高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.在竖直平面内有一个半圆形轨道ABC,半径为R,如图所示,A、C两点的连线水平,B点为轨道最低点 其中AB部分是光滑的,BC部分是粗糙的 有一个质量为m的乙物体静止在B处,另一个质量为2m的甲物体从A点无初速度释放,甲物体运动到轨道最低点与乙物体发生碰撞,碰撞时间极短,碰撞后结合成一个整体,甲乙构成的整体滑上BC轨道,最高运动到D点,OD与OB连线的夹角 甲、乙两物体可以看作质点,重力加速度为g,求:
【详解】
解:(1)设小物块在B点时的速度大小为 ,根据动能定理得:
设小物块在B点时的速度大小为 ,物块从B点滑到圆弧面上最高点C点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:
根据系统机械能守恒有:
联立解得:
(2)若整个水平面光滑,物块以 的速度冲上圆弧面,根据机械能守恒有:
解得:
解之得:
(2)滑块 、 发生碰撞后与滑块 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块 、 、 速度相等,设为速度
由动量守恒定律有:
由机械能守恒定律有:
解得被压缩弹簧的最大弹性势能:
(3)被压缩弹簧再次恢复自然长度时,滑块 脱离弹簧,设滑块 、 的速度为 ,滑块 的速度为 ,分别由动量守恒定律和机械能守恒定律有:
m( v0)+mv1=(m+m)v2③
m( v0)2+ mv12= (2m)v22+mgR④
联立①③④解得:R=
点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.
8.一个静止的铀核 (原子质量为232.0372u)放出一个 粒子(原子质量为4.0026u)后衰变成钍核 (原子质量为228.0287 u).(已知:原子质量单位 , 相当于931MeV)
由能量守恒得:
mv + mV = mv -ΔE损1(2分)
且考虑到v1必须大于V1,
解得:v1= v0
设子弹射入第二块钢板并留在其中后两者的共同速度为V2,
由动量守恒得:2mV2=mv1(1分)
损失的动能为:ΔE′= mv - ×2mV (2分)
联立解得:ΔE′= × mv
因为ΔE′=f·x(1分),
可解得射入第二钢板的深度x为: (2分)
子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解
6.用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”.1932年,查德威克用铍“辐射”分别照射(轰击)氢和氨(它们可视为处于静止状态).测得照射后沿铍“辐射”方向高速运动的氨核和氦核的质量之比为7:0.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假设铍“辐射”中的中性粒子与氢或氦发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u表示,1u等于1个12C原子质量的十二分之一.取氢核和氦核的质量分别为1.0u和14u.)
VN′= ④
由③④式可得
m= ⑤
根据题意可知
vH′=7.0vN′ ⑥
将上式与题给数据代入⑤式得
m=1.2u ⑦
7.如图所示,在光滑水平面上有一个长为L的木板B,上表面粗糙,在其左端有一个光滑的 圆弧槽C与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B、C静止在水平面上,现有滑块A以初速度v0从右端滑上B并以 滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:
(1)写出核衰变反应方程;
(2)算出该核衰变反应中释放出的核能;
(3)假设反应中释放出的核能全部转化为钍核和 粒子的动能,则钍核获得的动能有多大?
【答案】(1) (2)5.49MeV (3)0.095MeV
【解析】
【详解】
(1)
(2)质量亏损
△E=△mc2=0.0059×931MeV=5.49MeV

