新课标-最新人教版七年级数学上学期《巧用一元一次方程解图表信息问题》专题训练及解析

合集下载

人教版七年级 上册数学第三章专项训练:一元一次方程及其解法训练

人教版七年级 上册数学第三章专项训练:一元一次方程及其解法训练

专项训练:一元一次方程及其解法一、 分母化为1 1.解方程:0.10.2130.020.5x x -+-=2.解方程:212100.250.5x x +--=-二、 化小数为整数法 3. 解方程:0.10.010.0110.20.063x x x --=-三、 巧用拆分法: 4. 解方程:45674567x x x x +++++=+5.方程 201912233420192020x x x x++++=⨯⨯⨯⨯的解是多少?四、 巧化同分母 6. 解方程:0.160.510.60.06x x --=五、 巧约分去分母 7. 解方程:460.0226.57.50.010.02x x---=-六、 整体合并法8. 解方程:()()111331236x x x x ⎡⎤---=-+⎢⎥⎣⎦9. 解方程: 113(75)(57)(75)7(57)37x x x x ---+-=-10.阅读: 在解方程113(1)(1)2(1)(1)32x x x x +--=--+时,我们可以将1,1x x +-各看成一个整体进行移项、合并同类项,得77(1)(1)23x x +=-,即11(1)(1)23x x +=-,去分母,得3(1)2(1)x x +=-,进而求解得5x =-,这种方法叫做整体求解法.请用这种方法解方程:315(23)(2)2(2)(23)42x x x x +--=--+.七、 巧用一元一次方程求值 11.已知关于x 的方程 423x m x +=-与方程1(16)62x -=-的解相同,求m 的值.12.当a 为何值时,关于x 的方程30x a +=的解比方程2403x --=的解大2?13.某同学在解关于x 的方程43215x a x +=+时,移项过程中2x 没有改变符号,得到方程的解为1x =,求a 的值及原方程的解.14.已知方程 63(1)0x -+=的解与关于x 的方程3222k xk x +--=的解互为相反数,求k 的值.15.如果关于 x 的方程51763x -=与8192322x x m -=+++的解相同,求m 的值.。

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)

【2024秋】最新人教版七年级上册数学《一元一次方程的实际应用》解决问题专项练习(含答案)1. 某两市之间,可乘坐普通列车或高铁(路线不同),已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程.2.一名极限运动员在静水中划船的速度为每小时12千米,今往返于某河,逆流时用了10小时,顺流时用了6小时,求水流速度.3. 某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问在一年内累计消费多少元时,买卡与不买卡花费一样多的钱?什么情况下买卡合算?4.某校115名团员积极参与募捐活动,有一部分团员每人捐30元,其余团员每人捐10元.如果捐款总数为2750元,那么捐30元的团员有多少人?5. 为有效开展阳光体育活动,某中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?6.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完成剩下的部分?7. 学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,少14棵.问:两类树各种了多少棵?杉树的棵数比总数的138.现有190张铁皮做盒子,每张铁皮可以做8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.如果用完全部的铁皮,那么用多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?9.《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,若每3人共乘一车,则最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘.问有多少个人,多少辆车?10.某市多所学校入围“全国青少年校园足球特色学校”,为了积极开展足球活动,某校计划为校足球队购买一批A、B两种品牌的足球.已知购买4个A品牌足球和2个B品牌足球共需360元;A品牌足球的单价比B品牌足球的单价少60元.(1)求A,B两种品牌足球的单价;(2)求该校购买20个A品牌足球和2个B品牌足球的总费用.参考答案1.解:设高铁的行驶路程为x千米,则普通列车的行驶路程为1.3x千米.依题意得x+1.3x=920,解得x=400.所以1.3x=520(千米).答:普通列车的行驶路程是520千米.2. 解:设水流的速度为每小时x千米,依题意有6(x+12)=10(12﹣x),解得x=3.答:水流速度是每小时3千米.3. 解:设购物x元时,买卡与不买卡花费一样,由题意得200+0.8x=x,解得x=1000.当x>1000时,买卡购物合算.答:购物1000元时,买卡与不买卡花费一样;当购物金额超过1000元时,买卡购物合算.4. 解:设捐30元的团员有x人,则捐10元的有(115-x)人.根据题意得30x+10(115-x)=2750.解得x=80.答:捐30元的团员有80人.5. 解:设该班胜了x场,那么负了(8﹣x)场,根据题意得2x+1•(8﹣x)=13,解得x=5.8﹣5=3.答:该班胜、负场数分别是5和3.6.解:设还需x天完成剩下的部分,根据题意得+=1,解得x=10.答:还需10天完成剩下的部分.7.解:设一共植了x棵树,则杨树为(x+56)棵,杉树为(x﹣14)棵.则有x+56+x﹣14=x,解得x=252.故杨树有×252+56=182(棵),杉树有×252﹣14=70(棵).答:种了182棵杨树,70棵杉树.8.解:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据题意得2×8x=22×(190﹣x),解得x=110.190﹣110=80(张).答:用110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.9. 解:设有x辆车,则有(2x+9)人,依题意得3(x-2)=2x+9.解得x=15.∴2x+9=2×15+9=39.答:有39个人,15辆车.10.解:(1)设A品牌足球的单价为x元,则B品牌足球的单价为(x+60)元.根据题意得4x+2(x+60)=360,解得x=40.∴x+60=100.答:A品牌足球的单价为40元,B品牌足球的单价为100元.(2)20×40+2×100=1000(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用为1000元.。

一元一次方程应用题精选《一元一次方程》单元 新课标人教版七年级上册 (3)

一元一次方程应用题精选《一元一次方程》单元   新课标人教版七年级上册 (3)

《一元一次方程》单元精选应用题新课标人教版七年级上册1. 一队学生去校外郊游,他们以每小时5千米的速度行进,经过一段时间后,学校要将一紧急的通知传给队长。通讯员骑自行车从学校出发,以每小时14千米的速度按原路追上去,用去10分钟追上学生队伍,求通讯员出发前,学生队伍走了多长的时间?2. 学校团委组织65名新团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?3. 初一年级王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只看到:“甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,()?请将这道作业题补充完整并列方程解答。4. 某校女生占全体学生数的52℅,比男生多80人,这个学校有多少学生?5. 下图的数阵由77个偶数排成。(1)图中平行四边形框内的四个数有什么关系?(2)在数阵中任意作一类似(1)中的平行四边形框,设其中左上角的一个数是x,那么其他三个数怎样表示?(3)如果四个数的和是326,你能求出这四个数吗?6. 一个两位数,十位上的数字是个位上数字的2倍,如果把个位上的数与十位上的数对调得到的数比原数小36,求原来的两位数.7. 甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?8. 某七年级学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/小时,运货汽车的速度为35千米/小时,?”(涂黑部分表示补墨水覆盖的若干文字),请将这道作业题补充完整,并列方程解答.9. 某项工作甲单独做需要7.5小时,乙单独做需要5小时,现在甲乙先合作1小时后,剩余的工作全部由乙完成,共需多少时间完成?10. 某学校举行一次登山比赛,有一同学上山的速度为每小时5千米,下山的速度为每小时10千米,则该同学往返的平均速度是多少?请说明理由.11. 有一个圆柱形铁块,底面直径为20厘米,高为26厘米,把它锻造成长方体毛胚,若使长方体的长为10π厘米,宽为13厘米,求长方体的高。12. 甲乙两人投资合办一个企业,并协议按照投资额的比例多少分配所得利润.已知甲与乙投资额的比例为3∶4,首年所得的利润为38500元,则甲、乙二人分别获得利润多少元? 13. 甲乙两种商品的单价之和为100元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原计划之和提高2%,求甲、乙两种商品的原来单价?14. 甲乙两个水池共蓄水50t,甲池用去5t,乙池又注入8t后,甲池的水比乙池的水少3t,问原来甲、乙两个水池各有多少吨水? 15. 某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?16. 为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?17. 植树节期间,两所学校共植树棵,其中海石中学植树的数量比励东中学的倍少棵,求两校各植树多少棵.18. 环形跑道一周长400米,沿跑道跑多少周,可以跑3000米?19. 一家商店将某型号彩电先按原售价提高40﹪,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2700元的罚款.求每台彩电的原价格.20. 检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合做,但乙中途离开了一段时间,后2天由乙、丙合作完成.问乙中途离开了几天?21. 两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?22. 如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55cm,此时木桶中水的深度是多少?23. 某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几名工人加工甲种零件.24. 足球的表面是由若干黑色五边形和白色六边形皮围成的,已知黑色皮共12块,请你想一想,白色皮共有几块?25. 某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易是盈利还是亏损,或是不盈不亏?26. 某市居民生活用电基本价格为每度0.40元,基本用电量为a,若每月用电量超过a(84a )度,超过部分按基本电价的70%收费,(1)某户五月份用电84度,共交电费30.72元,求a;(2)某户六月份的电费平均为每度0.36元,求六月份共用电多少度?应交电费多少元?27. 一项工作,甲单独做需15天完成,乙单独做需12天完成,这项工作由甲、乙两人合做,并且施工期间乙休息7天,问几天完成?28. 三个连续整数的和为147,求这三个连续整数.29. 张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠。”乙旅行社说:“包括老师在内按全票价的6折优惠。”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?30. 牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。请你帮牛奶加工厂设计一种方案,使这9吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润。31. 某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?32. 某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个。应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?33. 某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹出票款6920元,且每张成人票8元,学生票5元.1.问成人票与学生票各售出多少张?2.若票价不变,仍售出1000张票,所得的票款可能是7290元吗?为什么?34. 三位数比这个三位数的2倍少7,求这个三位数.35. 某区中学生足球联赛共赛8轮(即每队均需赛8场),胜一场得3分,平一场得1分,负一场得0分。在这次足球联赛中,小平安队踢平的场数是所负场数的2倍,共得17分,试问该队胜了几场? 36. 敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?37. 甲乙两种商品的单价之和为100元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原计划之和提高2%,求甲、乙两种商品的原来单价?38. 某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和。已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?39. 在一只底面直径为30cm,高为8cm的圆锥形容器中倒满水,然后将水倒入一只底面直径为10cm的圆柱形容器里,圆柱形容器中的水有多高?40. 亚洲铁人三项赛的比赛程序是:运动员先同时下水游泳15km到第一换项点,在第一换项点整理服装后,接着骑自行车40km到第二换项点,再跑步10km到终点.下表是2001年亚洲铁人三项赛女子组(19岁以下)三名运动员在比赛中的成绩(游泳成绩即游泳所用时间,其他类推,表内时间单位为s)。(1)填空(精确0.01):第191号运动员骑自行车的平均速度是()m/s;第194号运动员骑自行车的平均速度是()m/s;第195号运动员骑自行车的平均速度是()m/s.(2)如果运动员骑自行车都是匀速的,那么在骑自行车的途中,191号运动员会追上195号或194号吗?如果会,那么追上时离第一换项点有多少米?(精确到0.01)如果不会,为什么?(精确到0.01)(3)如果长跑也都是匀速的,那么在长跑途中这三句运动员中有可能某人追上某人吗?为什么41. 运动场的跑道一圈长400米。小健练习骑自行车,平均每分骑350米;小康练习跑步,平均每分跑250米;两人从同一处同时反向出发,经过多长时间首次相遇?又经过多长时间再次相遇?42. 江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多,求粗加工的该种山货质量.43. 已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱装有多少个产品?44. 某校修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门).安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.45. 某商店因换季销售打折商品,如果按定价6折出售,将赔20元,若按定价的8折出售,将赚15元,问:这种商品定价多少元? 46. 有甲、乙两支同样长的蜡烛,甲支蜡烛可使用8小时,乙支蜡烛可使用6小时.两支蜡烛同时开点,问几小时后乙支蜡烛的长度是甲支蜡烛长度的一半?47. 某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.48. 一艘载重460吨的船。容积是1000立方米,现有甲种货物450立方米,乙种货物350吨,而甲种货物每吨体积2.5立方米,乙种货物每立方米0.5吨。问是否都能装上船?如果不能,请说明理由。并求出为了最大限度的利用船的载重量和体积,两种货物应各装多少吨?49. 某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠;”乙旅行社说:“教师在内全部按票价的6折优惠;”若全部票价是240元;(1)如果有10名学生,应参加哪个旅行社,并说出理由;(2)当学生人数是多少时,两家旅行社收费一样多?50. 求平均每分钟一道正门和一道侧门各可以通过多少名学生?51. 某数与-1的差的2倍等于8,求某数.52. 我市某企业向灾区捐助价值94万元的A,B两种帐篷共600顶.已知A种帐篷每顶1700元,B种帐篷每顶1300元,问A,B两种帐篷各多少顶?53. 张叔叔用若干元人民币购买了一种年利率为10%的一年期债券,到期后他取出本金的一半用于购物,剩下的一半及所得的利息又全部买了这种一年期债券(利率不变),到期的得本息和1320元,问张叔叔当初购买这种债券花了多少元?54. 期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章.已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟.为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?55. 某户五月份用电84度,共交电费30.72元,求a;(2)某户六月份的电费平均为每度0.36元,求六月份共用电多少度?应交电费多少元?56. 小明今年13岁,他爸爸今年39岁,几年后小明的年龄将是爸爸年龄的一半?57. 某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?58. 某行军纵队以8千米/时的速度行进,队尾的通讯员以12千米/时的速度赶到队伍前送一个文件.送到后立即返回队尾,共用14.4分钟.求队伍长.59. 有一个三位数的百位数字是1,如果把1移到最后,其他两位数字顺序不变,所得的60. 某地上网有两种收费方式,用户可以任选其一:(A)记时制:2.8元/小时,(B)包月制:60元/月。此外,每一种上网方式都加收通讯费1.2元/小时。(1)某用户上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(1个月),选用哪种上网方式比较合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式。61. 在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?62. 一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得数比原数小63.求原数.63. 某种商品因换季准备打折出售.如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,这种商品的定价是多少?64. 已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱装有多少个产品?65. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或盒底43个,一个盒身与两个盒底配成一套罐头盒。现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?66. 一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得数比原数小63.求原数.67. 我市某学校计划向西部山区的学生捐赠3500册图书,实际共捐了4125册。其中,初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%,问初中学生和高中学生比原计划多捐了多少册68. 某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?69. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?70. 老王把5000元按一年期的定期储蓄存入到银行.到期支取时,扣去利息税后实得本利和为5080元.已知利息税税率为20%,问当时一年期定期储蓄的年利率是多少?71. 某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答。下表记录了5个参赛者的得分情况。(1)参赛者F得76分,他答对了几道题?(2)参赛者G说他得80分,你认为可能吗?为什么?72. 把12的两个数字对调,得到21。一个两位数,个位上的数是a,十位上的数是b。把它们对调,得到另一个数。用式子分别表示这两个数及它们的差,这样的差能被9整除吗?为什么?73. 黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆.要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同.小熊捎捎脑袋,该如何分这19个苹果为4堆呢?4少30,若从第二车间74. 某工厂第一车间人数比第二车间人数的53,求两调10人到第一车间,那么第一车间人数是第二车间人数的4车间原来各有多少人?75. 某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.76. 方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;77. 方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成;78. 你认为选择哪种方案获利最多,为什么?79. 本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?A、B两地相距30千米,甲、乙两人分别从A、B两地同时出发,相向而行。已知甲比乙每小时多走1千米,经过2.5小时两人相遇,求甲、乙两人的速度?80. 检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?81. 小明去商店买练习本,回来后和同学说,店主告诉我,如果多买一些就给我8折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本价格是多少?(请你列出方程,并用等式的性质求解。) 82. 某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个。应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?83. 一个长方形的周长为36厘米,若长减少4厘米,宽增加2厘米,长方形就变成正方形,求正方形的边长。84. 一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x道题.(1)根据所给条件,完成下表:(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题? 85. 甲乙两列火车的长分别为144米和180米,甲车比乙车每秒多行4米。(1)两列火车相向行驶,从相遇到全部错开需9秒,问两车速度各是多少?(2)若两车同向行驶,甲车的车头从乙车的车尾追及到甲车全部超出乙车,需要多长时间?86. 个人发表文章、出版图书所得稿费的纳税计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元,而低于4000元的应缴纳超过800元那部分稿费的14%的税;(3)稿费为4000元或高于4000元的应缴纳全部稿费的11%的税,试根据上述纳税的计算方法作答:①若王老师获得的稿费为2400元,则应纳税()元,若王老师获得的稿费为4000元,则应纳税()元。②若王老师获稿费后纳税420元,求这笔稿费是多少元?87. 某工厂计划招聘A、B两个工种的工人共120人,A、B两个工种的工人月工资分别为800元和1000元.若某工厂每月支付的工人工资为ll000O元,那么A、B两个工种的工人各招聘多少人?设招聘A工种的工人x人。根据题设完成下列表格,并列方程求解.88. 某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?89. 将一罐满水的直径为40厘米,高为60厘米的圆柱形水桶里的水全部灌于另一半径为30厘米的圆柱形水桶里,问这时水的高度是多少?90. 一架飞机在两城市间飞行,风速为24千米/时,顺风飞行需要2小时50分,逆风飞行需3小时,求两城市间的距离。91. .有一些分别标有5,10,15,20,…的卡片,后一张卡片上的数总比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且卡片上的数之和为255.小明拿到的三张卡片上的数分别是多少?92. 某桥长为500米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用30秒。而整列火车完全在桥上的时间为20秒,求火车的速度和长度。93. 为了拓展销路,商店对某种照相机的售价作了调整,按原售价的8折出售,此时的利润率为14%.若此种照相机的进价为1200元,该照相机的原售价的多少元?94. 某校一、二两班共有95人,体育锻炼的平均达标率(达到标准的百分率)是60%,如果一班达标率是40%,二班达标率是78%,求一、二两班的人数各是多少?95. 今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?96. 有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.97. 某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?98. 某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?99. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?100. 一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时? 101. 老王把5000元按一年期的定期储蓄存入到银行.到期支取时,扣去利息税后实得本利和为5080元.已知利息税税率为20%,问当时一年期定期储蓄的年利率是多少?102. 买4本练习本和3支铅笔一共用4.7元,铅笔每支0.5元,练习本一本多少元?103. 在某年全国足球甲级A组的前11场比赛中,某队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?分析:设该队共胜了x场,根据题意,用含x的式子填空:(1)该队平了___场;(2)按比赛规则,该队胜场共得___分;(3)按比赛规则,该队平场共得___分.104. 为了拓展销路,商场对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%。若次照相机的进价为1200元,该照相机的原售价是多少元?105. 商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台。

