工业界数据挖掘总体框架、流程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业界数据挖掘总体框架、流程
英文版
An Overview of the Framework and Process of Industrial Data Mining
In the modern era of technology and automation, data mining has become a crucial aspect of various industries. It involves extracting valuable information from large datasets to gain insights and make informed decisions. This article aims to provide an overview of the overall framework and process of industrial data mining.
1. Framework of Industrial Data Mining
The framework of industrial data mining typically consists of the following components:
Data Understanding: This involves understanding the nature, quality, and requirements of the data. It involves exploring the data, identifying patterns, and defining the problem statement.
Data Preparation: In this stage, the data is cleaned, transformed, and prepared for analysis. This includes handling missing values, outliers, and normalizing the data.
Data Mining: Using various algorithms and techniques, patterns and relationships are extracted from the prepared data. This can include classification, clustering, association rules, and more.
Evaluation and Interpretation: The mined patterns are evaluated based on their accuracy, reliability, and usefulness. They are then interpreted to gain insights and understanding.
Data Visualization: Visualizing the mined patterns and insights makes it easier for decision-makers to understand and use them.
2. Process of Industrial Data Mining
The process of industrial data mining typically follows these steps:
Problem Definition: Define the specific problem or objective for which data mining is required.
Data Collection: Gather relevant data from various sources that can help solve the defined problem.
Data Preprocessing: Prepare the data by cleaning, transforming, and整合it for analysis.
Data Mining: Apply suitable algorithms and techniques to extract patterns and relationships from the preprocessed data.
Pattern Evaluation: Evaluate the mined patterns based on their accuracy, reliability, and practicality.
Knowledge Extraction: Convert the mined patterns into useful knowledge and insights.
Presentation and Deployment: Present the extracted knowledge in a way that is easy to understand and deploy for decision-making.
In conclusion, industrial data mining is a crucial process that helps organizations extract valuable insights from their data. By understanding the framework and process of data mining, companies can effectively utilize their data to make informed decisions and gain a competitive edge.
中文版
工业界数据挖掘总体框架、流程
在现代科技和自动化的时代,数据挖掘已成为各行业的关键方面。

它涉及从大型数据集中提取有价值的信息,以获得见解并做出明智的决策。

本文旨在概述工业数据挖掘的总体框架和流程。

1. 工业数据挖掘的框架
工业数据挖掘的框架通常包括以下组件:
**数据理解:**这涉及理解数据的性质、质量和要求。

它包括探索数据、识别模式以及定义问题陈述。

**数据准备:**在此阶段,数据被清理、转换和准备用于分析。

这包括处理缺失值、异常值以及规范化数据。

**数据挖掘:**使用各种算法和技术,从准备好的数据中提取模式和关系。

这可能包括分类、聚类、关联规则等。

**评估和解释:**根据准确性、可靠性和实用性评估挖掘的模式。

然后对其进行解释以获得见解和理解。

**数据可视化:**将挖掘的模式和见解可视化,使决策者更容易理解和使用它们。

2. 工业数据挖掘的流程
工业数据挖掘的流程通常遵循以下步骤:
**问题定义:**定义需要数据挖掘的具体问题或目标。

**数据收集:**从各种来源收集与定义的问题相关的数据。

**数据预处理:**通过清理、转换和整合数据来准备数据以供分析。

**数据挖掘:**应用适当的算法和技术从预处理后的数据中提取模式和关系。

**模式评估:**根据准确性、可靠性和实用性评估挖掘的模式。

**知识提取:**将挖掘的模式转换为有用的知识和见解。

**展示和部署:**以易于理解的方式展示提取的知识,并部署到决策中。

总之,工业数据挖掘是一个关键过程,有助于组织从其数据中提取有价值的见解。

通过了解数据挖掘的框架和流程,公司可以有效地利用其数据进行决策,并获得竞争优势。

相关文档
最新文档