淳安县三中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淳安县三中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=()
A.1 B.C.D.﹣1
2.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为()
A.(1,+∞)B.(﹣∞,﹣1)C.(﹣1,1)D.(﹣∞,﹣1)∪(1,+∞)
3.
某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()
A.80+20π
B.40+20π
C.60+10π
D.80+10π
4.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1 D.e﹣x﹣1
5.执行如图所示的程序框图,若输入的分别为0,1,则输出的()
A .4
B .16
C .27
D .36
6. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( ) A .{0,1,2,4} B .{0,1,3,4} C .{2,4} D .{4}
7. 已知点P 是抛物线y 2
=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )
A .3
B .
C .
D .
8. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件
【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度. 9. 定义运算:,,a a b
a b b a b
≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )
A .⎡⎢⎣⎦
B .[]1,1-
C .⎤⎥⎣⎦
D .⎡-⎢⎣

10.已知双曲线

=1的一个焦点与抛物线y 2=4
x 的焦点重合,且双曲线的渐近线方程为y=±x ,则
该双曲线的方程为( )
A .﹣=1
B .
﹣y 2=1 C .x 2﹣=1 D .﹣=1
11.已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )
A .f (x )=sin (3x+)
B .f (x )=sin (2x+)
C .f (x )=sin (x+)
D .f (x )=sin (2x+)
12.直线: (为参数)与圆:(为参数)的位置关系是( )
A .相离
B .相切
C .相交且过圆心
D .相交但不过圆心
二、填空题
13.已知函数f (x )=x m 过点(2,),则m= .
14.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式
1log 3)(log 33-<x x f 的解集为 .
【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.
15.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分
别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
16.已知f (x )=
,则f (﹣)+f ()等于 .
17.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定
(),A B
k k A B AB
ϕ-=
(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:
①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(
),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;
④设曲线x
y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1
t A B ϕ⋅<
恒成立,则实数t 的取值范围是(),1-∞.
其中真命题的序号为________.(将所有真命题的序号都填上)
18
.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .
三、解答题
19.(本题满分15分)
若数列{}n x 满足:
111
n n
d x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,12345
11111
15a a a a a ++++=.
(1)求数列{}n a 的通项n a ;
(2)数列2{}n
n
a 的前n 项和为n S ,是否存在正整数n ,使得2015n S ≥?若存在,求出n 的取值集合;若不存
在,请说明理由.
【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.
20.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .
(1)求函数y=f (x )的单调递增区间;
(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面
积.
21.(本小题满分12分)
已知圆M 与圆N :2
22)35()35(r y x =++-关于直线x y =对称,且点)3
5,31(-D 在圆M 上.
(1)判断圆M 与圆N 的位置关系;
(2)设P 为圆M 上任意一点,)35,1(-A ,)3
5,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交
AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.
22.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2
ABC π
∠=,AD =33AB DC ==.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.
23.已知f (x )=x 2+ax+a (a ≤2,x ∈R ),g (x )=e x ,φ(x )
=.
(Ⅰ)当a=1时,求φ(x )的单调区间;
(Ⅱ)求φ(x )在x ∈[1,+∞)是递减的,求实数a 的取值范围;
(Ⅲ)是否存在实数a ,使φ(x )的极大值为3?若存在,求a 的值;若不存在,请说明理由.
24.(本小题满分10分) 已知函数()|||2|f x x a x =++-.
(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.
A
B
C
D
P
淳安县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】A
【解析】解:y'=2ax,
于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行
∴有2a=2
∴a=1
故选:A
【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.
2.【答案】A
【解析】解:令F(x)=f(x)﹣2x﹣1,
则F′(x)=f′(x)﹣2,
又∵f(x)的导数f′(x)在R上恒有f′(x)<2,
∴F′(x)=f′(x)﹣2<0恒成立,
∴F(x)=f(x)﹣2x﹣1是R上的减函数,
又∵F(1)=f(1)﹣2﹣1=0,
∴当x>1时,F(x)<F(1)=0,即f(x)﹣2x﹣1<0,
即不等式f(x)<2x+1的解集为(1,+∞);
故选A.
【点评】本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题.
3.【答案】
【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.
依题意得(2r×2r+1
2)×2+5×2r×2+5×2r+πr×5=92+14π,
2πr
即(8+π)r2+(30+5π)r-(92+14π)=0,
即(r-2)[(8+π)r+46+7π]=0,
∴r=2,
∴该几何体的体积为(4×4+1
2)×5=80+10π.
2π×2
4.【答案】D
【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,
而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,
所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.
故选D.
5.【答案】D
【解析】【知识点】算法和程序框图
【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,
则输出的36。

