸 B-g 是常数列,贝V 口二( _____________ C . D .川卫分别是边的中点, 分别是线段■;':..■..的中点,设数列:满足:向量■.. ■ I - ,有下列四个命题,其中假命题是:()A •数列:-:是单调递增数列,数列:•:是单调递减数列B •数列:是等比数列C.数列一有最小值,无最大值D •若 _「中,「二「,,’ — .. ,•兀| ,则最小时,:•—二、填空题6.【2017湖南娄底二模】已知各项都为整数的数列:中,—,且对任意的•-.,满足,则•=7.【2017重庆二诊】已知数列;.的前项和为•,若二1,二-,,则一_______________•(用数字作答)8.【2017安徽马鞍山二模】如图所示的“数阵”的特点是:每行每列都成等差数列,则数字73在图中出现的次数为三、解答题9.【2017广东佛山二模】已知数列;满足—,事…,数列一的前项和为,且(I)求数列;「.,_. 的通项公式;(H)设:二J: 1 ,求数列:的削项和■10.【2017四川泸州四诊】已知数列:.的前项和满足 _ - ,且I. .7.成等差数列.(1 )求数列;.;•;的通项公式;(2 )设,求数列「的前•项和.■.参考答案及解析第1题【答案】试题分析;T隔”1温3为整【解析】如此时"2 ,I Q妒x log, « hg4S « log&6 x |吒7 x lag弄=1 为整、此时z 6、以此类推:在区间1血4)内的所有优数为乙6,14, 30, »■ 1022, •■通项公式为册厂J ,•X + 5 + 14 + —b 1022 = (Z2-2)卡(2^2)十…十{2LO-2J = 2026 ・第2题【答案】【解析】爲一盏闻勺,记g 為,有5宀 侦T ,由渤珅; •数列'#的第】00项为翅00 + 1" •故迭比 第3题【答案】【解析】 试题分析;由已知有偽叫=2".二%■】%」=2呵,则如L= 2 ,所以数列罔}奇数项,偶数项分别対 等比数列,公比^2何以求岀吗二2 '所以數列轨}的项分别为注2244辭.吃熄32耳…‘而 & =ff, ,所以E D F Q +«!i =32+32 = 64,选氏第4题【答案】【解析】占:』J 柑]—.1试题分析:因为数列他}罡常数列,所以“=網==即m 卄2 ,解得■ q * 1ZJ + 1卫二-2・故选血第5题【答案】试题分析: b-| = lpn + 1由(2科4孑)叫呵一(2片可得:【解析】瓦=(1诗适鬲乔=召石,瓦工二瓦^甄珂“為刃十(鸟亠1刀,所及為"洛血=占7 ,剋1f対假命题,故选巴第6题【答案】y【解析】由如♦碼近2”冷、得g汀%严2"叫寸1・两式相加得对弋一為弋3冥2力十1・又碍①一码,>3x2n-l J gwZ ,所以“-碍"X 2” ,从而&畑=(应亦・^15)* (①仍・①伯)+ f 仏■坷)+竹3X(2;O15+2:0B+-^23f ? = 2:=第7题【答案】B06【解折】由题设可得如*“屮=11,取幷二L23…詞g可得旳+勺二2,兔+角=3®卡碼二4,….咳+伽二刃,将臥上49个等式两边分别相加可得2 + 50&、+ 占.4“ *柑-+应斗(T, * —a aB4 <7… =------- ^49 = 1274 * 又J } 4 $ 9 J n W g巧=码 4] =2.^ = 3—①=L=6—饰=父口壬=巧、41 = 6“口初=25 —c?v= ]9、的茁=50一见-=*1 ・f/T^S]oo=l+1274 + 31 = 1306 ?应煩答素1306 ・第8题【答案】12【解析】第1行第j列的数记为A,月眩每一组L与J的组合就是裹中一个数,因为第一行数组成的数列A = )是臥卫苜项』公差为i 梯釧列,所以% =站0・小“丿礼,所以箒』数列组成的数列吗=(“12__)是以八1 "首项』公差为/的等差数亂所以4=0+—小』可+1、令% =(]+1=73./. F; = 72 = lx 72■—? ■苗二〕.K 24 ~ 1 ■:1 £二h *1J 三£ »:9 二9 -呂= 12x6 = 18x4 = 24x3 = 36x2 = 72x1,所乩表中祚共岀现口况故答案为12・第9题【答案】(I) a,=2>i-l,^=jl ; , (ID —6—罟,【解析】试题分析:⑴ 由已知可知©为尊差数列,由此得到①的通项公式,利用4 = Q \ 可求得久的通项公式,<ID 由于D 是 等差数列乘決等比数列,故用错位相减求和法求7;的值. 试题解析:< I 〉因为斫=1 ,如-為=2 ,所以&}为首项是L,公差为2的等差数列,所以①=l+(n-l)x2 =2»-1又当?7二1日寸,q=S 】=2_b 「所以勺=1 , 当沦2时丿S 叭=2-*…①S — = 2-虹]…②由①■©得你=一打+6・],即二、饷 2所以{*}罡首项为1,公比为g 的等比数列,故4t =f-;2 \2;2?? — 1(II)由(I )知=,则1 . +T 十—* - 21 2?9上一十・■・22砌7>6-容-存尹害…Z 2_i5-11-2^1 2n-l 2w+3 1+— ~一~—- =3_1--2" 2"第10题【答案】⑴6=2"⑵扌卜諾兀【解析】⑴因为S n= 2a n—珂,所以碍=s fl-质1 (沁2),即旺=2%] m ),即数列&}是臥伪公比的等比数列,又环q+lq成等差魏列,所叹码十碍訂仏十1),即码十现訂(2q+l),解得q二2,所以擞列M的通项公式为6二丫.了片了!7能lii M ■(2)由(1)得,二2灯-2』所次耳斗為{严一2谑屮-2)—4(y -1)(严T)。
2019年高考数学试题分项版—数列(解析版)(2021年整理精品文档)
(完整版)2019年高考数学试题分项版—数列(解析版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2019年高考数学试题分项版—数列(解析版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2019年高考数学试题分项版—数列(解析版)的全部内容。
2019年高考数学试题分项版--数列(解析版)一、选择题1.(2019·全国Ⅲ文,6)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3等于()A.16 B.8 C.4 D.2答案C解析设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a=1,所以a3=a1q2=4.12.(2019·浙江,10)设a,b∈R,数列{a n}满足a1=a,a n+1=+b,n∈N*,则() A.当b=时,a10>10B.当b=时,a10>10C.当b=-2时,a10>10D.当b=-4时,a10>10答案A解析当b=时,因为a n+1=+,所以a2≥,又a n+1=+≥a n,故a9≥a2×()7≥×()7=4,a>≥32>10.当b=时,a n+1-a n=2,故当a1=a=时,a10=,所以a10>1010不成立.同理b=-2和b=-4时,均存在小于10的数x0,只需a1=a=x0,则a10=x0<10,故a>10不成立.103.(2019·全国Ⅰ理,9)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则( )A.a n=2n-5 B.a n=3n-10C.S n=2n2-8n D.S n=n2-2n答案A解析设等差数列{a n}的公差为d,∵∴解得∴a n=a1+(n-1)d=-3+2(n-1)=2n-5,S n=na+d=n2-4n.故选A。