七年级数学上册一元一次方程的实际应用专项练习(含解析)

七年级数学上册一元一次方程的实际应用专项练习(含解析)

七年级数学上册一元一次方程的实际应用专项练习知识与技能1.能够根据具体问题中的数量关系,列出一元一次方程,体会一元一次方程是刻画现实世界的有效数学模型,体会数学的应用价值。

2.学会分析问题的本领,能根据题意将实际问题转化为数学问题。

养成善于分析问题、解决问题的良好习惯,发展思维能力。

过程与方法抓紧一元一次方程的定义及方程解的定义情感态度与价值观初步认识方程与现实世界的密切联系,感受数学的价值;要熟练掌握解题步骤;认真审题,弄清题中的等量关系,列出合适的一元一次方程。

经典例题:1.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过10立方米时,按2元/立方米计费;月用水量超过10立方米时,其中的10立方米仍按2元/立方米收费,超过的部分按3元/立方米计费.已知小明和小强两家某月共用水22立方米(其中小强家用水量超过10立方米),一共交费47元,问该月小明和小强两家各用水多少立方米?2.七(3)班共有学生48人,其中男生人数比女生人数的2倍少15人,问这个班男、女学生各有多少人?3.为了加强公民的节水意识,合理利用水,某市采用价格词控的手段达到节水的目的,该市自来水收费的价目表如表:(注:水费按月份算,m3表示立方米)例:若某户居民1月份用水8m3,应缴水费:2×6+4×(8﹣6)=20(元),请根据价目表提供的信息解答下列问题:(1)若该户居民2月份用水6m3,则应缴水费元;(2)若该户居民3月份缴水费24元,求该户居民3月份用水量;(3)若该户居民4、5两个月用水总是14m3(5月份用水量超过了4月份),设4月份用水am3,求该户居民4、5两个月共缴水费多少元?(用含a的代数式表示,并化简)4.一个两位数的个位上的数的3倍加2是十位上的数,个位上的数与十位上的数的和等于10,这个两位数是多少?5.列方程解应用题青岛与济南两城市间的高速公路长约360千米,现有一长途客车从济南开往青岛,平均速度为85千米/时,有一小汽车同时从青岛开往济南,平均速度是95千米/时,求两车相遇时各自行驶的路程.6.父子俩每天都去同一所学校上学,父亲是老师,儿子是学生.父亲从家到学校要走30分钟,儿子走这段路只需20分钟,若父亲比儿子早5分钟动身,则儿子需要多长时间才能追上父亲?7.为迎接新年,小红的妈妈在某外贸店为小红购买了一件上衣和一条裤子,已知上衣和裤子标价之和为600元,经双方议价,上衣享受九折优惠,裤子享受八折优惠,最终共付款518元.(1)则上衣和裤子的标价各多少元?(2)在本次交易中,外贸店老板将上衣和裤子在进价的基础上均提高50%进行标价,若该老板当天只进行了这一次交易,并且还需要支付店面、水电等其它费用共100元,请帮助老板计算当天的收益情况.8.为庆祝元旦,甲、乙两校准备联合文艺汇演,甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5920元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有8名同学抽调去参加迎元旦书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?9.为发展校园足球运动,某校决定购买一批足球运动装备,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,求每套队服和每个足球的价格是多少元.10.列方程解应用题《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问:共有多少人?这个物品的价格是多少?请用一元一次方程的知识解答上述问题.11.为打造“书香校园”,学校每个班级都建立了图书角.七年1班,除了班上每位同学捐出一本书外,三位班委还相约图书城,用班费买些新书.下面是他们的对话内容:(1)班委A上次买的一套书,图书城的利润是元,利润率是.如果当时他买一张会员卡,可省下元.(2)当购书的总价(指未打折前的原价)为多少时,办贵宾卡与办会员卡购书一样优惠?(3)三个班委精心挑选了一批新书,经过计算分析后,发现三种购买方式中,办会员卡购书最省钱,请你直接写出这批书的总价的范围.12.某城市自来水收费实行阶梯水价,收费标准如下表所示:某用户5月份用水8吨,交水费16元.(1)求a的值;(2)小明家5月份交水费51元,求小明家5月份用水量.13.某市按以下规定收取每月的燃气费,用燃气如果不超过30立方米,按每立方米1.20元收费;如果超过30立方米,超过部分按每立方米2元收费.已知3月份某用户的燃气费平均每立方米1.50元,那么3月份这位用户应交燃气费多少元.(要求要有解题过程)14.一个旅游团共26人去参观一个景点,已知成人票每张120元,儿童票每张80元,经预算,共需要门票钱2640元.(1)求这个旅游团成人和儿童的数量各是多少人?(2)到了售票窗口得知,购买两张成人票将会赠送一张儿童票,请计算共需门票钱多少元?15.列方程解应用题:某水果店计划购进A、B两种水果下表是A、B这两种水果的进货价格:(1)若该水果店要花费600元同时购进两种水果共50kg,则购进A、B两种水果各为多少?(2)若水果店将A种水果的售价定为14元/kg,要使购进的这批水果在完全售出后达到50%的利润率,B种水果的售价应该定为多少?16.一套仪器由一个A部件和三个B部件构成,用1m3钢材可以做40个A部件或240个B 部件.(1)现要用6m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?(2)设某公司租赁这批仪器x小时,有两种付费方式.方式一:当0<x<10时,每套仪器收取租金50元;当x>10时,超时部分这批仪器整体按每小时300元收费;方式二:当0<x<15时,每套仪器收取租金60元,当x>15时,超时部分这批仪器整体按每小时200元收费.请你替公司谋划一下,当x满足,选方式一节省费用一些;当x满足,选方式二节省费用一些.17.佳乐家超市元旦期间搞促销活动,活动方案如下表:小颖在促销活动期间两次购物分别支付了134元和913元.(1)小颖两次购买的物品如果不打折,应支付多少钱?(2)在此活动中,他节省了多少钱?18.某商店销售A,B两种商品,每件A商品的售价比B商品少10元.购买5件A商品比购买3件B商品多10元.设每件A商品的售价为x元.(1)每件B商品的售价为元(用含x的式子表示);(2)求A,B商品每件的售价各多少元?(3)元旦期间,该商店决定对A,B两种商品进行促销活动,具体办法是:方案一:购买A商品超出15件后,超出部分五折销售,不超出部分不享受任何折扣;B 商品无论多少一律九折.方案二:无论买多少,A,B商品一律八折.若小红打算到该商店购买m件A商品和20件B商品,选择哪种方案购买更实惠(两种优惠方案不能同时享受)?19.张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:例如:若购买的商品原价为15000元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700元.①求该品牌电脑的原价是多少元/台?②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?20.一种蔬菜,进入市场后,有以下三种销售盈利的方式:某家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了以下方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.21.列方程式应用题.用一根长为80厘米的铁丝围成一个长方形.(1)如果长方形的长比宽多10厘米,那么这个长方形的面积为多少平方厘米?(2)如果长方形的长比宽多4厘米,那么这个长方形的面积为平方厘米;(3)你能围成的面积最大的长方形面积是平方厘米.22.为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明算8、9月各用多少吨水?23.缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳个人所得税(应纳税所得额=税前收总额﹣国家规定扣除专项金额﹣免征额).根据以上信息,解决以下问题:(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是元.24.列方程式应用题.天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.请问:哪种方案获利更多?获利多少元?25.下表是中国电信两种“4G套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收取额外费用费,主叫超时和上网超流量部分加收超时费和超流量费)(1)6月小王主叫通话时间220分钟,上网流量800MB.按套餐1计费需元,按套餐2计费需元;若他按套餐2计费需129元,主叫通话时间为240分钟,则他上网使用了MB流量;(2)若上网流量为540MB,是否存在某主叫通话时间t(分钟),按套餐1和套餐2的计费相等?若存在,请求出t的值;若不存在,请说明理由.26.某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m2时,按2元/m2计算:月用水量超过20m2时,其中的20m2仍按2元/m2计算,超过部分按2.6元/m2计算.设某户家庭月用水量xm2(1)用含x的式子表示:当0≤x≤20时,水费为元;当x>20时,水费为元;(2)小花家第二季度用水情况如上表,小花家这个季度共缴纳水费117元,请你求出小花家6月份用水量a的值?27.热点链接:某地周六购物节有购物津贴、定金膨胀等优惠:购物津贴优惠:凡购物金额在400元及以上者均有优惠津贴,每400元减50元(400整数倍后,余额小于400的部分不优惠),例如原标价1000元,可优惠100元;定金膨胀优惠:对某指定商品提前付100元定金,则周六购物节当天实付可抵200元(在购物津贴优惠之后的基础上抵扣).问题解决:(1)客户小明打算在周六购物节当天购买标价为3899元的A款手机,他已经在前一天预付了100元定金给商户,则实付时可优惠多少钱?(2)购买手机有不交定金,预交100元定金两种选择.刘叔叔在周六购物节当天购买B 款手机实付价比原标价的还便宜100元,已知原标价介于4100元至4398元之间,试问刘叔叔是否交了100元定金,并说明理由.28.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为;则乙厂家运往A地的自行车的量数为;则乙厂家运往B地的自行车的量数为;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?29.网上办公,手机上网已成为人们日常生活的一部分,我县某通信公司为普及网络使用,特推出以下两种电话拨号上网收费方式,用户可以任选其一.收费方式一(计时制):0.05元/分;收费方式二(包月制):50元/月(仅限一部个人电话上网);同时,每一种收费方式均对上网时间加收0.02元/分的通信费.某用户一周内的上网时间记录如下表:(1)计算该用户一周内平均每天上网的时间.(2)设该用户12月份上网的时间为x小时,请你分别写出两种收费方式下该用户所支付的费用.(用含x的代数式表示)(3)如果该用户在一个月(30天)内,按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?并说明理由.30.某商场年终搞促销活动,活动规则如下:①购物不超200元不给优惠.②购物超过200元不足500元的全部打九折.③购物超过500元,其中500元打9折,超过500元的部分打八折.(1)小敏第一次购得商品花费为180元,求商品标价为多少元?(2)小敏第二次购物花费495元,与没有促销相比,第2次购物节约了多少钱?(3)若小敏将两次购得商品合为一次购买,可以省多少钱?参考答案1.解:①当小明家用水量不超过10立方米时,设小明家用水量为x立方米,则小强家用水量为(22﹣x)立方米,由题意,得x×2+10×2+(22﹣x﹣10)×3=47.解得,x=9.故小明家用水量为9立方米,小强家用水量为(22﹣9)=13(立方米).②当小明家用水量超过10立方米时,(22﹣2)×2+(22﹣20)×3=40+6=46≠47故这种情况不存在.综上,小明家用水量为9立方米,小强家用水量为13立方米.2.解:设女生有x人,则男生有(2x﹣15)人,根据题意可得,x+(2x﹣15)=48,解得:x=21,则2x﹣15=27,答:男生有27人,女生有21人.3.解:(1)根据题意得:2×6=12(元);故答案是:12.(2)根据题意设该户居民3月份用水x吨,则6<x<10,根据题意可,2×6+4(x﹣6)=24解得x=9故该户居民3月份用水9吨;(3)由5月份用水量超过了4月份,得到4月份用水量少于7m3,当4月份得用水量少于6m3时,5月份用水量超过10m3,则4,5月份共交水费为2a+8(14﹣a﹣10)+4×4+6×2=﹣6a+60(元);当4月份不超过6m3,5月份在6﹣10立方米之间则4,5月份交的水费为2a+4(14﹣a﹣6)+6×2=﹣2a+44(元);两个月都在6﹣10立方米之间.