(完整版)小学三年级奥数面积计算

合集下载

小学奥数教程:基本图形的面积计算_全国通用(含答案)

小学奥数教程:基本图形的面积计算_全国通用(含答案)

小学数学平面图形计算公式: 1 、正方形:周长=边长×4;面积=边长×边长 2 、正方体:表面积=棱长×棱长×6;体积=棱长×棱长×棱长 3 、长方形:周长=(长+宽)×2;面积=长×宽 4 、长方体:表面积(长×宽+长×高+宽×高)×2;体积=长×宽×高 5、 三角形:面积=底×高÷2 6 平行四边形:面积=底×高 7 梯形:面积=(上底+下底)×高÷2模块一、基本公式的应用【例 1】 如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分。

则两个正方形的空白部分的面积相差多少平方厘米?【考点】基本图形的面积计算 【难度】2星 【题型】解答 【关键词】华杯赛,五年级,决赛,第9题,10分 【解析】 5×5-4×4=9(平方厘米),两个正方形的空白部分的面积相差9平方厘米。

【答案】9平方厘米【巩固】 如图12,边长为4cm 的正方形将边长为3cm 的正方形遮住了一部分,则空白部分的面积的差等于 2cm 。

【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,4年级,初赛,19题 【解析】 空白部分的面积差等于两个正方形的面积差,即⨯-⨯=44337(平方厘米)。

【答案】7平方厘米【例 2】 在一个正方形水池的四周,环绕着一条宽2米的路(如图),这条路的面积是120平方米,那么水池的面积是______ 平方米。

水池【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,4年级,初赛,19题 【解析】 四个边角的面积和为2×2×4=16,则水池的边长为:104÷2÷4=13,所以水池的面积是:13×13=169平方米。

三年级奥数举一反三 面积计算

三年级奥数举一反三 面积计算

三年级奥数举一反三面积计算三年级奥数举一反三:面积计算在三年级的奥数学习中,面积计算是一个重要的知识点。

它不仅在日常生活中有着广泛的应用,而且也是进一步学习几何学的基础。

在这篇文章中,我们将通过一些例题和解题技巧,探讨如何掌握和运用面积计算这一知识点。

我们需要理解什么是面积。

简单来说,面积是一个平面或曲面对角线乘积的二分之一。

在计算过程中,我们需要考虑不同的形状,如正方形、长方形、三角形和圆形等。

让我们来看一个例子。

假设我们有一个正方形,它的边长为a。

那么,它的面积可以计算为a×a=a^2。

接下来,我们来看一个长方形的例子。

假设长方形的长为l,宽为w。

那么,它的面积可以计算为l×w。

除了正方形和长方形,我们还会遇到三角形和圆形。

三角形的面积可以通过底边长度b和高h来计算,即(b×h)/2。

而对于圆形,它的面积可以计算为π×r^2,其中r是圆的半径。

在掌握了不同形状的面积计算方法后,我们还需要学会如何解决一些综合性的问题。

比如,我们需要计算一个由多个图形组成的复杂图形的总面积。

在这种情况下,我们需要先分解图形,将它们拆分成多个简单的形状,然后分别计算每个形状的面积,最后再将它们相加。

除了分解法,我们还会学到一些其他的解题技巧,比如平移法、旋转法等。

这些技巧可以帮助我们更灵活地解决面积计算问题。

面积计算是三年级奥数的一个重要知识点。

它不仅需要我们掌握不同形状的面积计算方法,还需要我们学会如何解决综合性的问题。

通过不断地练习和思考,我们可以提高自己的解题能力,从而更好地掌握这一知识点。

小学数学三年级奥数举一反三课件在小学数学的教学中,奥数举一反三课件的重要性不言而喻。

它不仅能帮助学生更好地理解数学概念,提高解题能力,还能激发学生对数学的兴趣和热情,培养他们的思维能力和创新能力。

一、奥数举一反三课件的特点1、内容丰富:小学数学三年级奥数举一反三课件的内容非常丰富,不仅包括课本上的基础知识,还引入了许多生活中的实际例子,让学生能够更好地理解数学概念,提高解决实际问题的能力。