高考数学(理)真题专题汇编:数列
高考数学(理)真题专题汇编:数列一、选择题1.【来源】2019年高考真题——数学(浙江卷)设,a b R ∈,数列{a n }中,21,n n n a a a a b +==+,b N *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =->D. 当104,10b a =->2.【来源】2019年高考真题——数学(浙江卷)已知,a b R ∈,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( ) A. 1,0a b <-< B. 1,0a b <-> C. 1,0a b >->D. 1,0a b >-<3.【来源】2019年高考真题——数学(浙江卷)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则( )A. ,βγαγ<<B. ,βαβγ<<C. ,βαγα<<D. ,αβγβ<<4.【来源】2019年高考真题——数学(浙江卷) 在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.5.【来源】2019年高考真题——数学(浙江卷) 若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.【来源】2019年高考真题——数学(浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积(cm 3)是( )A. 158B. 162C. 182D. 3247.【来源】2019年高考真题——数学(浙江卷)若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. -1B. 1C. 10D. 128.【来源】2019年高考真题——数学(浙江卷)渐近线方程为0x y ±=的双曲线的离心率是( )B. 1D. 29.【来源】2019年高考真题——数学(浙江卷)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(C U A )∩B =( ) A. {-1} B. {0,1} C. {-1,2,3}D. {-1,0,1,3}二、填空题10.【来源】2019年高考真题——数学(浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.11.【来源】2019年高考真题——数学(浙江卷)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.12.【来源】2019年高考真题——数学(浙江卷)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 13.【来源】2019年高考真题——数学(浙江卷)在△ABC 中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =____;cos ABD ∠=________.14.【来源】2019年高考真题——数学(浙江卷)在二项式9)x 的展开式中,常数项是________;系数为有理数的项的个数是_______. 15.【来源】2019年高考真题——数学(浙江卷)已知圆C 的圆心坐标是(0,m ),半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =_____,r =______.16.【来源】2019年高考真题——数学(浙江卷) 复数11z i=+(i 为虚数单位),则||z =________. 17.【来源】2019年高考真题——理科数学(北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.18.【来源】2019年高考真题——理科数学(北京卷)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.三、解答题19.【来源】2019年高考真题——数学(浙江卷)已知实数0a ≠,设函数()=ln 0.f x a x x +>(Ⅰ)当34a =-时,求函数f (x )的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.20.【来源】2019年高考真题——数学(浙江卷)如图,已知点F (1,0)为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q在点F 右侧.记,AFG CQG △△的面积为12,S S .(I)求p的值及抛物线的标准方程;(Ⅱ)求12SS的最小值及此时点G的坐标.21.【来源】2019年高考真题——数学(浙江卷)设等差数列{a n}的前n项和为S n,34a=,43a S=,数列{b n}满足:对每个12,,,n n n n n nn S b S b S b*++∈+++N成等比数列.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记,,2nnnac nb*=∈N证明:12+2,.nc c c n n*++<∈N22.【来源】2019年高考真题——数学(浙江卷)如图,已知三棱柱ABC-A1B1C1,平面A1AC1C⊥平面ABC,90ABC∠=︒,1130,,,BAC A A AC AC E F∠=︒==分别是AC,A1B1的中点.(I)证明:EF⊥BC;(Ⅱ)求直线EF与平面A1BC所成角的余弦值.23.【来源】2019年高考真题——数学(浙江卷)设函数()sin ,f x x x =∈R .(I )已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++ 的值域. 24.【来源】2019年高考真题——数学(浙江卷)设01a <<,则随机变量X 的分布列是:则当a 在(0,1)内增大时( ) A. D (X )增大 B. D (X )减小 C. D (X )先增大后减小D. D (X )先减小后增大25.【来源】2019年高考真题——理科数学(北京卷)已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(Ⅲ)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.26.【来源】2019年高考真题——理科数学(北京卷)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程;(Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记F (x )在区间[-2,4]上的最大值为M (a ),当M (a )最小时,求a 的值.27.【来源】2019年高考真题——理科数学(北京卷)已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.28.