则4,5月份交的水费为4(a﹣6)+6×2+4(14﹣a﹣6)+6×2=32(元).故4,5月份交的水费为﹣6a+60(元)或﹣2a+44(元)或32(元).4.解:设个位上的数字为x,则十位上的数字为(3x+2),由题意得:x+(3x+2)=10.解得x=2.所以十位上的数字为3x+2=8.所以这两位是为82.5.解:设长途客车出发x小时时两车相遇,由题意得:85x+95x=360,解得:x=2,长途客车行驶路程:85×2=170(千米),小汽车行驶路程:95×2=190(千米),答:两车相遇时长途客车行驶路程为170千米,小汽车行驶路程190千米.6.解:设儿子需要x分钟才能追上父亲,由题意得:x(x+5),解得:x=10,答:儿子需要10分钟才能追上父亲.7.解:(1)设上衣标价x元,则裤子标价(600﹣x)元,由题意得:0.9x+0.8(600﹣x)=518,解得:x=380,裤子标价:600﹣380=220(元),答:上衣标价380元,则裤子标价220元;(2)上衣和裤子的进价为:600÷(1+50%)=400(元),518﹣400﹣100=18(元),答:当天的收益18元.8.解:(1)∵甲、乙两校共92人,∴甲、乙两校联合起来购买服装需50×92=4600(元),∴5920﹣4600=1320(元)答:甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省1320元.(2)设甲校人数为x人(依题意46<x<90),则乙校人数为(92﹣x)人,依题可得:60x+70(92﹣x)=5920,解得:x=52,∴92﹣x=40.答:甲校有52人,乙校有40人.(3)依题可得:抽调后甲校人数为:52﹣8=44(人),∴方案一:各自购买服装需44×70+40×70=5880(元);方案二:联合购买服装需(44+40)×60=5040(元);方案三:联合购买91套服装需91×50=4550(元);综上所述:因为5880>5040>4550.∴应该甲,乙两校联合起来选择按50元一次购买91套服装最省钱.答:甲,乙两校联合起来选择按50元一次购买91套服装最省钱.9.解:设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元.10.解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53(元),答:共有7人,这个物品的价格是53元.11.解:(1)由题意可得,班委A上次买的一套书,图书城的利润是:160﹣100=60(元),利润率是:100%=60%,如果当时他买一张会员卡,可省下:160﹣(20+160×0.8)=12(元),故答案为:60,60%,12;(2)设当购书的总价(指未打折前的原价)为x元时,办贵宾卡与办会员卡购书一样优惠,20+0.8x=100+0.6x,解得,x=400,即当购书的总价(指未打折前的原价)为400元时,办贵宾卡与办会员卡购书一样优惠;(3)设购书总价(指未打折前的原价)为y元时,购买会员卡与不办卡花钱一样多,20+0.8y=y,解得,y=100,由(2)知,当购买400元的书时,办贵宾卡与办会员卡购书一样优惠,故当购买书款在大于100元且少于400元时,办会员卡购书最省钱.12.解:(1)依题意得:8a=16.解得a=2;(2)如果一个月用水12吨,则需水费:12×2=24元,如果一个月用水18吨,则需交水费:12×2+6×2.5=39元,5月份交水费51元>39元,所以5月份,用水量超过了18吨,设小明家5月份用水量为x吨,依题意得:12×2+6×2.5+3(x﹣18)=51.解得x=22.答:小明家5月份用水量为22吨.13.解:∵3月份某用户的燃气费平均每立方米1.50元,∴用户燃气用量超过30立方米,设3月份燃气用量为x,由题意得,30×1.2+(x﹣30)×2=1.5x,解得:x=48,则3月份这位用户应交燃气费为:48×1.5=72(元)答:3月份这位用户应交燃气费72元.14.解:(1)设旅游团成人的数量是x人,则儿童的数量是(26﹣x)人,由题意得:120x+80(26﹣x)=2640解得x=1426﹣x=26﹣14=12答:这个旅游团成人的数量是14人,儿童的数量是12人;(2)2640﹣14÷2×80=2080(元)答:共需门票2080元.15.解:(1)设购进A水果x千克,则购进B水果(50﹣x)千克,依题意有10x+15(50﹣x)=600,解得:x=30,50﹣x=20.故购进A水果30千克,购进B水果20千克;(2)设B种水果的售价应该定为y元/千克,依题意有(14﹣10)×30+(y﹣15)×20=600×50%,解得:y=24.故B种水果的售价应该定为24元/千克.16.解:(1)设应用ym3钢材做A部件,用(6﹣y)m3钢材做B部件,则可配成这种仪器40y套,则3×40y=240(6﹣y)解得:y=4,6﹣y=2,40y=160.答:应用4m3做A部件,用2m3做B部件,恰好配成160套这种仪器(2)依题意有:50×160+300(x﹣10)=60×160+200(x﹣15),解得x=16,故0<x<16,选方式一节省费用一些;x>16,选方式二节省费用一些.17.解:(1)①∵134元<200×90%=180元∴小颖不享受优惠;②∵第二次付了913元>1000×85%=850元∴小颖享受优惠,其中1000元按8.5折优惠,超过1000元部分按7折优惠.设小颖第二次所购价值x元的货物,根据题意得85%×1000+(x﹣1000)×70%=913解得x=10901090+134=1224(元)答:小颖两次购买的物品如果不打折,应支付1224元钱;(2)1090﹣913=177(元)答:在此次活动中,他节省了177元钱.18.解:(1)每件B商品的售价为(x+10)元;故答案为:(x+10);(2)根据题意得,5x=3(x+10)+10,解得x=20,∴x+10=30;答:A,B商品每件的售价分别为20元,30元;(3)当m≤15时,方案一:20m+30×20×90%=20m+540;当m>15时,方案一:15×20+(m﹣15)×20×50%+30×20×90%=10m+690;方案二:(20m+30×20)×80%=16m+480,当m≤15时,20m+540>16m+480∴应该按方案二购买,选择方案二购买更实惠;当m>15时,10m+690>16m+480时,解得m<35;10m+690<16m+480时,解得m>35;10m+690=16m+480时,解得m=35,∴当m<35时,按方案二购买;当m=35时,两种方案都一样;当m>35时,按方案一购买.19.解:(1)5000(8000﹣5000)6900(元)答:张老师实际付款6900元.(2)①设该品牌电脑的原价为x元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x<10000依题意有:5000(x﹣5000)57004500+0.8x﹣4000=57000.8x=5200x=6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.②设该电器的进价为m元/台,则有:m(1+14%)=5700解得:m=5000答:这种品牌电脑的进价为5000元/台.20.解:如果我是公司经理,我会选择第三种方案,方案一:∵4000×140=560000(元),∴将蔬菜全部进行粗加工后销售,则可获利润630000元方案二:15×6×7000+(140﹣15×6)×1000=680000(元),∴将蔬菜尽可能多的进行精加工,没来得及加工的在市场上直接销售,则可获利润725000元;方案三:设精加工x天,则粗加工(15﹣x)天.根据题意得:6x+16(15﹣x)=140,解得:x=10,所以精加工的吨数=6×10=60,16×5=80吨.这时利润为:80×4000+60×7000=740000(元),∵740000>680000>630000,∴选择第三种,答:如果我是公司经理,我会选择第三种方案,可获得最高利润.21.解:(1)设长方形的宽为x厘米,则长方形的长为(x+10)厘米,根据题意可知:x+(x+10)=40,所以x=15厘米,长方形长为25厘米,宽为15厘米,面积为25×15=375(平方厘米),答:这个长方形的面积为375平方厘米;(2)设长方形的宽为x厘米,则长方形的长为(x+4)厘米,根据题意可知:x+(x+4)=40,所以x=18厘米,长方形长为22厘米,宽为18厘米,面积为22×18=396(平方厘米),答:这个长方形的面积为396平方厘米;(3)设长方形的宽为x厘米,长方形面积为S平方厘米,则长方形的长为(40﹣x)厘米,根据题意得S=x(40﹣x)=﹣x2+40x=﹣(x﹣20)2+400,∴能围成的面积最大的长方形面积是400平方厘米,故答案为:(2)396,(3)400.22.解:(1)∵小刚家6月份用水15吨,∴小刚家6月份应缴水费为10×1.6+(15﹣10)×2=26(元),故答案为:26;(2)由题意知小刚家7月份的用水量超过10吨而不超过20吨,设小刚家12月份用水量为x吨,依题意得:1.6×10+2(x﹣10)=1.75x解得:x=16,(3)因小刚家8月、9月共用水40吨,9月份用水比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为x吨,则8月份的用水量为(40﹣x)吨,①当x≤10时,依题意可得方程:1.6x+16+20+2.4(40﹣x﹣20)+2=79.6解得:x=8,②当10<x<20时,依题意得:16+2(x﹣10)+16+20+2.4(40﹣x﹣20)+2=79.6解得:x=6不符合题意,舍去.综上:小刚家8月份用水32吨,9月份用水8吨.23.解:(1)由题意知,2000×3%=60(元)故答案是:60;(2)易知:小明爸爸在第2级中的税,设他的应纳税所得额为a元,则90+(a﹣3000)×10%=590.解得a=8000.∴小明爸爸应纳税所得额为8000元(3)设小明的爸爸应纳税所得额是x元,则小明的妈妈应纳税所得额是(20000﹣x)元,由题意得:3000×3%+(17000﹣x)×10%+3000×3%+9000×10%+(x﹣12000)×20%=1780 解得x=14000故答案是:14000.24.解:方案一:15×8×8000+(200﹣15×8)×1000=1040000(元),∴尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售,则可获利润1040000元方案二:设加工为特级霜降柿饼x吨,则加工为普通柿饼(200﹣x)吨食品,由题意可得:15,解得x=40,∴200﹣x=160,这时利润为:40×8000+160×5000=1120000(元)∴该公司可以加工为特级霜降柿饼40吨,加工为普通柿饼160吨,可获得最高利润为1120000元.∵1120000>1040000,∴方案二案获利更多,获利1120000元25.解:(1)套餐1:49+0.2(220﹣200)+0.3(800﹣500)=49+0.2×20+0.3×300=49+4+90=143.套餐2:69+0.2(800﹣600)=69+0.2×200=69+40=109.设上网流量为xMB,则69+0.2(x﹣600)=129解得x=900.故答案为:143;109;900.(2)当0≤t<200时,49+0.3(540﹣500)=61≠69∴此时不存在这样的t.当200≤t≤250时,49+0.2(t﹣200)+0.3(540﹣500)=69解得t=240.当t>250时,49+0.2(t﹣200)+0.3(540﹣500)=69+0.15(t﹣250)解得t=210(舍).故若上网流量为540MB,当主叫通话时间为240分钟时,按套餐1和套餐2的计费相等.26.解:(1)当0≤x≤20时,水费为2x元;当x>20时,水费为20×2+2.6(x﹣20)=(2.6x ﹣12)元.故答案为:2x、(2.6x﹣12);(2)由题意得,小花家4月份,5月份共交水费15×2+17×2=30+34=64(元),则6月份用水量a>20,∴小花家6月份的用水为a吨,则超过20吨的部分为(a﹣20)吨,∴15×2+17×2+20×2+2.6(a﹣20)=117,解得:a=25.答:小花家6月份用水25吨.27.解:(1)由题意可知:3899÷400≈9.75,∴按照购物津贴优惠,共优惠了9×50=450,∴优惠后需要付款为:3899﹣450=3449,按照定金膨胀优惠可知:3449﹣100=3349元,∴实付时可优惠3899﹣3349=550元,(2)设原标价为x元,当刘叔叔已交定金时,此时按照优惠方案可知,实付了(x﹣500﹣100)元,∴x﹣500﹣100x﹣100,解得:x=5250>4100,不符合题意,故刘叔叔未交定金.28.解:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为20﹣x;则乙厂家运往A地的自行车的量数为30﹣x;。