三年级奥数第28讲-面积计算(教)

三年级奥数第28讲-面积计算(教)

学科教师辅导讲义学员编号: 年 级:三年级 课 时 数:3 学员姓名:辅导科目:奥数学科教师:授课主题 第28讲-面积计算授课类型T 同步课堂 P 实战演练S 归纳总结教学目标① 熟悉掌握基本图形面积的求法。

② 熟悉运用分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算公式求解。

③ 能够分析图形的特点,提高几何图形的观察能力和思维转换能力。

授课日期及时段T (Textbook-Based )——同步课堂解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

例1、人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?【解析】用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)×(45+5)=5000平方米, 操场原来的面积是90×45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

例2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?【解析】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

知识梳理典例分析所以,这个长方形原来的面积是12×9=108平方米。

例3、下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。

【解析】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。

而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。

三年级奥数第20讲长方形和正方形的面积

三年级奥数第20讲长方形和正方形的面积

第二十讲长方形和正方形的面积知识点:我们都知道长方形和正方形面积的公式是:长方形的面积=a×b(a为长,b为宽)正方形的面积=a×a(a为边长)在生活中,我们利用这两个公式可以求出各种直角多边形的面积。

例如对左下图,我们无法直接求出它的面积,但是可以将它分割成几块,其中每一块都是长方形或者正方形,分别计算各块的面积再求和,就得出整个图形的面积例1. 有一块长方形土地,长是宽的2倍,中间有一块花坛,花坛是一个正方形,周围是草坪,草坪的面积是多少平方米?.(小正方形边长1米)20米同步练习1.有一个长方形水池长10米,是宽的2倍,中间有一座正方形雕塑,边长为2米,求水池的面积。

2.用一根长36厘米的铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多?3.在一张长15厘米,宽10厘米的红纸上剪下一个最大的正方形,剩下的部分的面积是多少平方厘米?例2. 有一个长方形,如果它的长不变,宽较少2米,面积就减少24平方米;如果它的宽不变,长增加3米,面积就增加15平方米,求原长方形的面积.同步练习1.有一个长方形,如果宽不变,长增加4米,面积就增加24平方米;如果长不变,宽增加3米,面积就增加36平方米,求原长方形的面积。

2.有一个长方形,如果它的宽减少2米,或者长减少3米那么它的面积都减少24平方米,求原来的这个长方形的面积。

3.一个长方形,长16厘米,如果长减少6厘米,就变成了一个正方形,它的面积减少了多少平方厘米?例3. 有一个正方形水池,如下图的阴影部分,在他的周围修一个宽8米的花坛,花坛的面积是480平方米,求水池的边长。

同步精练1.街心花园中一个正方形花坛四周有一米宽的水泥路。

如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?2.下图是一个长50米,宽25米的标准游泳池。

它的周围铺设了宽2米的白瓷地砖(阴影部分)。

求游泳池面积和地砖的面积。

(完整版)三年级奥数面积计算

(完整版)三年级奥数面积计算

三年级奥数 巧求图形面积思维聚焦求正方形和长方形面积的公式是:正方形的面积二a x a (a 为边长), 长方形的面积=a x b (a 为长,b 为宽)。

利用这两个公式可以计算出各种各样的直角多边形的面积。

对一些图,我 们无法直接求出它的面积,但是通过将它分割或切补成几块,其中每一块都是 正方形或长方形,分别计算出各块面积再求和或差,就得出整个图形的面积。

形的面积等于多少平方米?n .5 _分析:我们不能直接求出它的面积,但是可以将此图形分割成若 -------------------- 习3 干个长方形。

下面两种较简单的方法,图形都被分割成三个长方 3 4形。

根据这两种不同的分割方法,都可以计算出图形的的面积。

__________________解: 5X 2+ (5 + 3) X 3+ (5 + 3 + 4) X 2=58(米 2);2或 5X (2 + 3+ 2) + 3X (2 + 3) + 4X 2 = 58(米)。

上面的方法是通过将图形分割成若干个长方形,然后求图形面积的。

实际上,我们也可以将图形“添补”成一个大长方形 (见下图),然 后利用大长方形与两个小长方形的面积之差,求出图形的面积 (5 + 3+ 4) X (2 + 3+ 2)-2 X 3-(2 + 3) X 4 = 58(米 2); 或(5 + 3+ 4) X (2 + 3 + 2)-2 X (3 + 4)-3 X 4= 58(米2)。