【来源】2019年高考真题——理科数学(北京卷)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由. 29.【来源】2019年高考真题——理科数学(北京卷)如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且23PGPB=.判断直线AG是否在平面AEF内,说明理由.30.【来源】2019年高考真题——理科数学(北京卷)在△ABC中,a=3,b−c=2,cos B=12 -.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.试卷答案1. A 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B :不动点满足2211042x x x ⎛⎫-+=-= ⎪⎝⎭时,如图,若1110,,22n a a a ⎛⎫=∈< ⎪⎝⎭,排除如图,若a 为不动点12则12n a = 选项C :不动点满足22192024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为ax 12-,令2a =,则210n a =<,排除选项D :不动点满足221174024x x x ⎛⎫--=--= ⎪⎝⎭,不动点为1712x =±,令1712a =,则171102n a =±<,排除. 选项A :证明:当12b =时,2222132431113117,,12224216a a a a a a =+≥=+≥=+≥≥, 处理一:可依次迭代到10a ; 处理二:当4n ≥时,221112n n n a a a +=+≥≥,则117117171161616log 2log log 2n n n n a a a -++>⇒>则12117(4)16n na n -+⎛⎫≥≥ ⎪⎝⎭,则626410217164646311114710161616216a ⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++> ⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解. 2. D 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想及数形结合思想的考查.研究函数方程的方法较为灵活,通常需要结合函数的图象加以分析. 【详解】原题可转化为()y f x =与y ax b =+,有三个交点.当BC AP λ=时,2()(1)()(1)f x x a x a x a x '=-++=--,且(0)0,(0)f f a ='=,则(1)当1a ≤-时,如图()y f x =与y ax b =+不可能有三个交点(实际上有一个),排除A ,B(2)当1a >-时,分三种情况,如图()y f x =与y ax b =+若有三个交点,则0b <,答案选D下面证明:1a >-时,BC AP λ=时3211()()(1)32F x f x ax b x a x b =--=-+-,2()(1)((1))F x x a x x x a '=-+=-+,则(0)0 ,(+1)<0F >F a ,才能保证至少有两个零点,即310(1)6b a >>-+,若另一零点在0<【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.. 3. B 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BD PB PB PB PB α===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即γ>β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得333222cos sin sin α=⇒α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 4. D【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1xy a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a=过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性. 5.A 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 6. B【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.7. C 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错. 8. C 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b ,则c ==的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误. 9. A 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误. 10.0 【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化. 【详解】()()12345613562456AB BC CD DA AC BD AB ADλ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λ要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min0AB BC CD DA AC BDλ+λ+λ+λ+λ+λ=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正。
2019年全国高考理科数学试题分类汇编4:数列
一、选择题1 .(2019年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==L L )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28(C)48(D)63【答案】A.2 .(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于(A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2019年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n =L ,若11111,2b c b c a >+=,111,,22n n nnn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=•••∈则以下结论一定正确的是( ) A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mqC.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm q【答案】C6 .