人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。

2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练(含答案)

2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练(含答案)

2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练1.一艘船在甲码头到乙码头顺流行驶,用了2小时;再从乙码头返回甲码头逆水行驶,用了3小时,已知这艘船在静水中航行的速度为15千米/小时,则水流的速度为多少千米每小时?2.一艘船从甲码头到乙码头顺流而行,用了2.5 h;从乙码头返回甲码头逆流而行,用了3 h.已知水流的速度是2 km/h,求船在静水中的平均速度.3.某中学学生步行到郊外旅行,七年级(1)班学生组成前队,步行速度为4千米/小时,七(2)班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.(1)后队追上前队需要多长时间?(2)后队追上前队的时间内,联络员走的路程是多少?(3)七年级(1)班出发多少小时后两队相距2千米?4.鄞州公园计划在园内的坡地上栽种树苗和花圃,树苗和花苗的比例是1:25,已知每人每天种植树苗3棵或种植花苗50棵,现有15人参与种植劳动.(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如果完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务?5.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出所满足的条件.6.红星纺织厂为了应对疫情需求,安排甲、乙两个车间生产防疫口罩.第一周甲、乙两个车间各生产5天后,乙车间周六加班多生产1天,结果两个车间生产的口罩数量一样多:第二周甲、乙两个车间各生产4天后乙车间又多生产口罩3000个,结果甲车间比乙车间仍多生产口罩1000个.(1)甲、乙两车间每天生产口罩各多少个?(2)第三周,纺织厂又接到生产40000个口罩的订单,且要求必须4天完成任务,同时甲车间要抽调一半的工人去生产防护服,因此,甲车间生产口罩的效率只有原来的一半,厂部要求乙车间必须提高口罩生产效率,保证按时完成任务,乙车间生产效率提高的百分比是多少?7.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)n n 520要2个桶底才能构成一个铁桶,为使每天生产的桶身和桶底刚好配套,应该安排生产桶身和桶底的工人各多少名?15.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,并且付给他每天10元生活补助费,现有三种修理方案, A 方案:由甲单独修理;B 方案:由乙单独修理;C 方案:甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?16.某超市进行新年促销活动,将某种年货礼包按原价的9折销售,此时的利润率为12.5%.若这种年货礼包的进价为每个80元(1)年货礼包的原售价是多少元?(2)开展促销活动后,实际销量为按原价销售时的3倍,则实际利润和未开展促销活动时相比,是增多,不变,还是减少?请通过计算说明.17.某工厂中秋节前要制作一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月饼要用面粉,1块小月饼要用面粉.(1)若制作若干盒月饼共用了面粉,请问制作大小两种月饼各用了多少面粉?(2)在(1)的条件下,已知制作一个精美月饼包装盒的成本为5元,面粉的进价为25元/千克,在不计其它成本的情况下,工厂想达到的利润率,则应如何制定每盒月饼的出厂价?18.为进一步加强居民对电信诈骗的防范意识,提高对电信诈骗的鉴别、自我保护能力,营造全民反诈的浓厚氛围,我校志愿者积极配合社区开展反诈骗宣传工作,志愿者们准备印制一些反诈骗宣传小册子,利用中秋国庆假期到公园里开展防诈骗、反诈骗宣传活0.05kg 0.02kg 640kg 50%参考答案:13.(1)48(2)该户居民3月份用水4t ,4月份用水11t 14.(1)(2)30名工人生产桶身,36名工人生产桶底15.(1)该中学库存桌椅960套.(2)选择C 方案省时又省钱.16.(1)100元(2)增多17.(1)制作大月饼用了面粉,制作小月饼用了面粉(2)每盒月饼的出厂价应定为26元18.(1)印刷册,两家的印刷总费用是相等(2)乙店是打七五折优惠19.(1),(2)若交费时间为1年,选择方案一更合适,(3)交费时间为10个月时,两种方案费用相同20.(1)这个公司要加工960件新产品(2)该公司应选择第③种方案,由两个工厂合作同时完成时,既省钱,又省时间18400kg 240kg 403004000M x =+6001000N x =+。

人教版七年级数学上册一元一次方程解应用题专题练习

人教版七年级数学上册一元一次方程解应用题专题练习

一元一次方程应用题专题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利率=每个期数内的利息本金×100% 利息=本金×利率×期数经典例题基础练习:1、列方程表示下列语句所表示的等量关系:①某校共有学生1049人,女生占男生的40%,求男生的人数。

人教版2024年七年级上册第5章《一元一次方程》单元测试 含答案

人教版2024年七年级上册第5章《一元一次方程》单元测试  含答案

人教版2024年七年级上册第5章《一元一次方程》单元测试满分100分时间90分钟一、选择题(共30分)1.下列各式中,属于方程的是()A .4(1)3+-=B .23x +C .210x -<D .215x -=2.下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个3.下列四个方程中,解是1x =的是()A .213x -=B .13x +=C .11x -=D .12x +=4.下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c=D .如果22a bc c=,则a b =5.将方程4387x x +=+移项后,正确的是()A .4873x x -=+B .4837x x -=-C .8437x x -=-D .8473x x -=-6.解方程2(21)x x -+=,以下去括号正确的是()A .41x x +=-B .42x x-+=-C .41x x--=D .42x x--=7.把方程0.10.20.710.30.4x x ---=的分母化为整数的方程是()A .0.10.20.734x x --=B .127101034x x---=C .127134x x ---=D .12710134x x---=8.把一些图书分给某班学生,如果每人分3本,则余20本;如果每人分4本,则缺25本.设有x 名学生,则可列方程为()A .320425x x +=-B .320425x x +=+C .202534x x +-=D .202534x x -+=9.对于非零的两个有理数a ,b ,规定1a b b a⊗=-,若()1211x ⊗+=,则x 的值为()A .32B .13C .12D .12-10.如图,表中给出的是某月的月历,任意选取“凹”型框中的5个数(如阴影部分所示).请你运用所学的数学知识来研究,这5个数的和不可能是()A .36B .51C .78D .126二、填空题(共24分)11.已知关于x 的方程2240m x m -+-=是一元一次方程,则m 的值为.12.若3240x y --=,则用含x 的代数式表示y 为.13.如果256x +=,那么26x =,其依据是.14.若代数式35m -与32m -的值互为相反数,则m 的值是.15.某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x 套,列方程式是.16.如图,已知A ,B 两点在数轴上,点A 表示的数为10-,点B 表示的数为30,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动,其中点M 、点N 同时出发,经过秒,点M 、点N 分别到原点O 的距离相等.三、解答题(共46分)17.(8分)解方程:(1)35(14)x x =--;(2)231132x x -+=-.18.(6分)已知:关于x 的方程111236x -=与()31x m m +=-有相同的解,求以y 为未知数的方程3332my m y--=的解.19.(6分)张阿姨到商场以940元购买了一件羽绒服和一条裙子.已知羽绒服打八折,裙子打六折,结果比按标价购买时共节省了360元,求张阿姨购买的羽绒服及裙子的标价.20.(8分)甲、乙两人共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元.(1)在规定时间内,甲、乙两人能否完成这项工程?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人.调走谁更合适?21.(8分)某服装批发商促销一种裤子和T恤,在促销活动期间,裤子每件定价100元,T恤每件定价50元,并向客户提供两种优惠方案:方案一:买一件裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.x>):现某客户要购买裤子30件,T恤x件(30(1)按方案一,购买裤子和T恤共需付款______(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?x=时,你能给出一种更为省钱的购买方案吗?(3)若两种优惠方案可同时使用,当4022.(10分)如图在数轴上点A表示数a,点B表示数b,AB表示点A与点B之间的距离,且a,b满足:()2-++=.2460a b(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且3=,求点C表示的数;AC BC(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向右运动;同时另一小球乙从点B处以2个单位/秒的速度也向右运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为t(秒),求甲、乙两小球到原点的距离相等时经历的时间?参考答案一、选择题题号12345678910答案DAD DCDDACC二、填空题11.312.342x y -=13.5-;等式的基本性质114.215.()3010256x x +=+16.2或10三、解答题17.(1)解:()3514x x =--去括号得:3514x x =-+,移项得:3451x x -=-,合并同类项得:4x -=,系数化为1得:4x =-.(2)231132x x -+=-去分母得:()()223316x x -=+-,去括号得:46336x x -=+-,移项得:63364x x --=--,合并同类项得:97x -=-,系数化为1得:79x =.18.解:111236x -=,移项合并得:1122x =,解得:1x =,关于x 的方程111236x -=与()31x m m +=-有相同的解,∴将1x =代入方程()31x m m +=-,可得()311m m +=-,解得:2m =-,将2m =-代入3332my m y--=,可得322332y y +--=,去分母得:()()232323y y +=--,去括号得:6469y y +=--,移项合并得:1312y =-,系数化1得:1213y =-19.解:按标价购买羽绒服及裙子总价为9403601300+=(元)设张阿姨购买的羽绒服的标价为x 元/件,则裙子的标价为(1300)x -元/条.由题意,得()0.80.61300940x x +-=,解得800x =.当800x =时,1300500x -=.答:张阿姨购买的羽绒服的标价为800元/件,裙子的标价为500元/条.20.(1)解:设甲、乙两人合作完成此项工程需x 天.则13020x x +=,解得12x =.因为1215<,所以在规定时间内,甲、乙两人能完成这项工程;(2)解:设两人合作a 天完成工程的75%.则330204a a +=解得9a =.若调走甲,则乙还需115420÷=(天);若调走乙,侧甲还需117.5430÷=(天).因为9514+=(天)15<天,97.516.5+=(天)15>天,所以调走甲更合适.21.(1)解:根据题意得()100305030501500x x ⨯+-=+,故按方案一,购买裤子和T 恤共需付款()501500x +;(2)按方案一,购买裤子和T 恤共需付款()100305080%402400x x ⨯+⨯=+,根据题意得,501500402400x x +=+,解得90x =,答:购买90件T 恤时,两种优惠方案付款一样;(3)能,用方案一购买裤子30件,送T 恤30件,再用方案二购买10件T 恤,共需付款()3010050403080%3400⨯+⨯-⨯=(元),∴共需付款3400元.22.(1)解:∵()22460a b -++=,∴240a -=,60b +=,∴2a =,6b =-,∴A 、B 两点之间的距离628=--=;(2)设数轴上点C 表示的数为c ∴2AC c =-,6BC c =--∵3AC BC =,∴236c c -=--,解得4c =-或10c =-,即数轴上点C 表示的数为4-或10-,(3)乙球到挡板的时间623t =÷=秒,当03t ≤≤时,乙球没有到挡板,此时甲球到原点的距离为2t +,乙球到原点的距离为62t -,由甲、乙两小球到原点的距离相等可得622t t -=+,解得43t =;当3t >时,乙球到挡板并返回,此时甲球到原点的距离为2t +,乙球到原点的距离为26t -,由甲、乙两小球到原点的距离相等可得262t t -=+,解得8t =,符合题意;综上所述,当43t =或8秒时,甲、乙两小球到原点的距离相等.。