故答案为:D
6.【答案】A
【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},
∴C U A={2,4},
∵B={0,1,4},
∴(C U A)∪B={0,1,2,4}.
故选:A.
【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.
7.【答案】B
【解析】解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,
则F(,0),
依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,
则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,
d=|PF|+|PM|≥|MF|==.
即有当M,P,F三点共线时,取得最小值,为.
故选:B.
【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.
8.【答案】A
【解析】
9.【答案】D
【解析】
考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.
10.【答案】B
【解析】解:已知抛物线y2
=4x的焦点和双曲线的焦点重合,
则双曲线的焦点坐标为(,0),
即c=,
又因为双曲线的渐近线方程为y=±x,
则有a2+b2=c2=10和=,
解得a=3,b=1.
所以双曲线的方程为:﹣y2=1.
故选B.
【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.
11.【答案】D
【解析】解:由图象知函数的最大值为1,即A=1,
函数的周期T=4(﹣)=4×=,
解得ω=2,即f (x )=2sin (2x+φ),
由五点对应法知2×+φ=

解得φ=

故f (x )=sin (2x+), 故选:D
12.【答案】D
【解析】【知识点】直线与圆的位置关系参数和普通方程互化 【试题解析】将参数方程化普通方程为:直线:圆

圆心(2,1),半径2. 圆心到直线的距离为:
,所以直线与圆相交。

又圆心不在直线上,所以直线不过圆心。

故答案为:D
二、填空题
13.【答案】 ﹣1 .
【解析】解:将(2,)代入函数f (x )得: =2m ,
解得:m=﹣1; 故答案为:﹣1.
【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.
14.【答案】)3,0(
【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且
13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即
)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.
15.【答案】5
12




16.【答案】 4 .
【解析】解:由分段函数可知f
()=2
×
=. f
(﹣)=f
(﹣+1)=f
(﹣)=f
(﹣)=f
()=2
×
=,
∴f
()+f
(﹣)
=
+.
故答案为:4.
17.【答案】②③ 【解析】
试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -
=(,)A B ϕ∴=<
②对:如1y =
;③对;(,)2A B ϕ==
≤;
④错;1212(,)x x x x A B ϕ=
=

1211,(,)A B ϕ==因为1
(,)
t A B ϕ<
恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 18.【答案】 6 .
【解析】解:第一次循环:
S=0+
=,i=1+1=2;
第二次循环:S=+=,i=2+1=3;
第三次循环:S=+=,i=3+1=4;
第四次循环:S=+=,i=4+1=5;
第五次循环:S=+=,i=5+1=6;输出S ,不满足判断框中的条件;
∴判断框中的条件为i <6?
故答案为:6.
【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题
三、解答题
19.【答案】(1)1
n a n
=
,(2)详见解析.

8n =时911872222015S =⨯+>>,…………13分
∴存在正整数n ,使得2015n S ≥的取值集合为{}
*
|8,n n n N ≥∈,…………15分
20.【答案】
【解析】解:(1)f (x )=•=2cos 2
x+
sin2x=sin2x+cos2x+1=2sin (2x+)+1,
令﹣+2k π≤2x+≤+2k π,
解得﹣+k π≤x ≤+k π,
函数y=f (x )的单调递增区间是[﹣+k π,
+k π],
(Ⅱ)∵f (A )=2
∴2sin (2A+
)+1=2,即sin (2A+
)= ….
又∵0<A <π,∴A=.…
∵a=