解得: ,
甲物与乙物体碰撞过程,对甲,由动量定理得: ,方向:水平向右;
(2)甲物体与乙物体碰撞后的瞬间,对于甲乙构成的整体,由牛顿第二定律求出轨道对整体的支持力,再由牛顿第三定律求得整体对轨道最低点的压力.
(3)甲乙构成的整体从B运动到D的过程中,运用动量定理求摩擦力对其做的功.
【详解】
甲物体从A点下滑到B点的过程,
根据机械能守恒定律得: ,
解得: ,
甲乙碰撞过程系统动量守恒,取向左方向为正,根据动量守恒定律得:
(1)甲物与乙物体碰撞过程中,甲物体受到的冲量.
(2)甲物体与乙物体碰撞后的瞬间,甲乙构成的整体对轨道最低点的压力.
(3)甲乙构成的整体从B运动到D的过程中,摩擦力对其做的功.
【答案】(1) ,方向水平向右.(2)压力大小为: ,方向竖直向下.(3)Wf= .
【解析】
【分析】
(1)先研究甲物体从A点下滑到B点的过程,根据机械能守恒定律求出A刚下滑到B点时的速度,再由动量守恒定律求出碰撞后甲乙的共同速度,即可对甲,运用动量定理求甲物与乙物体碰撞过程中,甲物体受到的冲量.
视频
3.人站在小车上和小车一起以速度v0沿光滑水平面向右运动.地面上的人将一小球以速度v沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n次后,人和车速度刚好变为0.已知人和车的总质量为M,求小球的质量m.
(1)滑块A与滑块B碰撞结束瞬间的速度v;
(2)被压缩弹簧的最大弹性势能EPmax;
(3)滑块C落地点与桌面边缘的水平距离s.
【答案】(1) (2) (3)
【解析】
【详解】
解:(1)滑块 从光滑曲面上 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为 ,由机械能守恒定律有:
解之得:
滑块 与 碰撞的过程, 、 系统的动量守恒,碰撞结束瞬间具有共同速度设为 ,由动量守恒定律有:
(1)滑块与木板B上表面间的动摩擦因数μ;
(2) 圆弧槽C的半径R
【答案】(1) ;(2)
【解析】
由于水平面光滑,A与B、C组成的系统动量守恒和能量守恒,有:
mv0=m( v0)+2mv1①
μmgL= mv02- m( v0)2- ×2mv12②
联立①②解得:μ= .
②当A滑上C,B与C分离,A、C间发生相互作用.A到达最高点时两者的速度相等.A、C组成的系统水平方向动量守恒和系统机械能守恒:
(1)圆弧所对圆的半径R;
(2)若AB间水平面光滑,将大滑块固定,小物块仍以v0=4m/s的初速度向右运动,则小物块从C点抛出后,经多长时间落地?
【答案】(1)1m (2)
【解析】
【分析】
根据动能定理得小物块在B点时的速度大小;物块从B点滑到圆弧面上最高点C点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C抛出后,根据运动的合成与分解求落地时间;
【答案】
【பைடு நூலகம்析】
设子弹初速度为v0,射入厚度为2d的钢板后,
由动量守恒得:mv0=(2m+m)V(2分)
此过程中动能损失为:ΔE损=f·2d= mv - ×3mV2(2分)
解得ΔE= mv
分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)
因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d= mv (1分),
(3)系统动量守恒,钍核和α粒子的动量大小相等,即
所以钍核获得的动能
9.如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知 ,求:
【答案】9J
【解析】试题分析:依题意,第二次碰撞后速度大的物体应该在前,由此可知第二次碰后A、B速度方向都向左。
第一次碰撞,规定向右为正向mBv0=mBvB+mAvA
第二次碰撞,规定向左为正向mAvA-mBvB= mBvB’+mAvA’
得到vA=4m/s vB=2m/s
ΔE=9J
考点:动量守恒定律;能量守恒定律.
(1)此过程中系统损失的机械能;
(2)此后物块落地点离桌面边缘的水平距离.
【答案】(1) (2)
【解析】
【分析】
【详解】
试题分析:(1)设子弹穿过物块后物块的速度为V,由动量守恒得
mv0=m +MV①
解得

系统的机械能损失为
ΔE= ③
由②③式得
ΔE= ④
(2)设物块下落到地面所需时间为t,落地点距桌面边缘的水平距离为s,则
解之得: ,
滑块 从桌面边缘飞出后做平抛运动:
解之得滑块 落地点与桌面边缘的水平距离:
10.如图所示,在沙堆表面放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg.当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm,而木块所受的平均阻力为f=80N.若爆竹的火药质量以及空气阻力可忽略不计,g取10m/s2,求爆竹能上升的最大高度.
【答案】
【解析】
试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv0-mv=Mv1+mv
得:
车上的人第二次将小球抛出,由动量守恒:
Mv1-mv=Mv2+mv
得:
同理,车上的人第n次将小球抛出后,有
由题意vn=0,
得:
考点:动量守恒定律
4.如图,一质量为M的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2射出.重力加速度为g.求:
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析
一、高考物理精讲专题动量守恒定律
1.如图所示,质量为M=1kg上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B点,B点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg的小物块放在水平而上的A点,现给小物块一个向右的水平初速度v0=4m/s,小物块刚好能滑到圆弧面上最高点C点,已知圆弧所对的圆心角为53°,A、B两点间的距离为L=1m,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s2.求:
【答案】m=1.2u
【解析】
设构成铍“副射”的中性粒子的质量和速度分别为m和v,氢核的质量为mH.构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v′和vH′.由动量守恒与能量守恒定律得
mv=mv′+mHvH′ ①
mv2= mv′2+ mHvH′2②
解得
vH′= ③
同理,对于质量为mN的氮核,其碰后速度为

s=Vt⑥
由②⑤⑥得
S= ⑦
考点:动量守恒定律;机械能守恒定律.
点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.
5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.
物块从C抛出后,在竖直方向的分速度为:
这时离体面的高度为:
解得:
2.28.如图所示,质量为ma=2kg的木块A静止在光滑水平面上。一质量为mb= lkg的木块B以初速度v0=l0m/s沿水平方向向右运动,与A碰撞后都向右运动。木块A与挡板碰撞后立即反弹(设木块A与挡板碰撞过程无机械能损失)。后来木块A与B发生二次碰撞,碰后A、B同向运动,速度大小分别为1m/s、4m/s。求:木块A、B第二次碰撞过程中系统损失的机械能。
【答案】
【解析】
试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得 (1)
爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有 (2)
爆竹完后,爆竹做竖直上抛运动,故有 (3)
联立三式可得:
考点:考查了动量守恒定律,动能定理的应用
点评:基础题,比较简单,本题容易错误的地方为在A下降过程中容易将重力丢掉
相关文档
最新文档