人教版七年级数学上一元一次方程的解法和应用专题训练含答案

人教版七年级数学上一元一次方程的解法和应用专题训练含答案

专题训练(一) 一元一次方程的解法1.解下列方程:(1)(南宁校级月考)2x +5=5x -7; 解:2x -5x =-7-5, -3x =-12, x =4.(2)12x +x +2x =140; 解:72x =140,x =40.(3)56-8x =11+x ; 解:-8x -x =11-56, -9x =-45, x =5.(4)43x +1=5+13x. 解:43x -13x =5-1,x =4.2.解下列方程:(1)(玉林期末)10(x -1)=5; 解:10x -10=5, 10x =5+10, 10x =15,x =32.(2)4x -3(20-2x)=10; 解:4x -60+6x =10, 4x +6x =60+10, 10x =70, x =7.(3)3(x -2)+1=x -(2x -1); 解:3x -6+1=x -2x +1, 4x =6,x =1.5.(4)4(2x -3)-(5x -1)=7; 解:8x -12-5x +1=7, 8x -5x =7+12-1, 3x =18, x =6.(5)4y -3(20-y)=6y -7(9-y). 解:4y -60+3y =6y -63+7y. 4y +3y -6y -7y =60-63, -6y =-3, y =12.3.解下列方程:(1)2x -13-2x -34=1;解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12, 8x -6x =4-9+12, 2x =7, x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90, 15x -12x =-90+30, 3x =-60, x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140, 12x -45x +20x =-36+140, -13x =104, x =-8.(4)2x -13-10x +16=2x +12-1;解:2(2x -1)-(10x +1)=3(2x +1)-6, 4x -2-10x -1=6x +3-6, 4x -10x -6x =3-6+2+1, -12x =0, x =0.(5)x +45-(x -5)=x +33-x -22.解:6(x +4)-30(x -5)=10(x +3)-15(x -2), 6x +24-30x +150=10x +30-15x +30, 6x -30x -10x +15x =30+30-24-150, -19x =-114, x =6.4.解下列方程:(1)x -40.2-2.5=x -30.05;解:原方程整理,得5x -20-2.5=20x -60. 移项,得5x -20x =-60+20+2.5. 合并同类项,得-15x =-37.5. 系数化为1,得x =2.5.(2)0.5x +0.90.5+x -53=0.01+0.02x 0.03.解:原方程整理,得5x +95+x -53=1+2x 3.去分母,得15x +27+5x -25=5+10x.移项、合并同类项,得10x =3. 系数化为1,得x =0.3.5.解方程:3|x|-5=|x|-22+1.解:6|x|-10=|x|-2+2, 5|x|=10, |x|=2, x =2或-2.6.解下列方程:(1)119x +27=29x -57;解:119x -29x =-57-27,x =-1.(2)278(x -3)-463(6-2x)-888(7x -21)=0.解:278(x -3)+463×2(x-3)-888×7(x-3)=0, (278+463×2-888×7)(x-3)=0, x =3.专题训练(二) 一元一次方程的应用1.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3 h ,已知船在静水中的速度是8 km /h ,水流速度是2 km /h ,若A 、C 两地距离为2 km (A 、B 、C 三地在一条直线上),则A 、B 两地间的距离是10或252k m .2.兄弟两人由家里去学校,弟每小时走6里,哥每小时走8里,哥晚出发10分钟,结果两人同时到校,学校离家有多远?解:设学校离家有x 里.由题意,得x 6-1060=x8.解得x =4. 答:学校离家有4里.3.用两台水泵从同一池塘中向外抽水,单开甲泵5小时可抽完,单开乙泵2.5小时便能抽完.(1)如果两台水泵同时抽水,多长时间能把水抽完?(2)如果甲泵先抽2小时,剩下的由乙泵来抽,乙泵用多少时间才能把水抽完? 解:(1)设两台水泵同时抽水,x 小时能抽完.由题意,得x 5+x 2.5=1,解得x =53. 答:两台水泵同时抽水,53小时能把水抽完.(2)设乙泵用y 小时才能抽完,由题意,得 15×2+12.5y =1,解得y =1.5. 答:乙泵用1.5小时才能把水抽完.4.一辆卡车在公路上匀速行驶,起初看到的里程碑上是一个两位数,过了1小时,里程碑上的数恰好是原来的个位上的数与十位上的数交换位置后所得到的两位数,又过了1小时,里程碑上的数是一个三位数,这个三位数的百位上的数与个位上的数分别是起初看到的两位数的十位上的数与个位上的数,而十位上的数为0,且起初的两位数个位上的数比十位上的数的5倍多1,求卡车的速度.解:设起初看到的两位数十位上的数是x ,则个位上的数是5x +1.由题意,得 [10(5x +1)+x]-[10x +(5x +1)]=(100x +5x +1)-[10(5x +1)+x]. 解得x =1.则5x +1=6,61-16=45(千米). 答:卡车的速度是45千米/时.5.某会议厅主席台上方有一个长12.8 m 的长条形(长方形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如图所示:根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少. 解:设边空、字宽、字距分别为9x cm 、6x cm 、2x cm .由题意,得 9x ×2+6x×18+2x(18-1)=1 280. 解得x =8.则9x =72,6x =48,2x =16.答:边空为72 cm ,字宽为48 cm ,字距为16 cm .6.某次篮球联赛共有十支队伍参赛,部分积分表如下:胜场 12 10 其中一队的胜场总积分能否等于负场总积分?请说明理由. 解:由D 队可知,负一场积分为:16÷16=1(分), 则由A 队可知,胜一场积分为:28-4×112=2(分).设其中一队的胜场为x 场,则负场为(16-x)场,则 2x =16-x ,解得x =163.因为场数必须是整数,所以x =163不符合实际.所以没有一队的胜场总积分能等于负场总积分.7.某商场在元旦期间搞促销活动,一次性购物不超过2 000元不优惠;超过2 000元,但不超过5 000元,按9折优惠;超过5 000元,超过部分按8折优惠,其中的5 000元仍按9折优惠.某人两次购物分别用了1 340元和4 660元.问:(1)此人的两次购物,若物品不打折,需多少元钱? (2)此人两次购物共节省多少元钱?(3)若将两次购物的钱合起来,一次购买相同的商品,是否更节省?请说明理由. 解:(1)因为2 000×90%=1 800(元)>1 340元,所以购1 340元的商品未优惠. 又因为5 000×90%=4 500(元)<4 660元,所以购4 660元的商品有两个等级优惠. 设其售价为x 元,依题意,得5 000×90%+(x -5 000)×80%=4 660, 解得x =5 200.所以如果不打折,那么分别需1 340元和5 200元,共需6 540元. (2)共节省6 540-(1 340+4 660)=540(元).(3)6 540元的商品优惠价为5 000×90%+(6 540-5 000)×80%=5 732(元), 1 340+4 660=6 000(元), 因为5 732<6 000,所以若一次购买相同的商品,更节省.8.一个车队共有n(n 为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n 的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v 米/秒,当车队的第一辆车的车头从他身边经过了15秒钟时,为了躲避一只小狗,他突然以3v 米/秒的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35秒,求v 的值.解:(1)36千米/时=10米/秒,则4.87n +5.4(n -1)=20×10,解得n =20.(2)车队总长度:20×4.87+5.4×19=200(米). 由题意,得(10-v)×15+(10-3v)×(35-15)=200, 解得v =2.9.一辆汽车从A 地驶往B 地,前三分之一路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km /h ,在高速公路上行驶的速度为100 km /h ,汽车从A 地到B 地一共行驶了2.2 h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.解:答案不唯一,例如:①问题:普通公路和高速公路各为多少km?解:设普通公路长为x km,根据题意,得x 60+2x100=2.2.解得x=60.则2x=120.答:普通公路和高速公路各为60 km和120 km.②问题:汽车在普通公路和高速公路上各行驶了多少h?解:设汽车在普通公路上行驶了x h,根据题意,得60x×2=100(2.2-x).解得x=1.则2.2-x=1.2.答:汽车在普通公路上和高速公路上分别行驶了1 h和1.2 h.。

数学人教版2024版七年级初一上册 5.3 实际问题与一元一次方程 课时练02测试卷含答案

数学人教版2024版七年级初一上册 5.3 实际问题与一元一次方程 课时练02测试卷含答案

第五章 一元一次方程5.3 实际问题与一元一次方程一、单选题1.甲、乙两车同时从A ,B 两地出发相向而行,在距B 地54千米处相遇,他们各自到达对方出发地后立即返回,在距A 地42千米处相遇.A ,B 两地相距( )千米.A .120B .100C .80D .602.如图,正方形的一边长减少2cm 后,得到一个长方形(图中阴影部分),若长方形的周长为26cm ,求正方形的边长.设正方形的边长为cm x ,可列方程为( )A .()226x x ++=B .()22226x x ++=C .()226x x +-=D .()22226x x +-=3.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套?(一个螺栓配两个螺母)设生产螺栓有m 人,则可列方程为( )A .212218(28)m m ´=´-B .21218(28)m m ´=-C .12(28)218m m-=´D .212(28)18m m´-=4.小明一共有34元钱,买了笔和本子,笔1元钱一支,本子3元钱一本,本子和笔总数为20,最后正好花完钱,则本子买了( )本.A .10B .9C .8D .75.小明早晨上学时,每小时走5千米,中午放学沿原路回家时,每小时走4千米,结果回家所用的时间比上学所用的时间多15分钟,问小明家离学校多远?设小明家离学校有x 千米,那么所列方程是( )A .1544x x +=B .1554x x =-C .1554x x =+D .1544x x -=6.整理一批图书,由一个人做要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作的34,假设每个人的工作效率相同,具体先安排x 人工作,则列方程正确的是( )A .()82414040x x ++=B .()824340404x x ++=C .()82414040x x -+=D .()824340404x x -+=7.《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x 尺,则符合题意的方程应为( )A .114134x x -=-B .3441x x +=+C .114734x x +=+D .()()3441x x +=+8.“朝三暮四”是一个源自于《庄子·齐物论》的寓言故事,某数学老师将其情景内容改编成一道数学题:老翁计划早上给猴子的粮食是晚上的34,猴子们很不满意,于是老翁进行了调整,从晚上的粮食中取3千克放在早上投食,这样早上的粮食是晚上的43,猴子们非常满意.问老翁每天给猴子的食物总量共多少千克?设原计划早上投食3x 千克,那么晚上投食4x 千克,根据这一情景,你认为下列等式正确的是( )A .43333x x -+=B .433x x -=C .3344x x +=D .()433433x x +=-二、填空题9.(和差问题)豆豆和苗苗各有一盒玻璃球,共有108颗,豆豆给了苗苗10颗,豆豆剩下的玻璃球比苗苗还多8颗,原来苗苗有颗玻璃球.10.(一元一次方程)端午节期间,超市卖出面值为500元和300元的购物卡共140张,共收入52000元,其中面值500元的购物卡卖出张,面值300元的购物卡卖出张.11.某车间有20名工人,每人每天可以生产600个螺母或900个螺丝.一个螺丝需要配两个螺母,为使每天生产的螺丝与螺母刚好配套,设安排x名工人生产螺母,根据题意可列方程为.12.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则列方程.13.甲、乙、丙三人参加一次考试,甲、乙两人平均分比三人平均分多3.5分,乙、丙两人平均分比三人平均分少2.5分,已知乙得了94分,那么丙得了分.14.古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两,今有干丝一十二斤,问生丝几何?”现有一类似问题:今有新鲜冬笋30斤,干燥后会损耗24斤,若干燥后得到的干冬笋是12斤,则原有新鲜冬笋斤.15.甲、乙两人身上带的钱数之比是73:,甲给乙5元后,变成137:.那么,甲、乙两人共有钱元.16.某班数学兴趣小组的女生人数是全组人数的一半,如果增加2名女生,那么女生人数是全组人数的23,设该小组原来女生人数是x人,则可列方程.三、解答题17.小芳早上7:50出门赶到距家1200m的学校上学.已知小芳的速度是80m/min,她刚出门5min,妈妈想起昨晚班主任在家长群发通知,今天学生在家上网课,网课8:20开始,于是妈妈立即以()180m/min的速度跑出门去追小芳,并且在途中追上了她,小芳立即和妈妈以120m/min的速度走回家(1)妈妈追上小芳用了多长时间?(2)小芳是否能赶在网课开始前进入网课直播间上课?18.春节期间,“绵阳百盛商店”进行优惠大酬宾活动,所有商品一律按照20%的利润定价,然后又打八折出售.(1)商品A成本是120元,商品A最后应卖多少元?(2)商品B卖出后,亏损了128元,商品B的成本是多少元?(3)商品C和D两件商品同时卖出后,结果共亏损了60元.若C的成本是D 的2倍,则C、D成本分别是多少元?19.(浓度问题)瓶中装有浓度为20%的酒精溶液1800克,现在又分别倒入300克和400克的A、B两种酒精溶液,瓶里的酒精溶液浓度变为18%.已知A种酒精溶液的浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是多少?20.(一元一次方程)有男、女同学共325人,新学年男生增加25人,女生减少1,总人数增加16人,那么现有男同学多少人?20参考答案1.A 2.D 3.B 4.D 5.A 6.B 7.D 8.D 9.4010.509011.)600290020(x x =´-12.()11112x x -=++13.8514.6015.10016.()22223x x +=+17.(1)解:设妈妈追上小芳用了min x ,根据题意得:18080(5)x x =+,解得:4x =.答:妈妈追上小芳用了4min ;(2)解:妈妈追上小芳时离家的距离为80(54)720(m)´+=,小芳返回家所用时间为7201206(min)¸=,54615(min)++=Q ,8:207:5030(min)-=,1530<,\小芳能赶在网课开始前进入网课直播间上课.18.(1)解:()120120%80%115.2´+´=(元)答:商品A 最后应卖115.2元;(2)解:()12811120%80%3200¸-´+´=éùëû(元)答:商品B 的成本是3200元;(3)解:设D 的成本是x 元,则C 的成本是2x 元,()()2120%80%260x x x x +´+´=+-,2.88360x x =-,0.1260x =,500x =,250021000x =´=,答:D 的成本是500元,C 的成本是1000元.19.解:设B 种酒精溶液的浓度为x ,则A 种酒精溶液的浓度为2x ,由题意,得:()180020%3002400180030040018%x x ´+×+×=++´,解得:0.099%x ==,∴218%x =;答:A 种酒精溶液的浓度是18%.20.解:依题意,设原有男同学x 人,则原有女同学()325x -人.则()12532513251620x x æö++-´-=+ç÷èø解得145x =∴14525170+=(人)∴现有男同学170人.。

