《比例的基本性质》教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《比例的基本性质》教学设计
《比例的基本性质》教学设计篇一
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

二、教学重点难点
重点:理解比例的意义和基本性质。

难点:判断两个比是否成比例。

三、教学过程设计
(一)创设情境,提出问题
1、复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。

(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天第二天
运输次数2 4
运输量(吨)16 32
根据这个表格,让学生提出有关比的数学问题。

同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得较好,提出的问题较多。

谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少?(16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16;4 :32;16 :2;32 :4;
16 :32;2 :4;32 :16;4 :2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。

现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。

试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。

(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。

我们知道,比有前项、后项,比例的各部分也有自己的名字。

组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。

比例,也可以写成分数形式。

学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。

(学生独立完成)
2、比和比例有什么区别?

4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。

我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。

出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

③通过以上研究,你发现了什么?
6、全班交流。

(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们较好是怎么办?
7、验证发现,共享成功。

师:对,举例验证,这可是一种非常好的数学方法。

那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的`积等于两个内项的积。

(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。

也就是,在比例里,两个外项的积等于两个内项的积。

数学上我们把这条规律,叫做比例的基本性质。

这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。

运用它,我们可以解决许多数学问题。

10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例。

6∶3 和8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

c、根据比例的基本性质判断组成的比例是否正确。

(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。

3、填空:自主练习第6题。

4、自主练习第10题:
2:1=4:()1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

2、3、4 和6
因为2 x 6 = 3 x 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。

(三)回顾总结
在这节课中你又有什么新的收获?
《比例的基本性质》教学设计篇二
教材分析:
比例的知识是人教版第三单元第二课时的内容,也是本单元的基础知识。

在日常生活中有广泛的应用,这部分知识是在学习了比的知识和除法、分数、比例的意义基础上教学的。

本节课内容主要属于概念教学,是解比例的基础,和进行正、反比例教学的关键,是利用比例知识解决实际问题的先决条件,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

学情分析:
这部分内容是在学生初步理解比例意义的基础上教学的。

通过教学,使学生认识比例的内项和外项,探索并掌握比例的基本性质,学会应用比例的基本性质解比例。

六年级学生已初步形成了一定的观察、探索、归纳的能力。

本班学生对比例的意义以及比例的性质已经有了一定的知识基础,同时学生对这一知识点的学习兴趣比较高,因此可以组织学生自主学习,提高学生学习的主动性。

但又个别学生理解能力和数学基础知识比较差,因此在教学中要关注这部分人群。

教学目标:
1、使学生进一步理解比例的意义,懂得比例各部分名称。

理解并掌握比例的基本性质。

2、能够运用比例的意义和比例的性质判断两个比能否组成比例,并会组比例。

3、能够运用所学知识解决实际问题,提高解决问题的能力。

4、在学习中,引导学生通过观察、比较、分析、计算、交流探索新知。

教学重难点:
掌握比例的基本性质,发现并概括出比例的基本性质。

引导观察比例中的内、外项的关系。

教学过程:
一、旧知铺垫
1、什么叫做比例?
2、应用比例的意义判断下面的比能否组成比例,并说出判断方法。

1/3∶1/4和12∶9;1∶5和0.8∶4;
7∶4和5∶3;80∶2和200∶5
根据学生的判断说出组成比例的方法。

3、通过师生能否组成比例的比赛诱发学生的思考:还能有什么方法判断能否组成比例?
(设计意图:教师教学应该以学生的认知发展水平和已有的经验为基础,并激发学生求知的欲望。