由例1看出,计算直角多边形面积,主要是利用“分割”和“添补”的方法,将图形演 变为多个长方形的和或差,然后计算出图形的面积。

其中“分割”是最基本、最常用的方法。

例1、下图中的每个数字分别表示所对应的线段的长度 (单位:米)。

这个图E_555+3+45+3M练习:1、右图是一幢楼房的平面图形,它的面积是_______________ 平方米.(单位:米)2、求下面图形的面积。

(单位:厘米)434 34'33、求下面图形的面积。

三年级奥数(40讲)《举一反三》第37讲 面积计算

三年级奥数(40讲)《举一反三》第37讲 面积计算

第37讲面积计算一、知识要点:我们已经学会了计算长方形、正方形的面积,知道长方形的面积=长×宽,正方形的面积=边长×边长。

利用这些知识我们能解决许多有关面积的问题。

在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,可以添加辅助线或运用割补、转化等解题技巧。

因此,敏锐的观察力和灵活的思维在解题中十分重要。

二、精讲精练例1把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。

这个正方形木板的面积是多少平方米?练习一1、把一张长6厘米,宽4厘米的长方形纸剪成一个面积最大的正方形,这张正方形纸的面积是多少平方厘米?2、把一块长2米、宽6分米的长方形铁板切割成一个面积最大的正方形,这个正方形铁板的面积是多少?例2学校里有一个正方形花坛,四周种了一圈绿篱,绿篱总长20米。

花坛的面积是多少平方米?练习二1、一个正方形的周长为36厘米,那么这个正方形的面积是多少平方厘米?2、运动场有一个正方形的游泳池,在游泳池四周粘上瓷砖,瓷砖总长400米,求游泳池的面积是多少平方米。

例3求下面图形的面积。

(单位:厘米)14321、计算下面图形的面积。

(单位:厘米)(1)15203040(2)31122例4有两个相同的长方形,长是8厘米,宽是3厘米。

如果把它们按下图叠放,这个图形的面积是多少?1、两张边长8厘米的正方形纸,一部分叠在一起放在桌上(如下图),桌面被盖住的面积是多少?8884482、求下图中阴影部分的面积。

(单位:分米)例5一个长方形若长增加2厘米,面积就增加10平方厘米,若宽减少3厘米,面积就减少18平方厘米。

求原来长方形的面积。

1、一个长方形,若长减少5厘米,面积就减少50平方厘米,若宽增加7厘米,面积就增加28平方厘米。

原来长方形的面积是多少平方厘米?2、一个正方形若边长都增加4厘米,面积就增加56平方厘米。

原来正方形的面积是多少平方厘米?三、课后作业1、将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是多少?2、在公园里有两个花圃,它们的周长相等。

三年级奥数第20讲长方形和正方形的面积

三年级奥数第20讲长方形和正方形的面积

第二十讲长方形和正方形的面积知识点:我们都知道长方形和正方形面积的公式是:长方形的面积=a×b(a为长,b为宽)正方形的面积=a×a(a为边长)在生活中,我们利用这两个公式可以求出各种直角多边形的面积。

例如对左下图,我们无法直接求出它的面积,但是可以将它分割成几块,其中每一块都是长方形或者正方形,分别计算各块的面积再求和,就得出整个图形的面积例1. 有一块长方形土地,长是宽的2倍,中间有一块花坛,花坛是一个正方形,周围是草坪,草坪的面积是多少平方米?.(小正方形边长1米)20米同步练习1.有一个长方形水池长10米,是宽的2倍,中间有一座正方形雕塑,边长为2米,求水池的面积。