由余弦定理得a 2=b 2+c 2﹣2bccosA=(b+c )2
﹣3bc=7 ①…
∵sinB=2sinC ∴b=2c ②…
由①②得c 2
=.…
∴S △ABC=.…
21.【答案】(1)圆与圆相离;(2)定值为2. 【解析】
试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,
DM r =,然后根据圆心距MN 与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和
BP 的距离相等,所以两个三角形的面积比值PA
PB
S S APG PBG =
∆∆,根据点P 在圆M 上,代入两点间距离公式求PB 和PA ,最后得到其比值.
试题解析:(1) ∵圆N 的圆心)3
5,35(-N 关于直线x y =的对称点为)3
5
,35(-M , ∴9
16)3
4(||2
2
2
=
-==MD r , ∴圆M 的方程为9
16
)35()35(22=
-++y x .
∵3
8
23210)310()310(||22=>=+=r MN ,∴圆M 与圆N 相离.
考点:1.圆与圆的位置关系;2.点与圆的位置关系.1 22.【答案】
【解析】解: (Ⅰ)当1
3PE PB =
时,//CE 平面PAD . 设F 为PA 上一点,且1
3PF PA =,连结EF 、DF 、EC ,
那么//EF AB ,1
3EF AB =.
∵//DC AB ,1
3
DC AB =,∴//EF DC ,EF DC =,∴//EC FD .
又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)
(Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,
∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥. 又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)
建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,
(1,2,0)C -
.由(6)(2PO ==-=知(0,0,2)P . (9分)
设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r
则00
n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =.
设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3
sin |cos ,|2
||||AP n AP n AP n θ⋅=<>==
⋅,

π
θ=
,∴直线PB 与平面PAD 所成角为
3
π
. (13分) 23.【答案】
【解析】解:(I )当a=1时,φ(x )=(x 2+x+1)e ﹣x .φ′(x )=e ﹣x (﹣x 2
+x )
当φ′(x )>0时,0<x <1;当φ′(x )<0时,x >1或x <0
∴φ(x )单调减区间为(﹣∞,0),(1,+∞),单调增区间为(0,1);
(II )φ′(x )=e ﹣x [﹣x 2
+(2﹣a )x]
∵φ(x )在x ∈[1,+∞)是递减的, ∴φ′(x )≤0在x ∈[1,+∞)恒成立,
∴﹣x 2
+(2﹣a )x ≤0在x ∈[1,+∞)恒成立,
∴2﹣a ≤x 在x ∈[1,+∞)恒成立, ∴2﹣a ≤1 ∴a ≥1
∵a ≤2,1≤a ≤2;
(III )φ′(x )=(2x+a )e ﹣x ﹣e ﹣x (x 2+ax+a )=e ﹣x [﹣x 2
+(2﹣a )x]
令φ′(x )=0,得x=0或x=2﹣a :
由表可知,φ(x )极大=φ(2﹣a )=(4﹣a )e a ﹣2
设μ(a )=(4﹣a )e a ﹣2,μ′(a )=(3﹣a )e a ﹣2
>0,
∴μ(a )在(﹣∞,2)上是增函数,
∴μ(a )≤μ(2)=2<3,即(4﹣a )e a ﹣2
≠3,
∴不存在实数a ,使φ(x )极大值为3.
24.【答案】(1){|1x x ≤或8}x ≥;(2)[3,0]-.
【解析】

题解析:(1)当3a =-时,25,2()1,
2325,3x x f x x x x -+≤⎧⎪
=<<⎨⎪-≥⎩
,当2x ≤时,由()3f x ≥得253x -+≥,解得1x ≤; 当23x <<时,()3f x ≥,无解;当3x ≥时,由()3f x ≥得253x -≥,解得8x ≥,∴()3f x ≥的解集为
{|1x x ≤或8}x ≥.
(2)()|4||4||2|||f x x x x x a ≤-⇔---≥+,当[1,2]x ∈时,|||4|422x a x x x +≤-=-+-=, ∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的的取值范围为[3,0]-. 考点:1、绝对值不等式的解法;2、不等式恒成立问题.。

相关文档
最新文档