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)

2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)
2023-2024 年人教版七年级上册数学第三章一元一次方程应 用题(方案选择问题)训练
1.小颖购买练习本可以到甲店购买,也可以到乙店购买,已知两店的标价都是每本 1 元,甲店的优惠条件是:购买 10 本以上,从第 11 本开始按标价的 70%出售;乙商店的 优惠条件是:从第 1 本开始按标价的 80%出售. (1)小颖要买 20 本练习本时,到哪个店购买较省钱? (2)买多少本练习本时,在两店购买练习本付的费用相等? (3)小颖现有 24 元,最多可买多少本练习本?
9.一种蔬菜在某市场上的销售价格如下: 购买数量 不超过 20 千克 20 千克以上但不超过 40 千克 40 千克以上
价格
5 元/千克
4 元/千克
3 元/千克
已知小明两次购买了此种蔬菜共 70 千克(第二次购买数量多于第一次). (1)若第一次购买 15 千克,则两次的总费用为________元; (2)若两次购买蔬菜的总费用为 236 元,求第一次、第二次分别购买此种蔬菜多少千克?
(1)分别用含 x 的式子表示 M,N; (2)交费时间为多少个月时,两种方案费用相同? (3)若交费时间为 12 个月《义务教育课程方案》和课程标准(2022 年版),将劳动从原 来的综合实践活动课程中独立出来.我县某中学初中部为了让学生体验农耕劳动,开辟 了一处种植园,需要采购一批某种菜苗开展种植活动,已知甲、乙两菜苗基地该种菜苗 每捆的标价都是 6 元(菜苗的质量一样好),但甲、乙两菜苗基地的优惠条件却不同. 甲菜苗基地:若购买不超过 15 捆,则按标价付款;若一次购 15 捆以上,则超过 15 捆 的部分按标价的 60%付款; 乙菜苗基地:按标价的 80%付款. (1)若学校决定购买该种菜苗 20 捆,则在甲菜苗基地购买,需付款________元,在乙菜 苗基地购买,需付款________元; (2)若学校决定购买该种菜苗 x 捆( x 15),请用含 x 的式子分别表示在甲、乙两个菜苗 基地购买该种菜苗的费用; (3)学校决定购买该种菜苗多少捆时,到甲、乙两菜苗基地用的钱一样多?说明理由.

人教版 七年级数学上册 3.4 实际问题与一元一次方程 课时训练(含答案)

人教版 七年级数学上册   3.4 实际问题与一元一次方程 课时训练(含答案)

人教版七年级数学 3.4 实际问题与一元一次方程课时训练一、选择题(本大题共12道小题)1. 学校组织知识竞赛,共设20道选择题,各题分值相同.下表记录了3名参赛学生的得分情况,若参赛学生小亮只答对了16道选择题,则小亮的得分是()A.80分B.76分C.75分D.70分2. 一列长150米的火车以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需的时间是()A.60秒B.30秒C.40秒D.50秒3. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是()A.350元B.400元C.450元D.500元4. 铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x5. 某市出租车的收费标准是起步价5元(行驶路程不超过3 km,都需付5元车费),超过3 km,每增加1 km,加收1.2元(不足1 km的按1 km收费). 某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是()A.8 km B.9 kmC.6 km D.10 km6. 已知七年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72-x)=30 B.3x+2(30-x)=72C.2x+3(30-x)=72 D.3x+2(72-x)=307. 某中学去年中学生共有4200人,今年初中生增加了8%,高中生增加了11%,使得中学生总数增加了10%.如果设去年初中生有x人,那么下面所列方程正确的是()A.(1+8%)x+(1+11%)(4200-x)=4200×10%B.8%x+11%(4200-x)=4200×(1+10%)C.8%x+(1+11%)(4200-x)=4200×10%D.8%x+11%(4200-x)=4200×10%8. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人9. 小明前年用一笔钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年他将得到利息288元,则小明前年买理财产品的钱数为()A.6400元B.3200元C.2560元D.1600元10. 2019·荆门欣欣服装店某天用相同的价格a(a>0)元卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是() A.盈利B.亏损C.不盈不亏D.与售价a有关11. 《算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少.”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字.已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+12x+14x=3468512. 甲、乙两名运动员在长为100 m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若甲跑步的速度为5 m/s,乙跑步的速度为4 m/s,则起跑后100 s内,两人相遇的次数为()A.5 B.4 C.3 D.2二、填空题(本大题共6道小题)13. 为了节约用水,某市规定:每户居民每月用水不超过20立方米,按每立方米2元收费;超过20立方米,则超过部分按每立方米4元收费.某户居民五月份缴纳水费72元,则该户居民五月份的用水量为________立方米.14. 为了创建宜居城市,某单位积极响应植树活动,由一人植树要80小时完成.现由一部分人植树5小时,由于单位有紧急事情,再增加2人,4小时后完成植树任务.若这些人的工作效率相同,则先植树的有________人.15. 2019·宿松期末人民路有甲、乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折;乙超市购物:①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折(假设两家超市相同商品的标价都一样).当所购商品的标价总额是________元时,在甲、乙两家超市购物实付款一样.16. 2018·呼和浩特文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元.”小华说:“那就多买一个吧,谢谢!”根据两人的对话可知,小华结账时实际付款________元.17. 某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价的8折销售,售价为2240元,则这种商品的进价是________元.18. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.三、解答题(本大题共3道小题)19. 某足球协会举办了一次足球赛,其计分规则及奖励方案如下表:当比赛进行到每队各比赛12场时,A队(11名队员)共积20分,并且没有负场.(1)试判断A队胜、平各几场;(2)若每赛一场每名队员均得出场费500元,则A队的某一名队员所得奖金与出场费的和是多少?20. 根据下表中的两种移动电话计费方式,解决下列问题:(1)一个月本地通话时间为150分钟和300分钟,计算按两种移动电话计费方式各需要交话费多少元;(2)会出现两种移动电话计费方式收费一样的情况吗?请你说明在怎样的选择下较省钱.21. 2019·杭州西湖区月考某地开始实施农村义务教育学校营养计划“蛋奶工程”,该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一份营养餐和一个鸡蛋中蛋白质的含量分别为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?人教版七年级数学 3.4 实际问题与一元一次方程课时训练-答案一、选择题(本大题共12道小题)1. 【答案】B[解析] 根据表格数据,A学生答对20道题得100分,可知答对一题得100÷20=5(分).设答错或不答一道题得x分,由B学生答对18道题,答错2道题得88分,可得18×5+2x=88,解得x=-1,故答错或不答一题扣1分.小亮答对16道题,则有16×5+(-1)×(20-16)=76(分).故选B.2. 【答案】D[解析] 设这列火车完全通过隧道所需的时间是x秒,则15x=600+150,解得x=50,故这列火车完全通过隧道所需的时间是50秒.3. 【答案】B[解析] 本题相等关系是:利润率=20%,根据相等关系建立方程可得解.设这批服装每件的标价为x 元,得0.6x -200200=20%,解得x =400,故选B.4. 【答案】A5. 【答案】A[解析] 设此人坐车行驶的路程最多为x km ,则有5+(x -3)×1.2=11,解得x =8.6. 【答案】B7. 【答案】D8. 【答案】A[解析] 设大和尚有x 人,则小和尚有(100-x)人,根据相等关系:大和尚吃的馒头个数+小和尚吃的馒头个数=100,可列方程为:3x +100-x 3=100.解方程可得x =25.所以大和尚25人,小和尚75人.故选A.9. 【答案】B[解析] 设小明前年买理财产品的钱数是x 元.由题意得4.5%x×2=288,解得x =3200.即小明前年买理财产品的钱数为3200元.10. 【答案】B[解析] 设第一件服装的进价为x 元,依题意得x(1+20%)=a.设第二件服装的进价为y 元,依题意得y(1-20%)=a ,所以x(1+20%)=y(1-20%),整理得3x =2y.该服装店卖出这两件服装的盈利情况为0.2x -0.2y =0.2x -0.3x =-0.1x(元),即赔了0.1x 元.11. 【答案】A12. 【答案】B[解析] 设两人相遇的次数为x ,依题意有100×25+4x =100,解得x =4.5, 因为x 为整数,所以x 取4.故选B.二、填空题(本大题共6道小题)13. 【答案】28[解析] 20×2=40(元),小于72元,所以该户居民五月份的用水量超过20立方米.设该户居民五月份实际用水x 立方米,根据题意,得20×2+4(x-20)=72,解得x =28.14. 【答案】8[解析] 根据工作总量等于各分量之和,设先植树的有x 人,可得5x80+4(x +2)80=1,解得x =8.15. 【答案】750[解析] 设当所购商品的标价总额是x 元时,在甲、乙两家超市购物实付款一样.当一次性购物标价总额恰好是600元时,甲超市实付款=600×0.88=528(元),乙超市实付款=600×0.9=540(元).因为528<540,所以x >600.根据题意得0.88x =600×0.9+0.8(x -600),解得x =750.即当所购商品的标价总额是750元时,在甲、乙两家超市购物实付款一样.16. 【答案】486[解析] 设小华购买了x 个笔袋,根据原单价×购买数量(x -1)-打九折后的单价×购买数量(x)=节省的钱数,即可得出关于x 的一元一次方程,解之即可求出小华购买的数量,再根据总价=单价×0.9×购买数量,即可求出结论.设小华购买了x 个笔袋,根据题意,得18(x -1)-18×0.9x =36, 解得x =30.则18×0.9x =18×0.9×30=486. 故小华结账时实际付款486元.17. 【答案】200018. 【答案】4[解析] 设该商品每件的销售利润为x 元,根据题意,得80+x =120×0.7,解得x =4.故该商品每件的销售利润为4元.故答案为4.三、解答题(本大题共3道小题)19. 【答案】解:(1)设A 队胜了x 场,则平了(12-x)场. 由题意,得 3x +(12-x)=20,解得x=4.12-x=8.答:A队胜了4场,平了8场.(2)因为每场比赛出场费为500元,所以12场比赛出场费共500×12=6000(元),赢了4场,奖金为1500×4=6000(元),平了8场,奖金为700×8=5600(元),所以奖金加出场费一共6000+6000+5600=17600(元).20. 【答案】解:(1)150×0.3+50=95(元);150×0.5+10=85(元);300×0.3+50=140(元);300×0.5+10=160(元).所以一个月本地通话150分钟时,按方式一需要交话费95元,按方式二需要交话费85元;一个月本地通话300分钟时,按方式一需要交话费140元,按方式二需要交话费160元.(2)会.设通话时间为t分钟时两种移动电话计费方式收费一样,则50+0.3t=10+0.5t,解得t=200,所以当t=200时,两种移动电话计费方式收费一样;当t>200时,选方式一较省钱;当0<t<200时,选方式二较省钱.21. 【答案】解:(1)由题意,得300×8%=24(克),60×15%=9(克).答:一份营养餐和一个鸡蛋中蛋白质的含量分别为24克,9克.(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300-60-x)克.由题意,得5%x+12.5%(300-60-x)+9=24,解得x=200.故饼干的质量为300-60-200=40(克).答:每份营养餐中牛奶和饼干的质量分别为200克和40克.。