(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91(D)91-【答案】C7 .(2019年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )【答案】C8 .(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d>的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列;其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2019年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于【答案】A二、填空题10.(2019年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n ns -=11.(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2019年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a ΛΛ2121>+++的最大正整数n 的值为_____________.【答案】1214.(2019年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2n n n n S a n N *=--∈则 (1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32- 15.(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:11111222222011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+16.(2019年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2019年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n - 18.(2019年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____ 【答案】2019.(2019年高考陕西卷(理))观察下列等式:211=22123-=- 2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(Λ 20.(2019年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X K K和12,,,n B B B K K 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n∈-= 22.(2019年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +- 23.(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,n S 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈K ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=>ΛΘ是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x Λ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322Λ时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕)(Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n Λ0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n ΛΛ上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n n p n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ΛΛΛ)()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnn p n np n np n np n p n n +++++++++=+++++++++ΛΛ nx x n p n n p n n 1-111<⇒<+-=+. 法二:25.(2019年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a L 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a L L 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=,3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意; 若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+L 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a L :,-,-,-,-,-,-,,-1-1-1-1k k k k k 644474448L 个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k -=(-),记12n n S a a a =++L ()n N +∈,对于l N +∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S •=,440a S •=,551a S •=,662a S •=,11111a S •-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+•-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+•-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m)32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i Λ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i Λ的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i Λ所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i Λ的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)(Λ 于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)(故集合2000P 中元素的个数为100847312=+27.