2.用一根长36厘米的铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多?3.在一张长15厘米,宽10厘米的红纸上剪下一个最大的正方形,剩下的部分的面积是多少平方厘米?例2. 有一个长方形,如果它的长不变,宽较少2米,面积就减少24平方米;如果它的宽不变,长增加3米,面积就增加15平方米,求原长方形的面积.同步练习1.有一个长方形,如果宽不变,长增加4米,面积就增加24平方米;如果长不变,宽增加3米,面积就增加36平方米,求原长方形的面积。

2.有一个长方形,如果它的宽减少2米,或者长减少3米那么它的面积都减少24平方米,求原来的这个长方形的面积。

3.一个长方形,长16厘米,如果长减少6厘米,就变成了一个正方形,它的面积减少了多少平方厘米?例3. 有一个正方形水池,如下图的阴影部分,在他的周围修一个宽8米的花坛,花坛的面积是480平方米,求水池的边长。

同步精练1.街心花园中一个正方形花坛四周有一米宽的水泥路。

如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?2.下图是一个长50米,宽25米的标准游泳池。

它的周围铺设了宽2米的白瓷地砖(阴影部分)。

求游泳池面积和地砖的面积。

三年级奥数第15讲 - 面积计算

三年级奥数第15讲 - 面积计算

【例3】求下面图形的面积。

(单位:厘米)解:这个图形无法直接求出它的面积,我们可以画一条辅助线,将这个图形分割成两个长方形。

如下图:从图上可以看出,左边长方形的长为4厘米,宽为2厘米,面积为4×2=8平方厘米;右边长方形的长为3厘米,宽为1厘米,面积为3×1=3平方厘米。

所以,这个图形的面积为:8+3=11平方厘米。

【变式3-1】计算下面图形的面积。

【变式3-2】计算下面图形的面积。

【例4】有两个相同的长方形,长是8厘米,宽是3厘米。

如果把它们按下图叠放,这个图形的面积是多少?解:如果两个长方形没有叠放,那么它们的面积就是8×3×2=48平方厘米,现在两个长方形重叠了一部分,重叠部分是个边长3厘米的正方形,面积是3×3=9平方厘米,因此,这个图形的面积是48-9=39平方厘米。

【变式4-1】两张边长8厘米的正方形纸,一部分叠在一起放在桌上(如下图),桌面被盖住的面积是多少?【变式4-2】求下图中阴影部分的面积。

(单位:分米)【例5】一个长方形若长增加2厘米,面积就增加10平方厘米,若宽减少3厘米,面积就减少18平方厘米。

求原来长方形的面积。

解:从图上可以看出,长增加2厘米,面积就增加10平方厘米,说明原来长方形的宽是10÷2=5厘为;宽减少3厘米,面积就减少18平方厘米,说明原来长方形的长是18÷3=6厘米。

所以,原来长方形的面积是:6×5=30平方厘米。

【变式5-1】一个长方形,若长减少5厘米,面积就减少50平方厘米,若宽增加7厘米,面积就增加28平方厘米。

原来长方形的面积是多少平方厘米?【变式5-2】一个正方形若边长都增加4厘米,面积就增加56平方厘米。

原来正方形的面积是多少平方厘米?8884481、将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是多少?2、在公园里有两个花圃,它们的周长相等。

三年级数学奥数讲座面积计算

三年级数学奥数讲座面积计算

三年级数学奥数讲座面积计算三年级面积计算专题简析:我们已经学会了计算长方形、正方形的面积,知道长方形的面积=长×宽,正方形的面积=边长×边长。

利用这些知识我们能解决许多有关面积的问题。

在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,可以添加辅助线或运用割补、转化等解题技巧。

因此,敏锐的观察力和灵活的思维在解题中十分重要。

例题1 把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。

这个正方形木板的面积是多少平方米?思路导航:要使剪成的正方形面积最大,就要使它的边长最长(如图),那么只能选原来的长方形宽为边长,即正方形的边长是3米。

4米3米正方形的面积:3×3=9米。

练习一例题4 有两个相同的长方形,长是8厘米,宽是3厘米。

如果把它们按下图叠放,这个图形的面积是多少?思路导航:如果两个长方形没有叠放,那么它们的面积就是8×3×2=48平方厘米,现在两个长方形重叠了一部分,重叠部分是个边长3厘米的正方形,面积是3×3=9平方厘米,因此,这个图形的面积是48-9=39平方厘米。