数学人教版2024版七年级初一上册 5.3 实际问题与一元一次方程 课时练01测试卷含答案

数学人教版2024版七年级初一上册 5.3 实际问题与一元一次方程 课时练01测试卷含答案

第五章 一元一次方程5.3 实际问题与一元一次方程一、单选题1.某学校为了表彰暑假自主学习标兵,决定购买一批奖品,分别是40支钢笔,40个笔记本,一共支付800元,若钢笔的单价是笔记本的4倍,则购买6支钢笔的费用是 ( )A .4元B .16元C .24元D .96元2.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则缺25本.设这个班有学生x 人,则可以列方程为( )A .320425x x -=+B .320425x x +=-C .202534x x +-=D .202534x x +=-3.如图,线段AB 表示一条对折的绳子,现从P 点将绳子剪断,剪断后的各段绳子中最长的一段为60cm ,若23AP BP =,则原来绳长为( )A .120cmB .100cmC .50cm 或75cmD .100cm 或150cm 4.已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利20%,另一个亏损20%,在这次买卖中,这家商店盈利了?还是亏损了?( )A .盈利了B .亏损了C .不盈不亏D .不能确定5.2023年12月22日,第78届联合国大会协商一致通过决议,将春节(农历新年)确定联合国假日,“中国年”升格为“世界年”.某商场购进一批“国潮”年货礼盒,每盒进价为200元,为庆祝这一好消息,商场决定在12月22日,将这批“国潮”年货礼盒按标价的8折销售.若打8折后仍能获利20%,则这批“国潮”年货礼盒每盒的标价应为( )A .220元B .260元C .300元D .320元6.安徽某中学开展校运动会,参加跳高的学生是参加立定跳远的学生的2倍少3人,已知参与这两项运动的人数共86人.设参加立定跳远的学生有x 人,则下列方程中正确的是( )A .13862x x ++=B .13862x x -+=C .2386x x ++=D .2386x x +-=7.我国古代《孙子算经》中记载“多人共车”问题,其原文如下:“今有三人共车,二车空,二人共车,九人步,问人与车各几何.”其大意为:若3人乘一辆车,则空2辆车;若2人乘一辆车,则有9人要步行,问人与车数各是多少.若设有x 人,则可列方程为 ( )A .()3229x x -=-B .()3229x x -=+C .9232xx -+=D .9232xx ++=8.元旦假期小李去歌乐山爬山,上山每小时走4km ,下山时按原路返回,下山每小时走5km ,结果上山比下山多花16小时,设下山所用时间为x 小时,可列方程为( )A .1456x x æö-=ç÷èøB .1456x x æö+=ç÷èøC .1546x x æö-=ç÷èøD .1546x x æö+=ç÷èø二、填空题9.有一些人共同买一个物品,若每人出8元,还盈余3元; 若每人出7元,则还差4元.问共有多少人?设有x 人,则根据题意可列方程为 .10.学生甲在一列队伍的排尾以每小时6千米的速度赶到队伍排头后,又以同样的速度返回队尾,一共用了3小时,若队伍进行的速度为每小时4千米,则队伍长为 千米.11.一桶油,第一天用去全部油的25%,第二天用去20千克,这时用去的油与剩下的油之比为3:5,则此时还剩下 千克油.12.(方程应用)有一个首位数为1的六位数,如果把首位数字从最左移到最右,其余5个数字顺序不变则新数是原数的3倍.则原数是 .13.据我国古代《易经》记载,远古时期人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满五进一,用来记录采集到的野果的个数.她一共采集到了38个野果,则在第2根绳子上的打结数是 个.14.一刀书法毛边练习纸,按成本价提高40%后标价,促销活动中按标价的九折出售,每刀售12.6元,则每刀书法毛边练习纸的成本价为 元.15.甲、乙两列火车同时从A 地出发向反方向行驶,分别开往B 地和C 地,已知A ,B 之间路程是A ,C 之间路程的910,当甲车行驶60千米时,乙车行驶的路程与剩下路程之比是1:3,这时两列火车离目的地的路程相等.A ,C 之间的路程是 千米.16.甲、乙两人分别从A 、B 两地出发,相向而行,当乙离B 地72千米时甲才出发,两人相遇点离A 、B 两地的距离之比是3:4,已知甲、乙两人的速度比是5:4,A 、B 两地的距离是 千米.三、解答题17.光明中学共有550名学生,其中八年级学生人数是七年级的1.5倍,九年级学生人数是八年级的2倍,求光明中学九年级学生有多少人?18.一艘船在水上航行,水流速度是3km/h ,船在静水中的速度是km/h x .若从A 码头到B 码头花了2h ,回来时用了2.5h ,则船在静水中的速度为多少?两地间的距离呢?19.用150张铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒.问:用多少张铁皮制盒身,多少张铁皮制盒底,使得制成的盒身和盒底恰好配套?20.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?参考答案1.D2.B3.D4.B5.C6.D7.C8.B9.8374x x -=+10.511.10012.14285713.214.1015.40016.31517.解:设七年级有x 人,则八年级有1.5x 人,九年级有2 1.5x ´人. ∴ 1.52 1.5550x x x ++´=,解得:100x =,∴33100300x =´=,答:九年级学生有300人.18.解:船在静水中的速度是km/h x .则船顺水的速度为()/h 3km x +,逆水时的速度为()/h 3km x -,根据题意,得()()23 2.53x x +=-解得:27x =,两地间的距离为:()()()23227360km x +=+=,答:船在静水中的速度为27km/h ,两地间的距离为60km .19.解:设用x 张铁皮制盒身,则制盒底的铁皮数是()150x -张,由题意可得:()21545150x x ´=-,解得:90x =,∴15060x -=.答:用90张铁皮制盒身,60张铁皮制盒底,使得制成的盒身和盒底恰好配套.20.(1)解:设这个班有x 名学生,由题意得:320425x x +=-,解得:45x =,∴这个班有45名学生;(2)解:当45x =时,32034520155x +=´+=(本),∴这批图书共有155本.。

七年级数学上册巧用一元一次方程解决图表信息问题1

七年级数学上册巧用一元一次方程解决图表信息问题1
第五章 一元一次方程
巧用一元一次方程 解决图表信息问题
目录
















学习指南
所谓图表信息题,是指将已知信息用图象或表格形式给出的一类问题, 它要求从已知图象或表格中获取数据,去解决实际问题.利用图表所提供的 信息,准确理解题意,找出等量关系,列一元一次方程求解是解决此类问题 的关键.
当堂测评
2.[2019·西湖区模拟]根据国家发改委实施“阶梯电价”的有关文件要求,
某市结合地方实际,决定从 2015 年 5 月 1 日起对居民生活用电试行“阶梯电
价”收费,具体收费标准见下表.若 2015 年 5 月份,该市居民甲用电 100
千瓦时,ห้องสมุดไป่ตู้电费 60 元.
一户居民一个月用电量的范围 电费价格/(元/千瓦时)
(3)如果七年级(1)班单独组织去科技馆,作为组织者,你如何购票才最省钱?
(3)47×18=846(元),51×15=765(元).
因为765<846, 所以如果七年级(1)班单独组织去科技馆,作为组织者,可购买51张门票最省钱.
当堂测评
1.“元旦”期间,某文具店购进 100 只两种型号的文具进行销售,其
(1)如果两个班联合起来,作为一个团体购票,可以省
元.
解:(1)1686-10×103=656(元). 答:如果两班联合起来,作为一个团体购票,可省656元.
类型之三 消费问题
归类探究
[2018秋·洛阳期末]科技馆门票价格规定如下表:
购票张数 1~50 51~100 100以上
每张票的价格 18元 15元

人教版2024-2025学年七年级数学上册专题7 利用一元一次方程解图表信息问题的常见题型(课件)

人教版2024-2025学年七年级数学上册专题7 利用一元一次方程解图表信息问题的常见题型(课件)
1234
(2)请问“ H ”形框框到的七个数之和能否等于168.若能,请 写出这七个数;若不能,请说明理由. 【解】“ H ”形框框到的七个数之和不能等于168.理 由如下:设“ H ”形框中的七个数中最中间一个数是 a ,根据题意,得7 a =168,解得 a =24.此时最大的数 是 a +8=24+8=32,而月历中没有32,所以“ H ”形 框框到的七个数之和不能等于168.
1234
(3)小冬乘飞机来到 A 市,小刚从旅馆乘出租车到机场去接小 冬,到达机场时计费表显示73元,接完小明,立即沿原路 返回旅馆(接人时间忽略不计),请帮小刚算一下乘原车返 回和换乘另外的出租车这两种方式,哪种更便宜?
1234
【解】设旅馆到机场的距离为 y 千米. 因为73>22,所以 y >8. 根据题意,得10+2.4(8-3)+3( y -8)=73,解得 y =25. 所以乘原车返回的费用为10+2.4×(8-3)+3×(25×2- 8)=148(元), 换乘另外的出租车的费用为73×2=146(元). 因为148>146,所以换乘另外的出租车更便宜.
1234
题型3 利用一元一次方程解计费表格问题 3. [2024·济南莱芜区月考]一家通讯公司推出两种移动电话计
费方法,如表所示:
计费方法 A
每月基本服务费/(元/月)
68
每月免费通话时间/分钟
200
超出后每分钟收费/(元/分)
ห้องสมุดไป่ตู้0.25
计费方法 B 98 500 0.20
1234
(1)若某月通话时间是5小时,则使用计费方法 A 的用 户话费为 93 元,使用计费方法 B 的用户话费 为 98 元.
1234
(3)当通话时间为多长时,按 A , B 两种计费方法所需的用户 话费相等? 【解】当 x ≤200时,显然话费不相等;当200< x ≤500时, 令0.25 x +18=98,解得 x =320; 当 x >500时,显然计费方法 B 比计费方法 A 便宜,话费 不可能相等. 所以当通话时间为320分钟时,按 A , B 两种计费方法所 需的用户话费相等.

七年级上册数学学人教版 第3章 一元一次方程 专训 用一元一次方程解图表信息题的七种常见题型

七年级上册数学学人教版 第3章  一元一次方程  专训   用一元一次方程解图表信息题的七种常见题型
故可得小华家5月份的用电量属于第二档.
题型5
设小华家5月份的用电量为x度. 根 据 题 意 , 得 210×0.52 + (x - 210)×(0.52 + 0.05)=138.84, 解得x=262. 答:小华家5月份的用电量为262度.
题型5
(2)按此方案请你回答:若小华家某月的电费为a元, 则小华家该月用电量属于第几档?
子分别表示出正方形F,E和C的边长为_________,
________,_________;
(x-1)m
(x-2)m (x-3)m
题型6
(2)观察图形的特点可知,长方形相对的两边是相等的 (如PQ和MN),请根据这个等量关系,求出x的值;
解:由题图可得2(x-3)+(x-2)=x+x-1, 解得x=7.
胜场 次 7 6 5 4
负场次
0 1 2 3
题型1
(1)观察积分表,你能获得哪些信息?
解:由堡集代表队和一中代表队可看出,胜一场得 2分,负一场得1分;胜场次+负场次=比赛场 次等信息.(获得的信息不唯一)
题型1
(2)观察积分表,请你用式子将积分与胜场次、负场 次之间的数量关系表示出来.
解:通过表格可看出,胜场次×2+负场次×1=积分. 如果设一个队胜m场,那么负(7-m)场,于是该 队积分=2m+1×(7-m)=m+7.
题型5
5.某省公布的居民用电阶梯电价听证方案如下:
第一档
第二档
第三档
月用电量超
例2月 度格10:超×,用为若过0每电0.5某.225度量+1户20元价不(月35用0度 分-过 不一电2, 每超21量档10度超)过0为×提度比过34(价00、 5.第部0502度+,月 超 度提过0.则0用过比价355需)电部第+00.交度3(量分一40电0,元超每档0费- 350)×(0.52+0.30)=02.0305(元元).

《一元一次方程》单元解答题精选 新课标人教版七年级上册 (15)

《一元一次方程》单元解答题精选  新课标人教版七年级上册 (15)