(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++Λ【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d<时,11n a n =-,①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==g g g g g g②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=g g g g g g g g g g g g g g g所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩g g g ;28.(2019年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =. (I)求数列{}n a 的通项公式;(II)是否存在正整数m ,使得121111ma a a +++≥L ?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105m a a a +++=-L 或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦L ,不存在这样的正整数m .29.(2019年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}nc 的前n 项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d = 因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===- *()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯两式相减得1231311111()()()()(1)()444444n nn R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414n nn -=---整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数. (1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈) (2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和 ∴d n n na S n 2)1(-+= (1)∵0=c ∴d n a n S b n n 21-+== ∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-d ad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na S n 222)1(2)1(=-+=-+= ∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222=∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得: 11)1(d n b -+cn nS n +=2 ∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d 由①式得:d d 211= ∵ 0≠d ∴ 01≠d 由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(a d n b n +-=. 当421b b b ,,成等比数列,4122b b b =, 即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=. 由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=.故:k nk S n S 2=(*,N n k ∈). (2)cn ad n n c n nS b n n ++-=+=22222)1(, cn a d n c a d n c a d n n ++--+-++-=2222)1(22)1(22)1( c n a d n c a d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型.观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c . 经检验,当0=c 时}{n b 是等差数列.31.(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2019年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【答案】33.(2019年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+= (1)求数列{a n }的通项公式a n ;(2)令221(2)n n b n a +=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T < 【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0nn S n n S ⎡⎤-++=⎣⎦.由于{}n a 是正项数列,所以20,n n S S n n >=+. 于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=.综上,数列{}n a 的通项2n a n =.(2)证明:由于2212,(2)n n nn a n b n a +==+. 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦. 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦… 222211111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦. 是等比数列.。
2019-2020-高考数学题型分析:数列问题篇-范文模板 (1页)
2019-2020-高考数学题型分析:数列问题篇-范文模板本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高考数学题型分析:数列问题篇高考数学题型分析:数列问题篇数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
2019高考数学必考题型解答策略:数列