练 习四1.两张边长8厘米的正方形纸,一部分叠在一起放在桌上(如下图),桌面被盖住的面积是多少?8884482.求下图中阴影部分的面积。

(单位:分米)3.一个长方形与一个正方形部分重合(如下图),求没有重合的阴影部分面积相差多少?(单位:厘米)例题5 一个长方形若长增加2厘米,面积就增加10平方厘米,若宽减少3厘米,面积就减少18平方厘米。

求原来长方形的面积。

3厘米2厘米从图上可以看出,长增加2厘米,面积就增加10平方厘米,说明原来长方形的宽是10÷2=5厘为;宽减少3厘米,面积就减少18平方厘米,说明原来长方形的长是18÷3=6厘米。

所以,原来长方形的面积是:6×5=30平方厘米。

练习五1.一个长方形,若长减少5厘米,面积就减少50平方厘米,若宽增加7厘米,面积就增加28平方厘米。

三年级奥数面积计算

三年级奥数面积计算

面积是物体占据的平面区域的大小。

在三年级的奥数中,面积计算是一个重要的概念,学生们需要学会使用适当的公式和方法来计算不同形状物体的面积。

下面我将介绍几种常见的面积计算方法。

1.长方形的面积计算:长方形的面积可以通过将长和宽相乘来计算。

假设长方形的长为L,宽为W,则其面积为A=L×W。

学生们可以通过将长方形划分为单位格子的方式,来直观地理解这个公式。

例如,一块长方形土地可以划分为10个乘以10个的格子,那么它的面积就是100个格子。

2.正方形的面积计算:正方形是一种特殊的长方形,其特点是四边长度相等。

正方形的面积可以通过边长的平方来计算。

假设正方形的边长为A,则其面积为A×A=A²。

学生们可以通过划分正方形为单位格子的方式,来理解这个公式。

例如,一块正方形地板可以划分为5个乘以5个的格子,那么它的面积就是25个格子。

3.三角形的面积计算:三角形是一个有三个边的图形。

三角形的面积可以通过底边长度和高的乘积再除以2来计算。

假设三角形的底边为B,高为H,则其面积为A=(B×H)/2、学生们可以通过画一条底边和相应的高,然后划分为单位格子的方式来理解这个公式。

例如,如果一块三角形地面的底边长度为8个单位,高为4个单位,那么它的面积就是(8×4)/2=16个单位。

4.圆形的面积计算:除了上述常见的图形,还有一些其他形状,如梯形、长方体等,它们的面积计算方法略有不同。

在这里,我只介绍了一些基本的概念和计算方法。

在三年级奥数的学习中,学生们还会遇到更多的面积计算问题,需要将这些概念和方法灵活运用。

因此,通过多做练习,加深对面积计算的理解,是非常重要的。

在实际生活中,面积计算常常用于解决实际问题,比如测量房屋面积、购买地毯时计算需要的面积等等。

因此,掌握面积计算的方法不仅对奥数学习有帮助,也对实际生活有实用价值。

希望同学们能够通过不断学习和练习,掌握面积计算的技巧,为今后的学习和生活打下坚实的基础。

三年级数学奥数讲座面积计算

三年级数学奥数讲座面积计算

三年级数学奥数讲座面积计算三年级面积计算专题简析:我们已经学会了计算长方形、正方形的面积,知道长方形的面积=长×宽,正方形的面积=边长×边长。

利用这些知识我们能解决许多有关面积的问题。

在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,可以添加辅助线或运用割补、转化等解题技巧。

因此,敏锐的观察力和灵活的思维在解题中十分重要。

