新初中数学因式分解经典测试题及答案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新初中数学因式分解经典测试题及答案(1)

一、选择题

1.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:

①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )

A .①

B .②

C .③

D .④

【答案】C

【解析】

【分析】

直接找出公因式进而提取得出答案.

【详解】

2x 2a-6xab+2x=2x (xa-3ab+1).

故选:C .

【点睛】

此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.

2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ y

B .x ≥ y

C .x < y

D .x > y

【答案】D

【解析】

【分析】

判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.

【详解】

解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>,

0x y ∴->,

x y ∴>,

故选:D .

【点睛】

本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.

3.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+

B .21x x ++

C .21x x --

D .21x x +-

【答案】B

【解析】

解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .

4.下列等式从左到右的变形是因式分解的是()

A.2x(x+3)=2x2+6x B.24xy2=3x•8y2

C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)

【答案】D

【解析】

【分析】

根据因式分解的定义逐个判断即可.

【详解】

A、不是因式分解,故本选项不符合题意;

B、不是因式分解,故本选项不符合题意;

C、不是因式分解,故本选项不符合题意;

D、是因式分解,故本选项符合题意;

故选D.

【点睛】

本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.

5.下列各式中,由等式的左边到右边的变形是因式分解的是()

A.(x+3)(x-3)=x2-9 B.x2+x-5=(x-2)(x+3)+1

C.a2b+ab2=ab(a+b) D.x2+1=x

1 () x

x

【答案】C

【解析】

【分析】

根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.

【详解】

A、是整式的乘法,故A错误;

B、没有把一个多项式转化成几个整式积的形式,故B错误;

C、把一个多项式转化成了几个整式积的形式,故C正确;

D、没有把一个多项式转化成几个整式积的形式,故D错误;

故选:C.

【点睛】

本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.

6.已知a﹣b=2,则a2﹣b2﹣4b的值为()

A.2 B.4 C.6 D.8【答案】B

【解析】

【分析】

原式变形后,把已知等式代入计算即可求出值.

【详解】

∵a ﹣b =2,

∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.

故选:B .

【点睛】

此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.

7.将3a b ab -进行因式分解,正确的是( )

A .()2a a b b -

B .()21ab a -

C .()()11ab a a +-

D .()21ab a - 【答案】C

【解析】

【分析】

多项式3a b ab -有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.

【详解】

()()()32111a b ab ab a ab a a -=-=+-,

故选:C .

【点睛】

此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;

8.若()()21553x kx x x --=-+,则k 的值为( )

A .-2

B .2

C .8

D .-8

【答案】B

【解析】

【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.

【详解】

∵()()253215x x x x -+=--

∴2k -=-

解得2k =

故答案为:B .

【点睛】

相关文档
最新文档