二、探索新知:
1、比例各部分的名称。

① 提问:我们每个人都名字,那我们的比例有没有名称呢?
② 自学课本,全部齐读。

(培养阅读文本的能力,加深对数学概念的文本理解。


③ 出示各种不同的比例,让学生说出比例各部分的名称。

并检查学生的自学情况,及时给予纠正。

(学生行为:大部分都能说出比例的各部分名称,但个别的还是存在问题。

)(设计意图:检查学生的自学情况,并给予及时纠正)
2、比例的基本性质
① 通过观察、分析、计算等方法,学生独立探索其中的规律。

② 与同桌互相交流自己的发现。

③ 汇报自己的发现,全班交流总结。

④ 举例说明,检验发现。

如:4∕5:0.5=1.2:3∕4 → 4∕5×3∕4=0.5×1.2
2.4∕1.6=60∕40 → 2.4×40=1.6×60
学生行为:学生认真观察、计算,并能够探索,学习的积极性较高。

设计意图:这环节的学习能够充分的体现学生学习的主动性,让学生在观察、计算中找到规律,并与他人分享,培养合作意识。

三、总结
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

全部齐读明确和牢记比例的基本性质。

四、巩固练习
在()里填上合适的数。

5:3=():4 12:()=():5
1、做一做:完成课文中的“做一做”。

2、课堂小结。

3、完成课文练习4—6题。

学生行为:独立完成练习设计意图:巩固和检验学习的成果
板书设计
80 : 2 = 200 : 5
↓ ↓ ↓ ↓
外项内项内项外项
4∕5:0.5=1.2:3∕4 → 4∕5×3∕4=0.5×1.2
2.4∕1.6=60∕40 → 2.4×40=1.6×60
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

学习活动评价设计
评价1、在本节课的教学中我采用了师评、互评相结合的评价方式,我注重对学生的自学能力,语言表达能力以及学习热情能力的评价,我想以此来发挥评价的激励作用。

评价2、这个环节主要是再次把学习的主权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补助,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。

让学生在评价中对自己充满信心,是评价成他们发展的动力。

教学反思
这节课在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。

而且在知识点的获取时,让学生自主观察发现,分析比较,概括出比例的基本性质,体现了教师的主导作用和学生的主体地位。

整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不是很好,尤其是根据比例的基本性质写出比例,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。

我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。

《比例的基本性质》教学设计篇三
一、教学目标
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

二、教学重点难点
重点:理解比例的意义和基本性质。

难点:判断两个比是否成比例。

三、教学过程设计
(一)创设情境,提出问题
1. 复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。

(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。

(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。

2、创设情境,提出问题。

谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天第二天
运输次数2 4
运输量(吨)16 32
根据这个表格,让学生提出有关比的数学问题。

同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得较好,提出的问题较多。

谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少?(16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16;4 :32;16 :2;32 :4;
16 :32;2 :4;32 :16;4 :2。

1、认识比例及各部分名称。

谈话:学习数学,我们不仅要善于提问,还要善于观察。

现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。

试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。

(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。

我们知道,比有前项、后项,比例的各部分也有自己的名字。

组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。

比例,也可以写成分数形式。

学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。

(学生独立完成)
2、比和比例有什么区别?

4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。

我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。

出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

③通过以上研究,你发现了什么?
6、全班交流。

(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们较好是怎么办?
7、验证发现,共享成功。

师:对,举例验证,这可是一种非常好的数学方法。

那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。

(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。

也就是,在比例里,两个外项的积等于两个内项的积。

数学上我们把这条规律,叫做比例的基本性质。

这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。

运用它,我们可以解决许多数学问题。

10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例。

6∶3 和8∶5
方法:a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

c、根据比例的基本性质判断组成的比例是否正确。

(二)自主练习,拓展提升
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。

3、填空:自主练习第6题。

4、自主练习第10题:
2:1=4:()1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

2、3、4 和6
因为2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。

(三)回顾总结
在这节课中你又有什么新的收获?
《比例的基本性质》教学设计篇四
教学过程:
一、创设情境,导入新课:
同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)
1、判断下面每题中的两种量成什么比例关系?
(1)单价一定,总价和数量、
(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、
(3)全校学生做操,每行站的人数和站的行数、
2、说说速度、时间和路程这三个量存在怎样的比例关系?
(当速度一定)
二、探究新知:
1、导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。