例题1 把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。

这个正方形木板的面积是多少平方米?思路导航:要使剪成的正方形面积最大,就要使它的边长最长(如图),那么只能选原来的长方形宽为边长,即正方形的边长是3米。

4米3米正方形的面积:3×3=9米。

练习一例题 2 学校里有一个正方形花坛,四周种了一圈绿篱,绿篱总长20米。

花坛的面积是多少平方米?思路导航:要求正方形花坛的面积,必须知道花坛的边长是多少。

根据绿篱总长是20米,可求出花坛的边长为20÷4=5米,所以花坛的面积是:5×5=25平方米。

练习二1.一个正方形的周长为36厘米,那么这个正方形的面积是多少平方厘米?2.运动场有一个正方形的游泳池,在游泳池四周粘上瓷砖,瓷砖总长400米,求游泳池的面积是多少平方米。

3.在公园里有两个花圃,它们的周长相等。

其中长方形花圃长40米,宽20米,求另一个正方形花圃的面积。

例题3 求下面图形的面积。

(单位:厘米)1432思路导航:这个图形无法直接求出它的面积,我们可以画一条辅助线,将这个图形分割成两个长方形。

如下图:1432从图上可以看出,左边长方形的长为4厘米,宽为2厘米,面积为4×2=8平方厘米;右边长方形的长为3厘米,宽为1厘米,面积为3×1=3平方厘米。

所以,这个图形的面积为:8+3=11平方厘米。

想一想:这道题还可以怎样画辅助线,分割后求面积呢?练 习 三计算下面图形的面积。

奥数竞赛面积计算公式

奥数竞赛面积计算公式

奥数竞赛面积计算公式在数学竞赛中,面积计算是一个常见的题型,也是考察学生对几何知识掌握程度的重要指标。

在奥数竞赛中,面积计算题目往往涉及到各种不规则图形的面积计算,需要学生灵活运用所学的面积计算公式来解题。

本文将介绍一些常见的面积计算公式,并通过例题来演示如何运用这些公式来解决奥数竞赛中的面积计算题目。

首先,我们来看一些常见的图形的面积计算公式。

1. 矩形的面积计算公式。

矩形是最简单的几何图形之一,其面积计算公式为,面积 = 长×宽。

这个公式非常简单,只需要将矩形的长和宽代入公式即可得到矩形的面积。

2. 正方形的面积计算公式。

正方形是一种特殊的矩形,其面积计算公式与矩形相同,面积= 边长×边长。

也就是说,正方形的面积就是边长的平方。

3. 三角形的面积计算公式。

三角形是另一种常见的几何图形,其面积计算公式为,面积 = 底×高 / 2。

其中,底代表三角形的底边长,高代表三角形的高。

4. 圆的面积计算公式。

圆是一个非常特殊的几何图形,其面积计算公式为,面积= π×半径的平方。

其中,π是一个无理数,约等于3.14,半径代表圆的半径长度。

除了上述常见图形的面积计算公式外,还有一些其他不规则图形的面积计算公式,例如梯形、圆环等,这里不一一列举。

接下来,我们通过一些例题来演示如何运用这些面积计算公式来解决奥数竞赛中的面积计算题目。

例题1,一个矩形的长为5厘米,宽为3厘米,求其面积。

解,根据矩形的面积计算公式,面积 = 长×宽,代入长和宽的数值,得到面积 = 5 × 3 = 15(平方厘米)。

因此,这个矩形的面积为15平方厘米。

例题2,一个半径为4厘米的圆的面积是多少?解,根据圆的面积计算公式,面积 = π×半径的平方,代入半径的数值,得到面积 = 3.14 × 4 × 4 = 50.24(平方厘米)。

