人教版九年级数学上册- 一元二次方程教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.1 一元二次方程
一、学习目标
1、正确理解一元二次方程的意义,并能判断一个方程是否是一元二次方程;
2、知道一元二次方程的一般形式是2
0(ax bx c a b c ++=、、是常数,0a ≠) ,能说出二次项及其系数,一次项及其系数和常数项;
3、理解并会用一元二次方程一般形式中a ≠0这一条件;
4、通过问题情境,进一步体会学习和探究一元二次方程的必要性,体会数学知识来源于生活,又能为生活服务,从而激发学习热情,提高学习兴趣。
重难点关键 1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.
知识准备
1、只含有_____个未知数,且未知数的最高次数是_______的整式方程叫一元一次方程
2、方程2(x+1)=3的解是____________
3、方程3x+2x=0.44含有____个未知数,含有未知数项的最高次数是_____,它____ (填“是”或“不是”)一元一次方程。
一、情境导入
参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?
二、合作探究
探究点一:一元二次方程的概念
【类型一】一元二次方程的识别
下列选项中,是关于x的一元二次方程的是( )
A.x2+1
x2
=1 B.3x2-2xy-5y2=0
C.(x-1)(x-2)=3 D.ax2+bx+c=0
解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.
方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二
次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.
【类型二】利用一元二次方程的概念确定字母系数
关于x 的方程(k +1)x
|k -1|
+kx +1=0
是一元二次方程,则k 的值为________.
解析:由题意得⎩⎪⎨⎪⎧|k -1|=2,k +1≠0,∴⎩
⎪⎨⎪⎧k =3或k =-1,
k ≠-1.
∴k =3.
方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.
探究点二:一元二次方程的一般形式
将下列方程化为一元二次方程的一般
形式,并指出它们的二次项系数、一次项系数及常数项.
(1)3x2-2=5x;
(2)9x2=16;
(3)2x(3x+1)=17;
(4)(3x-5)(x+1)=7x-2.
解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.
解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.
(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.
(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.
(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.
方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.
探究点三:列一元二次方程
(2015·深圳一模)在一张矩形的床单
四周绣上宽度相等的花边,剩下部分面积为1.6m 2
.已知床单的长是2m ,宽是1.4m ,求花边的宽度.请根据题意列出方程.
解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4
-2x )m.∵剩下部分面积为1.6m 2
,∴可列方程(2-2x )(1.4-2x )=1.6.
方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.
探究点四:一元二次方程的解 【类型一】判断一元二次方程的解
方程x 2
-2x =0的解为( )
A .x 1=1,x 2=2
B .x 1=0,x 2=1
C .x 1=0,x 2=2
D .x 1=1
2
,x 2=2
解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2
都能使方程x2-2x=0的左右两边相等,所以选C.
方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.
【类型二】利用一元二次方程的解的意义求字母或代数式的值
已知1是关于x的一元二次方程(m-
1)x2+x+1=0的一个根,则m的值是( )
A.1 B.-1
C.0 D.无法确定
解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.
方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.
三、板书设计
教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.
达标检测
1.在下列方程中,一元二次方程的个数是().
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5
x
=0
A.1个B.2个C.3个D.4个
2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.一元二次方程的一般形式是__________.
4.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为
_________.
5.关于x 的方程(a-1)x 2+3x=0是一元二次方程,则a 的取值范围是________.
6.方程x (4x+3)=3x+1化为一般形式为_____________,它的二次项系数是______________,
一次项系数是_______________,常数项是____________________.
7、(1)方程n nx x +=-72
中,有一个根为2,则n 的值.
(2)一元二次方程()0112
2
=-+++m x x m 有一个解为0,试求方程210m -=的解。
8、根据题意列方程
(1)一个矩形纸盒的一个面中长比宽多2㎝,这个面的面积是15㎝2
,求这个矩形的长与宽;
(2)两个连续正整数的平方和是313,求这两个正整数;
(3)两个数的和为6,积为7,求这两个数;
(4)一个长方形的周长是30㎝,面积是54㎝2
,求这个长方形的长与宽。
9.方程(2a —4)x 2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
教学过程设计
21.1 一元二次方程
教学目标
1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式。
2.会应用一元二次方程的解的定义解决有关问题。
3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次的感性认识。
重难点关键
1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?
10
8
设梯子底端距墙为xm,那么,
根据题意,可得方程为___________.
问题(2)如图,如果AC CB
AB AC
,那么点C叫做线段AB的黄金分割点.
如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.
整理得:_________.
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动1:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
学生活动2 提问:
(1)问题1中一元二次方程的解是多少?
(2)如果抛开实际问题,问题1中还有其它解吗?
老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解.(3)如果抛开实际问题,问题(1)中还有x=-6的解
为了与以前所学的一元一次方程等只有一个解的区别,我们称:一元二次方程的解叫做一元二次方程的根.
回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际
问题的根,还要考虑这些根是否确实是实际问题的解.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1B.―1
C.0D.无法确定
分析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到时一元二次方程,所以还要其二次项系数要不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.
方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目的时候,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题。
例3 如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()
A.32 B.126
C.135 D.144
分析:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为x,则最大数为x+16,根据题意,得x(x+16)=192,解得x1=8,x2=﹣24(不合题意舍去),故最小的三个数为8,9,10,下面一行的数字分别比上面三个数大7,即为15,16,17,第3行三个数,比上一行三个数分别大7,即为22,23,24,这9个数的和为:
8+9+10+15+16+17+22+23+24=144.故选D.
方法总结:在日历表中,在同一列上相邻的两个数,下一列比上一列的一个数大7;在同一行上相邻的两个数,右边的比左边的一个数大1,是解决此类问题的依据.
三、巩固练习
教材习题22.1练习1、2
四、应用拓展
例4.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
1.教材习题22.1 1、2.
2.选用作业设计.
作业设计
一、选择题
1.在下列方程中,一元二次方程的个数是().
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5
x
=0
A.1个B.2个C.3个D.4个
2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.px2-3x+p2-q=0是关于x的一元二次方程,则().
A.p=1 B.p>0 C.p≠0 D.p为任意实数
4.已知x=-1是方程ax2+bx+c=0的根(b≠0)
().
A.1 B.-1 C.0 D.2
二、填空题
5.方程3x2-3=2x+1的二次项系数为____,一次项系数为____,常数项为____.6.一元二次方程的一般形式是__________.
7.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是_____.8.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.
三、综合提高题
9.a满足什么条件时,关于x的方程a(x2+x)
(x+1)是一元二次方程?
10.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?
11.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.
12.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.
13.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,是这样做的:
设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:
第一步:
所以,
第二步:
所以,
(1)请你帮小明填完空格,完成他未完成的部分;
(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.。