2019高考数学必考题型解答策略:数列数列是新课程的必修内容,从课程定位上说,其考查难度不应该太大,数列试题倾向考查基础是基本方向、从课标区的高考试题看,试卷中的数列试题最多是一道选择题或者填空题,一道解答题、由此我们可以预测2018年的高考中,数列试题会以考查基本问题为主,在数列的解答题中可能会出现与不等式的综合、与函数导数的综合等,但难度会得到控制、 备考建议1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决。
如通项公式、前n 项和公式等2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量1a 、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算。
3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q ≠1两种情况等等。
4.等价转化是数学复习中常常运用的,数列也不例外。
如n a 与n S的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳。
5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键。
6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果。
7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用。
解答策略1、定义:⑴等差数列*),2(2(11n 1n N n n a a a d d a a a n n n n ∈≥+=⇔=-⇔-++为常数)}{Bn An s b kn a n n +=⇔+=⇔2;⑵等比数列N)n 2,(n )0(}1n 1-n 2n 1n n ∈≥⋅=⇔≠=⇔++a a a q q a a a n{)0k ,1q ,0q (kq k Sn 0,(n ≠≠≠-=⇔=⇔的常数)均为不为q c cq a n n ;2、等差、等比数列性质等差数列特有性质:①项数为2n 时:S 2n =n(a n +a n+1)=n(a 1+a 2n );nd S =-奇偶S ;1n n a aS +=偶奇S ;②项数为2n-1时:S 2n-1=(2n-1)中a ;中偶奇a S =S -;1-n n S =偶奇S ;③假设0)(,,=≠==+n m m n a n m n a m a ,则;假设)(,,n m S n S m S n m m n +-===+则;假设0)(,=≠=+n m m n S n m S S ,则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题04 数列问题1.(2018新课标全国Ⅰ理科)设为等差数列{}n a 的前项和,若3243S S S =+,12a =,则5a = A .12-B .10- C . D . 【答案】B【解析】设等差数列的公差为,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭, 整理解得3d =-,所以51421210a a d =+=-=-,故选B .【名师点睛】该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与1a d ,的关系,从而求得结果.2.(2018新课标全国Ⅰ理科)记为数列{}n a 的前项和,若21n n S a =+,则6S =_________. 【答案】63-【名师点睛】该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.3.(2018新课标全国Ⅱ理科)记为等差数列{}n a 的前项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求,并求的最小值.【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15.由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.4.(2018新课标全国Ⅲ理科)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记为{}n a 的前项和.若63m S =,求.【解析】(1)设{}n a 的公比为,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.1.等差数列、等比数列一直是高考的热点,尤其是等差数列和等比数列的通项公式、性质、前n 项和等为考查的重点,有时会将等差数列和等比数列的通项、前n 项和及性质综合进行考查.2.在高考中常出两道客观题或一道解答题,若是以客观题的形式出现,一般一道考查数列的定义、性质或求和的简单题,另一道则是结合其他知识,考查递推数列等的中等难度的题.若在解答题中出现,则一般结合等差数列和等比数列考查数列的通项,前n 项和等知识,难度中等.指点1:等差数列及其前项和1.求解等差数列通项公式的方法主要有两种:(1)定义法.(2)前项和法,即根据前项和与的关系求解. 2.等差数列前n 项和公式的应用方法:根据不同的已知条件选用不同的求和公式,若已知首项和公差,则使用1(1)=2n n n S na d -+;若已知通项公式,则使用1()=2n n n a a S +,同时注意与性质“12132n n n a a a a a a --+=+=+=”的结合使用.【例1】已知等差数列{}n a 满足9117S =,719a =,数列{}n b 满足112ni i i b n -==∑.(1)求数列{}n a 、{}n b 的通项公式; (2)求数列11{}n n n b a a ++的前项和. 【解析】(1)依题意,9117S =,即59117a =,所以513a =,则7532a a d -==, 故7(7)19(7)332n a a n d n n =+-=+-⨯=-. 因为112ni i i b n -==∑,所以1123242n n b b b b n -+++⋅⋅⋅+=①, 当2n ≥时,212312421n n b b b b n --+++⋅⋅⋅+=-②,①②得121n n b -=,即112n n b -=. 当1n =时,11b =满足上式. ∴数列{}n b 的通项公式为112n n b -=. (2)由(1)知,111111()(32)(31)33231n n a a n n n n +==--+-+,112n n b -=, 记数列11{}n n a a +的前项和为,{}n b 的前项和为, 则111111(1)3447323131n nS n n n =⨯-+-++-=-++, 2111111122222n n n T --=++++=-,故数列11{}n n n b a a ++的前项和为112312n n n n S T n -+=+-+. 指点2:等比数列及其前项和1.求等比数列的通项公式,一般先求出首项与公比,再利用11n n a a q -=求解.但在某些情况下,利用等比数列通项公式的变形n mn m a a q -=可以简化解题过程.2.当1q ≠时,若已知1,,a q n ,则用1(1)1n n a q S q -=-求解较方便;若已知1,,n a q a ,则用11n n a a qS q-=-求解较方便.