因此,这个圆的面积约为50.24平方厘米。

小学三年级奥数面积计算

小学三年级奥数面积计算

小学三年级奥数面积计算在小学三年级的数学学习中,面积计算是一个重要的内容。

通过学习面积计算,孩子们可以在日常生活中更好地应用数学知识,进一步提高他们的数学能力。

本文将介绍小学三年级奥数面积计算的相关知识和方法。

一、正方形的面积计算正方形是指四边相等且四个角都是直角的四边形。

正方形的面积计算可以通过边长的平方得到,公式为:面积 = 边长 ×边长。

例如,一个正方形的边长为3厘米,那么它的面积就是3厘米 × 3厘米 = 9平方厘米。

二、长方形的面积计算长方形是指具有两对相等且平行的边的四边形。

长方形的面积计算可以通过长和宽的乘积得到,公式为:面积 = 长 ×宽。

例如,一个长方形的长为5厘米,宽为4厘米,那么它的面积就是5厘米 × 4厘米 = 20平方厘米。

三、三角形的面积计算三角形是指具有三个边和三个角的多边形。

计算三角形面积的方法有很多种,这里介绍一种简单的方法——底乘高除以2。

具体公式为:面积 = 底 ×高 ÷ 2。

例如,一个三角形的底长为6厘米,高为3厘米,那么它的面积就是6厘米 × 3厘米 ÷ 2 = 9平方厘米。

四、圆的面积计算圆是指由一个平面围绕着它的中心点画出的封闭曲线,圆的面积计算可以通过半径的平方乘以π(π的近似值为 3.14159)得到,公式为:面积 = 半径 ×半径× π。

例如,一个圆的半径为2厘米,那么它的面积就是2厘米 × 2厘米 × 3.14159 = 12.56636平方厘米。

五、综合题目下面我们通过一个综合题目来练习面积计算:某田径场为长方形,长为60米,宽为40米,场地四周沿着跑道边缘修建了一个2米宽的跑道,求整个田径场的面积。

解题方法:首先计算跑道的面积,根据长方形面积计算公式,跑道的面积 = (60 + 2 × 2) ×(40 + 2 × 2)平方米 = 64 × 44平方米 = 2816平方米。