板书课题:比例的应用
2、学习例1.(课件出示例题)
例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时、甲乙两地之间的公路长多少千米?
(1)先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。

(2)引导学生探究用比例知识解答。

提问:这道题能不能用比例知识来解答呢?
(课件出示问题,让学生思考)
1、这道题中涉及哪三种量?(路程、时间和速度)
2、哪种量是一定的?你是怎样知道的?(照这样的速度就是说速度一定)
3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)
(课件出示思考的过程,并齐读)
(3)提问:根据正比例的意义可以列出怎样的比例?
(教师根据学生的回答板书)
(4)解这个比例。

(教师板书解答过程)
(5)怎样检验所求的答案是否正确?(把求出的未知数代入原方程,看等式是否相等)
(6)写出答语。

(7)练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)
一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?
(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的'未知数为小时数)。

(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。

3、学习例2:
(课件出示例题)
(1)自主探究用比例知识解答
1 合作交流,小组讨论:
题中有哪几种量?这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?
2、汇报讨论结果。

老师板书方程并提问:这个方程是比例吗?为什么?
3、师生一起解答。

(完成例2的板书)
4、练习:(课件出示练习题)
一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。

如果每小时行驶87.5千米,需要多少小时到达?
(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。


4、比较例1和例2的异同:(相同的是都是用比例解答的,不同的是例1是根据正比例的意义列出的比例式,例2是根据反比例的意义列出的等式。

但它们都是方程。

)你能从例1、例2的解答中找出用比例的方法解答应用题的关键是什么吗?
5、教师小结。

(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。


三、知识应用:(出示课件做一做)
1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?
2、某种型号的钢滚球,3个重22.5克。

现有一些这种型号的滚球,共重945克,一共有多少个?
四、作业:
练习中的1~4题。

五、课堂小结:
结束语:
比例知识在日常生活中的应用非常广泛,比如要测量一颗大树的高度,或是一根旗杆的高度,都可以用比例知识来解决。

我们以后再去探讨好不好?
小学六年级数学《比例的基本性质》教案篇五
教学目标:
1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。

2、培养学生的抽象概括能力。

3、渗透转化的数学思想。

教学重点:理解比的基本性质,掌握化简比的方法。

教学难点:掌握化简比的方法。

教材分析:比的基本性质是在学生学习比的意义,比与分数、除法的关系,商不变的性质和分数基本性质的基础上进行教学的。

教材联系学过的除法中商不变的性质和分数基本性质,通过想一想启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成较简单的整数比。

学情分析:学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。

教学过程
活动一
1、出示例1,让学生解答。

2、教学比例的基本性质
(1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之
间的联系,你有什么联想和猜测呢?
生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

(2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。

不过,猜想毕竟是猜想,它还有待于证明。

你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。


①根据分数、比、除法的。

关系验证。

②根据比值验证。

......
③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。

④总结比的基本性质,为什么强调0除外呢?
活动二
1、教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?
比的基本性质主要用来化简比,一般把比化成较简单的整数比(板书:较简单的整数比。

)2、根据你自己的理解,能说一说什么是较简单的整数比吗?
(前项和后项是互质数。


3、请同学们解答的例1(1),这两个比是较简比吗?让学生试着化简比。

让学生试做后,总结方法。

4、出示例1(2)①1/6:2/9
②0.75:2
学生先讨论方法,再试做。

5、小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。

但要注意,这个结果必须是一个比。

6、化简比与求比值有什么不同?
7、质疑
活动三
1、做一做46页化简比。

2、48页第4题
《比例的基本性质》教学设计篇六
教学内容:
教材第30~31页比例的意义和基本性质,练习六第1~5题。

教学要求:
使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。

教学重点:
理解比例的意义和基本性质。

教学难点:
用比例的意义或性质判断两个比成不成比例。

教学理念:
以学生为主体,把较多的时间和空间留给学生探索、交流、概括。

教具、学具准备:
小黑板,教学课件
教学步骤。

相关文档
最新文档