【例2】已知等比数列{}n a 的各项均为正数,且26a =,3472a a +=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:*()n n b a n n =-∈N ,求数列{}n b 的前项和.指点3:数列的综合应用1.解决等差数列与等比数列的综合问题时,若同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;若两个数列是通过运算综合在一起的,则要把两个数列分开求解.2.数列常与函数、不等式结合起来考查,其中数列与不等式的结合是考查的热点,注意知识之间的灵活运用.【例3】设等差数列{}n a 的前项和为,等比数列{}n b 的前项和为,已知11a =-,11b =,223a b +=. (1)若337a b +=,求数列{}n b 的通项公式;(2)若313T =,且0n b >,求.(2)因为231(1)T b q q =++,所以2113q q ++=,解得3q =或4q =-,又0n b >,所以3q =,因为223a b +=,所以1133d -++⨯=,即1d =,【例4】已知公差大于零的等差数列{}n a 的前项和为,且34117a a =,2522a a +=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 是等差数列,且nn S b n c=+,求非零常数的值. (3)设11n n n C a a +=,为数列{}n C 的前项和,是否存在正整数,使得8n M T >对任意的n ∈*N 均成立?若存在,求出的最小值;若不存在,请说明理由.【解析】(1)因为数列{}n a 为等差数列,2522a a +=,所以235422a a a a +=+=, 又34117a a =,所以,是方程2221170x x -+=的两个根, 由2221170x x -+=解得19x =,213x =,设等差数列{}n a 的公差为,由题意可得0d >,所以34a a <, 所以39a =,413a =,所以1129 313a d a d +=⎧⎨+=⎩,解得114a d =⎧⎨=⎩,所以14(1)43n a n n =+-=-,故数列{}n a 的通项公式为43n a n =-.(2)由(1)知,2(143)22n n n S n n +-==-,所以22n n S n n b n c n c-==++, 所以111b c =+,262b c =+,3153b c=+, 因为数列{}n b 是等差数列,所以2132b b b =+,即12115213c c c=++++, 即220c c +=,解得12c =-(0c =舍去), 当12c =-时,2n b n =,易知数列{}n b 是等差数列,满足题意. 故非零常数的值为12-.(3)由题可得111111()(43)(41)44341n n n C a a n n n n +===--+-+, 利用裂项相消法可得111(1)4414n T n =-<+,故82n T <, 所以存在正整数2M ≥,使得8n M T >对任意的n ∈*N 均成立, 所以的最小值为.1.等差数列{}n a 的前项和为,若679218a a a +-=,则63S S -= A .18 B .27 C .36 D .45 【答案】B【解析】根据等差数列的性质,得6345653S S a a a a -=++=,而()6796652222218a a a a d a d a +-=-=-==,所以59a =,所以6327S S -=,故选B . 2.已知等比数列{}n a 中,23a =,581a =,3log n n b a =,数列{}n b 的前项和为,则8T = A .36 B .28 C .45 D .32 【答案】B【解析】由题可得:352273a q q a ==⇒=,所以2212333n n n n a a q ---==⋅=,故13log 31n n b n -==-,所以{}n b 是以公差为1的等差数列,故()1888282b b T +==,故选B .3.中国人在很早就开始研究数列,中国古代数学著作《九章算术》、《算法统宗》中都有大量古人研究数列的记载.现有数列题目如下:数列{}n a 的前项和214n S n =,*n ∈N ,等比数列{}n b 满足112b a a =+, 234b a a =+,则3b =A .4B .5C .9D .16 【答案】C4.已知数列{}n a 的前项和为,12a =,*12(2,)n n S S n n n -=-≥∈N .(1)求{}n a 的通项公式;(2)若n n b na =,求{}n b 的前项和.【解析】(1)*12(2,)n n S S n n n -=-≥∈N ①,当3n ≥时,122(1)n n S S n --=--②.①-②得,121n n a a -=-,112(1)n n a a --=-,所以112(3)1n n a n a --=≥-. 当2n =时,12122a a a +=-,得20a =,则21111211a a --==-≠-. 所以{1}n a -是从第二项起,以2为公比的等比数列.则221122n n n a ---=-⋅=-,2*21(2,)n n a n n -=-+≥∈N . 所以22,121,2n n n a n -=⎧=⎨-+≥⎩.(2)易知22,12,2n n n b n n n -=⎧=⎨-⋅+≥⎩. 012222322(23)n n T n n -=-⨯-⨯--⋅++++③,12124223222(23)n n T n n -=-⨯-⨯--⋅++++④,③-④得223211(1)(2)222222222242212n n n n n n n T n n -----+-⨯-=-------+⋅-=--+⋅--1(1)(2)(1)(2)2(1)222n n n n n n --+-+=---.所以2122(1)2n n n n T n -++=--.5.已知数列{}n a 为等比数列,数列{}n b 为等差数列,且111b a ==,212b a a =+,3326a b =-. (1)求数列{}n a ,{}n b 的通项公式; (2)设21n n n c b b +=,数列{}n c 的前项和为,证明:1153n T ≤<. 【解析】(1)设数列{}n a 的公比为,数列{}n b 的公差为,由题意得11d q +=+,()22126q d =+-,解得2d q ==, 所以12,21n n n a b n -==-.(2)因为21n n n c b b +=()()1111212342123n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以111111111453723212123n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111111111432123342123n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭, 因为111042123n n ⎛⎫+> ⎪++⎝⎭,所以13n T <,又因为{}n T 在[)1,+∞上单调递增,所以当1n =时,取最小值115T =, 所以1153n T ≤<.。