三年级数学奥数讲座面积计算

三年级数学奥数讲座面积计算

数学奥数讲座,面积计算尊敬的老师、亲爱的同学们:大家好!我是今天的讲座主讲人,我将为大家带来有关面积计算的数学奥数内容。

希望通过这次讲座,能够让大家对面积的计算方法有更深入的理解,提高自己在数学方面的能力。

首先,我们先来回顾一下面积的概念。

大家知道,面积是一个物体表面所占据的空间,用来表示物体的大小。

在数学中,面积通常用单位平方来衡量,比如平方米(㎡)、平方分米(㎡dm2)、平方厘米(㎡cm2)等。

接下来,我们将介绍一些常见的图形的面积计算方法,使大家能够更好地应用在实际问题中。

首先,我们来讲解矩形的面积计算。

矩形的面积等于它的长乘以宽,即面积等于长×宽。

例如,如果一个矩形的长为8米,宽为5米,那么它的面积就是8×5=40(㎡)。

大家可以通过实际测量长和宽,或者通过已知的数据来计算矩形的面积。

其次,我们来讲解三角形的面积计算。

对于一个三角形,我们可以使用下述公式来计算其面积:面积=底×高÷2、其中,底表示三角形底边的长度,高表示从底边到与底边垂直的顶点的线段的长度。

例如,如果一个三角形的底长为6米,高为4米,那么它的面积就是6×4÷2=12(㎡)。

同样,我们可以通过实际测量得到三角形的底和高,或者通过已知的数据进行计算。

在计算多边形的面积时,我们通常采用分解法。

我们可以将多边形分解成若干个矩形和三角形,然后分别计算每个小图形的面积,最后将它们的面积相加,就能得到整个多边形的面积。

例如,在计算一个梯形的面积时,我们可以将其分解成一个矩形和两个三角形,然后计算出每个小图形的面积,最后相加。

这样,我们就能得到整个梯形的面积。

最后,我想强调面积计算的重要性。

面积是数学中一个基本的概念,它与我们的日常生活息息相关。

无论是做几何题还是应用计算面积解决实际问题,在数学学习和应用中,面积都起着重要的作用。

因此,我们要努力掌握面积计算的各种方法,做到灵活运用。

(最新)三年级奥数举一反三第三十七周 面积计算

(最新)三年级奥数举一反三第三十七周  面积计算

第三十七周面积计算专题简析:我们已经学会了计算长方形、正方形的面积,知道长方形的面积=长×宽,正方形的面积=边长×边长。

利用这些知识我们能解决许多有关面积的问题。

在解答比较复杂的关于长方形、正方形的面积计算的问题时,生搬硬套公式往往不能奏效,可以添加辅助线或运用割补、转化等解题技巧。

因此,敏锐的观察力和灵活的思维在解题中十分重要。

例题1 把一张长为4米,宽为3米的长方形木板,剪成一个面积最大的正方形。

这个正方形木板的面积是多少平方米?思路导航:要使剪成的正方形面积最大,就要使它的边长最长(如图),那么只能选原来的长方形宽为边长,即正方形的边长是3米。

4米3米正方形的面积:3×3=9米。

练习一1,把一张长6厘米,宽4厘米的长方形纸剪成一个面积最大的正方形,这张正方形纸的面积是多少平方厘米?2,把一块长2米、宽6分米的长方形铁板切割成一个面积最大的正方形,这个正方形铁板的面积是多少?3,将一张长10厘米、宽8厘米的长方形纸片剪成一个面积最大的正方形,那么剪下的另一个小长方形的面积是多少?例题2 学校里有一个正方形花坛,四周种了一圈绿篱,绿篱总长20米。

花坛的面积是多少平方米?分析:要求正方形花坛的面积,必须知道花坛的边长是多少。

根据绿篱总长是20米,可求出花坛的边长为20÷4=5米,所以花坛的面积是:5×5=25平方米。

练习二1,一个正方形的周长为36厘米,那么这个正方形的面积是多少平方厘米?2,运动场有一个正方形的游泳池,在游泳池四周粘上瓷砖,瓷砖总长400米,求游泳池的面积是多少平方米。

3,在公园里有两个花圃,它们的周长相等。

其中长方形花圃长40米,宽20米,求另一个正方形花圃的面积。

例题3 求下面图形的面积。

(单位:厘米)1324思路导航:这个图形无法直接求出它的面积,我们可以画一条辅助线,将这个图形分割成两个长方形。

如下图:1324从图上可以看出,左边长方形的长为4厘米,宽为2厘米,面积为4×2=8平方厘米;右边长方形的长为3厘米,宽为1厘米,面积为3×1=3平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级奥数数练习(面积计算)
1、一张长方形纸,长15厘米,宽11厘米,剪下一个最大的正方形,求剩下的长方形的面积是多少?
2、学校里有一个正方形花坛,四周种了一圈绿篱,绿篱总长24米。

花坛的面积是多少平方米?
3、实验小学有一个正方形花坛和一个长方形花坛,它们的周长相等。

其中正方形花坛边长15米,长方形花坛长20米,面积是多少平方米?
4、求下列各图形面积(单位:厘米)
15
6
2
18
8 10
2
6
5、一个长方形,如果长增加5厘米,面积就会增40平方厘米,如果宽减少3厘米,面积就减少18平方厘米,求长方形面积。

6、如左下图,用四个完全一样的长方形拼成一个面积为100平方厘米的正方形,如果每个长方形的宽是3厘米,求每个长方形的面积。

7、如右上图,大正方形的面积是128平方厘米,求三个阴影小正方形面积的和。

8、如左下图,4个完全一样的长方形和一个小正方形拼成了一个大正方形,求长方形的周长是多少?
7厘米
9、右上图是一个工厂新建的“工”字形厂房,求厂房的周长和面积。

10、正方形花坛周围有一圈宽2米的小路,小路的面积是136平方米,求花坛的面积。

附加题:一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形,求原来长方形面积。

相关文档
最新文档