《一元一次方程》单元解答题精选新课标人教版七年级上册1. 若关于x 的方程()1431kx x +=-(1)有整数解,求整数k 的值;(2)无解求k 的值。2. 解方程:323221+-=--x x x 解:去分母,得424136+-=+-x x x ……① 即8213+-=+-x x ……② 移项,得1823-=+-x x ……③ 合并同类项,得7=-x ……④ ∴7-=x ……⑤上述解方程的过程中,是否有错误?答:( );如果有错误,则错在( )步。如果上述解方程有错误,请你给出正确的解题过程: 3. 方程23(1)0x -+=的解与关于x 的方程3222k xk x +--=的解互为倒数,求k 的值。4. 一个两位数个位上的数是1,十位上的数字是x 。把1和x 对调,新两位数比原两位数小18,x 应是哪个方程的根?你能想出x 是几吗?5. 已知方程3(33)12x x +-=的解与关于x 的方程3274mx m +=-的解相同,求m 的值.6. 当x 为什么时,代数式2313xx +-与2的值相等。 7.关于x 的方程x m x m 474653-=+与方程4(3x -7)=19-35x 有相同的解,求m 的值。8. 用适当的数字或式子填空,使所得的结果仍是等式,并说明理由。 (1)如果3x+8=6,那么3x=6[ ]; (2)如果-5x=25,那么x=[ ];(3)如果2x-3=5,那么2x=[ ]; (4)如果x/4=-7,那么x=[ ] 9. 已知方程4x+2m=3x+1和方程3x+2m=6X+1的解相同. (1)求m 的值;(2)求代数式(-2m)2011-(m-32)2012的值.10. 新运算符号*的运算过程为b a b a 3121*-=,则解方程2*(2*x )=1*x 11. 若2a 与392-a 互为相反数,求a 的值。 12. 数学医院) 解方程:25.012.02=+--x x .13. 求:当x 为何值时,1014x +的值比217x -的值大10? 14.求:当x 为何值时,1014x +的值比217x -的值大10?15. 依据下列解方程0.30.521=0.23x x +-的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为3521=23x x +-( )去分母,得3(3x +5)=2(2x ﹣1).( )去括号,得9x +15=4x ﹣2.( ) ( ),得9x ﹣4x =﹣15﹣2.( ) 合并,得5x =﹣17.(___合并同类项法则___) ( ),得x =175-.( )16. m 为何值时,代数式()112m -与()123m +的差是2-. 17. 已知431)119991(441=++x ,那么代数式19991999481872+⋅+x x 的值。 18.若a ,b 为定值,关于x 的一元一次方程2632=--+bx x x ka 无论k 为何值时,它的解总是1,求a ,b 的值.19. 阅读题20. 方程23(1)0x -+=的解与关于x 的方程3222k xk x +--=的解互为倒数,求k 的值。 21. 已知方程21)20031(541=-+x ,求代数式x (203+-)20031的值.22. 已知3=x 是方程()241133=⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛+x m x的解,n 满足关系式12=+m n ,求n m +的值。23. 当m 为什么值时,代数式753+m 的值比代数式38-m 的值大5? (2)当x =—3时,代数式32)2(++-m x m 的值是—7,当x 为何值时,这个代数式的值是1? 24.x 为何值时,代数式31xx +-的值等于3? 25. 已知x =-2是方程2x -∣k -1∣=-6的解,求k 的值。 26. k 取何值时,代数式31+k 的值比213+k 的值小1。 27. m 为何值时,关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍?28. 当x 取何值时,代数式31--x x 比-53+x 的值大1?29. 设1511+=x y ,4122+=x y ,当x 为何值时,1y 、2y 互为相反数? 30. 若1x =是关于x 的方程ax b c +=(0c ≠)的解,试求下列两式的值.(1)a b c +-;(2)[(a b +)·1c-]2005. 31. 如果方程42832x x -+-=-的解与方程4(31)621x a x a -+=+-的解相同,求式子1a a -的值.32. y=1是方程12()23m y y --=的解,求关于x 的方程(4)2(3)m x mx +=+的解。33. 已知21=x 是方程32142mx m x -=--的根,求代数式()⎪⎭⎫⎝⎛---+-121824412m m m 的值. 34. 已知关于x 的方程4)12(+-=+x k m kx ,当m k .为何值时:(1)方程有唯一解;(2)方程有无数个解;(3)方程无解. 35. 已知方程21)20031(541=-+x ,求代数式3+20(x-20031)的值。36. 如图a 是一个长为2m 、宽为2n 的长方形,沿图中虚用剪刀均匀分成四块小长方形,然后按图b 形状拼成一个正方形。(1)你认为图b 中的阴影部分的正方形的边长等于多少?(2)观察图b 你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn 。(3)已知m+n=7,mn=6,求2)(n m -的值。37. 下列两个方程的解相同的是( )A.方程635=+x 与方程42=xB.方程13+=x x 与方程142-=x x 38. 如果方程中有同类项,可以先合并同类项变成ax=b(a≠0)的形式,再求解。39. 已知方程(m-2)x ︱m ︱-1+3=m-5是关于x 的一元一次方程,求m 的值。40. 老师在黑板上出了一道解方程的题421312+-=-x x ,小明马上举手,要求到黑板上做,他是这样做的:)2(31)12(4+-=-x x …………………①63148--=-x x ………………………② 46138+-=+x x ………………………③ 111-=x …………………………………④ 111-=x …………………………………⑤ 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在( )(填编号);然后,你自己细心地解下面的方程: (1)131612=-++x x (2)6751412-=--y y41. 当m 为何值时,关于x 的方程x x m +=+135的解比关于x 的方程2x+m=3m 的解大2?42. 规定新运算符号*的运算过程为b a b a 4131*-=,则 求5*(-5);解方程2*(2*x )=1*x43. 已知当x=2时,代数式c x c x +-+)3(22的值是10,求当3-=x 时,这个代数式的值,44. x 为何值时,代数式31xx +-的值等于3? 45. 若关于x 的方程()1431kx x +=-,(1)有整数解,求整数k 的值;(2)无解,求k 的值.46. 当2x =时,代数式22(3)x c x c +-+的值是10,求当3x =-时,这个代数式的值。47. 已知384a ax +-=是关于x 的一元一次方程,试求a 的值,并解这个方程。 48. 设1511+=x y ,4122+=x y ,当x 为何值时,1y 、2y 互为相反数? 49. 已知x =-2是方程2x -∣k -1∣=-6的解,求k 的值。 50..解关于y 的方程-3(a +y )=a -2(y -a ).51. 已知关于x 的方程2212033b ax x ---=是一元一次方程,试求()a b x +的值.52. 已知x=1/2是关于x 的方程4+x=3-2ax 的解,求a 2+a+1的值。 53. 先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2解:当x+3≥0时,原方程可化为:x+3=2,解得x=-1 当x+3<0时,原方程可化为:x+3=-2,解得x=-5 所以原方程的解是x=-1,x=-5 (1)解方程:|3x-2|-4=0(2)探究:当b 为何值时,方程|x-2|=b+1①无解;②只有一个解;③有两个解.54. 当n 为何值时,关于x 的方程的解为0?55. 指出下列各式中哪些是一元一次方程?并说明理由。 2x-y=3; (2)x=0; (3)x 2-2x+1=0; (4)x+3=2x-1. 56. 根据下列条件列出方程:(1)某数的56比这个数的78小0.5.(2)某数的一半加上5,比这个数的相反数的3倍小1.57. 请你联系你的生活和学习,编制一道实际问题,使列的方程为51-x =45+x 。58. 若关于x 的方程:(3-m)x 25m -+7=2是一元一次方程,则m 的值确定吗?为什么?.59. k 取何值时,代数式31+k 值比213+k 的值小1。 60. 若关于6523240x y x y Rx Ry R y +---+=、的方程合并同类项后不含项,求R 的值。61. 已知126,27y x y x =-=+,若①122y y =,求x 的值;②当x 取何值时,12y y 与小3-;62. y=1是方程12()23m y y --=的解,求关于x 的方程(4)2(3)m x mx +=+的解。63. 若x=2是方程k(2x-1)=kx+7的解,那么求k 的值。 64. 当m 为何值时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2? 65. 已知2=x 是关于x 的方程m x m x 48)(2-=-的解,求m 的值。 66. m 为何值时,关于x 的方程4x-2m=3x-1的解是x=2x-3m 的解的2倍?67. 简答题.若1x =是关于x 的方程ax b c +=(0c ≠)的解,试求下列两式的值.(1)a b c +-;(2)[(a b +)·1c-]2005.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专训3 巧用一元一次方程解图表信息问题
名师点金:
解图表信息题的一般方法:
(1)“识图表”:
①先整体阅读,对图表资料有一个整体了解,进而搜索有效信息;
②关注数据变化;
③注意图表细节的提示作用.
(2)“用图表”:通过认真阅读、观察、分析图表,获取信息.根据信息中数据或图形特征,找出相等关系.
(3)“建模型”:在正确理解各量之间关系的基础上,建立合理的数学模型,解决问题
积分问题
类型1球赛积分问题
1.学校举行排球赛,积分榜部分情况如下:
班级比赛场次胜场平场负场积分七(1) 6 3 2 1 14 七(2) 6 1 4 1 12 七(3) 6 5 0 1 16 七(4) 6 5 1 0 17
(1)分析积分榜,平一场比负一场多得________分;
(2)若胜一场得3分,七(6)班也比赛了6场,胜场数是平场数的一半且共积14分,那么七(6)班胜几场?
类型2考试积分问题
2.某小组8名同学参加一次知识竞赛,共答题10道,每题分值相同.每题答对得同样多的分,答错或不答扣同样多的分.情况如下:
学号答对题数答错或不答题数得分/分
1 8
2 70
2 9 1 85
3 9 1 85
4 5 5 25
5 7 3 55
6 10 0 100
7 4 6 10
8 8 2 70
(1)如果答对的题数为n(0≤n≤10,且n为整数),用含n的式子表示得分;
(2)什么情况下,得分为零分,得分为负分?
月历问题(建模思想)
3.你对生活中常见的月历了解吗?月历中存在许多数字奥秘,你想知道吗?(下表是2016年12月的月历)
2016年12月
一二三四五六日
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
(1)它的横行、竖列上相邻的两数之间有什么关系?
(2)如果告诉你一竖列上连续三个数的和为72,你能知道是哪几天吗?
(3)如果用一个正方形圈出四个数,且这四个数的和为56,这里圈出的四天你知道分别是几号吗?
分段计费问题
类型1出租车计费问题
4.在外地打工的赵先生下了火车,为尽快赶回位于市郊的赵庄与家人团聚,他打算乘坐市内出租车.市客运公司规定:起步价为5元(不超过3 km收5元),超过3 km,每千米要加收一定的费用.赵先生上车时看了一下计费表,车到家门口时又看了一下计费表,已知火车站到赵庄的路程为18 km.
上车时里程表下车时里程表
起步价(元) 5.00
元/km ×××
总价(元) 5.00
时间17:05
起步价(元) 5.00
元/km ×××
总价(元) 29.00
时间17:25
求行程超过3 km时,每千米收多少元.
类型2阶梯电价计费问题(转化思想、分类讨论思想)
5.某省公布的居民用电阶梯电价听证方案如下:
第一档电量第二档电量第三档电量
月用电量不超过210度,每度
价格为0.52元月用电量超过210度不超过
350度,每度比第一档提价
0.05元
月用电量超过350度,每度比
第一档提价
0.30元
例:若某户月用电量400度,则需交电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元).
(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;
(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?
类型3工资纳税问题
6.【中考·永州】中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:
①以个人每月工资收入额减去3 500元后的余额作为其每月应纳税所得额;
②个人所得税纳税税率如下表:
纳税级数个人每月应纳税所得额纳税税率
1 不超过1 500元的部分3%
2 超过1 500元至4 500元的部分10%
3 超过
4 500元至9 000元的部分20%
4 超过9 000元至3
5 000元的部分25%
5 超过35 000元至55 000元的部分30%
6 超过55 000元至80 000元的部分35%
7 超过80 000元的部分45%
(1)若甲、乙两人的每月工资收入额分别为4 000元和6 000元,请分别求出甲、乙两人每月应缴纳的个人所得税;
(2)若丙每月缴纳的个人所得税为95元,则丙每月工资收入额应为多少?
平面图形的拼组问题
7.如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,其中C,D 两个正方形的大小相同,已知中间最小的正方形A的边长是1米.
(1)若设图中最大正方形B的边长是x米,请用含x的式子表示出正方形F、E和C的边长分别为________,________,________;
(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的PQ和MN),请根据这个等量关系,求出x的值;
(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙两个工程队单独铺设分别需要10天、15天完成,如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?
(第7题)
答案
1.解:(1)1
(2)设平一场得x分,则负一场得(x-1)分.由表中任何一行数据可求出x=2,则x-1=1,即平一场得2分,负一场得1分.设七(6)班胜a场,平2a场,负(6-3a)场,列方程得3a+2×2a+(6-3a)=14.解得a=2.
答:七(6)班胜2场.
2.解:(1)设答对一道题得x分,由6号同学的数据可得
10x=100,解得x=10.
设答错或不答一题扣y分,由1号同学的数据可得
8×10-2y=70,解得y=5.
所以当答对的题数为n时,得分为10n-5(10-n)=15n-50(分).
(2)因为n为整数,所以不可能出现得零分的情况;
当答对题数为0,1,2或3时,得分为负分.
3.解:(1)月历中,横行上相邻两数之差为1,竖列上相邻两数之差为7.
(2)设一竖列上连续三个数的中间的一个数为x,则上面的一个数为x-7,下面的一个数为x+7.
根据题意,得(x-7)+x+(x+7)=72.解这个方程,得x=24.
所以x-7=24-7=17,x+7=24+7=31.
答:这三天分别是17号、24号、31号.
(3)设圈出的四个数中,最小数为y,则另三个数分别为y+1,y+7,y+8.
根据题意,得y+(y+1)+(y+7)+(y+8)=56.
解这个方程,得y=10.
所以y+1=10+1=11,y+7=10+7=17,y+8=10+8=18.
答:这四天分别是10号、11号、17号、18号.
点拨:这是生活中常见的月历问题,把它进行数学建模,则可将其转化为数字问题:它的横行上相邻两数之差为1,即为连续整数;竖列上相邻两数之差为7.这些数最小为1,最大为31.
4.解:设行程超过3 km 时,每千米收x 元. 根据题意列方程,得5+(18-3)x =29. 解得x =1.6.
答:行程超过3 km 时,每千米收1.6元.
5.解:(1)月用电量为210度时,需交电费为210×0.52=109.2(元),月用电量为350度时,需交电费为210×0.52+(350-210)×(0.52+0.05)=189(元),
故可得小华家5月份的用电量在第二档.设小华家5月份的用电量为x 度,则210×0.52+(x -210)×(0.52+0.05)=138.84.
解得x =262.即小华家5月份的用电量为262度. (2)由(1)得,当a ≤109.2时,小华家该月用电量在第一档; 当109.2<a ≤189时,小华家该月用电量在第二档; 当a >189时,小华家该月用电量在第三档.
点拨:本题运用转化思想和分类讨论思想求解.解答本题要先计算出分界点处需交的电费.
6.解:(1)(4 000-3 500)×3%=500×3%=15(元),
1 500×3%+(6 000-3 500-1 500)×10%=45+1 000×10%=45+100=145(元). 答:甲每月应缴纳的个人所得税为15元;乙每月应缴纳的个人所得税为145元. (2)设丙每月工资收入额应为x 元,易知纳税级数为2,则1 500×3%+(x -3 500-1 500)×10%=95,解得x =5 500.
答:丙每月工资收入额应为5 500元. 7.解:(1)(x -1)米;(x -2)米;(x -3)米
(2)由题图可得2(x -3)+(x -2)=x +x -1,解得x =7. (3)由(2)可知MN =13米,MQ =11米. 长方形的周长为(13+11)×2=48(米).
所以甲队平均每天完成4810=4.8(米),乙队平均每天完成48
15=3.2(米).
设余下的工程由乙队单独施工,还要y 天完成. 由题意得3.2y +(4.8+3.2)×2=48,解得y =10. 答:余下的工程由乙队单独施工,还要10天完成.。

相关文档
最新文档