3.3.2简单的线性规划2课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用钢板张数最少。
解:设需截第一种钢板x张,第二种钢板y张,则
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0 y≥0
目标函数为 z=x+y
作出可行域(如图)
例题分析
{2x+y≥15, x+2y≥18,
x+3y≥27, x≥0, x∈N y≥0 y∈N
y 15
调整优值法
目标函数z= x+y x+y =0
10 B(3,9) 8 C(4,8)
A(18/5,39/5)
6 4 2
02
作出一组平行直线z=x+y,
4
6 8 12 18
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
解得交点B,的坐标B(3,9)和C(4,8) 直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解. 答(略)
(在包括边界的情况下)
2.若区域“顶点”不是整点或不包括边界时,应先求出 该点坐标,并计算目标函数值Z,然后在可行域内适当 放缩目标函数值,使它为整数,且与Z最接近,在这条 对应的直线中,取可行域内整点,如果没有整点,继续 放缩,直至取到整点为止。
3.在可行域内找整数解,一般采用平移找解法,即打网 络、找整点、平移直线、找出整数最优解;还可以用调 整最优值法。
= 41
o
4
x
-4
练习:
1.在x,y的值都是不小于0的整数点(x,y)中,
满足x + y ≤ 4的点的个数为_____1_5_
2. 设变量x, y满足条件
求S 5 x 4 y的最大值。
3 x2 y10 x4 y11
x , yZ x0 , y0
3.深圳市福田区水泥制品厂生产两种水泥,已知生产甲种水 泥制品1吨,需矿石4吨,煤3吨;生产乙种水泥制品1吨,需 矿石5吨,煤10吨,每1吨甲种水泥制品的利润为7万元,每1 吨乙种水泥制品的利润是12万元,工厂在生产这两种水泥制 品的计划中,要求消耗的矿石不超过200吨,煤不超过300吨, 甲乙两种水泥制品应生产多少,能使利润达到最大值?
例题分析:关于取整数解的问题
例 要将两种大小不同规格的钢板截成A、B、C三种规格,每 张钢板可同时截得三种规格的小钢板的块数如下表所示 :
规格类型 钢板类型
第一种钢板 X张
A规格 2
B规格 1
C规格 1
第二种钢板 y张
1
2
3
今需要A,B,C三种规格的成品分别为15,18,27块,问 各截这两种钢板多少张可得所需三种规格成品,且使所
巩固练习1:
x 0
不等式组
y
0
表示的y 平面区域内的整数点共有
4x 3y 12 4
3
( )个
2
1
0
1
2
34
x
4x+3y=12
练习2:求满足 | x | + | y | ≤4 的整点(横、 纵坐标为整数)的个数。
y
共有:
4
9 + 2 ( 7 + 5 + 3 + 1 -) 4
当直线经过点A时t=x+y=11.4,但它不是最优整数解,
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
经过可行域内的整点B(3,9)和C(4,8)时,t=x+y=12是最优解.答:(略)
在可行域内找出最优解、线性规划整数 解问题的一般方法是:
1.若区域“顶点”处恰好为整点,那么它就是最优解;
例题分析
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
目标函数t = x+y
y 15
B(3,9)
9
C(4,8)
A(18/5,39/5)
打网格线法
x+y =0
2 1 0 12 78
x
18
27
作出一组平行直线t = x+y, 2x+y=15
x+2y=18 x+3y=27